mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	instructions out of InstCombine and into InstructionSimplify. While there, introduce an m_AllOnes pattern to simplify matching with integers and vectors with all bits equal to one. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@119536 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			907 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			907 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements routines for folding instructions into simpler forms
 | |
| // that do not require creating new instructions.  For example, this does
 | |
| // constant folding, and can handle identities like (X&0)->0.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define RecursionLimit 3
 | |
| 
 | |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
 | |
|                             const DominatorTree *, unsigned);
 | |
| static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
 | |
|                               const DominatorTree *, unsigned);
 | |
| 
 | |
| /// ValueDominatesPHI - Does the given value dominate the specified phi node?
 | |
| static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     // Arguments and constants dominate all instructions.
 | |
|     return true;
 | |
| 
 | |
|   // If we have a DominatorTree then do a precise test.
 | |
|   if (DT)
 | |
|     return DT->dominates(I, P);
 | |
| 
 | |
|   // Otherwise, if the instruction is in the entry block, and is not an invoke,
 | |
|   // then it obviously dominates all phi nodes.
 | |
|   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
 | |
|       !isa<InvokeInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ThreadBinOpOverSelect - In the case of a binary operation with a select
 | |
| /// instruction as an operand, try to simplify the binop by seeing whether
 | |
| /// evaluating it on both branches of the select results in the same value.
 | |
| /// Returns the common value if so, otherwise returns null.
 | |
| static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                                     const TargetData *TD,
 | |
|                                     const DominatorTree *DT,
 | |
|                                     unsigned MaxRecurse) {
 | |
|   SelectInst *SI;
 | |
|   if (isa<SelectInst>(LHS)) {
 | |
|     SI = cast<SelectInst>(LHS);
 | |
|   } else {
 | |
|     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
 | |
|     SI = cast<SelectInst>(RHS);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the true and false branches of the select.
 | |
|   Value *TV;
 | |
|   Value *FV;
 | |
|   if (SI == LHS) {
 | |
|     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
 | |
|   } else {
 | |
|     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // If they simplified to the same value, then return the common value.
 | |
|   // If they both failed to simplify then return null.
 | |
|   if (TV == FV)
 | |
|     return TV;
 | |
| 
 | |
|   // If one branch simplified to undef, return the other one.
 | |
|   if (TV && isa<UndefValue>(TV))
 | |
|     return FV;
 | |
|   if (FV && isa<UndefValue>(FV))
 | |
|     return TV;
 | |
| 
 | |
|   // If applying the operation did not change the true and false select values,
 | |
|   // then the result of the binop is the select itself.
 | |
|   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
 | |
|     return SI;
 | |
| 
 | |
|   // If one branch simplified and the other did not, and the simplified
 | |
|   // value is equal to the unsimplified one, return the simplified value.
 | |
|   // For example, select (cond, X, X & Z) & Z -> X & Z.
 | |
|   if ((FV && !TV) || (TV && !FV)) {
 | |
|     // Check that the simplified value has the form "X op Y" where "op" is the
 | |
|     // same as the original operation.
 | |
|     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
 | |
|     if (Simplified && Simplified->getOpcode() == Opcode) {
 | |
|       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
 | |
|       // We already know that "op" is the same as for the simplified value.  See
 | |
|       // if the operands match too.  If so, return the simplified value.
 | |
|       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
 | |
|       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
 | |
|       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
 | |
|       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|       if (Simplified->isCommutative() &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(0) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
 | |
| /// try to simplify the comparison by seeing whether both branches of the select
 | |
| /// result in the same value.  Returns the common value if so, otherwise returns
 | |
| /// null.
 | |
| static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const TargetData *TD,
 | |
|                                   const DominatorTree *DT,
 | |
|                                   unsigned MaxRecurse) {
 | |
|   // Make sure the select is on the LHS.
 | |
|   if (!isa<SelectInst>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
 | |
|   SelectInst *SI = cast<SelectInst>(LHS);
 | |
| 
 | |
|   // Now that we have "cmp select(cond, TV, FV), RHS", analyse it.
 | |
|   // Does "cmp TV, RHS" simplify?
 | |
|   if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
 | |
|                                     MaxRecurse))
 | |
|     // It does!  Does "cmp FV, RHS" simplify?
 | |
|     if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
 | |
|                                       MaxRecurse))
 | |
|       // It does!  If they simplified to the same value, then use it as the
 | |
|       // result of the original comparison.
 | |
|       if (TCmp == FCmp)
 | |
|         return TCmp;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
 | |
| /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
 | |
| /// it on the incoming phi values yields the same result for every value.  If so
 | |
| /// returns the common value, otherwise returns null.
 | |
| static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                                  const TargetData *TD, const DominatorTree *DT,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   PHINode *PI;
 | |
|   if (isa<PHINode>(LHS)) {
 | |
|     PI = cast<PHINode>(LHS);
 | |
|     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(RHS, PI, DT))
 | |
|       return 0;
 | |
|   } else {
 | |
|     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
 | |
|     PI = cast<PHINode>(RHS);
 | |
|     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(LHS, PI, DT))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = 0;
 | |
|   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PI->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = PI == LHS ?
 | |
|       SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
 | |
|       SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return 0;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
 | |
| /// try to simplify the comparison by seeing whether comparing with all of the
 | |
| /// incoming phi values yields the same result every time.  If so returns the
 | |
| /// common result, otherwise returns null.
 | |
| static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   // Make sure the phi is on the LHS.
 | |
|   if (!isa<PHINode>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
 | |
|   PHINode *PI = cast<PHINode>(LHS);
 | |
| 
 | |
|   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|   if (!ValueDominatesPHI(RHS, PI, DT))
 | |
|     return 0;
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = 0;
 | |
|   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PI->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return 0;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// SimplifyAddInst - Given operands for an Add, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const TargetData *TD, const DominatorTree *) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
 | |
|                                       Ops, 2, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
 | |
|     // X + undef -> undef
 | |
|     if (isa<UndefValue>(Op1C))
 | |
|       return Op1C;
 | |
| 
 | |
|     // X + 0 --> X
 | |
|     if (Op1C->isNullValue())
 | |
|       return Op0;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Could pull several more out of instcombine.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyAndInst - Given operands for an And, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
 | |
|                                       Ops, 2, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X & undef -> 0
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X & X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X & 0 = 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X & -1 = X
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & ~A  =  ~A & A  =  0
 | |
|   Value *A, *B;
 | |
|   if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
 | |
|       (match(Op1, m_Not(m_Value(A))) && A == Op0))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (A | ?) & A = A
 | |
|   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A & (A | ?) = A
 | |
|   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op0;
 | |
| 
 | |
|   // (A & B) & A -> A & B
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & (A & B) -> A & B
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op1;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
 | |
|                                          MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
 | |
|                                       MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT) {
 | |
|   return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyOrInst - Given operands for an Or, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
 | |
|                                       Ops, 2, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X | undef -> -1
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // X | X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X | 0 = X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X | -1 = -1
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | ~A  =  ~A | A  =  -1
 | |
|   Value *A, *B;
 | |
|   if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
 | |
|       (match(Op1, m_Not(m_Value(A))) && A == Op0))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (A & ?) | A = A
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | (A & ?) = A
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op0;
 | |
| 
 | |
|   // (A | B) | A -> A | B
 | |
|   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op0;
 | |
| 
 | |
|   // A | (A | B) -> A | B
 | |
|   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op1;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
 | |
|                                          MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
 | |
|                                       MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                             const DominatorTree *DT) {
 | |
|   return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyXorInst - Given operands for a Xor, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
 | |
|                                       Ops, 2, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // A ^ undef -> undef
 | |
|   if (isa<UndefValue>(Op1))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // A ^ 0 = A
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A ^ A = 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // A ^ ~A  =  ~A ^ A  =  -1
 | |
|   Value *A, *B;
 | |
|   if ((match(Op0, m_Not(m_Value(A))) && A == Op1) ||
 | |
|       (match(Op1, m_Not(m_Value(A))) && A == Op0))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (A ^ B) ^ A = B
 | |
|   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return A == Op1 ? B : A;
 | |
| 
 | |
|   // A ^ (A ^ B) = B
 | |
|   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return A == Op0 ? B : A;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (MaxRecurse && (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Xor, Op0, Op1, TD, DT,
 | |
|                                          MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (MaxRecurse && (isa<PHINode>(Op0) || isa<PHINode>(Op1)))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Xor, Op0, Op1, TD, DT,
 | |
|                                       MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT) {
 | |
|   return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static const Type *GetCompareTy(Value *Op) {
 | |
|   return CmpInst::makeCmpResultType(Op->getType());
 | |
| }
 | |
| 
 | |
| /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // ITy - This is the return type of the compare we're considering.
 | |
|   const Type *ITy = GetCompareTy(LHS);
 | |
| 
 | |
|   // icmp X, X -> true/false
 | |
|   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
 | |
|   // because X could be 0.
 | |
|   if (LHS == RHS || isa<UndefValue>(RHS))
 | |
|     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
 | |
|   // addresses never equal each other!  We already know that Op0 != Op1.
 | |
|   if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) ||
 | |
|        isa<ConstantPointerNull>(LHS)) &&
 | |
|       (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
 | |
|        isa<ConstantPointerNull>(RHS)))
 | |
|     return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
 | |
| 
 | |
|   // See if we are doing a comparison with a constant.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     // If we have an icmp le or icmp ge instruction, turn it into the
 | |
|     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
 | |
|     // them being folded in the code below.
 | |
|     switch (Pred) {
 | |
|     default: break;
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       if (CI->isMaxValue(false))                 // A <=u MAX -> TRUE
 | |
|         return ConstantInt::getTrue(CI->getContext());
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       if (CI->isMaxValue(true))                  // A <=s MAX -> TRUE
 | |
|         return ConstantInt::getTrue(CI->getContext());
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       if (CI->isMinValue(false))                 // A >=u MIN -> TRUE
 | |
|         return ConstantInt::getTrue(CI->getContext());
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       if (CI->isMinValue(true))                  // A >=s MIN -> TRUE
 | |
|         return ConstantInt::getTrue(CI->getContext());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Fold trivial predicates.
 | |
|   if (Pred == FCmpInst::FCMP_FALSE)
 | |
|     return ConstantInt::get(GetCompareTy(LHS), 0);
 | |
|   if (Pred == FCmpInst::FCMP_TRUE)
 | |
|     return ConstantInt::get(GetCompareTy(LHS), 1);
 | |
| 
 | |
|   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
 | |
|     return UndefValue::get(GetCompareTy(LHS));
 | |
| 
 | |
|   // fcmp x,x -> true/false.  Not all compares are foldable.
 | |
|   if (LHS == RHS) {
 | |
|     if (CmpInst::isTrueWhenEqual(Pred))
 | |
|       return ConstantInt::get(GetCompareTy(LHS), 1);
 | |
|     if (CmpInst::isFalseWhenEqual(Pred))
 | |
|       return ConstantInt::get(GetCompareTy(LHS), 0);
 | |
|   }
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // If the constant is a nan, see if we can fold the comparison based on it.
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | |
|       if (CFP->getValueAPF().isNaN()) {
 | |
|         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
 | |
|           return ConstantInt::getFalse(CFP->getContext());
 | |
|         assert(FCmpInst::isUnordered(Pred) &&
 | |
|                "Comparison must be either ordered or unordered!");
 | |
|         // True if unordered.
 | |
|         return ConstantInt::getTrue(CFP->getContext());
 | |
|       }
 | |
|       // Check whether the constant is an infinity.
 | |
|       if (CFP->getValueAPF().isInfinity()) {
 | |
|         if (CFP->getValueAPF().isNegative()) {
 | |
|           switch (Pred) {
 | |
|           case FCmpInst::FCMP_OLT:
 | |
|             // No value is ordered and less than negative infinity.
 | |
|             return ConstantInt::getFalse(CFP->getContext());
 | |
|           case FCmpInst::FCMP_UGE:
 | |
|             // All values are unordered with or at least negative infinity.
 | |
|             return ConstantInt::getTrue(CFP->getContext());
 | |
|           default:
 | |
|             break;
 | |
|           }
 | |
|         } else {
 | |
|           switch (Pred) {
 | |
|           case FCmpInst::FCMP_OGT:
 | |
|             // No value is ordered and greater than infinity.
 | |
|             return ConstantInt::getFalse(CFP->getContext());
 | |
|           case FCmpInst::FCMP_ULE:
 | |
|             // All values are unordered with and at most infinity.
 | |
|             return ConstantInt::getTrue(CFP->getContext());
 | |
|           default:
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
 | |
| /// the result.  If not, this returns null.
 | |
| Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
 | |
|                                 const TargetData *TD, const DominatorTree *) {
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
 | |
|     return CB->getZExtValue() ? TrueVal : FalseVal;
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return TrueVal;
 | |
| 
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return FalseVal;
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return TrueVal;
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(TrueVal))
 | |
|       return TrueVal;
 | |
|     return FalseVal;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps,
 | |
|                              const TargetData *TD, const DominatorTree *) {
 | |
|   // getelementptr P -> P.
 | |
|   if (NumOps == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // TODO.
 | |
|   //if (isa<UndefValue>(Ops[0]))
 | |
|   //  return UndefValue::get(GEP.getType());
 | |
| 
 | |
|   // getelementptr P, 0 -> P.
 | |
|   if (NumOps == 2)
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
 | |
|       if (C->isZero())
 | |
|         return Ops[0];
 | |
| 
 | |
|   // Check to see if this is constant foldable.
 | |
|   for (unsigned i = 0; i != NumOps; ++i)
 | |
|     if (!isa<Constant>(Ops[i]))
 | |
|       return 0;
 | |
| 
 | |
|   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]),
 | |
|                                         (Constant *const*)Ops+1, NumOps-1);
 | |
| }
 | |
| 
 | |
| /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
 | |
| static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
 | |
|   // If all of the PHI's incoming values are the same then replace the PHI node
 | |
|   // with the common value.
 | |
|   Value *CommonValue = 0;
 | |
|   bool HasUndefInput = false;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PN->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PN) continue;
 | |
|     if (isa<UndefValue>(Incoming)) {
 | |
|       // Remember that we saw an undef value, but otherwise ignore them.
 | |
|       HasUndefInput = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (CommonValue && Incoming != CommonValue)
 | |
|       return 0;  // Not the same, bail out.
 | |
|     CommonValue = Incoming;
 | |
|   }
 | |
| 
 | |
|   // If CommonValue is null then all of the incoming values were either undef or
 | |
|   // equal to the phi node itself.
 | |
|   if (!CommonValue)
 | |
|     return UndefValue::get(PN->getType());
 | |
| 
 | |
|   // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | |
|   // instruction, we cannot return X as the result of the PHI node unless it
 | |
|   // dominates the PHI block.
 | |
|   if (HasUndefInput)
 | |
|     return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| //=== Helper functions for higher up the class hierarchy.
 | |
| 
 | |
| /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                             const TargetData *TD, const DominatorTree *DT,
 | |
|                             unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::Or:  return SimplifyOrInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   default:
 | |
|     if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
 | |
|         Constant *COps[] = {CLHS, CRHS};
 | |
|         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD);
 | |
|       }
 | |
| 
 | |
|     // If the operation is with the result of a select instruction, check whether
 | |
|     // operating on either branch of the select always yields the same value.
 | |
|     if (MaxRecurse && (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)))
 | |
|       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
 | |
|                                            MaxRecurse-1))
 | |
|         return V;
 | |
| 
 | |
|     // If the operation is with the result of a phi instruction, check whether
 | |
|     // operating on all incoming values of the phi always yields the same value.
 | |
|     if (MaxRecurse && (isa<PHINode>(LHS) || isa<PHINode>(RHS)))
 | |
|       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse-1))
 | |
|         return V;
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                            const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
 | |
| /// fold the result.
 | |
| static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const TargetData *TD, const DominatorTree *DT,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
 | |
|     return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
 | |
|   return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                              const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyInstruction - See if we can compute a simplified version of this
 | |
| /// instruction.  If not, this returns null.
 | |
| Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
 | |
|                                  const DominatorTree *DT) {
 | |
|   Value *Result;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     Result = ConstantFoldInstruction(I, TD);
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | |
|                              TD, DT);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
 | |
|                               I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
 | |
|                               I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
 | |
|                                 I->getOperand(2), TD, DT);
 | |
|     break;
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | |
|     Result = SimplifyGEPInst(&Ops[0], Ops.size(), TD, DT);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     Result = SimplifyPHINode(cast<PHINode>(I), DT);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /// If called on unreachable code, the above logic may report that the
 | |
|   /// instruction simplified to itself.  Make life easier for users by
 | |
|   /// detecting that case here, returning null if it occurs.
 | |
|   return Result == I ? 0 : Result;
 | |
| }
 | |
| 
 | |
| /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
 | |
| /// delete the From instruction.  In addition to a basic RAUW, this does a
 | |
| /// recursive simplification of the newly formed instructions.  This catches
 | |
| /// things where one simplification exposes other opportunities.  This only
 | |
| /// simplifies and deletes scalar operations, it does not change the CFG.
 | |
| ///
 | |
| void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
 | |
|                                      const TargetData *TD,
 | |
|                                      const DominatorTree *DT) {
 | |
|   assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
 | |
| 
 | |
|   // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
 | |
|   // we can know if it gets deleted out from under us or replaced in a
 | |
|   // recursive simplification.
 | |
|   WeakVH FromHandle(From);
 | |
|   WeakVH ToHandle(To);
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     // Update the instruction to use the new value.
 | |
|     Use &TheUse = From->use_begin().getUse();
 | |
|     Instruction *User = cast<Instruction>(TheUse.getUser());
 | |
|     TheUse = To;
 | |
| 
 | |
|     // Check to see if the instruction can be folded due to the operand
 | |
|     // replacement.  For example changing (or X, Y) into (or X, -1) can replace
 | |
|     // the 'or' with -1.
 | |
|     Value *SimplifiedVal;
 | |
|     {
 | |
|       // Sanity check to make sure 'User' doesn't dangle across
 | |
|       // SimplifyInstruction.
 | |
|       AssertingVH<> UserHandle(User);
 | |
| 
 | |
|       SimplifiedVal = SimplifyInstruction(User, TD, DT);
 | |
|       if (SimplifiedVal == 0) continue;
 | |
|     }
 | |
| 
 | |
|     // Recursively simplify this user to the new value.
 | |
|     ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
 | |
|     From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
 | |
|     To = ToHandle;
 | |
| 
 | |
|     assert(ToHandle && "To value deleted by recursive simplification?");
 | |
| 
 | |
|     // If the recursive simplification ended up revisiting and deleting
 | |
|     // 'From' then we're done.
 | |
|     if (From == 0)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If 'From' has value handles referring to it, do a real RAUW to update them.
 | |
|   From->replaceAllUsesWith(To);
 | |
| 
 | |
|   From->eraseFromParent();
 | |
| }
 |