mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21427 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			359 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			359 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- FunctionResolution.cpp - Resolve declarations to implementations ---===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Loop over the functions that are in the module and look for functions that
 | 
						|
// have the same name.  More often than not, there will be things like:
 | 
						|
//
 | 
						|
//    declare void %foo(...)
 | 
						|
//    void %foo(int, int) { ... }
 | 
						|
//
 | 
						|
// because of the way things are declared in C.  If this is the case, patch
 | 
						|
// things up.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
  Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved");
 | 
						|
  Statistic<> NumGlobals("funcresolve", "Number of global variables resolved");
 | 
						|
 | 
						|
  struct FunctionResolvingPass : public ModulePass {
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.addRequired<TargetData>();
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnModule(Module &M);
 | 
						|
  };
 | 
						|
  RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions");
 | 
						|
}
 | 
						|
 | 
						|
ModulePass *llvm::createFunctionResolvingPass() {
 | 
						|
  return new FunctionResolvingPass();
 | 
						|
}
 | 
						|
 | 
						|
static bool ResolveFunctions(Module &M, std::vector<GlobalValue*> &Globals,
 | 
						|
                             Function *Concrete) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (unsigned i = 0; i != Globals.size(); ++i)
 | 
						|
    if (Globals[i] != Concrete) {
 | 
						|
      Function *Old = cast<Function>(Globals[i]);
 | 
						|
      const FunctionType *OldMT = Old->getFunctionType();
 | 
						|
      const FunctionType *ConcreteMT = Concrete->getFunctionType();
 | 
						|
 | 
						|
      if (OldMT->getNumParams() > ConcreteMT->getNumParams() &&
 | 
						|
          !ConcreteMT->isVarArg())
 | 
						|
        if (!Old->use_empty()) {
 | 
						|
          std::cerr << "WARNING: Linking function '" << Old->getName()
 | 
						|
                    << "' is causing arguments to be dropped.\n";
 | 
						|
          std::cerr << "WARNING: Prototype: ";
 | 
						|
          WriteAsOperand(std::cerr, Old);
 | 
						|
          std::cerr << " resolved to ";
 | 
						|
          WriteAsOperand(std::cerr, Concrete);
 | 
						|
          std::cerr << "\n";
 | 
						|
        }
 | 
						|
 | 
						|
      // Check to make sure that if there are specified types, that they
 | 
						|
      // match...
 | 
						|
      //
 | 
						|
      unsigned NumArguments = std::min(OldMT->getNumParams(),
 | 
						|
                                       ConcreteMT->getNumParams());
 | 
						|
 | 
						|
      if (!Old->use_empty() && !Concrete->use_empty())
 | 
						|
        for (unsigned i = 0; i < NumArguments; ++i)
 | 
						|
          if (OldMT->getParamType(i) != ConcreteMT->getParamType(i))
 | 
						|
            if (OldMT->getParamType(i)->getTypeID() !=
 | 
						|
                ConcreteMT->getParamType(i)->getTypeID()) {
 | 
						|
              std::cerr << "WARNING: Function [" << Old->getName()
 | 
						|
                        << "]: Parameter types conflict for: '";
 | 
						|
              WriteTypeSymbolic(std::cerr, OldMT, &M);
 | 
						|
              std::cerr << "' and '";
 | 
						|
              WriteTypeSymbolic(std::cerr, ConcreteMT, &M);
 | 
						|
              std::cerr << "'\n";
 | 
						|
              return Changed;
 | 
						|
            }
 | 
						|
 | 
						|
      // Attempt to convert all of the uses of the old function to the concrete
 | 
						|
      // form of the function.  If there is a use of the fn that we don't
 | 
						|
      // understand here we punt to avoid making a bad transformation.
 | 
						|
      //
 | 
						|
      // At this point, we know that the return values are the same for our two
 | 
						|
      // functions and that the Old function has no varargs fns specified.  In
 | 
						|
      // otherwords it's just <retty> (...)
 | 
						|
      //
 | 
						|
      if (!Old->use_empty()) {
 | 
						|
        Value *Replacement = Concrete;
 | 
						|
        if (Concrete->getType() != Old->getType())
 | 
						|
          Replacement = ConstantExpr::getCast(Concrete, Old->getType());
 | 
						|
        NumResolved += Old->getNumUses();
 | 
						|
        Old->replaceAllUsesWith(Replacement);
 | 
						|
      }
 | 
						|
 | 
						|
      // Since there are no uses of Old anymore, remove it from the module.
 | 
						|
      M.getFunctionList().erase(Old);
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool ResolveGlobalVariables(Module &M,
 | 
						|
                                   std::vector<GlobalValue*> &Globals,
 | 
						|
                                   GlobalVariable *Concrete) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (unsigned i = 0; i != Globals.size(); ++i)
 | 
						|
    if (Globals[i] != Concrete) {
 | 
						|
      Constant *Cast = ConstantExpr::getCast(Concrete, Globals[i]->getType());
 | 
						|
      Globals[i]->replaceAllUsesWith(Cast);
 | 
						|
 | 
						|
      // Since there are no uses of Old anymore, remove it from the module.
 | 
						|
      M.getGlobalList().erase(cast<GlobalVariable>(Globals[i]));
 | 
						|
 | 
						|
      ++NumGlobals;
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Check to see if all of the callers of F ignore the return value.
 | 
						|
static bool CallersAllIgnoreReturnValue(Function &F) {
 | 
						|
  if (F.getReturnType() == Type::VoidTy) return true;
 | 
						|
  for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
 | 
						|
    if (GlobalValue *GV = dyn_cast<GlobalValue>(*I)) {
 | 
						|
      for (Value::use_iterator I = GV->use_begin(), E = GV->use_end();
 | 
						|
           I != E; ++I) {
 | 
						|
        CallSite CS = CallSite::get(*I);
 | 
						|
        if (!CS.getInstruction() || !CS.getInstruction()->use_empty())
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      CallSite CS = CallSite::get(*I);
 | 
						|
      if (!CS.getInstruction() || !CS.getInstruction()->use_empty())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool ProcessGlobalsWithSameName(Module &M, TargetData &TD,
 | 
						|
                                       std::vector<GlobalValue*> &Globals) {
 | 
						|
  assert(!Globals.empty() && "Globals list shouldn't be empty here!");
 | 
						|
 | 
						|
  bool isFunction = isa<Function>(Globals[0]);   // Is this group all functions?
 | 
						|
  GlobalValue *Concrete = 0;  // The most concrete implementation to resolve to
 | 
						|
 | 
						|
  for (unsigned i = 0; i != Globals.size(); ) {
 | 
						|
    if (isa<Function>(Globals[i]) != isFunction) {
 | 
						|
      std::cerr << "WARNING: Found function and global variable with the "
 | 
						|
                << "same name: '" << Globals[i]->getName() << "'.\n";
 | 
						|
      return false;                 // Don't know how to handle this, bail out!
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFunction) {
 | 
						|
      // For functions, we look to merge functions definitions of "int (...)"
 | 
						|
      // to 'int (int)' or 'int ()' or whatever else is not completely generic.
 | 
						|
      //
 | 
						|
      Function *F = cast<Function>(Globals[i]);
 | 
						|
      if (!F->isExternal()) {
 | 
						|
        if (Concrete && !Concrete->isExternal())
 | 
						|
          return false;   // Found two different functions types.  Can't choose!
 | 
						|
 | 
						|
        Concrete = Globals[i];
 | 
						|
      } else if (Concrete) {
 | 
						|
        if (Concrete->isExternal()) // If we have multiple external symbols...
 | 
						|
          if (F->getFunctionType()->getNumParams() >
 | 
						|
              cast<Function>(Concrete)->getFunctionType()->getNumParams())
 | 
						|
            Concrete = F;  // We are more concrete than "Concrete"!
 | 
						|
 | 
						|
      } else {
 | 
						|
        Concrete = F;
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      GlobalVariable *GV = cast<GlobalVariable>(Globals[i]);
 | 
						|
      if (!GV->isExternal()) {
 | 
						|
        if (Concrete) {
 | 
						|
          std::cerr << "WARNING: Two global variables with external linkage"
 | 
						|
                    << " exist with the same name: '" << GV->getName()
 | 
						|
                    << "'!\n";
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        Concrete = GV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Globals.size() > 1) {         // Found a multiply defined global...
 | 
						|
    // If there are no external declarations, and there is at most one
 | 
						|
    // externally visible instance of the global, then there is nothing to do.
 | 
						|
    //
 | 
						|
    bool HasExternal = false;
 | 
						|
    unsigned NumInstancesWithExternalLinkage = 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = Globals.size(); i != e; ++i) {
 | 
						|
      if (Globals[i]->isExternal())
 | 
						|
        HasExternal = true;
 | 
						|
      else if (!Globals[i]->hasInternalLinkage())
 | 
						|
        NumInstancesWithExternalLinkage++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!HasExternal && NumInstancesWithExternalLinkage <= 1)
 | 
						|
      return false;  // Nothing to do?  Must have multiple internal definitions.
 | 
						|
 | 
						|
    // There are a couple of special cases we don't want to print the warning
 | 
						|
    // for, check them now.
 | 
						|
    bool DontPrintWarning = false;
 | 
						|
    if (Concrete && Globals.size() == 2) {
 | 
						|
      GlobalValue *Other = Globals[Globals[0] == Concrete];
 | 
						|
      // If the non-concrete global is a function which takes (...) arguments,
 | 
						|
      // and the return values match (or was never used), do not warn.
 | 
						|
      if (Function *ConcreteF = dyn_cast<Function>(Concrete))
 | 
						|
        if (Function *OtherF = dyn_cast<Function>(Other))
 | 
						|
          if ((ConcreteF->getReturnType() == OtherF->getReturnType() ||
 | 
						|
               CallersAllIgnoreReturnValue(*OtherF)) &&
 | 
						|
              OtherF->getFunctionType()->isVarArg() &&
 | 
						|
              OtherF->getFunctionType()->getNumParams() == 0)
 | 
						|
            DontPrintWarning = true;
 | 
						|
 | 
						|
      // Otherwise, if the non-concrete global is a global array variable with a
 | 
						|
      // size of 0, and the concrete global is an array with a real size, don't
 | 
						|
      // warn.  This occurs due to declaring 'extern int A[];'.
 | 
						|
      if (GlobalVariable *ConcreteGV = dyn_cast<GlobalVariable>(Concrete))
 | 
						|
        if (GlobalVariable *OtherGV = dyn_cast<GlobalVariable>(Other)) {
 | 
						|
          const Type *CTy = ConcreteGV->getType();
 | 
						|
          const Type *OTy = OtherGV->getType();
 | 
						|
 | 
						|
          if (CTy->isSized())
 | 
						|
            if (!OTy->isSized() || !TD.getTypeSize(OTy) ||
 | 
						|
                TD.getTypeSize(OTy) == TD.getTypeSize(CTy))
 | 
						|
              DontPrintWarning = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (0 && !DontPrintWarning) {
 | 
						|
      std::cerr << "WARNING: Found global types that are not compatible:\n";
 | 
						|
      for (unsigned i = 0; i < Globals.size(); ++i) {
 | 
						|
        std::cerr << "\t";
 | 
						|
        WriteTypeSymbolic(std::cerr, Globals[i]->getType(), &M);
 | 
						|
        std::cerr << " %" << Globals[i]->getName() << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Concrete)
 | 
						|
      Concrete = Globals[0];
 | 
						|
    else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Concrete)) {
 | 
						|
      // Handle special case hack to change globals if it will make their types
 | 
						|
      // happier in the long run.  The situation we do this is intentionally
 | 
						|
      // extremely limited.
 | 
						|
      if (GV->use_empty() && GV->hasInitializer() &&
 | 
						|
          GV->getInitializer()->isNullValue()) {
 | 
						|
        // Check to see if there is another (external) global with the same size
 | 
						|
        // and a non-empty use-list.  If so, we will make IT be the real
 | 
						|
        // implementation.
 | 
						|
        unsigned TS = TD.getTypeSize(Concrete->getType()->getElementType());
 | 
						|
        for (unsigned i = 0, e = Globals.size(); i != e; ++i)
 | 
						|
          if (Globals[i] != Concrete && !Globals[i]->use_empty() &&
 | 
						|
              isa<GlobalVariable>(Globals[i]) &&
 | 
						|
              TD.getTypeSize(Globals[i]->getType()->getElementType()) == TS) {
 | 
						|
            // At this point we want to replace Concrete with Globals[i].  Make
 | 
						|
            // concrete external, and Globals[i] have an initializer.
 | 
						|
            GlobalVariable *NGV = cast<GlobalVariable>(Globals[i]);
 | 
						|
            const Type *ElTy = NGV->getType()->getElementType();
 | 
						|
            NGV->setInitializer(Constant::getNullValue(ElTy));
 | 
						|
            cast<GlobalVariable>(Concrete)->setInitializer(0);
 | 
						|
            Concrete = NGV;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (isFunction)
 | 
						|
      return ResolveFunctions(M, Globals, cast<Function>(Concrete));
 | 
						|
    else
 | 
						|
      return ResolveGlobalVariables(M, Globals,
 | 
						|
                                    cast<GlobalVariable>(Concrete));
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool FunctionResolvingPass::runOnModule(Module &M) {
 | 
						|
  std::map<std::string, std::vector<GlobalValue*> > Globals;
 | 
						|
 | 
						|
  // Loop over the globals, adding them to the Globals map.  We use a two pass
 | 
						|
  // algorithm here to avoid problems with iterators getting invalidated if we
 | 
						|
  // did a one pass scheme.
 | 
						|
  //
 | 
						|
  bool Changed = false;
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
 | 
						|
    Function *F = I++;
 | 
						|
    if (F->use_empty() && F->isExternal()) {
 | 
						|
      M.getFunctionList().erase(F);
 | 
						|
      Changed = true;
 | 
						|
    } else if (!F->hasInternalLinkage() && !F->getName().empty() &&
 | 
						|
               !F->getIntrinsicID())
 | 
						|
      Globals[F->getName()].push_back(F);
 | 
						|
  }
 | 
						|
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; ) {
 | 
						|
    GlobalVariable *GV = I++;
 | 
						|
    if (GV->use_empty() && GV->isExternal()) {
 | 
						|
      M.getGlobalList().erase(GV);
 | 
						|
      Changed = true;
 | 
						|
    } else if (!GV->hasInternalLinkage() && !GV->getName().empty())
 | 
						|
      Globals[GV->getName()].push_back(GV);
 | 
						|
  }
 | 
						|
 | 
						|
  TargetData &TD = getAnalysis<TargetData>();
 | 
						|
 | 
						|
  // Now we have a list of all functions with a particular name.  If there is
 | 
						|
  // more than one entry in a list, merge the functions together.
 | 
						|
  //
 | 
						|
  for (std::map<std::string, std::vector<GlobalValue*> >::iterator
 | 
						|
         I = Globals.begin(), E = Globals.end(); I != E; ++I)
 | 
						|
    Changed |= ProcessGlobalsWithSameName(M, TD, I->second);
 | 
						|
 | 
						|
  // Now loop over all of the globals, checking to see if any are trivially
 | 
						|
  // dead.  If so, remove them now.
 | 
						|
 | 
						|
  for (Module::iterator I = M.begin(), E = M.end(); I != E; )
 | 
						|
    if (I->isExternal() && I->use_empty()) {
 | 
						|
      Function *F = I;
 | 
						|
      ++I;
 | 
						|
      M.getFunctionList().erase(F);
 | 
						|
      ++NumResolved;
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
  for (Module::global_iterator I = M.global_begin(), E = M.global_end(); I != E; )
 | 
						|
    if (I->isExternal() && I->use_empty()) {
 | 
						|
      GlobalVariable *GV = I;
 | 
						|
      ++I;
 | 
						|
      M.getGlobalList().erase(GV);
 | 
						|
      ++NumGlobals;
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |