mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21416 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			471 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- TopDownClosure.cpp - Compute the top-down interprocedure closure ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the TDDataStructures class, which represents the
 | 
						|
// Top-down Interprocedural closure of the data structure graph over the
 | 
						|
// program.  This is useful (but not strictly necessary?) for applications
 | 
						|
// like pointer analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/DataStructure/DataStructure.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Analysis/DataStructure/DSGraph.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Timer.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#if 0
 | 
						|
#define TIME_REGION(VARNAME, DESC) \
 | 
						|
   NamedRegionTimer VARNAME(DESC)
 | 
						|
#else
 | 
						|
#define TIME_REGION(VARNAME, DESC)
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  RegisterAnalysis<TDDataStructures>   // Register the pass
 | 
						|
  Y("tddatastructure", "Top-down Data Structure Analysis");
 | 
						|
 | 
						|
  Statistic<> NumTDInlines("tddatastructures", "Number of graphs inlined");
 | 
						|
}
 | 
						|
 | 
						|
void TDDataStructures::markReachableFunctionsExternallyAccessible(DSNode *N,
 | 
						|
                                                   hash_set<DSNode*> &Visited) {
 | 
						|
  if (!N || Visited.count(N)) return;
 | 
						|
  Visited.insert(N);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) {
 | 
						|
    DSNodeHandle &NH = N->getLink(i*N->getPointerSize());
 | 
						|
    if (DSNode *NN = NH.getNode()) {
 | 
						|
      std::vector<Function*> Functions;
 | 
						|
      NN->addFullFunctionList(Functions);
 | 
						|
      ArgsRemainIncomplete.insert(Functions.begin(), Functions.end());
 | 
						|
      markReachableFunctionsExternallyAccessible(NN, Visited);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// run - Calculate the top down data structure graphs for each function in the
 | 
						|
// program.
 | 
						|
//
 | 
						|
bool TDDataStructures::runOnModule(Module &M) {
 | 
						|
  BUInfo = &getAnalysis<BUDataStructures>();
 | 
						|
  GlobalECs = BUInfo->getGlobalECs();
 | 
						|
  GlobalsGraph = new DSGraph(BUInfo->getGlobalsGraph(), GlobalECs);
 | 
						|
  GlobalsGraph->setPrintAuxCalls();
 | 
						|
 | 
						|
  // Figure out which functions must not mark their arguments complete because
 | 
						|
  // they are accessible outside this compilation unit.  Currently, these
 | 
						|
  // arguments are functions which are reachable by global variables in the
 | 
						|
  // globals graph.
 | 
						|
  const DSScalarMap &GGSM = GlobalsGraph->getScalarMap();
 | 
						|
  hash_set<DSNode*> Visited;
 | 
						|
  for (DSScalarMap::global_iterator I=GGSM.global_begin(), E=GGSM.global_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    DSNode *N = GGSM.find(*I)->second.getNode();
 | 
						|
    if (N->isIncomplete())
 | 
						|
      markReachableFunctionsExternallyAccessible(N, Visited);
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over unresolved call nodes.  Any functions passed into (but not
 | 
						|
  // returned!) from unresolvable call nodes may be invoked outside of the
 | 
						|
  // current module.
 | 
						|
  for (DSGraph::afc_iterator I = GlobalsGraph->afc_begin(),
 | 
						|
         E = GlobalsGraph->afc_end(); I != E; ++I)
 | 
						|
    for (unsigned arg = 0, e = I->getNumPtrArgs(); arg != e; ++arg)
 | 
						|
      markReachableFunctionsExternallyAccessible(I->getPtrArg(arg).getNode(),
 | 
						|
                                                 Visited);
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  // Functions without internal linkage also have unknown incoming arguments!
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | 
						|
    if (!I->isExternal() && !I->hasInternalLinkage())
 | 
						|
      ArgsRemainIncomplete.insert(I);
 | 
						|
 | 
						|
  // We want to traverse the call graph in reverse post-order.  To do this, we
 | 
						|
  // calculate a post-order traversal, then reverse it.
 | 
						|
  hash_set<DSGraph*> VisitedGraph;
 | 
						|
  std::vector<DSGraph*> PostOrder;
 | 
						|
 | 
						|
#if 0
 | 
						|
{TIME_REGION(XXX, "td:Copy graphs");
 | 
						|
 | 
						|
  // Visit each of the graphs in reverse post-order now!
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | 
						|
    if (!I->isExternal())
 | 
						|
      getOrCreateDSGraph(*I);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
{TIME_REGION(XXX, "td:Compute postorder");
 | 
						|
 | 
						|
  // Calculate top-down from main...
 | 
						|
  if (Function *F = M.getMainFunction())
 | 
						|
    ComputePostOrder(*F, VisitedGraph, PostOrder);
 | 
						|
 | 
						|
  // Next calculate the graphs for each unreachable function...
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | 
						|
    ComputePostOrder(*I, VisitedGraph, PostOrder);
 | 
						|
 | 
						|
  VisitedGraph.clear();   // Release memory!
 | 
						|
}
 | 
						|
 | 
						|
{TIME_REGION(XXX, "td:Inline stuff");
 | 
						|
 | 
						|
  // Visit each of the graphs in reverse post-order now!
 | 
						|
  while (!PostOrder.empty()) {
 | 
						|
    InlineCallersIntoGraph(*PostOrder.back());
 | 
						|
    PostOrder.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
  // Free the IndCallMap.
 | 
						|
  while (!IndCallMap.empty()) {
 | 
						|
    delete IndCallMap.begin()->second;
 | 
						|
    IndCallMap.erase(IndCallMap.begin());
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  ArgsRemainIncomplete.clear();
 | 
						|
  GlobalsGraph->removeTriviallyDeadNodes();
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
DSGraph &TDDataStructures::getOrCreateDSGraph(Function &F) {
 | 
						|
  DSGraph *&G = DSInfo[&F];
 | 
						|
  if (G == 0) { // Not created yet?  Clone BU graph...
 | 
						|
    G = new DSGraph(getAnalysis<BUDataStructures>().getDSGraph(F), GlobalECs,
 | 
						|
                    DSGraph::DontCloneAuxCallNodes);
 | 
						|
    assert(G->getAuxFunctionCalls().empty() && "Cloned aux calls?");
 | 
						|
    G->setPrintAuxCalls();
 | 
						|
    G->setGlobalsGraph(GlobalsGraph);
 | 
						|
 | 
						|
    // Note that this graph is the graph for ALL of the function in the SCC, not
 | 
						|
    // just F.
 | 
						|
    for (DSGraph::retnodes_iterator RI = G->retnodes_begin(),
 | 
						|
           E = G->retnodes_end(); RI != E; ++RI)
 | 
						|
      if (RI->first != &F)
 | 
						|
        DSInfo[RI->first] = G;
 | 
						|
  }
 | 
						|
  return *G;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void TDDataStructures::ComputePostOrder(Function &F,hash_set<DSGraph*> &Visited,
 | 
						|
                                        std::vector<DSGraph*> &PostOrder) {
 | 
						|
  if (F.isExternal()) return;
 | 
						|
  DSGraph &G = getOrCreateDSGraph(F);
 | 
						|
  if (Visited.count(&G)) return;
 | 
						|
  Visited.insert(&G);
 | 
						|
 | 
						|
  // Recursively traverse all of the callee graphs.
 | 
						|
  for (DSGraph::fc_iterator CI = G.fc_begin(), CE = G.fc_end(); CI != CE; ++CI){
 | 
						|
    Instruction *CallI = CI->getCallSite().getInstruction();
 | 
						|
    for (BUDataStructures::callee_iterator I = BUInfo->callee_begin(CallI),
 | 
						|
           E = BUInfo->callee_end(CallI); I != E; ++I)
 | 
						|
      ComputePostOrder(*I->second, Visited, PostOrder);
 | 
						|
  }
 | 
						|
 | 
						|
  PostOrder.push_back(&G);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// releaseMemory - If the pass pipeline is done with this pass, we can release
 | 
						|
// our memory... here...
 | 
						|
//
 | 
						|
// FIXME: This should be releaseMemory and will work fine, except that LoadVN
 | 
						|
// has no way to extend the lifetime of the pass, which screws up ds-aa.
 | 
						|
//
 | 
						|
void TDDataStructures::releaseMyMemory() {
 | 
						|
  for (hash_map<Function*, DSGraph*>::iterator I = DSInfo.begin(),
 | 
						|
         E = DSInfo.end(); I != E; ++I) {
 | 
						|
    I->second->getReturnNodes().erase(I->first);
 | 
						|
    if (I->second->getReturnNodes().empty())
 | 
						|
      delete I->second;
 | 
						|
  }
 | 
						|
 | 
						|
  // Empty map so next time memory is released, data structures are not
 | 
						|
  // re-deleted.
 | 
						|
  DSInfo.clear();
 | 
						|
  delete GlobalsGraph;
 | 
						|
  GlobalsGraph = 0;
 | 
						|
}
 | 
						|
 | 
						|
/// InlineCallersIntoGraph - Inline all of the callers of the specified DS graph
 | 
						|
/// into it, then recompute completeness of nodes in the resultant graph.
 | 
						|
void TDDataStructures::InlineCallersIntoGraph(DSGraph &DSG) {
 | 
						|
  // Inline caller graphs into this graph.  First step, get the list of call
 | 
						|
  // sites that call into this graph.
 | 
						|
  std::vector<CallerCallEdge> EdgesFromCaller;
 | 
						|
  std::map<DSGraph*, std::vector<CallerCallEdge> >::iterator
 | 
						|
    CEI = CallerEdges.find(&DSG);
 | 
						|
  if (CEI != CallerEdges.end()) {
 | 
						|
    std::swap(CEI->second, EdgesFromCaller);
 | 
						|
    CallerEdges.erase(CEI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort the caller sites to provide a by-caller-graph ordering.
 | 
						|
  std::sort(EdgesFromCaller.begin(), EdgesFromCaller.end());
 | 
						|
 | 
						|
 | 
						|
  // Merge information from the globals graph into this graph.  FIXME: This is
 | 
						|
  // stupid.  Instead of us cloning information from the GG into this graph,
 | 
						|
  // then having RemoveDeadNodes clone it back, we should do all of this as a
 | 
						|
  // post-pass over all of the graphs.  We need to take cloning out of
 | 
						|
  // removeDeadNodes and gut removeDeadNodes at the same time first though. :(
 | 
						|
  {
 | 
						|
    DSGraph &GG = *DSG.getGlobalsGraph();
 | 
						|
    ReachabilityCloner RC(DSG, GG,
 | 
						|
                          DSGraph::DontCloneCallNodes |
 | 
						|
                          DSGraph::DontCloneAuxCallNodes);
 | 
						|
    for (DSScalarMap::global_iterator
 | 
						|
           GI = DSG.getScalarMap().global_begin(),
 | 
						|
           E = DSG.getScalarMap().global_end(); GI != E; ++GI)
 | 
						|
      RC.getClonedNH(GG.getNodeForValue(*GI));
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(std::cerr << "[TD] Inlining callers into '" << DSG.getFunctionNames()
 | 
						|
        << "'\n");
 | 
						|
 | 
						|
  // Iteratively inline caller graphs into this graph.
 | 
						|
  while (!EdgesFromCaller.empty()) {
 | 
						|
    DSGraph &CallerGraph = *EdgesFromCaller.back().CallerGraph;
 | 
						|
 | 
						|
    // Iterate through all of the call sites of this graph, cloning and merging
 | 
						|
    // any nodes required by the call.
 | 
						|
    ReachabilityCloner RC(DSG, CallerGraph,
 | 
						|
                          DSGraph::DontCloneCallNodes |
 | 
						|
                          DSGraph::DontCloneAuxCallNodes);
 | 
						|
 | 
						|
    // Inline all call sites from this caller graph.
 | 
						|
    do {
 | 
						|
      const DSCallSite &CS = *EdgesFromCaller.back().CS;
 | 
						|
      Function &CF = *EdgesFromCaller.back().CalledFunction;
 | 
						|
      DEBUG(std::cerr << "   [TD] Inlining graph into Fn '"
 | 
						|
            << CF.getName() << "' from ");
 | 
						|
      if (CallerGraph.getReturnNodes().empty())
 | 
						|
        DEBUG(std::cerr << "SYNTHESIZED INDIRECT GRAPH");
 | 
						|
      else
 | 
						|
        DEBUG (std::cerr << "Fn '"
 | 
						|
               << CS.getCallSite().getInstruction()->
 | 
						|
               getParent()->getParent()->getName() << "'");
 | 
						|
      DEBUG(std::cerr << ": " << CF.getFunctionType()->getNumParams()
 | 
						|
            << " args\n");
 | 
						|
 | 
						|
      // Get the formal argument and return nodes for the called function and
 | 
						|
      // merge them with the cloned subgraph.
 | 
						|
      DSCallSite T1 = DSG.getCallSiteForArguments(CF);
 | 
						|
      RC.mergeCallSite(T1, CS);
 | 
						|
      ++NumTDInlines;
 | 
						|
 | 
						|
      EdgesFromCaller.pop_back();
 | 
						|
    } while (!EdgesFromCaller.empty() &&
 | 
						|
             EdgesFromCaller.back().CallerGraph == &CallerGraph);
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Next, now that this graph is finalized, we need to recompute the
 | 
						|
  // incompleteness markers for this graph and remove unreachable nodes.
 | 
						|
  DSG.maskIncompleteMarkers();
 | 
						|
 | 
						|
  // If any of the functions has incomplete incoming arguments, don't mark any
 | 
						|
  // of them as complete.
 | 
						|
  bool HasIncompleteArgs = false;
 | 
						|
  for (DSGraph::retnodes_iterator I = DSG.retnodes_begin(),
 | 
						|
         E = DSG.retnodes_end(); I != E; ++I)
 | 
						|
    if (ArgsRemainIncomplete.count(I->first)) {
 | 
						|
      HasIncompleteArgs = true;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
  // Recompute the Incomplete markers.  Depends on whether args are complete
 | 
						|
  unsigned Flags
 | 
						|
    = HasIncompleteArgs ? DSGraph::MarkFormalArgs : DSGraph::IgnoreFormalArgs;
 | 
						|
  DSG.markIncompleteNodes(Flags | DSGraph::IgnoreGlobals);
 | 
						|
 | 
						|
  // Delete dead nodes.  Treat globals that are unreachable as dead also.
 | 
						|
  DSG.removeDeadNodes(DSGraph::RemoveUnreachableGlobals);
 | 
						|
 | 
						|
  // We are done with computing the current TD Graph!  Finally, before we can
 | 
						|
  // finish processing this function, we figure out which functions it calls and
 | 
						|
  // records these call graph edges, so that we have them when we process the
 | 
						|
  // callee graphs.
 | 
						|
  if (DSG.fc_begin() == DSG.fc_end()) return;
 | 
						|
 | 
						|
  // Loop over all the call sites and all the callees at each call site, and add
 | 
						|
  // edges to the CallerEdges structure for each callee.
 | 
						|
  for (DSGraph::fc_iterator CI = DSG.fc_begin(), E = DSG.fc_end();
 | 
						|
       CI != E; ++CI) {
 | 
						|
 | 
						|
    // Handle direct calls efficiently.
 | 
						|
    if (CI->isDirectCall()) {
 | 
						|
      if (!CI->getCalleeFunc()->isExternal() &&
 | 
						|
          !DSG.getReturnNodes().count(CI->getCalleeFunc()))
 | 
						|
        CallerEdges[&getDSGraph(*CI->getCalleeFunc())]
 | 
						|
          .push_back(CallerCallEdge(&DSG, &*CI, CI->getCalleeFunc()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *CallI = CI->getCallSite().getInstruction();
 | 
						|
    // For each function in the invoked function list at this call site...
 | 
						|
    BUDataStructures::callee_iterator IPI =
 | 
						|
      BUInfo->callee_begin(CallI), IPE = BUInfo->callee_end(CallI);
 | 
						|
 | 
						|
    // Skip over all calls to this graph (SCC calls).
 | 
						|
    while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG)
 | 
						|
      ++IPI;
 | 
						|
 | 
						|
    // All SCC calls?
 | 
						|
    if (IPI == IPE) continue;
 | 
						|
 | 
						|
    Function *FirstCallee = IPI->second;
 | 
						|
    ++IPI;
 | 
						|
 | 
						|
    // Skip over more SCC calls.
 | 
						|
    while (IPI != IPE && &getDSGraph(*IPI->second) == &DSG)
 | 
						|
      ++IPI;
 | 
						|
 | 
						|
    // If there is exactly one callee from this call site, remember the edge in
 | 
						|
    // CallerEdges.
 | 
						|
    if (IPI == IPE) {
 | 
						|
      if (!FirstCallee->isExternal())
 | 
						|
        CallerEdges[&getDSGraph(*FirstCallee)]
 | 
						|
          .push_back(CallerCallEdge(&DSG, &*CI, FirstCallee));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, there are multiple callees from this call site, so it must be
 | 
						|
    // an indirect call.  Chances are that there will be other call sites with
 | 
						|
    // this set of targets.  If so, we don't want to do M*N inlining operations,
 | 
						|
    // so we build up a new, private, graph that represents the calls of all
 | 
						|
    // calls to this set of functions.
 | 
						|
    std::vector<Function*> Callees;
 | 
						|
    for (BUDataStructures::ActualCalleesTy::const_iterator I =
 | 
						|
           BUInfo->callee_begin(CallI), E = BUInfo->callee_end(CallI);
 | 
						|
         I != E; ++I)
 | 
						|
      if (!I->second->isExternal())
 | 
						|
        Callees.push_back(I->second);
 | 
						|
    std::sort(Callees.begin(), Callees.end());
 | 
						|
 | 
						|
    std::map<std::vector<Function*>, DSGraph*>::iterator IndCallRecI =
 | 
						|
      IndCallMap.lower_bound(Callees);
 | 
						|
 | 
						|
    DSGraph *IndCallGraph;
 | 
						|
 | 
						|
    // If we already have this graph, recycle it.
 | 
						|
    if (IndCallRecI != IndCallMap.end() && IndCallRecI->first == Callees) {
 | 
						|
      std::cerr << "  [TD] *** Reuse of indcall graph for " << Callees.size()
 | 
						|
                << " callees!\n";
 | 
						|
      IndCallGraph = IndCallRecI->second;
 | 
						|
    } else {
 | 
						|
      // Otherwise, create a new DSGraph to represent this.
 | 
						|
      IndCallGraph = new DSGraph(DSG.getGlobalECs(), DSG.getTargetData());
 | 
						|
 | 
						|
      // Make a nullary dummy call site, which will eventually get some content
 | 
						|
      // merged into it.  The actual callee function doesn't matter here, so we
 | 
						|
      // just pass it something to keep the ctor happy.
 | 
						|
      std::vector<DSNodeHandle> ArgDummyVec;
 | 
						|
      DSCallSite DummyCS(CI->getCallSite(), DSNodeHandle(), Callees[0]/*dummy*/,
 | 
						|
                         ArgDummyVec);
 | 
						|
      IndCallGraph->getFunctionCalls().push_back(DummyCS);
 | 
						|
 | 
						|
      IndCallRecI = IndCallMap.insert(IndCallRecI,
 | 
						|
                                      std::make_pair(Callees, IndCallGraph));
 | 
						|
 | 
						|
      // Additionally, make sure that each of the callees inlines this graph
 | 
						|
      // exactly once.
 | 
						|
      DSCallSite *NCS = &IndCallGraph->getFunctionCalls().front();
 | 
						|
      for (unsigned i = 0, e = Callees.size(); i != e; ++i) {
 | 
						|
        DSGraph& CalleeGraph = getDSGraph(*Callees[i]);
 | 
						|
        if (&CalleeGraph != &DSG)
 | 
						|
          CallerEdges[&CalleeGraph].push_back(CallerCallEdge(IndCallGraph, NCS,
 | 
						|
                                                             Callees[i]));
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we know which graph to use for this, merge the caller
 | 
						|
    // information into the graph, based on information from the call site.
 | 
						|
    ReachabilityCloner RC(*IndCallGraph, DSG, 0);
 | 
						|
    RC.mergeCallSite(IndCallGraph->getFunctionCalls().front(), *CI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static const Function *getFnForValue(const Value *V) {
 | 
						|
  if (const Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return I->getParent()->getParent();
 | 
						|
  else if (const Argument *A = dyn_cast<Argument>(V))
 | 
						|
    return A->getParent();
 | 
						|
  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
 | 
						|
    return BB->getParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void TDDataStructures::deleteValue(Value *V) {
 | 
						|
  if (const Function *F = getFnForValue(V)) {  // Function local value?
 | 
						|
    // If this is a function local value, just delete it from the scalar map!
 | 
						|
    getDSGraph(*F).getScalarMap().eraseIfExists(V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Function *F = dyn_cast<Function>(V)) {
 | 
						|
    assert(getDSGraph(*F).getReturnNodes().size() == 1 &&
 | 
						|
           "cannot handle scc's");
 | 
						|
    delete DSInfo[F];
 | 
						|
    DSInfo.erase(F);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!isa<GlobalVariable>(V) && "Do not know how to delete GV's yet!");
 | 
						|
}
 | 
						|
 | 
						|
void TDDataStructures::copyValue(Value *From, Value *To) {
 | 
						|
  if (From == To) return;
 | 
						|
  if (const Function *F = getFnForValue(From)) {  // Function local value?
 | 
						|
    // If this is a function local value, just delete it from the scalar map!
 | 
						|
    getDSGraph(*F).getScalarMap().copyScalarIfExists(From, To);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Function *FromF = dyn_cast<Function>(From)) {
 | 
						|
    Function *ToF = cast<Function>(To);
 | 
						|
    assert(!DSInfo.count(ToF) && "New Function already exists!");
 | 
						|
    DSGraph *NG = new DSGraph(getDSGraph(*FromF), GlobalECs);
 | 
						|
    DSInfo[ToF] = NG;
 | 
						|
    assert(NG->getReturnNodes().size() == 1 && "Cannot copy SCC's yet!");
 | 
						|
 | 
						|
    // Change the Function* is the returnnodes map to the ToF.
 | 
						|
    DSNodeHandle Ret = NG->retnodes_begin()->second;
 | 
						|
    NG->getReturnNodes().clear();
 | 
						|
    NG->getReturnNodes()[ToF] = Ret;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const Function *F = getFnForValue(To)) {
 | 
						|
    DSGraph &G = getDSGraph(*F);
 | 
						|
    G.getScalarMap().copyScalarIfExists(From, To);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  std::cerr << *From;
 | 
						|
  std::cerr << *To;
 | 
						|
  assert(0 && "Do not know how to copy this yet!");
 | 
						|
  abort();
 | 
						|
}
 |