mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-26 23:32:58 +00:00
b6606e46ab
Unlike most -- hopefully "all other", but I'm still checking -- memory instructions we support, LOAD REVERSED and STORE REVERSED may access the memory location several times. This means that they are not suitable for volatile loads and stores. This patch is a prerequisite for better atomic load and store support. The same principle applies there: almost all memory instructions we support are inherently atomic ("block concurrent"), but LOAD REVERSED and STORE REVERSED are exceptions. Other instructions continue to allow volatile operands. I will add positive "allows volatile" tests at the same time as the "allows atomic load or store" tests. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183002 91177308-0d34-0410-b5e6-96231b3b80d8
1018 lines
44 KiB
TableGen
1018 lines
44 KiB
TableGen
//===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Stack allocation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt),
|
|
[(callseq_start timm:$amt)]>;
|
|
def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
|
|
[(callseq_end timm:$amt1, timm:$amt2)]>;
|
|
|
|
let neverHasSideEffects = 1 in {
|
|
// Takes as input the value of the stack pointer after a dynamic allocation
|
|
// has been made. Sets the output to the address of the dynamically-
|
|
// allocated area itself, skipping the outgoing arguments.
|
|
//
|
|
// This expands to an LA or LAY instruction. We restrict the offset
|
|
// to the range of LA and keep the LAY range in reserve for when
|
|
// the size of the outgoing arguments is added.
|
|
def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
|
|
[(set GR64:$dst, dynalloc12only:$src)]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Control flow instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// A return instruction. R1 is the condition-code mask (all 1s)
|
|
// and R2 is the target address, which is always stored in %r14.
|
|
let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1,
|
|
R1 = 15, R2 = 14, isCodeGenOnly = 1 in {
|
|
def RET : InstRR<0x07, (outs), (ins), "br\t%r14", [(z_retflag)]>;
|
|
}
|
|
|
|
// Unconditional branches. R1 is the condition-code mask (all 1s).
|
|
let isBranch = 1, isTerminator = 1, isBarrier = 1, R1 = 15 in {
|
|
let isIndirectBranch = 1 in
|
|
def BR : InstRR<0x07, (outs), (ins ADDR64:$R2),
|
|
"br\t$R2", [(brind ADDR64:$R2)]>;
|
|
|
|
// An assembler extended mnemonic for BRC.
|
|
def J : InstRI<0xA74, (outs), (ins brtarget16:$I2), "j\t$I2",
|
|
[(br bb:$I2)]>;
|
|
|
|
// An assembler extended mnemonic for BRCL. (The extension is "G"
|
|
// rather than "L" because "JL" is "Jump if Less".)
|
|
def JG : InstRIL<0xC04, (outs), (ins brtarget32:$I2), "jg\t$I2", []>;
|
|
}
|
|
|
|
// Conditional branches. It's easier for LLVM to handle these branches
|
|
// in their raw BRC/BRCL form, with the 4-bit condition-code mask being
|
|
// the first operand. It seems friendlier to use mnemonic forms like
|
|
// JE and JLH when writing out the assembly though.
|
|
//
|
|
// Using a custom inserter for BRC gives us a chance to convert the BRC
|
|
// and a preceding compare into a single compare-and-branch instruction.
|
|
// The inserter makes no change in cases where a separate branch really
|
|
// is needed.
|
|
multiclass CondBranches<Operand ccmask, string short, string long> {
|
|
let isBranch = 1, isTerminator = 1, Uses = [CC] in {
|
|
def "" : InstRI<0xA74, (outs), (ins ccmask:$R1, brtarget16:$I2), short, []>;
|
|
def L : InstRIL<0xC04, (outs), (ins ccmask:$R1, brtarget32:$I2), long, []>;
|
|
}
|
|
}
|
|
let isCodeGenOnly = 1, usesCustomInserter = 1 in
|
|
defm BRC : CondBranches<cond4, "j$R1\t$I2", "jg$R1\t$I2">;
|
|
defm AsmBRC : CondBranches<uimm8zx4, "brc\t$R1, $I2", "brcl\t$R1, $I2">;
|
|
|
|
def : Pat<(z_br_ccmask cond4:$cond, bb:$dst), (BRC cond4:$cond, bb:$dst)>;
|
|
|
|
// Fused compare-and-branch instructions. As for normal branches,
|
|
// we handle these instructions internally in their raw CRJ-like form,
|
|
// but use assembly macros like CRJE when writing them out.
|
|
//
|
|
// These instructions do not use or clobber the condition codes.
|
|
// We nevertheless pretend that they clobber CC, so that we can lower
|
|
// them to separate comparisons and BRCLs if the branch ends up being
|
|
// out of range.
|
|
multiclass CompareBranches<Operand ccmask, string pos1, string pos2> {
|
|
let isBranch = 1, isTerminator = 1, Defs = [CC] in {
|
|
def RJ : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2, ccmask:$M3,
|
|
brtarget16:$RI4),
|
|
"crj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
|
|
def GRJ : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2, ccmask:$M3,
|
|
brtarget16:$RI4),
|
|
"cgrj"##pos1##"\t$R1, $R2, "##pos2##"$RI4", []>;
|
|
def IJ : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2, ccmask:$M3,
|
|
brtarget16:$RI4),
|
|
"cij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
|
|
def GIJ : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2, ccmask:$M3,
|
|
brtarget16:$RI4),
|
|
"cgij"##pos1##"\t$R1, $I2, "##pos2##"$RI4", []>;
|
|
}
|
|
}
|
|
let isCodeGenOnly = 1 in
|
|
defm C : CompareBranches<cond4, "$M3", "">;
|
|
defm AsmC : CompareBranches<uimm8zx4, "", "$M3, ">;
|
|
|
|
// Define AsmParser mnemonics for each general condition-code mask
|
|
// (integer or floating-point)
|
|
multiclass CondExtendedMnemonic<bits<4> ccmask, string name> {
|
|
let R1 = ccmask in {
|
|
def "" : InstRI<0xA74, (outs), (ins brtarget16:$I2),
|
|
"j"##name##"\t$I2", []>;
|
|
def L : InstRIL<0xC04, (outs), (ins brtarget32:$I2),
|
|
"jg"##name##"\t$I2", []>;
|
|
}
|
|
}
|
|
defm AsmJO : CondExtendedMnemonic<1, "o">;
|
|
defm AsmJH : CondExtendedMnemonic<2, "h">;
|
|
defm AsmJNLE : CondExtendedMnemonic<3, "nle">;
|
|
defm AsmJL : CondExtendedMnemonic<4, "l">;
|
|
defm AsmJNHE : CondExtendedMnemonic<5, "nhe">;
|
|
defm AsmJLH : CondExtendedMnemonic<6, "lh">;
|
|
defm AsmJNE : CondExtendedMnemonic<7, "ne">;
|
|
defm AsmJE : CondExtendedMnemonic<8, "e">;
|
|
defm AsmJNLH : CondExtendedMnemonic<9, "nlh">;
|
|
defm AsmJHE : CondExtendedMnemonic<10, "he">;
|
|
defm AsmJNL : CondExtendedMnemonic<11, "nl">;
|
|
defm AsmJLE : CondExtendedMnemonic<12, "le">;
|
|
defm AsmJNH : CondExtendedMnemonic<13, "nh">;
|
|
defm AsmJNO : CondExtendedMnemonic<14, "no">;
|
|
|
|
// Define AsmParser mnemonics for each integer condition-code mask.
|
|
// This is like the list above, except that condition 3 is not possible
|
|
// and that the low bit of the mask is therefore always 0. This means
|
|
// that each condition has two names. Conditions "o" and "no" are not used.
|
|
//
|
|
// We don't make one of the two names an alias of the other because
|
|
// we need the custom parsing routines to select the correct register class.
|
|
multiclass IntCondExtendedMnemonicA<bits<4> ccmask, string name> {
|
|
let M3 = ccmask in {
|
|
def CR : InstRIEb<0xEC76, (outs), (ins GR32:$R1, GR32:$R2,
|
|
brtarget16:$RI4),
|
|
"crj"##name##"\t$R1, $R2, $RI4", []>;
|
|
def CGR : InstRIEb<0xEC64, (outs), (ins GR64:$R1, GR64:$R2,
|
|
brtarget16:$RI4),
|
|
"cgrj"##name##"\t$R1, $R2, $RI4", []>;
|
|
def CI : InstRIEc<0xEC7E, (outs), (ins GR32:$R1, imm32sx8:$I2,
|
|
brtarget16:$RI4),
|
|
"cij"##name##"\t$R1, $I2, $RI4", []>;
|
|
def CGI : InstRIEc<0xEC7C, (outs), (ins GR64:$R1, imm64sx8:$I2,
|
|
brtarget16:$RI4),
|
|
"cgij"##name##"\t$R1, $I2, $RI4", []>;
|
|
}
|
|
}
|
|
multiclass IntCondExtendedMnemonic<bits<4> ccmask, string name1, string name2>
|
|
: IntCondExtendedMnemonicA<ccmask, name1> {
|
|
let isAsmParserOnly = 1 in
|
|
defm Alt : IntCondExtendedMnemonicA<ccmask, name2>;
|
|
}
|
|
defm AsmJH : IntCondExtendedMnemonic<2, "h", "nle">;
|
|
defm AsmJL : IntCondExtendedMnemonic<4, "l", "nhe">;
|
|
defm AsmJLH : IntCondExtendedMnemonic<6, "lh", "ne">;
|
|
defm AsmJE : IntCondExtendedMnemonic<8, "e", "nlh">;
|
|
defm AsmJHE : IntCondExtendedMnemonic<10, "he", "nl">;
|
|
defm AsmJLE : IntCondExtendedMnemonic<12, "le", "nh">;
|
|
|
|
def Select32 : SelectWrapper<GR32>;
|
|
def Select64 : SelectWrapper<GR64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Call instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// The definitions here are for the call-clobbered registers.
|
|
let isCall = 1, Defs = [R0D, R1D, R2D, R3D, R4D, R5D, R14D,
|
|
F0D, F1D, F2D, F3D, F4D, F5D, F6D, F7D],
|
|
R1 = 14, isCodeGenOnly = 1 in {
|
|
def BRAS : InstRI<0xA75, (outs), (ins pcrel16call:$I2, variable_ops),
|
|
"bras\t%r14, $I2", []>;
|
|
def BRASL : InstRIL<0xC05, (outs), (ins pcrel32call:$I2, variable_ops),
|
|
"brasl\t%r14, $I2", [(z_call pcrel32call:$I2)]>;
|
|
def BASR : InstRR<0x0D, (outs), (ins ADDR64:$R2, variable_ops),
|
|
"basr\t%r14, $R2", [(z_call ADDR64:$R2)]>;
|
|
}
|
|
|
|
// Define the general form of the call instructions for the asm parser.
|
|
// These instructions don't hard-code %r14 as the return address register.
|
|
def AsmBRAS : InstRI<0xA75, (outs), (ins GR64:$R1, brtarget16:$I2),
|
|
"bras\t$R1, $I2", []>;
|
|
def AsmBRASL : InstRIL<0xC05, (outs), (ins GR64:$R1, brtarget32:$I2),
|
|
"brasl\t$R1, $I2", []>;
|
|
def AsmBASR : InstRR<0x0D, (outs), (ins GR64:$R1, ADDR64:$R2),
|
|
"basr\t$R1, $R2", []>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Move instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Register moves.
|
|
let neverHasSideEffects = 1 in {
|
|
def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
|
|
def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
|
|
}
|
|
|
|
// Immediate moves.
|
|
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in {
|
|
// 16-bit sign-extended immediates.
|
|
def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
|
|
def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
|
|
|
|
// Other 16-bit immediates.
|
|
def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
|
|
def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
|
|
def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
|
|
def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
|
|
|
|
// 32-bit immediates.
|
|
def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
|
|
def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
|
|
def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
|
|
}
|
|
|
|
// Register loads.
|
|
let canFoldAsLoad = 1, SimpleBDXLoad = 1 in {
|
|
defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32>;
|
|
def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>;
|
|
|
|
def LG : UnaryRXY<"lg", 0xE304, load, GR64>;
|
|
def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>;
|
|
|
|
// These instructions are split after register allocation, so we don't
|
|
// want a custom inserter.
|
|
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
|
|
def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
|
|
[(set GR128:$dst, (load bdxaddr20only128:$src))]>;
|
|
}
|
|
}
|
|
|
|
// Register stores.
|
|
let SimpleBDXStore = 1 in {
|
|
let isCodeGenOnly = 1 in {
|
|
defm ST32 : StoreRXPair<"st", 0x50, 0xE350, store, GR32>;
|
|
def STRL32 : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
|
|
}
|
|
|
|
def STG : StoreRXY<"stg", 0xE324, store, GR64>;
|
|
def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
|
|
|
|
// These instructions are split after register allocation, so we don't
|
|
// want a custom inserter.
|
|
let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
|
|
def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
|
|
[(store GR128:$src, bdxaddr20only128:$dst)]>;
|
|
}
|
|
}
|
|
|
|
// 8-bit immediate stores to 8-bit fields.
|
|
defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
|
|
|
|
// 16-bit immediate stores to 16-, 32- or 64-bit fields.
|
|
def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
|
|
def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
|
|
def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sign extensions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// 32-bit extensions from registers.
|
|
let neverHasSideEffects = 1 in {
|
|
def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
|
|
def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
|
|
}
|
|
|
|
// 64-bit extensions from registers.
|
|
let neverHasSideEffects = 1 in {
|
|
def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
|
|
def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
|
|
def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
|
|
}
|
|
|
|
// Match 32-to-64-bit sign extensions in which the source is already
|
|
// in a 64-bit register.
|
|
def : Pat<(sext_inreg GR64:$src, i32),
|
|
(LGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
|
|
|
|
// 32-bit extensions from memory.
|
|
def LB : UnaryRXY<"lb", 0xE376, sextloadi8, GR32>;
|
|
defm LH : UnaryRXPair<"lh", 0x48, 0xE378, sextloadi16, GR32>;
|
|
def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_sextloadi16, GR32>;
|
|
|
|
// 64-bit extensions from memory.
|
|
def LGB : UnaryRXY<"lgb", 0xE377, sextloadi8, GR64>;
|
|
def LGH : UnaryRXY<"lgh", 0xE315, sextloadi16, GR64>;
|
|
def LGF : UnaryRXY<"lgf", 0xE314, sextloadi32, GR64>;
|
|
def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_sextloadi16, GR64>;
|
|
def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_sextloadi32, GR64>;
|
|
|
|
// If the sign of a load-extend operation doesn't matter, use the signed ones.
|
|
// There's not really much to choose between the sign and zero extensions,
|
|
// but LH is more compact than LLH for small offsets.
|
|
def : Pat<(i32 (extloadi8 bdxaddr20only:$src)), (LB bdxaddr20only:$src)>;
|
|
def : Pat<(i32 (extloadi16 bdxaddr12pair:$src)), (LH bdxaddr12pair:$src)>;
|
|
def : Pat<(i32 (extloadi16 bdxaddr20pair:$src)), (LHY bdxaddr20pair:$src)>;
|
|
|
|
def : Pat<(i64 (extloadi8 bdxaddr20only:$src)), (LGB bdxaddr20only:$src)>;
|
|
def : Pat<(i64 (extloadi16 bdxaddr20only:$src)), (LGH bdxaddr20only:$src)>;
|
|
def : Pat<(i64 (extloadi32 bdxaddr20only:$src)), (LGF bdxaddr20only:$src)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Zero extensions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// 32-bit extensions from registers.
|
|
let neverHasSideEffects = 1 in {
|
|
def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
|
|
def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
|
|
}
|
|
|
|
// 64-bit extensions from registers.
|
|
let neverHasSideEffects = 1 in {
|
|
def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
|
|
def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
|
|
def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
|
|
}
|
|
|
|
// Match 32-to-64-bit zero extensions in which the source is already
|
|
// in a 64-bit register.
|
|
def : Pat<(and GR64:$src, 0xffffffff),
|
|
(LLGFR (EXTRACT_SUBREG GR64:$src, subreg_32bit))>;
|
|
|
|
// 32-bit extensions from memory.
|
|
def LLC : UnaryRXY<"llc", 0xE394, zextloadi8, GR32>;
|
|
def LLH : UnaryRXY<"llh", 0xE395, zextloadi16, GR32>;
|
|
def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_zextloadi16, GR32>;
|
|
|
|
// 64-bit extensions from memory.
|
|
def LLGC : UnaryRXY<"llgc", 0xE390, zextloadi8, GR64>;
|
|
def LLGH : UnaryRXY<"llgh", 0xE391, zextloadi16, GR64>;
|
|
def LLGF : UnaryRXY<"llgf", 0xE316, zextloadi32, GR64>;
|
|
def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_zextloadi16, GR64>;
|
|
def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_zextloadi32, GR64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Truncations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Truncations of 64-bit registers to 32-bit registers.
|
|
def : Pat<(i32 (trunc GR64:$src)),
|
|
(EXTRACT_SUBREG GR64:$src, subreg_32bit)>;
|
|
|
|
// Truncations of 32-bit registers to memory.
|
|
let isCodeGenOnly = 1 in {
|
|
defm STC32 : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32>;
|
|
defm STH32 : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32>;
|
|
def STHRL32 : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
|
|
}
|
|
|
|
// Truncations of 64-bit registers to memory.
|
|
defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR64>;
|
|
defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR64>;
|
|
def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR64>;
|
|
defm ST : StoreRXPair<"st", 0x50, 0xE350, truncstorei32, GR64>;
|
|
def STRL : StoreRILPC<"strl", 0xC4F, aligned_truncstorei32, GR64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Multi-register moves
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Multi-register loads.
|
|
def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
|
|
|
|
// Multi-register stores.
|
|
def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Byte swaps
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Byte-swapping register moves.
|
|
let neverHasSideEffects = 1 in {
|
|
def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
|
|
def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
|
|
}
|
|
|
|
// Byte-swapping loads. Unlike normal loads, these instructions are
|
|
// allowed to access storage more than once.
|
|
def LRV : UnaryRXY<"lrv", 0xE31E, loadu<bswap, nonvolatile_load>, GR32>;
|
|
def LRVG : UnaryRXY<"lrvg", 0xE30F, loadu<bswap, nonvolatile_load>, GR64>;
|
|
|
|
// Likewise byte-swapping stores.
|
|
def STRV : StoreRXY<"strv", 0xE33E, storeu<bswap, nonvolatile_store>, GR32>;
|
|
def STRVG : StoreRXY<"strvg", 0xE32F, storeu<bswap, nonvolatile_store>, GR64>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Load address instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Load BDX-style addresses.
|
|
let neverHasSideEffects = 1, Function = "la" in {
|
|
let PairType = "12" in
|
|
def LA : InstRX<0x41, (outs GR64:$R1), (ins laaddr12pair:$XBD2),
|
|
"la\t$R1, $XBD2",
|
|
[(set GR64:$R1, laaddr12pair:$XBD2)]>;
|
|
let PairType = "20" in
|
|
def LAY : InstRXY<0xE371, (outs GR64:$R1), (ins laaddr20pair:$XBD2),
|
|
"lay\t$R1, $XBD2",
|
|
[(set GR64:$R1, laaddr20pair:$XBD2)]>;
|
|
}
|
|
|
|
// Load a PC-relative address. There's no version of this instruction
|
|
// with a 16-bit offset, so there's no relaxation.
|
|
let neverHasSideEffects = 1 in {
|
|
def LARL : InstRIL<0xC00, (outs GR64:$R1), (ins pcrel32:$I2),
|
|
"larl\t$R1, $I2",
|
|
[(set GR64:$R1, pcrel32:$I2)]>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Negation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [CC] in {
|
|
def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
|
|
def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
|
|
def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
|
|
}
|
|
defm : SXU<ineg, LCGFR>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Insertion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isCodeGenOnly = 1 in
|
|
defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, zextloadi8>;
|
|
defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, zextloadi8>;
|
|
|
|
defm : InsertMem<"inserti8", IC32, GR32, zextloadi8, bdxaddr12pair>;
|
|
defm : InsertMem<"inserti8", IC32Y, GR32, zextloadi8, bdxaddr20pair>;
|
|
|
|
defm : InsertMem<"inserti8", IC, GR64, zextloadi8, bdxaddr12pair>;
|
|
defm : InsertMem<"inserti8", ICY, GR64, zextloadi8, bdxaddr20pair>;
|
|
|
|
// Insertions of a 16-bit immediate, leaving other bits unaffected.
|
|
// We don't have or_as_insert equivalents of these operations because
|
|
// OI is available instead.
|
|
let isCodeGenOnly = 1 in {
|
|
def IILL32 : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
|
|
def IILH32 : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
|
|
}
|
|
def IILL : BinaryRI<"iill", 0xA53, insertll, GR64, imm64ll16>;
|
|
def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR64, imm64lh16>;
|
|
def IIHL : BinaryRI<"iihl", 0xA51, inserthl, GR64, imm64hl16>;
|
|
def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
|
|
|
|
// ...likewise for 32-bit immediates. For GR32s this is a general
|
|
// full-width move. (We use IILF rather than something like LLILF
|
|
// for 32-bit moves because IILF leaves the upper 32 bits of the
|
|
// GR64 unchanged.)
|
|
let isCodeGenOnly = 1 in {
|
|
def IILF32 : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
|
|
}
|
|
def IILF : BinaryRIL<"iilf", 0xC09, insertlf, GR64, imm64lf32>;
|
|
def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
|
|
|
|
// An alternative model of inserthf, with the first operand being
|
|
// a zero-extended value.
|
|
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
|
|
(IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit),
|
|
imm64hf32:$imm)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Addition
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Plain addition.
|
|
let Defs = [CC] in {
|
|
// Addition of a register.
|
|
let isCommutable = 1 in {
|
|
def AR : BinaryRR <"ar", 0x1A, add, GR32, GR32>;
|
|
def AGR : BinaryRRE<"agr", 0xB908, add, GR64, GR64>;
|
|
}
|
|
def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
|
|
|
|
// Addition of signed 16-bit immediates.
|
|
def AHI : BinaryRI<"ahi", 0xA7A, add, GR32, imm32sx16>;
|
|
def AGHI : BinaryRI<"aghi", 0xA7B, add, GR64, imm64sx16>;
|
|
|
|
// Addition of signed 32-bit immediates.
|
|
def AFI : BinaryRIL<"afi", 0xC29, add, GR32, simm32>;
|
|
def AGFI : BinaryRIL<"agfi", 0xC28, add, GR64, imm64sx32>;
|
|
|
|
// Addition of memory.
|
|
defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, add, GR32, sextloadi16>;
|
|
defm A : BinaryRXPair<"a", 0x5A, 0xE35A, add, GR32, load>;
|
|
def AGF : BinaryRXY<"agf", 0xE318, add, GR64, sextloadi32>;
|
|
def AG : BinaryRXY<"ag", 0xE308, add, GR64, load>;
|
|
|
|
// Addition to memory.
|
|
def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
|
|
def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
|
|
}
|
|
defm : SXB<add, GR64, AGFR>;
|
|
|
|
// Addition producing a carry.
|
|
let Defs = [CC] in {
|
|
// Addition of a register.
|
|
let isCommutable = 1 in {
|
|
def ALR : BinaryRR <"alr", 0x1E, addc, GR32, GR32>;
|
|
def ALGR : BinaryRRE<"algr", 0xB90A, addc, GR64, GR64>;
|
|
}
|
|
def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
|
|
|
|
// Addition of unsigned 32-bit immediates.
|
|
def ALFI : BinaryRIL<"alfi", 0xC2B, addc, GR32, uimm32>;
|
|
def ALGFI : BinaryRIL<"algfi", 0xC2A, addc, GR64, imm64zx32>;
|
|
|
|
// Addition of memory.
|
|
defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, addc, GR32, load>;
|
|
def ALGF : BinaryRXY<"algf", 0xE31A, addc, GR64, zextloadi32>;
|
|
def ALG : BinaryRXY<"alg", 0xE30A, addc, GR64, load>;
|
|
}
|
|
defm : ZXB<addc, GR64, ALGFR>;
|
|
|
|
// Addition producing and using a carry.
|
|
let Defs = [CC], Uses = [CC] in {
|
|
// Addition of a register.
|
|
def ALCR : BinaryRRE<"alcr", 0xB998, adde, GR32, GR32>;
|
|
def ALCGR : BinaryRRE<"alcgr", 0xB988, adde, GR64, GR64>;
|
|
|
|
// Addition of memory.
|
|
def ALC : BinaryRXY<"alc", 0xE398, adde, GR32, load>;
|
|
def ALCG : BinaryRXY<"alcg", 0xE388, adde, GR64, load>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subtraction
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Plain substraction. Although immediate forms exist, we use the
|
|
// add-immediate instruction instead.
|
|
let Defs = [CC] in {
|
|
// Subtraction of a register.
|
|
def SR : BinaryRR <"sr", 0x1B, sub, GR32, GR32>;
|
|
def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
|
|
def SGR : BinaryRRE<"sgr", 0xB909, sub, GR64, GR64>;
|
|
|
|
// Subtraction of memory.
|
|
defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, sub, GR32, sextloadi16>;
|
|
defm S : BinaryRXPair<"s", 0x5B, 0xE35B, sub, GR32, load>;
|
|
def SGF : BinaryRXY<"sgf", 0xE319, sub, GR64, sextloadi32>;
|
|
def SG : BinaryRXY<"sg", 0xE309, sub, GR64, load>;
|
|
}
|
|
defm : SXB<sub, GR64, SGFR>;
|
|
|
|
// Subtraction producing a carry.
|
|
let Defs = [CC] in {
|
|
// Subtraction of a register.
|
|
def SLR : BinaryRR <"slr", 0x1F, subc, GR32, GR32>;
|
|
def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
|
|
def SLGR : BinaryRRE<"slgr", 0xB90B, subc, GR64, GR64>;
|
|
|
|
// Subtraction of unsigned 32-bit immediates. These don't match
|
|
// subc because we prefer addc for constants.
|
|
def SLFI : BinaryRIL<"slfi", 0xC25, null_frag, GR32, uimm32>;
|
|
def SLGFI : BinaryRIL<"slgfi", 0xC24, null_frag, GR64, imm64zx32>;
|
|
|
|
// Subtraction of memory.
|
|
defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, subc, GR32, load>;
|
|
def SLGF : BinaryRXY<"slgf", 0xE31B, subc, GR64, zextloadi32>;
|
|
def SLG : BinaryRXY<"slg", 0xE30B, subc, GR64, load>;
|
|
}
|
|
defm : ZXB<subc, GR64, SLGFR>;
|
|
|
|
// Subtraction producing and using a carry.
|
|
let Defs = [CC], Uses = [CC] in {
|
|
// Subtraction of a register.
|
|
def SLBR : BinaryRRE<"slbr", 0xB999, sube, GR32, GR32>;
|
|
def SLGBR : BinaryRRE<"slbgr", 0xB989, sube, GR64, GR64>;
|
|
|
|
// Subtraction of memory.
|
|
def SLB : BinaryRXY<"slb", 0xE399, sube, GR32, load>;
|
|
def SLBG : BinaryRXY<"slbg", 0xE389, sube, GR64, load>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AND
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [CC] in {
|
|
// ANDs of a register.
|
|
let isCommutable = 1 in {
|
|
def NR : BinaryRR <"nr", 0x14, and, GR32, GR32>;
|
|
def NGR : BinaryRRE<"ngr", 0xB980, and, GR64, GR64>;
|
|
}
|
|
|
|
// ANDs of a 16-bit immediate, leaving other bits unaffected.
|
|
let isCodeGenOnly = 1 in {
|
|
def NILL32 : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
|
|
def NILH32 : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
|
|
}
|
|
def NILL : BinaryRI<"nill", 0xA57, and, GR64, imm64ll16c>;
|
|
def NILH : BinaryRI<"nilh", 0xA56, and, GR64, imm64lh16c>;
|
|
def NIHL : BinaryRI<"nihl", 0xA55, and, GR64, imm64hl16c>;
|
|
def NIHH : BinaryRI<"nihh", 0xA54, and, GR64, imm64hh16c>;
|
|
|
|
// ANDs of a 32-bit immediate, leaving other bits unaffected.
|
|
let isCodeGenOnly = 1 in
|
|
def NILF32 : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
|
|
def NILF : BinaryRIL<"nilf", 0xC0B, and, GR64, imm64lf32c>;
|
|
def NIHF : BinaryRIL<"nihf", 0xC0A, and, GR64, imm64hf32c>;
|
|
|
|
// ANDs of memory.
|
|
defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load>;
|
|
def NG : BinaryRXY<"ng", 0xE380, and, GR64, load>;
|
|
|
|
// AND to memory
|
|
defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, uimm8>;
|
|
}
|
|
defm : RMWIByte<and, bdaddr12pair, NI>;
|
|
defm : RMWIByte<and, bdaddr20pair, NIY>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// OR
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [CC] in {
|
|
// ORs of a register.
|
|
let isCommutable = 1 in {
|
|
def OR : BinaryRR <"or", 0x16, or, GR32, GR32>;
|
|
def OGR : BinaryRRE<"ogr", 0xB981, or, GR64, GR64>;
|
|
}
|
|
|
|
// ORs of a 16-bit immediate, leaving other bits unaffected.
|
|
let isCodeGenOnly = 1 in {
|
|
def OILL32 : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
|
|
def OILH32 : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
|
|
}
|
|
def OILL : BinaryRI<"oill", 0xA5B, or, GR64, imm64ll16>;
|
|
def OILH : BinaryRI<"oilh", 0xA5A, or, GR64, imm64lh16>;
|
|
def OIHL : BinaryRI<"oihl", 0xA59, or, GR64, imm64hl16>;
|
|
def OIHH : BinaryRI<"oihh", 0xA58, or, GR64, imm64hh16>;
|
|
|
|
// ORs of a 32-bit immediate, leaving other bits unaffected.
|
|
let isCodeGenOnly = 1 in
|
|
def OILF32 : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
|
|
def OILF : BinaryRIL<"oilf", 0xC0D, or, GR64, imm64lf32>;
|
|
def OIHF : BinaryRIL<"oihf", 0xC0C, or, GR64, imm64hf32>;
|
|
|
|
// ORs of memory.
|
|
defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load>;
|
|
def OG : BinaryRXY<"og", 0xE381, or, GR64, load>;
|
|
|
|
// OR to memory
|
|
defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, uimm8>;
|
|
}
|
|
defm : RMWIByte<or, bdaddr12pair, OI>;
|
|
defm : RMWIByte<or, bdaddr20pair, OIY>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// XOR
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let Defs = [CC] in {
|
|
// XORs of a register.
|
|
let isCommutable = 1 in {
|
|
def XR : BinaryRR <"xr", 0x17, xor, GR32, GR32>;
|
|
def XGR : BinaryRRE<"xgr", 0xB982, xor, GR64, GR64>;
|
|
}
|
|
|
|
// XORs of a 32-bit immediate, leaving other bits unaffected.
|
|
let isCodeGenOnly = 1 in
|
|
def XILF32 : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
|
|
def XILF : BinaryRIL<"xilf", 0xC07, xor, GR64, imm64lf32>;
|
|
def XIHF : BinaryRIL<"xihf", 0xC06, xor, GR64, imm64hf32>;
|
|
|
|
// XORs of memory.
|
|
defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load>;
|
|
def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load>;
|
|
|
|
// XOR to memory
|
|
defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, uimm8>;
|
|
}
|
|
defm : RMWIByte<xor, bdaddr12pair, XI>;
|
|
defm : RMWIByte<xor, bdaddr20pair, XIY>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Multiplication
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Multiplication of a register.
|
|
let isCommutable = 1 in {
|
|
def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
|
|
def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
|
|
}
|
|
def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
|
|
defm : SXB<mul, GR64, MSGFR>;
|
|
|
|
// Multiplication of a signed 16-bit immediate.
|
|
def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
|
|
def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
|
|
|
|
// Multiplication of a signed 32-bit immediate.
|
|
def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
|
|
def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
|
|
|
|
// Multiplication of memory.
|
|
defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, sextloadi16>;
|
|
defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load>;
|
|
def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, sextloadi32>;
|
|
def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load>;
|
|
|
|
// Multiplication of a register, producing two results.
|
|
def MLGR : BinaryRRE<"mlgr", 0xB986, z_umul_lohi64, GR128, GR64>;
|
|
|
|
// Multiplication of memory, producing two results.
|
|
def MLG : BinaryRXY<"mlg", 0xE386, z_umul_lohi64, GR128, load>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Division and remainder
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Division and remainder, from registers.
|
|
def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
|
|
def DSGR : BinaryRRE<"dsgr", 0xB90D, z_sdivrem64, GR128, GR64>;
|
|
def DLR : BinaryRRE<"dlr", 0xB997, z_udivrem32, GR128, GR32>;
|
|
def DLGR : BinaryRRE<"dlgr", 0xB987, z_udivrem64, GR128, GR64>;
|
|
defm : SXB<z_sdivrem64, GR128, DSGFR>;
|
|
|
|
// Division and remainder, from memory.
|
|
def DSGF : BinaryRXY<"dsgf", 0xE31D, z_sdivrem64, GR128, sextloadi32>;
|
|
def DSG : BinaryRXY<"dsg", 0xE30D, z_sdivrem64, GR128, load>;
|
|
def DL : BinaryRXY<"dl", 0xE397, z_udivrem32, GR128, load>;
|
|
def DLG : BinaryRXY<"dlg", 0xE387, z_udivrem64, GR128, load>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Shifts
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Shift left.
|
|
let neverHasSideEffects = 1 in {
|
|
def SLL : ShiftRS <"sll", 0x89, shl, GR32, shift12only>;
|
|
def SLLG : ShiftRSY<"sllg", 0xEB0D, shl, GR64, shift20only>;
|
|
}
|
|
|
|
// Logical shift right.
|
|
let neverHasSideEffects = 1 in {
|
|
def SRL : ShiftRS <"srl", 0x88, srl, GR32, shift12only>;
|
|
def SRLG : ShiftRSY<"srlg", 0xEB0C, srl, GR64, shift20only>;
|
|
}
|
|
|
|
// Arithmetic shift right.
|
|
let Defs = [CC] in {
|
|
def SRA : ShiftRS <"sra", 0x8A, sra, GR32, shift12only>;
|
|
def SRAG : ShiftRSY<"srag", 0xEB0A, sra, GR64, shift20only>;
|
|
}
|
|
|
|
// Rotate left.
|
|
let neverHasSideEffects = 1 in {
|
|
def RLL : ShiftRSY<"rll", 0xEB1D, rotl, GR32, shift20only>;
|
|
def RLLG : ShiftRSY<"rllg", 0xEB1C, rotl, GR64, shift20only>;
|
|
}
|
|
|
|
// Rotate second operand left and inserted selected bits into first operand.
|
|
// These can act like 32-bit operands provided that the constant start and
|
|
// end bits (operands 2 and 3) are in the range [32, 64)
|
|
let Defs = [CC] in {
|
|
let isCodeGenOnly = 1 in
|
|
def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
|
|
def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Comparison
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Signed comparisons.
|
|
let Defs = [CC] in {
|
|
// Comparison with a register.
|
|
def CR : CompareRR <"cr", 0x19, z_cmp, GR32, GR32>;
|
|
def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
|
|
def CGR : CompareRRE<"cgr", 0xB920, z_cmp, GR64, GR64>;
|
|
|
|
// Comparison with a signed 16-bit immediate.
|
|
def CHI : CompareRI<"chi", 0xA7E, z_cmp, GR32, imm32sx16>;
|
|
def CGHI : CompareRI<"cghi", 0xA7F, z_cmp, GR64, imm64sx16>;
|
|
|
|
// Comparison with a signed 32-bit immediate.
|
|
def CFI : CompareRIL<"cfi", 0xC2D, z_cmp, GR32, simm32>;
|
|
def CGFI : CompareRIL<"cgfi", 0xC2C, z_cmp, GR64, imm64sx32>;
|
|
|
|
// Comparison with memory.
|
|
defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_cmp, GR32, sextloadi16>;
|
|
defm C : CompareRXPair<"c", 0x59, 0xE359, z_cmp, GR32, load>;
|
|
def CGH : CompareRXY<"cgh", 0xE334, z_cmp, GR64, sextloadi16>;
|
|
def CGF : CompareRXY<"cgf", 0xE330, z_cmp, GR64, sextloadi32>;
|
|
def CG : CompareRXY<"cg", 0xE320, z_cmp, GR64, load>;
|
|
def CHRL : CompareRILPC<"chrl", 0xC65, z_cmp, GR32, aligned_sextloadi16>;
|
|
def CRL : CompareRILPC<"crl", 0xC6D, z_cmp, GR32, aligned_load>;
|
|
def CGHRL : CompareRILPC<"cghrl", 0xC64, z_cmp, GR64, aligned_sextloadi16>;
|
|
def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_cmp, GR64, aligned_sextloadi32>;
|
|
def CGRL : CompareRILPC<"cgrl", 0xC68, z_cmp, GR64, aligned_load>;
|
|
|
|
// Comparison between memory and a signed 16-bit immediate.
|
|
def CHHSI : CompareSIL<"chhsi", 0xE554, z_cmp, sextloadi16, imm32sx16>;
|
|
def CHSI : CompareSIL<"chsi", 0xE55C, z_cmp, load, imm32sx16>;
|
|
def CGHSI : CompareSIL<"cghsi", 0xE558, z_cmp, load, imm64sx16>;
|
|
}
|
|
defm : SXB<z_cmp, GR64, CGFR>;
|
|
|
|
// Unsigned comparisons.
|
|
let Defs = [CC] in {
|
|
// Comparison with a register.
|
|
def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
|
|
def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
|
|
def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
|
|
|
|
// Comparison with a signed 32-bit immediate.
|
|
def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
|
|
def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
|
|
|
|
// Comparison with memory.
|
|
defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load>;
|
|
def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, zextloadi32>;
|
|
def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load>;
|
|
def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
|
|
aligned_zextloadi16>;
|
|
def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
|
|
aligned_load>;
|
|
def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
|
|
aligned_zextloadi16>;
|
|
def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
|
|
aligned_zextloadi32>;
|
|
def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
|
|
aligned_load>;
|
|
|
|
// Comparison between memory and an unsigned 8-bit immediate.
|
|
defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, zextloadi8, imm32zx8>;
|
|
|
|
// Comparison between memory and an unsigned 16-bit immediate.
|
|
def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, zextloadi16, imm32zx16>;
|
|
def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>;
|
|
def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>;
|
|
}
|
|
defm : ZXB<z_ucmp, GR64, CLGFR>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Atomic operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
|
|
def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>;
|
|
def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>;
|
|
|
|
def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
|
|
def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
|
|
def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>;
|
|
def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>;
|
|
def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>;
|
|
def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>;
|
|
def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>;
|
|
def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>;
|
|
|
|
def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
|
|
def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>;
|
|
def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>;
|
|
|
|
def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
|
|
def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
|
|
def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>;
|
|
def ATOMIC_LOAD_NILL32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32ll16c>;
|
|
def ATOMIC_LOAD_NILH32 : AtomicLoadBinaryImm32<atomic_load_and_32, imm32lh16c>;
|
|
def ATOMIC_LOAD_NILF32 : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>;
|
|
def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>;
|
|
def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64ll16c>;
|
|
def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lh16c>;
|
|
def ATOMIC_LOAD_NIHL : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hl16c>;
|
|
def ATOMIC_LOAD_NIHH : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hh16c>;
|
|
def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64lf32c>;
|
|
def ATOMIC_LOAD_NIHF : AtomicLoadBinaryImm64<atomic_load_and_64, imm64hf32c>;
|
|
|
|
def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
|
|
def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
|
|
def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>;
|
|
def ATOMIC_LOAD_OILL32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>;
|
|
def ATOMIC_LOAD_OILH32 : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>;
|
|
def ATOMIC_LOAD_OILF32 : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>;
|
|
def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>;
|
|
def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>;
|
|
def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>;
|
|
def ATOMIC_LOAD_OIHL : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>;
|
|
def ATOMIC_LOAD_OIHH : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>;
|
|
def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>;
|
|
def ATOMIC_LOAD_OIHF : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>;
|
|
|
|
def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
|
|
def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
|
|
def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>;
|
|
def ATOMIC_LOAD_XILF32 : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>;
|
|
def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>;
|
|
def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>;
|
|
def ATOMIC_LOAD_XIHF : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>;
|
|
|
|
def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
|
|
def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
|
|
imm32lh16c>;
|
|
def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>;
|
|
def ATOMIC_LOAD_NILL32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
|
|
imm32ll16c>;
|
|
def ATOMIC_LOAD_NILH32i : AtomicLoadBinaryImm32<atomic_load_nand_32,
|
|
imm32lh16c>;
|
|
def ATOMIC_LOAD_NILF32i : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>;
|
|
def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>;
|
|
def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
|
|
imm64ll16c>;
|
|
def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
|
|
imm64lh16c>;
|
|
def ATOMIC_LOAD_NIHLi : AtomicLoadBinaryImm64<atomic_load_nand_64,
|
|
imm64hl16c>;
|
|
def ATOMIC_LOAD_NIHHi : AtomicLoadBinaryImm64<atomic_load_nand_64,
|
|
imm64hh16c>;
|
|
def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
|
|
imm64lf32c>;
|
|
def ATOMIC_LOAD_NIHFi : AtomicLoadBinaryImm64<atomic_load_nand_64,
|
|
imm64hf32c>;
|
|
|
|
def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
|
|
def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>;
|
|
def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>;
|
|
|
|
def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
|
|
def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>;
|
|
def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>;
|
|
|
|
def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
|
|
def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>;
|
|
def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>;
|
|
|
|
def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
|
|
def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>;
|
|
def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>;
|
|
|
|
def ATOMIC_CMP_SWAPW
|
|
: Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
|
|
ADDR32:$bitshift, ADDR32:$negbitshift,
|
|
uimm32:$bitsize),
|
|
[(set GR32:$dst,
|
|
(z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
|
|
ADDR32:$bitshift, ADDR32:$negbitshift,
|
|
uimm32:$bitsize))]> {
|
|
let Defs = [CC];
|
|
let mayLoad = 1;
|
|
let mayStore = 1;
|
|
let usesCustomInserter = 1;
|
|
}
|
|
|
|
let Defs = [CC] in {
|
|
defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, atomic_cmp_swap_32, GR32>;
|
|
def CSG : CmpSwapRSY<"csg", 0xEB30, atomic_cmp_swap_64, GR64>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Miscellaneous Instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Read a 32-bit access register into a GR32. As with all GR32 operations,
|
|
// the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
|
|
// when a 64-bit address is stored in a pair of access registers.
|
|
def EAR : InstRRE<0xB24F, (outs GR32:$R1), (ins access_reg:$R2),
|
|
"ear\t$R1, $R2",
|
|
[(set GR32:$R1, (z_extract_access access_reg:$R2))]>;
|
|
|
|
// Find leftmost one, AKA count leading zeros. The instruction actually
|
|
// returns a pair of GR64s, the first giving the number of leading zeros
|
|
// and the second giving a copy of the source with the leftmost one bit
|
|
// cleared. We only use the first result here.
|
|
let Defs = [CC] in {
|
|
def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
|
|
}
|
|
def : Pat<(ctlz GR64:$src),
|
|
(EXTRACT_SUBREG (FLOGR GR64:$src), subreg_high)>;
|
|
|
|
// Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
|
|
def : Pat<(i64 (anyext GR32:$src)),
|
|
(INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_32bit)>;
|
|
|
|
// There are no 32-bit equivalents of LLILL and LLILH, so use a full
|
|
// 64-bit move followed by a subreg. This preserves the invariant that
|
|
// all GR32 operations only modify the low 32 bits.
|
|
def : Pat<(i32 imm32ll16:$src),
|
|
(EXTRACT_SUBREG (LLILL (LL16 imm:$src)), subreg_32bit)>;
|
|
def : Pat<(i32 imm32lh16:$src),
|
|
(EXTRACT_SUBREG (LLILH (LH16 imm:$src)), subreg_32bit)>;
|
|
|
|
// Extend GR32s and GR64s to GR128s.
|
|
let usesCustomInserter = 1 in {
|
|
def AEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
|
|
def ZEXT128_32 : Pseudo<(outs GR128:$dst), (ins GR32:$src), []>;
|
|
def ZEXT128_64 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Peepholes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Use AL* for GR64 additions of unsigned 32-bit values.
|
|
defm : ZXB<add, GR64, ALGFR>;
|
|
def : Pat<(add GR64:$src1, imm64zx32:$src2),
|
|
(ALGFI GR64:$src1, imm64zx32:$src2)>;
|
|
def : Pat<(add GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
|
|
(ALGF GR64:$src1, bdxaddr20only:$addr)>;
|
|
|
|
// Use SL* for GR64 subtractions of unsigned 32-bit values.
|
|
defm : ZXB<sub, GR64, SLGFR>;
|
|
def : Pat<(add GR64:$src1, imm64zx32n:$src2),
|
|
(SLGFI GR64:$src1, imm64zx32n:$src2)>;
|
|
def : Pat<(sub GR64:$src1, (zextloadi32 bdxaddr20only:$addr)),
|
|
(SLGF GR64:$src1, bdxaddr20only:$addr)>;
|