mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-27 09:17:11 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109002 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			975 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			975 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the X86MCCodeEmitter class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "x86-emitter"
 | |
| #include "X86.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86FixupKinds.h"
 | |
| #include "llvm/MC/MCCodeEmitter.h"
 | |
| #include "llvm/MC/MCExpr.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| class X86MCCodeEmitter : public MCCodeEmitter {
 | |
|   X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
 | |
|   void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
 | |
|   const TargetMachine &TM;
 | |
|   const TargetInstrInfo &TII;
 | |
|   MCContext &Ctx;
 | |
|   bool Is64BitMode;
 | |
| public:
 | |
|   X86MCCodeEmitter(TargetMachine &tm, MCContext &ctx, bool is64Bit)
 | |
|     : TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
 | |
|     Is64BitMode = is64Bit;
 | |
|   }
 | |
| 
 | |
|   ~X86MCCodeEmitter() {}
 | |
| 
 | |
|   unsigned getNumFixupKinds() const {
 | |
|     return 5;
 | |
|   }
 | |
| 
 | |
|   const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
 | |
|     const static MCFixupKindInfo Infos[] = {
 | |
|       { "reloc_pcrel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | |
|       { "reloc_pcrel_1byte", 0, 1 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | |
|       { "reloc_pcrel_2byte", 0, 2 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | |
|       { "reloc_riprel_4byte", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel },
 | |
|       { "reloc_riprel_4byte_movq_load", 0, 4 * 8, MCFixupKindInfo::FKF_IsPCRel }
 | |
|     };
 | |
| 
 | |
|     if (Kind < FirstTargetFixupKind)
 | |
|       return MCCodeEmitter::getFixupKindInfo(Kind);
 | |
| 
 | |
|     assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
 | |
|            "Invalid kind!");
 | |
|     return Infos[Kind - FirstTargetFixupKind];
 | |
|   }
 | |
| 
 | |
|   static unsigned GetX86RegNum(const MCOperand &MO) {
 | |
|     return X86RegisterInfo::getX86RegNum(MO.getReg());
 | |
|   }
 | |
| 
 | |
|   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
 | |
|   // 0-7 and the difference between the 2 groups is given by the REX prefix.
 | |
|   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
 | |
|   // in 1's complement form, example:
 | |
|   //
 | |
|   //  ModRM field => XMM9 => 1
 | |
|   //  VEX.VVVV    => XMM9 => ~9
 | |
|   //
 | |
|   // See table 4-35 of Intel AVX Programming Reference for details.
 | |
|   static unsigned char getVEXRegisterEncoding(const MCInst &MI,
 | |
|                                               unsigned OpNum) {
 | |
|     unsigned SrcReg = MI.getOperand(OpNum).getReg();
 | |
|     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
 | |
|     if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) ||
 | |
|         (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15))
 | |
|       SrcRegNum += 8;
 | |
| 
 | |
|     // The registers represented through VEX_VVVV should
 | |
|     // be encoded in 1's complement form.
 | |
|     return (~SrcRegNum) & 0xf;
 | |
|   }
 | |
| 
 | |
|   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
 | |
|     OS << (char)C;
 | |
|     ++CurByte;
 | |
|   }
 | |
| 
 | |
|   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
 | |
|                     raw_ostream &OS) const {
 | |
|     // Output the constant in little endian byte order.
 | |
|     for (unsigned i = 0; i != Size; ++i) {
 | |
|       EmitByte(Val & 255, CurByte, OS);
 | |
|       Val >>= 8;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void EmitImmediate(const MCOperand &Disp,
 | |
|                      unsigned ImmSize, MCFixupKind FixupKind,
 | |
|                      unsigned &CurByte, raw_ostream &OS,
 | |
|                      SmallVectorImpl<MCFixup> &Fixups,
 | |
|                      int ImmOffset = 0) const;
 | |
| 
 | |
|   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
 | |
|                                         unsigned RM) {
 | |
|     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
 | |
|     return RM | (RegOpcode << 3) | (Mod << 6);
 | |
|   }
 | |
| 
 | |
|   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
 | |
|                         unsigned &CurByte, raw_ostream &OS) const {
 | |
|     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
 | |
|   }
 | |
| 
 | |
|   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
 | |
|                    unsigned &CurByte, raw_ostream &OS) const {
 | |
|     // SIB byte is in the same format as the ModRMByte.
 | |
|     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
 | |
|                         unsigned RegOpcodeField,
 | |
|                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
 | |
|                         SmallVectorImpl<MCFixup> &Fixups) const;
 | |
| 
 | |
|   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
 | |
|                          SmallVectorImpl<MCFixup> &Fixups) const;
 | |
| 
 | |
|   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
 | |
|                            const MCInst &MI, const TargetInstrDesc &Desc,
 | |
|                            raw_ostream &OS) const;
 | |
| 
 | |
|   void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
 | |
|                                  int MemOperand, const MCInst &MI,
 | |
|                                  raw_ostream &OS) const;
 | |
| 
 | |
|   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
 | |
|                         const MCInst &MI, const TargetInstrDesc &Desc,
 | |
|                         raw_ostream &OS) const;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| 
 | |
| MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
 | |
|                                                TargetMachine &TM,
 | |
|                                                MCContext &Ctx) {
 | |
|   return new X86MCCodeEmitter(TM, Ctx, false);
 | |
| }
 | |
| 
 | |
| MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
 | |
|                                                TargetMachine &TM,
 | |
|                                                MCContext &Ctx) {
 | |
|   return new X86MCCodeEmitter(TM, Ctx, true);
 | |
| }
 | |
| 
 | |
| /// isDisp8 - Return true if this signed displacement fits in a 8-bit
 | |
| /// sign-extended field.
 | |
| static bool isDisp8(int Value) {
 | |
|   return Value == (signed char)Value;
 | |
| }
 | |
| 
 | |
| /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
 | |
| /// in an instruction with the specified TSFlags.
 | |
| static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
 | |
|   unsigned Size = X86II::getSizeOfImm(TSFlags);
 | |
|   bool isPCRel = X86II::isImmPCRel(TSFlags);
 | |
| 
 | |
|   switch (Size) {
 | |
|   default: assert(0 && "Unknown immediate size");
 | |
|   case 1: return isPCRel ? MCFixupKind(X86::reloc_pcrel_1byte) : FK_Data_1;
 | |
|   case 2: return isPCRel ? MCFixupKind(X86::reloc_pcrel_2byte) : FK_Data_2;
 | |
|   case 4: return isPCRel ? MCFixupKind(X86::reloc_pcrel_4byte) : FK_Data_4;
 | |
|   case 8: assert(!isPCRel); return FK_Data_8;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| void X86MCCodeEmitter::
 | |
| EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
 | |
|               unsigned &CurByte, raw_ostream &OS,
 | |
|               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
 | |
|   // If this is a simple integer displacement that doesn't require a relocation,
 | |
|   // emit it now.
 | |
|   if (DispOp.isImm()) {
 | |
|     // FIXME: is this right for pc-rel encoding??  Probably need to emit this as
 | |
|     // a fixup if so.
 | |
|     EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we have an immoffset, add it to the expression.
 | |
|   const MCExpr *Expr = DispOp.getExpr();
 | |
| 
 | |
|   // If the fixup is pc-relative, we need to bias the value to be relative to
 | |
|   // the start of the field, not the end of the field.
 | |
|   if (FixupKind == MCFixupKind(X86::reloc_pcrel_4byte) ||
 | |
|       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
 | |
|       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
 | |
|     ImmOffset -= 4;
 | |
|   if (FixupKind == MCFixupKind(X86::reloc_pcrel_2byte))
 | |
|     ImmOffset -= 2;
 | |
|   if (FixupKind == MCFixupKind(X86::reloc_pcrel_1byte))
 | |
|     ImmOffset -= 1;
 | |
| 
 | |
|   if (ImmOffset)
 | |
|     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
 | |
|                                    Ctx);
 | |
| 
 | |
|   // Emit a symbolic constant as a fixup and 4 zeros.
 | |
|   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind));
 | |
|   EmitConstant(0, Size, CurByte, OS);
 | |
| }
 | |
| 
 | |
| void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
 | |
|                                         unsigned RegOpcodeField,
 | |
|                                         uint64_t TSFlags, unsigned &CurByte,
 | |
|                                         raw_ostream &OS,
 | |
|                                         SmallVectorImpl<MCFixup> &Fixups) const{
 | |
|   const MCOperand &Disp     = MI.getOperand(Op+3);
 | |
|   const MCOperand &Base     = MI.getOperand(Op);
 | |
|   const MCOperand &Scale    = MI.getOperand(Op+1);
 | |
|   const MCOperand &IndexReg = MI.getOperand(Op+2);
 | |
|   unsigned BaseReg = Base.getReg();
 | |
| 
 | |
|   // Handle %rip relative addressing.
 | |
|   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
 | |
|     assert(Is64BitMode && "Rip-relative addressing requires 64-bit mode");
 | |
|     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
 | |
|     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 | |
| 
 | |
|     unsigned FixupKind = X86::reloc_riprel_4byte;
 | |
| 
 | |
|     // movq loads are handled with a special relocation form which allows the
 | |
|     // linker to eliminate some loads for GOT references which end up in the
 | |
|     // same linkage unit.
 | |
|     if (MI.getOpcode() == X86::MOV64rm ||
 | |
|         MI.getOpcode() == X86::MOV64rm_TC)
 | |
|       FixupKind = X86::reloc_riprel_4byte_movq_load;
 | |
| 
 | |
|     // rip-relative addressing is actually relative to the *next* instruction.
 | |
|     // Since an immediate can follow the mod/rm byte for an instruction, this
 | |
|     // means that we need to bias the immediate field of the instruction with
 | |
|     // the size of the immediate field.  If we have this case, add it into the
 | |
|     // expression to emit.
 | |
|     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
 | |
| 
 | |
|     EmitImmediate(Disp, 4, MCFixupKind(FixupKind),
 | |
|                   CurByte, OS, Fixups, -ImmSize);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
 | |
| 
 | |
|   // Determine whether a SIB byte is needed.
 | |
|   // If no BaseReg, issue a RIP relative instruction only if the MCE can
 | |
|   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
 | |
|   // 2-7) and absolute references.
 | |
| 
 | |
|   if (// The SIB byte must be used if there is an index register.
 | |
|       IndexReg.getReg() == 0 &&
 | |
|       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
 | |
|       // encode to an R/M value of 4, which indicates that a SIB byte is
 | |
|       // present.
 | |
|       BaseRegNo != N86::ESP &&
 | |
|       // If there is no base register and we're in 64-bit mode, we need a SIB
 | |
|       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
 | |
|       (!Is64BitMode || BaseReg != 0)) {
 | |
| 
 | |
|     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
 | |
|       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
 | |
|       EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the base is not EBP/ESP and there is no displacement, use simple
 | |
|     // indirect register encoding, this handles addresses like [EAX].  The
 | |
|     // encoding for [EBP] with no displacement means [disp32] so we handle it
 | |
|     // by emitting a displacement of 0 below.
 | |
|     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
 | |
|       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
 | |
|     if (Disp.isImm() && isDisp8(Disp.getImm())) {
 | |
|       EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
 | |
|       EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
 | |
|     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
 | |
|     EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We need a SIB byte, so start by outputting the ModR/M byte first
 | |
|   assert(IndexReg.getReg() != X86::ESP &&
 | |
|          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
 | |
| 
 | |
|   bool ForceDisp32 = false;
 | |
|   bool ForceDisp8  = false;
 | |
|   if (BaseReg == 0) {
 | |
|     // If there is no base register, we emit the special case SIB byte with
 | |
|     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
 | |
|     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
 | |
|     ForceDisp32 = true;
 | |
|   } else if (!Disp.isImm()) {
 | |
|     // Emit the normal disp32 encoding.
 | |
|     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
 | |
|     ForceDisp32 = true;
 | |
|   } else if (Disp.getImm() == 0 &&
 | |
|              // Base reg can't be anything that ends up with '5' as the base
 | |
|              // reg, it is the magic [*] nomenclature that indicates no base.
 | |
|              BaseRegNo != N86::EBP) {
 | |
|     // Emit no displacement ModR/M byte
 | |
|     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
 | |
|   } else if (isDisp8(Disp.getImm())) {
 | |
|     // Emit the disp8 encoding.
 | |
|     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
 | |
|     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
 | |
|   } else {
 | |
|     // Emit the normal disp32 encoding.
 | |
|     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
 | |
|   }
 | |
| 
 | |
|   // Calculate what the SS field value should be...
 | |
|   static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
 | |
|   unsigned SS = SSTable[Scale.getImm()];
 | |
| 
 | |
|   if (BaseReg == 0) {
 | |
|     // Handle the SIB byte for the case where there is no base, see Intel
 | |
|     // Manual 2A, table 2-7. The displacement has already been output.
 | |
|     unsigned IndexRegNo;
 | |
|     if (IndexReg.getReg())
 | |
|       IndexRegNo = GetX86RegNum(IndexReg);
 | |
|     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
 | |
|       IndexRegNo = 4;
 | |
|     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
 | |
|   } else {
 | |
|     unsigned IndexRegNo;
 | |
|     if (IndexReg.getReg())
 | |
|       IndexRegNo = GetX86RegNum(IndexReg);
 | |
|     else
 | |
|       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
 | |
|     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
 | |
|   }
 | |
| 
 | |
|   // Do we need to output a displacement?
 | |
|   if (ForceDisp8)
 | |
|     EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups);
 | |
|   else if (ForceDisp32 || Disp.getImm() != 0)
 | |
|     EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups);
 | |
| }
 | |
| 
 | |
| /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
 | |
| /// called VEX.
 | |
| void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
 | |
|                                            int MemOperand, const MCInst &MI,
 | |
|                                            const TargetInstrDesc &Desc,
 | |
|                                            raw_ostream &OS) const {
 | |
|   bool HasVEX_4V = false;
 | |
|   if (TSFlags & X86II::VEX_4V)
 | |
|     HasVEX_4V = true;
 | |
| 
 | |
|   // VEX_R: opcode externsion equivalent to REX.R in
 | |
|   // 1's complement (inverted) form
 | |
|   //
 | |
|   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
 | |
|   //  0: Same as REX_R=1 (64 bit mode only)
 | |
|   //
 | |
|   unsigned char VEX_R = 0x1;
 | |
| 
 | |
|   // VEX_X: equivalent to REX.X, only used when a
 | |
|   // register is used for index in SIB Byte.
 | |
|   //
 | |
|   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
 | |
|   //  0: Same as REX.X=1 (64-bit mode only)
 | |
|   unsigned char VEX_X = 0x1;
 | |
| 
 | |
|   // VEX_B:
 | |
|   //
 | |
|   //  1: Same as REX_B=0 (ignored in 32-bit mode)
 | |
|   //  0: Same as REX_B=1 (64 bit mode only)
 | |
|   //
 | |
|   unsigned char VEX_B = 0x1;
 | |
| 
 | |
|   // VEX_W: opcode specific (use like REX.W, or used for
 | |
|   // opcode extension, or ignored, depending on the opcode byte)
 | |
|   unsigned char VEX_W = 0;
 | |
| 
 | |
|   // VEX_5M (VEX m-mmmmm field):
 | |
|   //
 | |
|   //  0b00000: Reserved for future use
 | |
|   //  0b00001: implied 0F leading opcode
 | |
|   //  0b00010: implied 0F 38 leading opcode bytes
 | |
|   //  0b00011: implied 0F 3A leading opcode bytes
 | |
|   //  0b00100-0b11111: Reserved for future use
 | |
|   //
 | |
|   unsigned char VEX_5M = 0x1;
 | |
| 
 | |
|   // VEX_4V (VEX vvvv field): a register specifier
 | |
|   // (in 1's complement form) or 1111 if unused.
 | |
|   unsigned char VEX_4V = 0xf;
 | |
| 
 | |
|   // VEX_L (Vector Length):
 | |
|   //
 | |
|   //  0: scalar or 128-bit vector
 | |
|   //  1: 256-bit vector
 | |
|   //
 | |
|   unsigned char VEX_L = 0;
 | |
| 
 | |
|   // VEX_PP: opcode extension providing equivalent
 | |
|   // functionality of a SIMD prefix
 | |
|   //
 | |
|   //  0b00: None
 | |
|   //  0b01: 66
 | |
|   //  0b10: F3
 | |
|   //  0b11: F2
 | |
|   //
 | |
|   unsigned char VEX_PP = 0;
 | |
| 
 | |
|   // Encode the operand size opcode prefix as needed.
 | |
|   if (TSFlags & X86II::OpSize)
 | |
|     VEX_PP = 0x01;
 | |
| 
 | |
|   if (TSFlags & X86II::VEX_W)
 | |
|     VEX_W = 1;
 | |
| 
 | |
|   if (TSFlags & X86II::VEX_L)
 | |
|     VEX_L = 1;
 | |
| 
 | |
|   switch (TSFlags & X86II::Op0Mask) {
 | |
|   default: assert(0 && "Invalid prefix!");
 | |
|   case X86II::T8:  // 0F 38
 | |
|     VEX_5M = 0x2;
 | |
|     break;
 | |
|   case X86II::TA:  // 0F 3A
 | |
|     VEX_5M = 0x3;
 | |
|     break;
 | |
|   case X86II::TF:  // F2 0F 38
 | |
|     VEX_PP = 0x3;
 | |
|     VEX_5M = 0x2;
 | |
|     break;
 | |
|   case X86II::XS:  // F3 0F
 | |
|     VEX_PP = 0x2;
 | |
|     break;
 | |
|   case X86II::XD:  // F2 0F
 | |
|     VEX_PP = 0x3;
 | |
|     break;
 | |
|   case X86II::TB:  // Bypass: Not used by VEX
 | |
|   case 0:
 | |
|     break;  // No prefix!
 | |
|   }
 | |
| 
 | |
|   // Set the vector length to 256-bit if YMM0-YMM15 is used
 | |
|   for (unsigned i = 0; i != MI.getNumOperands(); ++i) {
 | |
|     if (!MI.getOperand(i).isReg())
 | |
|       continue;
 | |
|     unsigned SrcReg = MI.getOperand(i).getReg();
 | |
|     if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15)
 | |
|       VEX_L = 1;
 | |
|   }
 | |
| 
 | |
|   unsigned NumOps = MI.getNumOperands();
 | |
|   unsigned CurOp = 0;
 | |
|   bool IsDestMem = false;
 | |
| 
 | |
|   switch (TSFlags & X86II::FormMask) {
 | |
|   case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
 | |
|   case X86II::MRMDestMem:
 | |
|     IsDestMem = true;
 | |
|     // The important info for the VEX prefix is never beyond the address
 | |
|     // registers. Don't check beyond that.
 | |
|     NumOps = CurOp = X86::AddrNumOperands;
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m:
 | |
|   case X86II::MRMSrcMem:
 | |
|   case X86II::MRMSrcReg:
 | |
|     if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() &&
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | |
|       VEX_R = 0x0;
 | |
|     CurOp++;
 | |
| 
 | |
|     if (HasVEX_4V) {
 | |
|       VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp);
 | |
|       CurOp++;
 | |
|     }
 | |
| 
 | |
|     // To only check operands before the memory address ones, start
 | |
|     // the search from the begining
 | |
|     if (IsDestMem)
 | |
|       CurOp = 0;
 | |
| 
 | |
|     // If the last register should be encoded in the immediate field
 | |
|     // do not use any bit from VEX prefix to this register, ignore it
 | |
|     if (TSFlags & X86II::VEX_I8IMM)
 | |
|       NumOps--;
 | |
| 
 | |
|     for (; CurOp != NumOps; ++CurOp) {
 | |
|       const MCOperand &MO = MI.getOperand(CurOp);
 | |
|       if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|         VEX_B = 0x0;
 | |
|       if (!VEX_B && MO.isReg() &&
 | |
|           ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) &&
 | |
|           X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|         VEX_X = 0x0;
 | |
|     }
 | |
|     break;
 | |
|   default: // MRMDestReg, MRM0r-MRM7r, RawFrm
 | |
|     if (!MI.getNumOperands())
 | |
|       break;
 | |
| 
 | |
|     if (MI.getOperand(CurOp).isReg() &&
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
 | |
|       VEX_B = 0;
 | |
| 
 | |
|     if (HasVEX_4V)
 | |
|       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
 | |
| 
 | |
|     CurOp++;
 | |
|     for (; CurOp != NumOps; ++CurOp) {
 | |
|       const MCOperand &MO = MI.getOperand(CurOp);
 | |
|       if (MO.isReg() && !HasVEX_4V &&
 | |
|           X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|         VEX_R = 0x0;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Emit segment override opcode prefix as needed.
 | |
|   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
 | |
| 
 | |
|   // VEX opcode prefix can have 2 or 3 bytes
 | |
|   //
 | |
|   //  3 bytes:
 | |
|   //    +-----+ +--------------+ +-------------------+
 | |
|   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
 | |
|   //    +-----+ +--------------+ +-------------------+
 | |
|   //  2 bytes:
 | |
|   //    +-----+ +-------------------+
 | |
|   //    | C5h | | R | vvvv | L | pp |
 | |
|   //    +-----+ +-------------------+
 | |
|   //
 | |
|   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
 | |
| 
 | |
|   if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix
 | |
|     EmitByte(0xC5, CurByte, OS);
 | |
|     EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // 3 byte VEX prefix
 | |
|   EmitByte(0xC4, CurByte, OS);
 | |
|   EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
 | |
|   EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
 | |
| }
 | |
| 
 | |
| /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
 | |
| /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
 | |
| /// size, and 3) use of X86-64 extended registers.
 | |
| static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
 | |
|                                    const TargetInstrDesc &Desc) {
 | |
|   unsigned REX = 0;
 | |
|   if (TSFlags & X86II::REX_W)
 | |
|     REX |= 1 << 3; // set REX.W
 | |
| 
 | |
|   if (MI.getNumOperands() == 0) return REX;
 | |
| 
 | |
|   unsigned NumOps = MI.getNumOperands();
 | |
|   // FIXME: MCInst should explicitize the two-addrness.
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|                       Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
 | |
| 
 | |
|   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
 | |
|   unsigned i = isTwoAddr ? 1 : 0;
 | |
|   for (; i != NumOps; ++i) {
 | |
|     const MCOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
 | |
|     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
 | |
|     // that returns non-zero.
 | |
|     REX |= 0x40; // REX fixed encoding prefix
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   switch (TSFlags & X86II::FormMask) {
 | |
|   case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
 | |
|   case X86II::MRMSrcReg:
 | |
|     if (MI.getOperand(0).isReg() &&
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | |
|       REX |= 1 << 2; // set REX.R
 | |
|     i = isTwoAddr ? 2 : 1;
 | |
|     for (; i != NumOps; ++i) {
 | |
|       const MCOperand &MO = MI.getOperand(i);
 | |
|       if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|         REX |= 1 << 0; // set REX.B
 | |
|     }
 | |
|     break;
 | |
|   case X86II::MRMSrcMem: {
 | |
|     if (MI.getOperand(0).isReg() &&
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | |
|       REX |= 1 << 2; // set REX.R
 | |
|     unsigned Bit = 0;
 | |
|     i = isTwoAddr ? 2 : 1;
 | |
|     for (; i != NumOps; ++i) {
 | |
|       const MCOperand &MO = MI.getOperand(i);
 | |
|       if (MO.isReg()) {
 | |
|         if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
 | |
|         Bit++;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m:
 | |
|   case X86II::MRMDestMem: {
 | |
|     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
 | |
|     i = isTwoAddr ? 1 : 0;
 | |
|     if (NumOps > e && MI.getOperand(e).isReg() &&
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
 | |
|       REX |= 1 << 2; // set REX.R
 | |
|     unsigned Bit = 0;
 | |
|     for (; i != e; ++i) {
 | |
|       const MCOperand &MO = MI.getOperand(i);
 | |
|       if (MO.isReg()) {
 | |
|         if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
 | |
|         Bit++;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     if (MI.getOperand(0).isReg() &&
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
 | |
|       REX |= 1 << 0; // set REX.B
 | |
|     i = isTwoAddr ? 2 : 1;
 | |
|     for (unsigned e = NumOps; i != e; ++i) {
 | |
|       const MCOperand &MO = MI.getOperand(i);
 | |
|       if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
 | |
|         REX |= 1 << 2; // set REX.R
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   return REX;
 | |
| }
 | |
| 
 | |
| /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
 | |
| void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
 | |
|                                         unsigned &CurByte, int MemOperand,
 | |
|                                         const MCInst &MI,
 | |
|                                         raw_ostream &OS) const {
 | |
|   switch (TSFlags & X86II::SegOvrMask) {
 | |
|   default: assert(0 && "Invalid segment!");
 | |
|   case 0:
 | |
|     // No segment override, check for explicit one on memory operand.
 | |
|     if (MemOperand != -1) {   // If the instruction has a memory operand.
 | |
|       switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
 | |
|       default: assert(0 && "Unknown segment register!");
 | |
|       case 0: break;
 | |
|       case X86::CS: EmitByte(0x2E, CurByte, OS); break;
 | |
|       case X86::SS: EmitByte(0x36, CurByte, OS); break;
 | |
|       case X86::DS: EmitByte(0x3E, CurByte, OS); break;
 | |
|       case X86::ES: EmitByte(0x26, CurByte, OS); break;
 | |
|       case X86::FS: EmitByte(0x64, CurByte, OS); break;
 | |
|       case X86::GS: EmitByte(0x65, CurByte, OS); break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case X86II::FS:
 | |
|     EmitByte(0x64, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::GS:
 | |
|     EmitByte(0x65, CurByte, OS);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
 | |
| ///
 | |
| /// MemOperand is the operand # of the start of a memory operand if present.  If
 | |
| /// Not present, it is -1.
 | |
| void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
 | |
|                                         int MemOperand, const MCInst &MI,
 | |
|                                         const TargetInstrDesc &Desc,
 | |
|                                         raw_ostream &OS) const {
 | |
| 
 | |
|   // Emit the lock opcode prefix as needed.
 | |
|   if (TSFlags & X86II::LOCK)
 | |
|     EmitByte(0xF0, CurByte, OS);
 | |
| 
 | |
|   // Emit segment override opcode prefix as needed.
 | |
|   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
 | |
| 
 | |
|   // Emit the repeat opcode prefix as needed.
 | |
|   if ((TSFlags & X86II::Op0Mask) == X86II::REP)
 | |
|     EmitByte(0xF3, CurByte, OS);
 | |
| 
 | |
|   // Emit the operand size opcode prefix as needed.
 | |
|   if (TSFlags & X86II::OpSize)
 | |
|     EmitByte(0x66, CurByte, OS);
 | |
| 
 | |
|   // Emit the address size opcode prefix as needed.
 | |
|   if (TSFlags & X86II::AdSize)
 | |
|     EmitByte(0x67, CurByte, OS);
 | |
| 
 | |
|   bool Need0FPrefix = false;
 | |
|   switch (TSFlags & X86II::Op0Mask) {
 | |
|   default: assert(0 && "Invalid prefix!");
 | |
|   case 0: break;  // No prefix!
 | |
|   case X86II::REP: break; // already handled.
 | |
|   case X86II::TB:  // Two-byte opcode prefix
 | |
|   case X86II::T8:  // 0F 38
 | |
|   case X86II::TA:  // 0F 3A
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::TF: // F2 0F 38
 | |
|     EmitByte(0xF2, CurByte, OS);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::XS:   // F3 0F
 | |
|     EmitByte(0xF3, CurByte, OS);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::XD:   // F2 0F
 | |
|     EmitByte(0xF2, CurByte, OS);
 | |
|     Need0FPrefix = true;
 | |
|     break;
 | |
|   case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
 | |
|   case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
 | |
|   case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
 | |
|   case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
 | |
|   case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
 | |
|   case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
 | |
|   case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
 | |
|   case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
 | |
|   }
 | |
| 
 | |
|   // Handle REX prefix.
 | |
|   // FIXME: Can this come before F2 etc to simplify emission?
 | |
|   if (Is64BitMode) {
 | |
|     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
 | |
|       EmitByte(0x40 | REX, CurByte, OS);
 | |
|   }
 | |
| 
 | |
|   // 0x0F escape code must be emitted just before the opcode.
 | |
|   if (Need0FPrefix)
 | |
|     EmitByte(0x0F, CurByte, OS);
 | |
| 
 | |
|   // FIXME: Pull this up into previous switch if REX can be moved earlier.
 | |
|   switch (TSFlags & X86II::Op0Mask) {
 | |
|   case X86II::TF:    // F2 0F 38
 | |
|   case X86II::T8:    // 0F 38
 | |
|     EmitByte(0x38, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::TA:    // 0F 3A
 | |
|     EmitByte(0x3A, CurByte, OS);
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86MCCodeEmitter::
 | |
| EncodeInstruction(const MCInst &MI, raw_ostream &OS,
 | |
|                   SmallVectorImpl<MCFixup> &Fixups) const {
 | |
|   unsigned Opcode = MI.getOpcode();
 | |
|   const TargetInstrDesc &Desc = TII.get(Opcode);
 | |
|   uint64_t TSFlags = Desc.TSFlags;
 | |
| 
 | |
|   // Pseudo instructions don't get encoded.
 | |
|   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
 | |
|     return;
 | |
| 
 | |
|   // If this is a two-address instruction, skip one of the register operands.
 | |
|   // FIXME: This should be handled during MCInst lowering.
 | |
|   unsigned NumOps = Desc.getNumOperands();
 | |
|   unsigned CurOp = 0;
 | |
|   if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
 | |
|     ++CurOp;
 | |
|   else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
 | |
|     // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
 | |
|     --NumOps;
 | |
| 
 | |
|   // Keep track of the current byte being emitted.
 | |
|   unsigned CurByte = 0;
 | |
| 
 | |
|   // Is this instruction encoded using the AVX VEX prefix?
 | |
|   bool HasVEXPrefix = false;
 | |
| 
 | |
|   // It uses the VEX.VVVV field?
 | |
|   bool HasVEX_4V = false;
 | |
| 
 | |
|   if (TSFlags & X86II::VEX)
 | |
|     HasVEXPrefix = true;
 | |
|   if (TSFlags & X86II::VEX_4V)
 | |
|     HasVEX_4V = true;
 | |
| 
 | |
|   // Determine where the memory operand starts, if present.
 | |
|   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
 | |
|   if (MemoryOperand != -1) MemoryOperand += CurOp;
 | |
| 
 | |
|   if (!HasVEXPrefix)
 | |
|     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
 | |
|   else
 | |
|     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
 | |
| 
 | |
|   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
 | |
|   unsigned SrcRegNum = 0;
 | |
|   switch (TSFlags & X86II::FormMask) {
 | |
|   case X86II::MRMInitReg:
 | |
|     assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
 | |
|   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
 | |
|     assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
 | |
|   case X86II::Pseudo:
 | |
|     assert(0 && "Pseudo instruction shouldn't be emitted");
 | |
|   case X86II::RawFrm:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     break;
 | |
| 
 | |
|   case X86II::AddRegFrm:
 | |
|     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMDestReg:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitRegModRMByte(MI.getOperand(CurOp),
 | |
|                      GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
 | |
|     CurOp += 2;
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMDestMem:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     SrcRegNum = CurOp + X86::AddrNumOperands;
 | |
| 
 | |
|     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
 | |
|       SrcRegNum++;
 | |
| 
 | |
|     EmitMemModRMByte(MI, CurOp,
 | |
|                      GetX86RegNum(MI.getOperand(SrcRegNum)),
 | |
|                      TSFlags, CurByte, OS, Fixups);
 | |
|     CurOp = SrcRegNum + 1;
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcReg:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     SrcRegNum = CurOp + 1;
 | |
| 
 | |
|     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
 | |
|       SrcRegNum++;
 | |
| 
 | |
|     EmitRegModRMByte(MI.getOperand(SrcRegNum),
 | |
|                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
 | |
|     CurOp = SrcRegNum + 1;
 | |
|     break;
 | |
| 
 | |
|   case X86II::MRMSrcMem: {
 | |
|     int AddrOperands = X86::AddrNumOperands;
 | |
|     unsigned FirstMemOp = CurOp+1;
 | |
|     if (HasVEX_4V) {
 | |
|       ++AddrOperands;
 | |
|       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
 | |
|     }
 | |
| 
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
| 
 | |
|     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
 | |
|                      TSFlags, CurByte, OS, Fixups);
 | |
|     CurOp += AddrOperands + 1;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case X86II::MRM0r: case X86II::MRM1r:
 | |
|   case X86II::MRM2r: case X86II::MRM3r:
 | |
|   case X86II::MRM4r: case X86II::MRM5r:
 | |
|   case X86II::MRM6r: case X86II::MRM7r:
 | |
|     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
 | |
|       CurOp++;
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitRegModRMByte(MI.getOperand(CurOp++),
 | |
|                      (TSFlags & X86II::FormMask)-X86II::MRM0r,
 | |
|                      CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM0m: case X86II::MRM1m:
 | |
|   case X86II::MRM2m: case X86II::MRM3m:
 | |
|   case X86II::MRM4m: case X86II::MRM5m:
 | |
|   case X86II::MRM6m: case X86II::MRM7m:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
 | |
|                      TSFlags, CurByte, OS, Fixups);
 | |
|     CurOp += X86::AddrNumOperands;
 | |
|     break;
 | |
|   case X86II::MRM_C1:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xC1, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_C2:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xC2, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_C3:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xC3, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_C4:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xC4, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_C8:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xC8, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_C9:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xC9, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_E8:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xE8, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_F0:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xF0, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_F8:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xF8, CurByte, OS);
 | |
|     break;
 | |
|   case X86II::MRM_F9:
 | |
|     EmitByte(BaseOpcode, CurByte, OS);
 | |
|     EmitByte(0xF9, CurByte, OS);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If there is a remaining operand, it must be a trailing immediate.  Emit it
 | |
|   // according to the right size for the instruction.
 | |
|   if (CurOp != NumOps) {
 | |
|     // The last source register of a 4 operand instruction in AVX is encoded
 | |
|     // in bits[7:4] of a immediate byte, and bits[3:0] are ignored.
 | |
|     if (TSFlags & X86II::VEX_I8IMM) {
 | |
|       const MCOperand &MO = MI.getOperand(CurOp++);
 | |
|       bool IsExtReg =
 | |
|         X86InstrInfo::isX86_64ExtendedReg(MO.getReg());
 | |
|       unsigned RegNum = (IsExtReg ? (1 << 7) : 0);
 | |
|       RegNum |= GetX86RegNum(MO) << 4;
 | |
|       EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS,
 | |
|                     Fixups);
 | |
|     } else
 | |
|       EmitImmediate(MI.getOperand(CurOp++),
 | |
|                     X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
 | |
|                     CurByte, OS, Fixups);
 | |
|   }
 | |
| 
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // FIXME: Verify.
 | |
|   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
 | |
|     errs() << "Cannot encode all operands of: ";
 | |
|     MI.dump();
 | |
|     errs() << '\n';
 | |
|     abort();
 | |
|   }
 | |
| #endif
 | |
| }
 |