mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Atom buildbot will auto-detect Atom. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160521 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			433 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			433 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the X86 specific subclass of TargetSubtargetInfo.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "subtarget"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "llvm/GlobalValue.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Host.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| 
 | |
| #define GET_SUBTARGETINFO_TARGET_DESC
 | |
| #define GET_SUBTARGETINFO_CTOR
 | |
| #include "X86GenSubtargetInfo.inc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #if defined(_MSC_VER)
 | |
| #include <intrin.h>
 | |
| #endif
 | |
| 
 | |
| /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
 | |
| /// current subtarget according to how we should reference it in a non-pcrel
 | |
| /// context.
 | |
| unsigned char X86Subtarget::
 | |
| ClassifyBlockAddressReference() const {
 | |
|   if (isPICStyleGOT())    // 32-bit ELF targets.
 | |
|     return X86II::MO_GOTOFF;
 | |
|   
 | |
|   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
 | |
|     return X86II::MO_PIC_BASE_OFFSET;
 | |
|   
 | |
|   // Direct static reference to label.
 | |
|   return X86II::MO_NO_FLAG;
 | |
| }
 | |
| 
 | |
| /// ClassifyGlobalReference - Classify a global variable reference for the
 | |
| /// current subtarget according to how we should reference it in a non-pcrel
 | |
| /// context.
 | |
| unsigned char X86Subtarget::
 | |
| ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
 | |
|   // DLLImport only exists on windows, it is implemented as a load from a
 | |
|   // DLLIMPORT stub.
 | |
|   if (GV->hasDLLImportLinkage())
 | |
|     return X86II::MO_DLLIMPORT;
 | |
| 
 | |
|   // Determine whether this is a reference to a definition or a declaration.
 | |
|   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
 | |
|   // load from stub.
 | |
|   bool isDecl = GV->hasAvailableExternallyLinkage();
 | |
|   if (GV->isDeclaration() && !GV->isMaterializable())
 | |
|     isDecl = true;
 | |
| 
 | |
|   // X86-64 in PIC mode.
 | |
|   if (isPICStyleRIPRel()) {
 | |
|     // Large model never uses stubs.
 | |
|     if (TM.getCodeModel() == CodeModel::Large)
 | |
|       return X86II::MO_NO_FLAG;
 | |
|       
 | |
|     if (isTargetDarwin()) {
 | |
|       // If symbol visibility is hidden, the extra load is not needed if
 | |
|       // target is x86-64 or the symbol is definitely defined in the current
 | |
|       // translation unit.
 | |
|       if (GV->hasDefaultVisibility() &&
 | |
|           (isDecl || GV->isWeakForLinker()))
 | |
|         return X86II::MO_GOTPCREL;
 | |
|     } else if (!isTargetWin64()) {
 | |
|       assert(isTargetELF() && "Unknown rip-relative target");
 | |
| 
 | |
|       // Extra load is needed for all externally visible.
 | |
|       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
 | |
|         return X86II::MO_GOTPCREL;
 | |
|     }
 | |
| 
 | |
|     return X86II::MO_NO_FLAG;
 | |
|   }
 | |
|   
 | |
|   if (isPICStyleGOT()) {   // 32-bit ELF targets.
 | |
|     // Extra load is needed for all externally visible.
 | |
|     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
 | |
|       return X86II::MO_GOTOFF;
 | |
|     return X86II::MO_GOT;
 | |
|   }
 | |
|   
 | |
|   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
 | |
|     // Determine whether we have a stub reference and/or whether the reference
 | |
|     // is relative to the PIC base or not.
 | |
|     
 | |
|     // If this is a strong reference to a definition, it is definitely not
 | |
|     // through a stub.
 | |
|     if (!isDecl && !GV->isWeakForLinker())
 | |
|       return X86II::MO_PIC_BASE_OFFSET;
 | |
| 
 | |
|     // Unless we have a symbol with hidden visibility, we have to go through a
 | |
|     // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | |
|     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | |
|       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
 | |
|     
 | |
|     // If symbol visibility is hidden, we have a stub for common symbol
 | |
|     // references and external declarations.
 | |
|     if (isDecl || GV->hasCommonLinkage()) {
 | |
|       // Hidden $non_lazy_ptr reference.
 | |
|       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, no stub.
 | |
|     return X86II::MO_PIC_BASE_OFFSET;
 | |
|   }
 | |
|   
 | |
|   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
 | |
|     // Determine whether we have a stub reference.
 | |
|     
 | |
|     // If this is a strong reference to a definition, it is definitely not
 | |
|     // through a stub.
 | |
|     if (!isDecl && !GV->isWeakForLinker())
 | |
|       return X86II::MO_NO_FLAG;
 | |
|     
 | |
|     // Unless we have a symbol with hidden visibility, we have to go through a
 | |
|     // normal $non_lazy_ptr stub because this symbol might be resolved late.
 | |
|     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
 | |
|       return X86II::MO_DARWIN_NONLAZY;
 | |
| 
 | |
|     // Otherwise, no stub.
 | |
|     return X86II::MO_NO_FLAG;
 | |
|   }
 | |
|   
 | |
|   // Direct static reference to global.
 | |
|   return X86II::MO_NO_FLAG;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getBZeroEntry - This function returns the name of a function which has an
 | |
| /// interface like the non-standard bzero function, if such a function exists on
 | |
| /// the current subtarget and it is considered prefereable over memset with zero
 | |
| /// passed as the second argument. Otherwise it returns null.
 | |
| const char *X86Subtarget::getBZeroEntry() const {
 | |
|   // Darwin 10 has a __bzero entry point for this purpose.
 | |
|   if (getTargetTriple().isMacOSX() &&
 | |
|       !getTargetTriple().isMacOSXVersionLT(10, 6))
 | |
|     return "__bzero";
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
 | |
| /// to immediate address.
 | |
| bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
 | |
|   if (In64BitMode)
 | |
|     return false;
 | |
|   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
 | |
| }
 | |
| 
 | |
| /// getSpecialAddressLatency - For targets where it is beneficial to
 | |
| /// backschedule instructions that compute addresses, return a value
 | |
| /// indicating the number of scheduling cycles of backscheduling that
 | |
| /// should be attempted.
 | |
| unsigned X86Subtarget::getSpecialAddressLatency() const {
 | |
|   // For x86 out-of-order targets, back-schedule address computations so
 | |
|   // that loads and stores aren't blocked.
 | |
|   // This value was chosen arbitrarily.
 | |
|   return 200;
 | |
| }
 | |
| 
 | |
| void X86Subtarget::AutoDetectSubtargetFeatures() {
 | |
|   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
 | |
|   unsigned MaxLevel;
 | |
|   union {
 | |
|     unsigned u[3];
 | |
|     char     c[12];
 | |
|   } text;
 | |
| 
 | |
|   if (X86_MC::GetCpuIDAndInfo(0, &MaxLevel, text.u+0, text.u+2, text.u+1) ||
 | |
|       MaxLevel < 1)
 | |
|     return;
 | |
| 
 | |
|   X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
 | |
| 
 | |
|   if ((EDX >> 15) & 1) { HasCMov = true;      ToggleFeature(X86::FeatureCMOV); }
 | |
|   if ((EDX >> 23) & 1) { X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);  }
 | |
|   if ((EDX >> 25) & 1) { X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1); }
 | |
|   if ((EDX >> 26) & 1) { X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2); }
 | |
|   if (ECX & 0x1)       { X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3); }
 | |
|   if ((ECX >> 9)  & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
 | |
|   if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
 | |
|   if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
 | |
|   if ((ECX >> 28) & 1) { X86SSELevel = AVX;   ToggleFeature(X86::FeatureAVX); }
 | |
| 
 | |
|   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
 | |
|   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
 | |
| 
 | |
|   if ((ECX >> 1) & 0x1) {
 | |
|     HasPCLMUL = true;
 | |
|     ToggleFeature(X86::FeaturePCLMUL);
 | |
|   }
 | |
|   if ((ECX >> 12) & 0x1) {
 | |
|     HasFMA = true;
 | |
|     ToggleFeature(X86::FeatureFMA);
 | |
|   }
 | |
|   if (IsIntel && ((ECX >> 22) & 0x1)) {
 | |
|     HasMOVBE = true;
 | |
|     ToggleFeature(X86::FeatureMOVBE);
 | |
|   }
 | |
|   if ((ECX >> 23) & 0x1) {
 | |
|     HasPOPCNT = true;
 | |
|     ToggleFeature(X86::FeaturePOPCNT);
 | |
|   }
 | |
|   if ((ECX >> 25) & 0x1) {
 | |
|     HasAES = true;
 | |
|     ToggleFeature(X86::FeatureAES);
 | |
|   }
 | |
|   if ((ECX >> 29) & 0x1) {
 | |
|     HasF16C = true;
 | |
|     ToggleFeature(X86::FeatureF16C);
 | |
|   }
 | |
|   if (IsIntel && ((ECX >> 30) & 0x1)) {
 | |
|     HasRDRAND = true;
 | |
|     ToggleFeature(X86::FeatureRDRAND);
 | |
|   }
 | |
| 
 | |
|   if ((ECX >> 13) & 0x1) {
 | |
|     HasCmpxchg16b = true;
 | |
|     ToggleFeature(X86::FeatureCMPXCHG16B);
 | |
|   }
 | |
| 
 | |
|   if (IsIntel || IsAMD) {
 | |
|     // Determine if bit test memory instructions are slow.
 | |
|     unsigned Family = 0;
 | |
|     unsigned Model  = 0;
 | |
|     X86_MC::DetectFamilyModel(EAX, Family, Model);
 | |
|     if (IsAMD || (Family == 6 && Model >= 13)) {
 | |
|       IsBTMemSlow = true;
 | |
|       ToggleFeature(X86::FeatureSlowBTMem);
 | |
|     }
 | |
| 
 | |
|     // If it's Nehalem, unaligned memory access is fast.
 | |
|     // FIXME: Nehalem is family 6. Also include Westmere and later processors?
 | |
|     if (Family == 15 && Model == 26) {
 | |
|       IsUAMemFast = true;
 | |
|       ToggleFeature(X86::FeatureFastUAMem);
 | |
|     }
 | |
| 
 | |
|     // Set processor type. Currently only Atom is detected.
 | |
|     if (Family == 6 &&
 | |
|         (Model == 28 || Model == 38 || Model == 39
 | |
|          || Model == 53 || Model == 54)) {
 | |
|       X86ProcFamily = IntelAtom;
 | |
| 
 | |
|       UseLeaForSP = true;
 | |
|       ToggleFeature(X86::FeatureLeaForSP);
 | |
|     }
 | |
| 
 | |
|     unsigned MaxExtLevel;
 | |
|     X86_MC::GetCpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
 | |
| 
 | |
|     if (MaxExtLevel >= 0x80000001) {
 | |
|       X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
 | |
|       if ((EDX >> 29) & 0x1) {
 | |
|         HasX86_64 = true;
 | |
|         ToggleFeature(X86::Feature64Bit);
 | |
|       }
 | |
|       if ((ECX >> 5) & 0x1) {
 | |
|         HasLZCNT = true;
 | |
|         ToggleFeature(X86::FeatureLZCNT);
 | |
|       }
 | |
|       if (IsAMD) {
 | |
|         if ((ECX >> 6) & 0x1) {
 | |
|           HasSSE4A = true;
 | |
|           ToggleFeature(X86::FeatureSSE4A);
 | |
|         }
 | |
|         if ((ECX >> 11) & 0x1) {
 | |
|           HasXOP = true;
 | |
|           ToggleFeature(X86::FeatureXOP);
 | |
|         }
 | |
|         if ((ECX >> 16) & 0x1) {
 | |
|           HasFMA4 = true;
 | |
|           ToggleFeature(X86::FeatureFMA4);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MaxLevel >= 7) {
 | |
|     if (!X86_MC::GetCpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX)) {
 | |
|       if (IsIntel && (EBX & 0x1)) {
 | |
|         HasFSGSBase = true;
 | |
|         ToggleFeature(X86::FeatureFSGSBase);
 | |
|       }
 | |
|       if ((EBX >> 3) & 0x1) {
 | |
|         HasBMI = true;
 | |
|         ToggleFeature(X86::FeatureBMI);
 | |
|       }
 | |
|       if (IsIntel && ((EBX >> 5) & 0x1)) {
 | |
|         X86SSELevel = AVX2;
 | |
|         ToggleFeature(X86::FeatureAVX2);
 | |
|       }
 | |
|       if (IsIntel && ((EBX >> 8) & 0x1)) {
 | |
|         HasBMI2 = true;
 | |
|         ToggleFeature(X86::FeatureBMI2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
 | |
|                            const std::string &FS, 
 | |
|                            unsigned StackAlignOverride, bool is64Bit)
 | |
|   : X86GenSubtargetInfo(TT, CPU, FS)
 | |
|   , X86ProcFamily(Others)
 | |
|   , PICStyle(PICStyles::None)
 | |
|   , X86SSELevel(NoMMXSSE)
 | |
|   , X863DNowLevel(NoThreeDNow)
 | |
|   , HasCMov(false)
 | |
|   , HasX86_64(false)
 | |
|   , HasPOPCNT(false)
 | |
|   , HasSSE4A(false)
 | |
|   , HasAES(false)
 | |
|   , HasPCLMUL(false)
 | |
|   , HasFMA(false)
 | |
|   , HasFMA4(false)
 | |
|   , HasXOP(false)
 | |
|   , HasMOVBE(false)
 | |
|   , HasRDRAND(false)
 | |
|   , HasF16C(false)
 | |
|   , HasFSGSBase(false)
 | |
|   , HasLZCNT(false)
 | |
|   , HasBMI(false)
 | |
|   , HasBMI2(false)
 | |
|   , IsBTMemSlow(false)
 | |
|   , IsUAMemFast(false)
 | |
|   , HasVectorUAMem(false)
 | |
|   , HasCmpxchg16b(false)
 | |
|   , UseLeaForSP(false)
 | |
|   , PostRAScheduler(false)
 | |
|   , stackAlignment(4)
 | |
|   // FIXME: this is a known good value for Yonah. How about others?
 | |
|   , MaxInlineSizeThreshold(128)
 | |
|   , TargetTriple(TT)
 | |
|   , In64BitMode(is64Bit) {
 | |
|   // Determine default and user specified characteristics
 | |
|   std::string CPUName = CPU;
 | |
|   if (!FS.empty() || !CPU.empty()) {
 | |
|     if (CPUName.empty()) {
 | |
| #if defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)\
 | |
|     || defined(__x86_64__) || defined(_M_AMD64) || defined (_M_X64)
 | |
|       CPUName = sys::getHostCPUName();
 | |
| #else
 | |
|       CPUName = "generic";
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     // Make sure 64-bit features are available in 64-bit mode. (But make sure
 | |
|     // SSE2 can be turned off explicitly.)
 | |
|     std::string FullFS = FS;
 | |
|     if (In64BitMode) {
 | |
|       if (!FullFS.empty())
 | |
|         FullFS = "+64bit,+sse2," + FullFS;
 | |
|       else
 | |
|         FullFS = "+64bit,+sse2";
 | |
|     }
 | |
| 
 | |
|     // If feature string is not empty, parse features string.
 | |
|     ParseSubtargetFeatures(CPUName, FullFS);
 | |
|   } else {
 | |
|     if (CPUName.empty()) {
 | |
| #if defined (__x86_64__) || defined(__i386__)
 | |
|       CPUName = sys::getHostCPUName();
 | |
| #else
 | |
|       CPUName = "generic";
 | |
| #endif
 | |
|     }
 | |
|     // Otherwise, use CPUID to auto-detect feature set.
 | |
|     AutoDetectSubtargetFeatures();
 | |
| 
 | |
|     // Make sure 64-bit features are available in 64-bit mode.
 | |
|     if (In64BitMode) {
 | |
|       HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
 | |
|       HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
 | |
| 
 | |
|       if (X86SSELevel < SSE2) {
 | |
|         X86SSELevel = SSE2;
 | |
|         ToggleFeature(X86::FeatureSSE1);
 | |
|         ToggleFeature(X86::FeatureSSE2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (X86ProcFamily == IntelAtom) {
 | |
|     PostRAScheduler = true;
 | |
|     InstrItins = getInstrItineraryForCPU(CPUName);
 | |
|   }
 | |
| 
 | |
|   // It's important to keep the MCSubtargetInfo feature bits in sync with
 | |
|   // target data structure which is shared with MC code emitter, etc.
 | |
|   if (In64BitMode)
 | |
|     ToggleFeature(X86::Mode64Bit);
 | |
| 
 | |
|   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
 | |
|                << ", 3DNowLevel " << X863DNowLevel
 | |
|                << ", 64bit " << HasX86_64 << "\n");
 | |
|   assert((!In64BitMode || HasX86_64) &&
 | |
|          "64-bit code requested on a subtarget that doesn't support it!");
 | |
| 
 | |
|   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
 | |
|   // 32 and 64 bit) and for all 64-bit targets.
 | |
|   if (StackAlignOverride)
 | |
|     stackAlignment = StackAlignOverride;
 | |
|   else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
 | |
|            isTargetSolaris() || In64BitMode)
 | |
|     stackAlignment = 16;
 | |
| }
 | |
| 
 | |
| bool X86Subtarget::enablePostRAScheduler(
 | |
|            CodeGenOpt::Level OptLevel,
 | |
|            TargetSubtargetInfo::AntiDepBreakMode& Mode,
 | |
|            RegClassVector& CriticalPathRCs) const {
 | |
|   Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL;
 | |
|   CriticalPathRCs.clear();
 | |
|   return PostRAScheduler && OptLevel >= CodeGenOpt::Default;
 | |
| }
 |