mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21706 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			535 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			535 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the LoopInfo class that is used to identify natural loops
 | 
						|
// and determine the loop depth of various nodes of the CFG.  Note that the
 | 
						|
// loops identified may actually be several natural loops that share the same
 | 
						|
// header node... not just a single natural loop.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Analysis/Dominators.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static RegisterAnalysis<LoopInfo>
 | 
						|
X("loops", "Natural Loop Construction", true);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Loop implementation
 | 
						|
//
 | 
						|
bool Loop::contains(const BasicBlock *BB) const {
 | 
						|
  return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
 | 
						|
}
 | 
						|
 | 
						|
bool Loop::isLoopExit(const BasicBlock *BB) const {
 | 
						|
  for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    if (!contains(*SI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getNumBackEdges - Calculate the number of back edges to the loop header.
 | 
						|
///
 | 
						|
unsigned Loop::getNumBackEdges() const {
 | 
						|
  unsigned NumBackEdges = 0;
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
 | 
						|
  for (pred_iterator I = pred_begin(H), E = pred_end(H); I != E; ++I)
 | 
						|
    if (contains(*I))
 | 
						|
      ++NumBackEdges;
 | 
						|
 | 
						|
  return NumBackEdges;
 | 
						|
}
 | 
						|
 | 
						|
/// isLoopInvariant - Return true if the specified value is loop invariant
 | 
						|
///
 | 
						|
bool Loop::isLoopInvariant(Value *V) const {
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    return !contains(I->getParent());
 | 
						|
  return true;  // All non-instructions are loop invariant
 | 
						|
}
 | 
						|
 | 
						|
void Loop::print(std::ostream &OS, unsigned Depth) const {
 | 
						|
  OS << std::string(Depth*2, ' ') << "Loop Containing: ";
 | 
						|
 | 
						|
  for (unsigned i = 0; i < getBlocks().size(); ++i) {
 | 
						|
    if (i) OS << ",";
 | 
						|
    WriteAsOperand(OS, getBlocks()[i], false);
 | 
						|
  }
 | 
						|
  OS << "\n";
 | 
						|
 | 
						|
  for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
    (*I)->print(OS, Depth+2);
 | 
						|
}
 | 
						|
 | 
						|
void Loop::dump() const {
 | 
						|
  print(std::cerr);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoopInfo implementation
 | 
						|
//
 | 
						|
void LoopInfo::stub() {}
 | 
						|
 | 
						|
bool LoopInfo::runOnFunction(Function &) {
 | 
						|
  releaseMemory();
 | 
						|
  Calculate(getAnalysis<DominatorSet>());    // Update
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::releaseMemory() {
 | 
						|
  for (std::vector<Loop*>::iterator I = TopLevelLoops.begin(),
 | 
						|
         E = TopLevelLoops.end(); I != E; ++I)
 | 
						|
    delete *I;   // Delete all of the loops...
 | 
						|
 | 
						|
  BBMap.clear();                             // Reset internal state of analysis
 | 
						|
  TopLevelLoops.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void LoopInfo::Calculate(const DominatorSet &DS) {
 | 
						|
  BasicBlock *RootNode = DS.getRoot();
 | 
						|
 | 
						|
  for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
 | 
						|
         NE = df_end(RootNode); NI != NE; ++NI)
 | 
						|
    if (Loop *L = ConsiderForLoop(*NI, DS))
 | 
						|
      TopLevelLoops.push_back(L);
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesAll();
 | 
						|
  AU.addRequired<DominatorSet>();
 | 
						|
}
 | 
						|
 | 
						|
void LoopInfo::print(std::ostream &OS, const Module* ) const {
 | 
						|
  for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
 | 
						|
    TopLevelLoops[i]->print(OS);
 | 
						|
#if 0
 | 
						|
  for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
 | 
						|
         E = BBMap.end(); I != E; ++I)
 | 
						|
    OS << "BB '" << I->first->getName() << "' level = "
 | 
						|
       << I->second->getLoopDepth() << "\n";
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static bool isNotAlreadyContainedIn(Loop *SubLoop, Loop *ParentLoop) {
 | 
						|
  if (SubLoop == 0) return true;
 | 
						|
  if (SubLoop == ParentLoop) return false;
 | 
						|
  return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
 | 
						|
}
 | 
						|
 | 
						|
Loop *LoopInfo::ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS) {
 | 
						|
  if (BBMap.find(BB) != BBMap.end()) return 0;   // Haven't processed this node?
 | 
						|
 | 
						|
  std::vector<BasicBlock *> TodoStack;
 | 
						|
 | 
						|
  // Scan the predecessors of BB, checking to see if BB dominates any of
 | 
						|
  // them.  This identifies backedges which target this node...
 | 
						|
  for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
 | 
						|
    if (DS.dominates(BB, *I))   // If BB dominates it's predecessor...
 | 
						|
      TodoStack.push_back(*I);
 | 
						|
 | 
						|
  if (TodoStack.empty()) return 0;  // No backedges to this block...
 | 
						|
 | 
						|
  // Create a new loop to represent this basic block...
 | 
						|
  Loop *L = new Loop(BB);
 | 
						|
  BBMap[BB] = L;
 | 
						|
 | 
						|
  BasicBlock *EntryBlock = &BB->getParent()->getEntryBlock();
 | 
						|
 | 
						|
  while (!TodoStack.empty()) {  // Process all the nodes in the loop
 | 
						|
    BasicBlock *X = TodoStack.back();
 | 
						|
    TodoStack.pop_back();
 | 
						|
 | 
						|
    if (!L->contains(X) &&         // As of yet unprocessed??
 | 
						|
        DS.dominates(EntryBlock, X)) {   // X is reachable from entry block?
 | 
						|
      // Check to see if this block already belongs to a loop.  If this occurs
 | 
						|
      // then we have a case where a loop that is supposed to be a child of the
 | 
						|
      // current loop was processed before the current loop.  When this occurs,
 | 
						|
      // this child loop gets added to a part of the current loop, making it a
 | 
						|
      // sibling to the current loop.  We have to reparent this loop.
 | 
						|
      if (Loop *SubLoop = const_cast<Loop*>(getLoopFor(X)))
 | 
						|
        if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)) {
 | 
						|
          // Remove the subloop from it's current parent...
 | 
						|
          assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
 | 
						|
          Loop *SLP = SubLoop->ParentLoop;  // SubLoopParent
 | 
						|
          std::vector<Loop*>::iterator I =
 | 
						|
            std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
 | 
						|
          assert(I != SLP->SubLoops.end() && "SubLoop not a child of parent?");
 | 
						|
          SLP->SubLoops.erase(I);   // Remove from parent...
 | 
						|
 | 
						|
          // Add the subloop to THIS loop...
 | 
						|
          SubLoop->ParentLoop = L;
 | 
						|
          L->SubLoops.push_back(SubLoop);
 | 
						|
        }
 | 
						|
 | 
						|
      // Normal case, add the block to our loop...
 | 
						|
      L->Blocks.push_back(X);
 | 
						|
 | 
						|
      // Add all of the predecessors of X to the end of the work stack...
 | 
						|
      TodoStack.insert(TodoStack.end(), pred_begin(X), pred_end(X));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any loops nested within this loop, create them now!
 | 
						|
  for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
 | 
						|
         E = L->Blocks.end(); I != E; ++I)
 | 
						|
    if (Loop *NewLoop = ConsiderForLoop(*I, DS)) {
 | 
						|
      L->SubLoops.push_back(NewLoop);
 | 
						|
      NewLoop->ParentLoop = L;
 | 
						|
    }
 | 
						|
 | 
						|
  // Add the basic blocks that comprise this loop to the BBMap so that this
 | 
						|
  // loop can be found for them.
 | 
						|
  //
 | 
						|
  for (std::vector<BasicBlock*>::iterator I = L->Blocks.begin(),
 | 
						|
         E = L->Blocks.end(); I != E; ++I) {
 | 
						|
    std::map<BasicBlock*, Loop*>::iterator BBMI = BBMap.lower_bound(*I);
 | 
						|
    if (BBMI == BBMap.end() || BBMI->first != *I)  // Not in map yet...
 | 
						|
      BBMap.insert(BBMI, std::make_pair(*I, L));   // Must be at this level
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have a list of all of the child loops of this loop, check to
 | 
						|
  // see if any of them should actually be nested inside of each other.  We can
 | 
						|
  // accidentally pull loops our of their parents, so we must make sure to
 | 
						|
  // organize the loop nests correctly now.
 | 
						|
  {
 | 
						|
    std::map<BasicBlock*, Loop*> ContainingLoops;
 | 
						|
    for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
 | 
						|
      Loop *Child = L->SubLoops[i];
 | 
						|
      assert(Child->getParentLoop() == L && "Not proper child loop?");
 | 
						|
 | 
						|
      if (Loop *ContainingLoop = ContainingLoops[Child->getHeader()]) {
 | 
						|
        // If there is already a loop which contains this loop, move this loop
 | 
						|
        // into the containing loop.
 | 
						|
        MoveSiblingLoopInto(Child, ContainingLoop);
 | 
						|
        --i;  // The loop got removed from the SubLoops list.
 | 
						|
      } else {
 | 
						|
        // This is currently considered to be a top-level loop.  Check to see if
 | 
						|
        // any of the contained blocks are loop headers for subloops we have
 | 
						|
        // already processed.
 | 
						|
        for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
 | 
						|
          Loop *&BlockLoop = ContainingLoops[Child->Blocks[b]];
 | 
						|
          if (BlockLoop == 0) {   // Child block not processed yet...
 | 
						|
            BlockLoop = Child;
 | 
						|
          } else if (BlockLoop != Child) {
 | 
						|
            Loop *SubLoop = BlockLoop;
 | 
						|
            // Reparent all of the blocks which used to belong to BlockLoops
 | 
						|
            for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
 | 
						|
              ContainingLoops[SubLoop->Blocks[j]] = Child;
 | 
						|
 | 
						|
            // There is already a loop which contains this block, that means
 | 
						|
            // that we should reparent the loop which the block is currently
 | 
						|
            // considered to belong to to be a child of this loop.
 | 
						|
            MoveSiblingLoopInto(SubLoop, Child);
 | 
						|
            --i;  // We just shrunk the SubLoops list.
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside of
 | 
						|
/// the NewParent Loop, instead of being a sibling of it.
 | 
						|
void LoopInfo::MoveSiblingLoopInto(Loop *NewChild, Loop *NewParent) {
 | 
						|
  Loop *OldParent = NewChild->getParentLoop();
 | 
						|
  assert(OldParent && OldParent == NewParent->getParentLoop() &&
 | 
						|
         NewChild != NewParent && "Not sibling loops!");
 | 
						|
 | 
						|
  // Remove NewChild from being a child of OldParent
 | 
						|
  std::vector<Loop*>::iterator I =
 | 
						|
    std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(), NewChild);
 | 
						|
  assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
 | 
						|
  OldParent->SubLoops.erase(I);   // Remove from parent's subloops list
 | 
						|
  NewChild->ParentLoop = 0;
 | 
						|
 | 
						|
  InsertLoopInto(NewChild, NewParent);
 | 
						|
}
 | 
						|
 | 
						|
/// InsertLoopInto - This inserts loop L into the specified parent loop.  If the
 | 
						|
/// parent loop contains a loop which should contain L, the loop gets inserted
 | 
						|
/// into L instead.
 | 
						|
void LoopInfo::InsertLoopInto(Loop *L, Loop *Parent) {
 | 
						|
  BasicBlock *LHeader = L->getHeader();
 | 
						|
  assert(Parent->contains(LHeader) && "This loop should not be inserted here!");
 | 
						|
 | 
						|
  // Check to see if it belongs in a child loop...
 | 
						|
  for (unsigned i = 0, e = Parent->SubLoops.size(); i != e; ++i)
 | 
						|
    if (Parent->SubLoops[i]->contains(LHeader)) {
 | 
						|
      InsertLoopInto(L, Parent->SubLoops[i]);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
  // If not, insert it here!
 | 
						|
  Parent->SubLoops.push_back(L);
 | 
						|
  L->ParentLoop = Parent;
 | 
						|
}
 | 
						|
 | 
						|
/// changeLoopFor - Change the top-level loop that contains BB to the
 | 
						|
/// specified loop.  This should be used by transformations that restructure
 | 
						|
/// the loop hierarchy tree.
 | 
						|
void LoopInfo::changeLoopFor(BasicBlock *BB, Loop *L) {
 | 
						|
  Loop *&OldLoop = BBMap[BB];
 | 
						|
  assert(OldLoop && "Block not in a loop yet!");
 | 
						|
  OldLoop = L;
 | 
						|
}
 | 
						|
 | 
						|
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
 | 
						|
/// list with the indicated loop.
 | 
						|
void LoopInfo::changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
 | 
						|
  std::vector<Loop*>::iterator I = std::find(TopLevelLoops.begin(),
 | 
						|
                                             TopLevelLoops.end(), OldLoop);
 | 
						|
  assert(I != TopLevelLoops.end() && "Old loop not at top level!");
 | 
						|
  *I = NewLoop;
 | 
						|
  assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
 | 
						|
         "Loops already embedded into a subloop!");
 | 
						|
}
 | 
						|
 | 
						|
/// removeLoop - This removes the specified top-level loop from this loop info
 | 
						|
/// object.  The loop is not deleted, as it will presumably be inserted into
 | 
						|
/// another loop.
 | 
						|
Loop *LoopInfo::removeLoop(iterator I) {
 | 
						|
  assert(I != end() && "Cannot remove end iterator!");
 | 
						|
  Loop *L = *I;
 | 
						|
  assert(L->getParentLoop() == 0 && "Not a top-level loop!");
 | 
						|
  TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
/// removeBlock - This method completely removes BB from all data structures,
 | 
						|
/// including all of the Loop objects it is nested in and our mapping from
 | 
						|
/// BasicBlocks to loops.
 | 
						|
void LoopInfo::removeBlock(BasicBlock *BB) {
 | 
						|
  std::map<BasicBlock *, Loop*>::iterator I = BBMap.find(BB);
 | 
						|
  if (I != BBMap.end()) {
 | 
						|
    for (Loop *L = I->second; L; L = L->getParentLoop())
 | 
						|
      L->removeBlockFromLoop(BB);
 | 
						|
 | 
						|
    BBMap.erase(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// APIs for simple analysis of the loop.
 | 
						|
//
 | 
						|
 | 
						|
/// getExitBlocks - Return all of the successor blocks of this loop.  These
 | 
						|
/// are the blocks _outside of the current loop_ which are branched to.
 | 
						|
///
 | 
						|
void Loop::getExitBlocks(std::vector<BasicBlock*> &ExitBlocks) const {
 | 
						|
  for (std::vector<BasicBlock*>::const_iterator BI = Blocks.begin(),
 | 
						|
         BE = Blocks.end(); BI != BE; ++BI)
 | 
						|
    for (succ_iterator I = succ_begin(*BI), E = succ_end(*BI); I != E; ++I)
 | 
						|
      if (!contains(*I))               // Not in current loop?
 | 
						|
        ExitBlocks.push_back(*I);          // It must be an exit block...
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getLoopPreheader - If there is a preheader for this loop, return it.  A
 | 
						|
/// loop has a preheader if there is only one edge to the header of the loop
 | 
						|
/// from outside of the loop.  If this is the case, the block branching to the
 | 
						|
/// header of the loop is the preheader node.
 | 
						|
///
 | 
						|
/// This method returns null if there is no preheader for the loop.
 | 
						|
///
 | 
						|
BasicBlock *Loop::getLoopPreheader() const {
 | 
						|
  // Keep track of nodes outside the loop branching to the header...
 | 
						|
  BasicBlock *Out = 0;
 | 
						|
 | 
						|
  // Loop over the predecessors of the header node...
 | 
						|
  BasicBlock *Header = getHeader();
 | 
						|
  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
 | 
						|
       PI != PE; ++PI)
 | 
						|
    if (!contains(*PI)) {     // If the block is not in the loop...
 | 
						|
      if (Out && Out != *PI)
 | 
						|
        return 0;             // Multiple predecessors outside the loop
 | 
						|
      Out = *PI;
 | 
						|
    }
 | 
						|
 | 
						|
  // Make sure there is only one exit out of the preheader...
 | 
						|
  succ_iterator SI = succ_begin(Out);
 | 
						|
  ++SI;
 | 
						|
  if (SI != succ_end(Out))
 | 
						|
    return 0;  // Multiple exits from the block, must not be a preheader.
 | 
						|
 | 
						|
 | 
						|
  // If there is exactly one preheader, return it.  If there was zero, then Out
 | 
						|
  // is still null.
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
 | 
						|
/// induction variable: an integer recurrence that starts at 0 and increments by
 | 
						|
/// one each time through the loop.  If so, return the phi node that corresponds
 | 
						|
/// to it.
 | 
						|
///
 | 
						|
PHINode *Loop::getCanonicalInductionVariable() const {
 | 
						|
  BasicBlock *H = getHeader();
 | 
						|
 | 
						|
  BasicBlock *Incoming = 0, *Backedge = 0;
 | 
						|
  pred_iterator PI = pred_begin(H);
 | 
						|
  assert(PI != pred_end(H) && "Loop must have at least one backedge!");
 | 
						|
  Backedge = *PI++;
 | 
						|
  if (PI == pred_end(H)) return 0;  // dead loop
 | 
						|
  Incoming = *PI++;
 | 
						|
  if (PI != pred_end(H)) return 0;  // multiple backedges?
 | 
						|
 | 
						|
  if (contains(Incoming)) {
 | 
						|
    if (contains(Backedge))
 | 
						|
      return 0;
 | 
						|
    std::swap(Incoming, Backedge);
 | 
						|
  } else if (!contains(Backedge))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Loop over all of the PHI nodes, looking for a canonical indvar.
 | 
						|
  for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PN = cast<PHINode>(I);
 | 
						|
    if (Instruction *Inc =
 | 
						|
        dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
 | 
						|
      if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
 | 
						|
        if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
 | 
						|
          if (CI->equalsInt(1))
 | 
						|
            return PN;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
 | 
						|
/// the canonical induction variable value for the "next" iteration of the loop.
 | 
						|
/// This always succeeds if getCanonicalInductionVariable succeeds.
 | 
						|
///
 | 
						|
Instruction *Loop::getCanonicalInductionVariableIncrement() const {
 | 
						|
  if (PHINode *PN = getCanonicalInductionVariable()) {
 | 
						|
    bool P1InLoop = contains(PN->getIncomingBlock(1));
 | 
						|
    return cast<Instruction>(PN->getIncomingValue(P1InLoop));
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// getTripCount - Return a loop-invariant LLVM value indicating the number of
 | 
						|
/// times the loop will be executed.  Note that this means that the backedge of
 | 
						|
/// the loop executes N-1 times.  If the trip-count cannot be determined, this
 | 
						|
/// returns null.
 | 
						|
///
 | 
						|
Value *Loop::getTripCount() const {
 | 
						|
  // Canonical loops will end with a 'setne I, V', where I is the incremented
 | 
						|
  // canonical induction variable and V is the trip count of the loop.
 | 
						|
  Instruction *Inc = getCanonicalInductionVariableIncrement();
 | 
						|
  if (Inc == 0) return 0;
 | 
						|
  PHINode *IV = cast<PHINode>(Inc->getOperand(0));
 | 
						|
 | 
						|
  BasicBlock *BackedgeBlock =
 | 
						|
    IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
 | 
						|
 | 
						|
  if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
 | 
						|
    if (BI->isConditional())
 | 
						|
      if (SetCondInst *SCI = dyn_cast<SetCondInst>(BI->getCondition()))
 | 
						|
        if (SCI->getOperand(0) == Inc)
 | 
						|
          if (BI->getSuccessor(0) == getHeader()) {
 | 
						|
            if (SCI->getOpcode() == Instruction::SetNE)
 | 
						|
              return SCI->getOperand(1);
 | 
						|
          } else if (SCI->getOpcode() == Instruction::SetEQ) {
 | 
						|
            return SCI->getOperand(1);
 | 
						|
          }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===-------------------------------------------------------------------===//
 | 
						|
// APIs for updating loop information after changing the CFG
 | 
						|
//
 | 
						|
 | 
						|
/// addBasicBlockToLoop - This function is used by other analyses to update loop
 | 
						|
/// information.  NewBB is set to be a new member of the current loop.  Because
 | 
						|
/// of this, it is added as a member of all parent loops, and is added to the
 | 
						|
/// specified LoopInfo object as being in the current basic block.  It is not
 | 
						|
/// valid to replace the loop header with this method.
 | 
						|
///
 | 
						|
void Loop::addBasicBlockToLoop(BasicBlock *NewBB, LoopInfo &LI) {
 | 
						|
  assert((Blocks.empty() || LI[getHeader()] == this) &&
 | 
						|
         "Incorrect LI specified for this loop!");
 | 
						|
  assert(NewBB && "Cannot add a null basic block to the loop!");
 | 
						|
  assert(LI[NewBB] == 0 && "BasicBlock already in the loop!");
 | 
						|
 | 
						|
  // Add the loop mapping to the LoopInfo object...
 | 
						|
  LI.BBMap[NewBB] = this;
 | 
						|
 | 
						|
  // Add the basic block to this loop and all parent loops...
 | 
						|
  Loop *L = this;
 | 
						|
  while (L) {
 | 
						|
    L->Blocks.push_back(NewBB);
 | 
						|
    L = L->getParentLoop();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// replaceChildLoopWith - This is used when splitting loops up.  It replaces
 | 
						|
/// the OldChild entry in our children list with NewChild, and updates the
 | 
						|
/// parent pointers of the two loops as appropriate.
 | 
						|
void Loop::replaceChildLoopWith(Loop *OldChild, Loop *NewChild) {
 | 
						|
  assert(OldChild->ParentLoop == this && "This loop is already broken!");
 | 
						|
  assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | 
						|
  std::vector<Loop*>::iterator I = std::find(SubLoops.begin(), SubLoops.end(),
 | 
						|
                                             OldChild);
 | 
						|
  assert(I != SubLoops.end() && "OldChild not in loop!");
 | 
						|
  *I = NewChild;
 | 
						|
  OldChild->ParentLoop = 0;
 | 
						|
  NewChild->ParentLoop = this;
 | 
						|
}
 | 
						|
 | 
						|
/// addChildLoop - Add the specified loop to be a child of this loop.
 | 
						|
///
 | 
						|
void Loop::addChildLoop(Loop *NewChild) {
 | 
						|
  assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
 | 
						|
  NewChild->ParentLoop = this;
 | 
						|
  SubLoops.push_back(NewChild);
 | 
						|
}
 | 
						|
 | 
						|
template<typename T>
 | 
						|
static void RemoveFromVector(std::vector<T*> &V, T *N) {
 | 
						|
  typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
 | 
						|
  assert(I != V.end() && "N is not in this list!");
 | 
						|
  V.erase(I);
 | 
						|
}
 | 
						|
 | 
						|
/// removeChildLoop - This removes the specified child from being a subloop of
 | 
						|
/// this loop.  The loop is not deleted, as it will presumably be inserted
 | 
						|
/// into another loop.
 | 
						|
Loop *Loop::removeChildLoop(iterator I) {
 | 
						|
  assert(I != SubLoops.end() && "Cannot remove end iterator!");
 | 
						|
  Loop *Child = *I;
 | 
						|
  assert(Child->ParentLoop == this && "Child is not a child of this loop!");
 | 
						|
  SubLoops.erase(SubLoops.begin()+(I-begin()));
 | 
						|
  Child->ParentLoop = 0;
 | 
						|
  return Child;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// removeBlockFromLoop - This removes the specified basic block from the
 | 
						|
/// current loop, updating the Blocks and ExitBlocks lists as appropriate.  This
 | 
						|
/// does not update the mapping in the LoopInfo class.
 | 
						|
void Loop::removeBlockFromLoop(BasicBlock *BB) {
 | 
						|
  RemoveFromVector(Blocks, BB);
 | 
						|
}
 |