mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 00:16:48 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@135904 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			904 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			904 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ArgumentPromotion.cpp - Promote by-reference arguments ------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass promotes "by reference" arguments to be "by value" arguments.  In
 | |
| // practice, this means looking for internal functions that have pointer
 | |
| // arguments.  If it can prove, through the use of alias analysis, that an
 | |
| // argument is *only* loaded, then it can pass the value into the function
 | |
| // instead of the address of the value.  This can cause recursive simplification
 | |
| // of code and lead to the elimination of allocas (especially in C++ template
 | |
| // code like the STL).
 | |
| //
 | |
| // This pass also handles aggregate arguments that are passed into a function,
 | |
| // scalarizing them if the elements of the aggregate are only loaded.  Note that
 | |
| // by default it refuses to scalarize aggregates which would require passing in
 | |
| // more than three operands to the function, because passing thousands of
 | |
| // operands for a large array or structure is unprofitable! This limit can be
 | |
| // configured or disabled, however.
 | |
| //
 | |
| // Note that this transformation could also be done for arguments that are only
 | |
| // stored to (returning the value instead), but does not currently.  This case
 | |
| // would be best handled when and if LLVM begins supporting multiple return
 | |
| // values from functions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "argpromotion"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/CallGraphSCCPass.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CallGraph.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumArgumentsPromoted , "Number of pointer arguments promoted");
 | |
| STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
 | |
| STATISTIC(NumByValArgsPromoted , "Number of byval arguments promoted");
 | |
| STATISTIC(NumArgumentsDead     , "Number of dead pointer args eliminated");
 | |
| 
 | |
| namespace {
 | |
|   /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
 | |
|   ///
 | |
|   struct ArgPromotion : public CallGraphSCCPass {
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       CallGraphSCCPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnSCC(CallGraphSCC &SCC);
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit ArgPromotion(unsigned maxElements = 3)
 | |
|         : CallGraphSCCPass(ID), maxElements(maxElements) {
 | |
|       initializeArgPromotionPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     /// A vector used to hold the indices of a single GEP instruction
 | |
|     typedef std::vector<uint64_t> IndicesVector;
 | |
| 
 | |
|   private:
 | |
|     CallGraphNode *PromoteArguments(CallGraphNode *CGN);
 | |
|     bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
 | |
|     CallGraphNode *DoPromotion(Function *F,
 | |
|                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
 | |
|                                SmallPtrSet<Argument*, 8> &ByValArgsToTransform);
 | |
|     /// The maximum number of elements to expand, or 0 for unlimited.
 | |
|     unsigned maxElements;
 | |
|   };
 | |
| }
 | |
| 
 | |
| char ArgPromotion::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
 | |
|                 "Promote 'by reference' arguments to scalars", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_AG_DEPENDENCY(CallGraph)
 | |
| INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
 | |
|                 "Promote 'by reference' arguments to scalars", false, false)
 | |
| 
 | |
| Pass *llvm::createArgumentPromotionPass(unsigned maxElements) {
 | |
|   return new ArgPromotion(maxElements);
 | |
| }
 | |
| 
 | |
| bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
 | |
|   bool Changed = false, LocalChange;
 | |
| 
 | |
|   do {  // Iterate until we stop promoting from this SCC.
 | |
|     LocalChange = false;
 | |
|     // Attempt to promote arguments from all functions in this SCC.
 | |
|     for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
 | |
|       if (CallGraphNode *CGN = PromoteArguments(*I)) {
 | |
|         LocalChange = true;
 | |
|         SCC.ReplaceNode(*I, CGN);
 | |
|       }
 | |
|     }
 | |
|     Changed |= LocalChange;               // Remember that we changed something.
 | |
|   } while (LocalChange);
 | |
|   
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// PromoteArguments - This method checks the specified function to see if there
 | |
| /// are any promotable arguments and if it is safe to promote the function (for
 | |
| /// example, all callers are direct).  If safe to promote some arguments, it
 | |
| /// calls the DoPromotion method.
 | |
| ///
 | |
| CallGraphNode *ArgPromotion::PromoteArguments(CallGraphNode *CGN) {
 | |
|   Function *F = CGN->getFunction();
 | |
| 
 | |
|   // Make sure that it is local to this module.
 | |
|   if (!F || !F->hasLocalLinkage()) return 0;
 | |
| 
 | |
|   // First check: see if there are any pointer arguments!  If not, quick exit.
 | |
|   SmallVector<std::pair<Argument*, unsigned>, 16> PointerArgs;
 | |
|   unsigned ArgNo = 0;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|        I != E; ++I, ++ArgNo)
 | |
|     if (I->getType()->isPointerTy())
 | |
|       PointerArgs.push_back(std::pair<Argument*, unsigned>(I, ArgNo));
 | |
|   if (PointerArgs.empty()) return 0;
 | |
| 
 | |
|   // Second check: make sure that all callers are direct callers.  We can't
 | |
|   // transform functions that have indirect callers.  Also see if the function
 | |
|   // is self-recursive.
 | |
|   bool isSelfRecursive = false;
 | |
|   for (Value::use_iterator UI = F->use_begin(), E = F->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     CallSite CS(*UI);
 | |
|     // Must be a direct call.
 | |
|     if (CS.getInstruction() == 0 || !CS.isCallee(UI)) return 0;
 | |
|     
 | |
|     if (CS.getInstruction()->getParent()->getParent() == F)
 | |
|       isSelfRecursive = true;
 | |
|   }
 | |
|   
 | |
|   // Check to see which arguments are promotable.  If an argument is promotable,
 | |
|   // add it to ArgsToPromote.
 | |
|   SmallPtrSet<Argument*, 8> ArgsToPromote;
 | |
|   SmallPtrSet<Argument*, 8> ByValArgsToTransform;
 | |
|   for (unsigned i = 0; i != PointerArgs.size(); ++i) {
 | |
|     bool isByVal = F->paramHasAttr(PointerArgs[i].second+1, Attribute::ByVal);
 | |
|     Argument *PtrArg = PointerArgs[i].first;
 | |
|     Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
 | |
| 
 | |
|     // If this is a byval argument, and if the aggregate type is small, just
 | |
|     // pass the elements, which is always safe.
 | |
|     if (isByVal) {
 | |
|       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
 | |
|         if (maxElements > 0 && STy->getNumElements() > maxElements) {
 | |
|           DEBUG(dbgs() << "argpromotion disable promoting argument '"
 | |
|                 << PtrArg->getName() << "' because it would require adding more"
 | |
|                 << " than " << maxElements << " arguments to the function.\n");
 | |
|           continue;
 | |
|         }
 | |
|         
 | |
|         // If all the elements are single-value types, we can promote it.
 | |
|         bool AllSimple = true;
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           if (!STy->getElementType(i)->isSingleValueType()) {
 | |
|             AllSimple = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // Safe to transform, don't even bother trying to "promote" it.
 | |
|         // Passing the elements as a scalar will allow scalarrepl to hack on
 | |
|         // the new alloca we introduce.
 | |
|         if (AllSimple) {
 | |
|           ByValArgsToTransform.insert(PtrArg);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If the argument is a recursive type and we're in a recursive
 | |
|     // function, we could end up infinitely peeling the function argument.
 | |
|     if (isSelfRecursive) {
 | |
|       if (StructType *STy = dyn_cast<StructType>(AgTy)) {
 | |
|         bool RecursiveType = false;
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           if (STy->getElementType(i) == PtrArg->getType()) {
 | |
|             RecursiveType = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (RecursiveType)
 | |
|           continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     // Otherwise, see if we can promote the pointer to its value.
 | |
|     if (isSafeToPromoteArgument(PtrArg, isByVal))
 | |
|       ArgsToPromote.insert(PtrArg);
 | |
|   }
 | |
| 
 | |
|   // No promotable pointer arguments.
 | |
|   if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) 
 | |
|     return 0;
 | |
| 
 | |
|   return DoPromotion(F, ArgsToPromote, ByValArgsToTransform);
 | |
| }
 | |
| 
 | |
| /// AllCallersPassInValidPointerForArgument - Return true if we can prove that
 | |
| /// all callees pass in a valid pointer for the specified function argument.
 | |
| static bool AllCallersPassInValidPointerForArgument(Argument *Arg) {
 | |
|   Function *Callee = Arg->getParent();
 | |
| 
 | |
|   unsigned ArgNo = std::distance(Callee->arg_begin(),
 | |
|                                  Function::arg_iterator(Arg));
 | |
| 
 | |
|   // Look at all call sites of the function.  At this pointer we know we only
 | |
|   // have direct callees.
 | |
|   for (Value::use_iterator UI = Callee->use_begin(), E = Callee->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     CallSite CS(*UI);
 | |
|     assert(CS && "Should only have direct calls!");
 | |
| 
 | |
|     if (!CS.getArgument(ArgNo)->isDereferenceablePointer())
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if Prefix is a prefix of longer. That means, Longer has a size
 | |
| /// that is greater than or equal to the size of prefix, and each of the
 | |
| /// elements in Prefix is the same as the corresponding elements in Longer.
 | |
| ///
 | |
| /// This means it also returns true when Prefix and Longer are equal!
 | |
| static bool IsPrefix(const ArgPromotion::IndicesVector &Prefix,
 | |
|                      const ArgPromotion::IndicesVector &Longer) {
 | |
|   if (Prefix.size() > Longer.size())
 | |
|     return false;
 | |
|   for (unsigned i = 0, e = Prefix.size(); i != e; ++i)
 | |
|     if (Prefix[i] != Longer[i])
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Checks if Indices, or a prefix of Indices, is in Set.
 | |
| static bool PrefixIn(const ArgPromotion::IndicesVector &Indices,
 | |
|                      std::set<ArgPromotion::IndicesVector> &Set) {
 | |
|     std::set<ArgPromotion::IndicesVector>::iterator Low;
 | |
|     Low = Set.upper_bound(Indices);
 | |
|     if (Low != Set.begin())
 | |
|       Low--;
 | |
|     // Low is now the last element smaller than or equal to Indices. This means
 | |
|     // it points to a prefix of Indices (possibly Indices itself), if such
 | |
|     // prefix exists.
 | |
|     //
 | |
|     // This load is safe if any prefix of its operands is safe to load.
 | |
|     return Low != Set.end() && IsPrefix(*Low, Indices);
 | |
| }
 | |
| 
 | |
| /// Mark the given indices (ToMark) as safe in the given set of indices
 | |
| /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
 | |
| /// is already a prefix of Indices in Safe, Indices are implicitely marked safe
 | |
| /// already. Furthermore, any indices that Indices is itself a prefix of, are
 | |
| /// removed from Safe (since they are implicitely safe because of Indices now).
 | |
| static void MarkIndicesSafe(const ArgPromotion::IndicesVector &ToMark,
 | |
|                             std::set<ArgPromotion::IndicesVector> &Safe) {
 | |
|   std::set<ArgPromotion::IndicesVector>::iterator Low;
 | |
|   Low = Safe.upper_bound(ToMark);
 | |
|   // Guard against the case where Safe is empty
 | |
|   if (Low != Safe.begin())
 | |
|     Low--;
 | |
|   // Low is now the last element smaller than or equal to Indices. This
 | |
|   // means it points to a prefix of Indices (possibly Indices itself), if
 | |
|   // such prefix exists.
 | |
|   if (Low != Safe.end()) {
 | |
|     if (IsPrefix(*Low, ToMark))
 | |
|       // If there is already a prefix of these indices (or exactly these
 | |
|       // indices) marked a safe, don't bother adding these indices
 | |
|       return;
 | |
| 
 | |
|     // Increment Low, so we can use it as a "insert before" hint
 | |
|     ++Low;
 | |
|   }
 | |
|   // Insert
 | |
|   Low = Safe.insert(Low, ToMark);
 | |
|   ++Low;
 | |
|   // If there we're a prefix of longer index list(s), remove those
 | |
|   std::set<ArgPromotion::IndicesVector>::iterator End = Safe.end();
 | |
|   while (Low != End && IsPrefix(ToMark, *Low)) {
 | |
|     std::set<ArgPromotion::IndicesVector>::iterator Remove = Low;
 | |
|     ++Low;
 | |
|     Safe.erase(Remove);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isSafeToPromoteArgument - As you might guess from the name of this method,
 | |
| /// it checks to see if it is both safe and useful to promote the argument.
 | |
| /// This method limits promotion of aggregates to only promote up to three
 | |
| /// elements of the aggregate in order to avoid exploding the number of
 | |
| /// arguments passed in.
 | |
| bool ArgPromotion::isSafeToPromoteArgument(Argument *Arg, bool isByVal) const {
 | |
|   typedef std::set<IndicesVector> GEPIndicesSet;
 | |
| 
 | |
|   // Quick exit for unused arguments
 | |
|   if (Arg->use_empty())
 | |
|     return true;
 | |
| 
 | |
|   // We can only promote this argument if all of the uses are loads, or are GEP
 | |
|   // instructions (with constant indices) that are subsequently loaded.
 | |
|   //
 | |
|   // Promoting the argument causes it to be loaded in the caller
 | |
|   // unconditionally. This is only safe if we can prove that either the load
 | |
|   // would have happened in the callee anyway (ie, there is a load in the entry
 | |
|   // block) or the pointer passed in at every call site is guaranteed to be
 | |
|   // valid.
 | |
|   // In the former case, invalid loads can happen, but would have happened
 | |
|   // anyway, in the latter case, invalid loads won't happen. This prevents us
 | |
|   // from introducing an invalid load that wouldn't have happened in the
 | |
|   // original code.
 | |
|   //
 | |
|   // This set will contain all sets of indices that are loaded in the entry
 | |
|   // block, and thus are safe to unconditionally load in the caller.
 | |
|   GEPIndicesSet SafeToUnconditionallyLoad;
 | |
| 
 | |
|   // This set contains all the sets of indices that we are planning to promote.
 | |
|   // This makes it possible to limit the number of arguments added.
 | |
|   GEPIndicesSet ToPromote;
 | |
| 
 | |
|   // If the pointer is always valid, any load with first index 0 is valid.
 | |
|   if (isByVal || AllCallersPassInValidPointerForArgument(Arg))
 | |
|     SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
 | |
| 
 | |
|   // First, iterate the entry block and mark loads of (geps of) arguments as
 | |
|   // safe.
 | |
|   BasicBlock *EntryBlock = Arg->getParent()->begin();
 | |
|   // Declare this here so we can reuse it
 | |
|   IndicesVector Indices;
 | |
|   for (BasicBlock::iterator I = EntryBlock->begin(), E = EntryBlock->end();
 | |
|        I != E; ++I)
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       Value *V = LI->getPointerOperand();
 | |
|       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
 | |
|         V = GEP->getPointerOperand();
 | |
|         if (V == Arg) {
 | |
|           // This load actually loads (part of) Arg? Check the indices then.
 | |
|           Indices.reserve(GEP->getNumIndices());
 | |
|           for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
 | |
|                II != IE; ++II)
 | |
|             if (ConstantInt *CI = dyn_cast<ConstantInt>(*II))
 | |
|               Indices.push_back(CI->getSExtValue());
 | |
|             else
 | |
|               // We found a non-constant GEP index for this argument? Bail out
 | |
|               // right away, can't promote this argument at all.
 | |
|               return false;
 | |
| 
 | |
|           // Indices checked out, mark them as safe
 | |
|           MarkIndicesSafe(Indices, SafeToUnconditionallyLoad);
 | |
|           Indices.clear();
 | |
|         }
 | |
|       } else if (V == Arg) {
 | |
|         // Direct loads are equivalent to a GEP with a single 0 index.
 | |
|         MarkIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Now, iterate all uses of the argument to see if there are any uses that are
 | |
|   // not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
 | |
|   SmallVector<LoadInst*, 16> Loads;
 | |
|   IndicesVector Operands;
 | |
|   for (Value::use_iterator UI = Arg->use_begin(), E = Arg->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     User *U = *UI;
 | |
|     Operands.clear();
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       if (LI->isVolatile()) return false;  // Don't hack volatile loads
 | |
|       Loads.push_back(LI);
 | |
|       // Direct loads are equivalent to a GEP with a zero index and then a load.
 | |
|       Operands.push_back(0);
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       if (GEP->use_empty()) {
 | |
|         // Dead GEP's cause trouble later.  Just remove them if we run into
 | |
|         // them.
 | |
|         getAnalysis<AliasAnalysis>().deleteValue(GEP);
 | |
|         GEP->eraseFromParent();
 | |
|         // TODO: This runs the above loop over and over again for dead GEPs
 | |
|         // Couldn't we just do increment the UI iterator earlier and erase the
 | |
|         // use?
 | |
|         return isSafeToPromoteArgument(Arg, isByVal);
 | |
|       }
 | |
| 
 | |
|       // Ensure that all of the indices are constants.
 | |
|       for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end();
 | |
|         i != e; ++i)
 | |
|         if (ConstantInt *C = dyn_cast<ConstantInt>(*i))
 | |
|           Operands.push_back(C->getSExtValue());
 | |
|         else
 | |
|           return false;  // Not a constant operand GEP!
 | |
| 
 | |
|       // Ensure that the only users of the GEP are load instructions.
 | |
|       for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | |
|           if (LI->isVolatile()) return false;  // Don't hack volatile loads
 | |
|           Loads.push_back(LI);
 | |
|         } else {
 | |
|           // Other uses than load?
 | |
|           return false;
 | |
|         }
 | |
|     } else {
 | |
|       return false;  // Not a load or a GEP.
 | |
|     }
 | |
| 
 | |
|     // Now, see if it is safe to promote this load / loads of this GEP. Loading
 | |
|     // is safe if Operands, or a prefix of Operands, is marked as safe.
 | |
|     if (!PrefixIn(Operands, SafeToUnconditionallyLoad))
 | |
|       return false;
 | |
| 
 | |
|     // See if we are already promoting a load with these indices. If not, check
 | |
|     // to make sure that we aren't promoting too many elements.  If so, nothing
 | |
|     // to do.
 | |
|     if (ToPromote.find(Operands) == ToPromote.end()) {
 | |
|       if (maxElements > 0 && ToPromote.size() == maxElements) {
 | |
|         DEBUG(dbgs() << "argpromotion not promoting argument '"
 | |
|               << Arg->getName() << "' because it would require adding more "
 | |
|               << "than " << maxElements << " arguments to the function.\n");
 | |
|         // We limit aggregate promotion to only promoting up to a fixed number
 | |
|         // of elements of the aggregate.
 | |
|         return false;
 | |
|       }
 | |
|       ToPromote.insert(Operands);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Loads.empty()) return true;  // No users, this is a dead argument.
 | |
| 
 | |
|   // Okay, now we know that the argument is only used by load instructions and
 | |
|   // it is safe to unconditionally perform all of them. Use alias analysis to
 | |
|   // check to see if the pointer is guaranteed to not be modified from entry of
 | |
|   // the function to each of the load instructions.
 | |
| 
 | |
|   // Because there could be several/many load instructions, remember which
 | |
|   // blocks we know to be transparent to the load.
 | |
|   SmallPtrSet<BasicBlock*, 16> TranspBlocks;
 | |
| 
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   for (unsigned i = 0, e = Loads.size(); i != e; ++i) {
 | |
|     // Check to see if the load is invalidated from the start of the block to
 | |
|     // the load itself.
 | |
|     LoadInst *Load = Loads[i];
 | |
|     BasicBlock *BB = Load->getParent();
 | |
| 
 | |
|     AliasAnalysis::Location Loc = AA.getLocation(Load);
 | |
|     if (AA.canInstructionRangeModify(BB->front(), *Load, Loc))
 | |
|       return false;  // Pointer is invalidated!
 | |
| 
 | |
|     // Now check every path from the entry block to the load for transparency.
 | |
|     // To do this, we perform a depth first search on the inverse CFG from the
 | |
|     // loading block.
 | |
|     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|       BasicBlock *P = *PI;
 | |
|       for (idf_ext_iterator<BasicBlock*, SmallPtrSet<BasicBlock*, 16> >
 | |
|              I = idf_ext_begin(P, TranspBlocks),
 | |
|              E = idf_ext_end(P, TranspBlocks); I != E; ++I)
 | |
|         if (AA.canBasicBlockModify(**I, Loc))
 | |
|           return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the path from the entry of the function to each load is free of
 | |
|   // instructions that potentially invalidate the load, we can make the
 | |
|   // transformation!
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// DoPromotion - This method actually performs the promotion of the specified
 | |
| /// arguments, and returns the new function.  At this point, we know that it's
 | |
| /// safe to do so.
 | |
| CallGraphNode *ArgPromotion::DoPromotion(Function *F,
 | |
|                                SmallPtrSet<Argument*, 8> &ArgsToPromote,
 | |
|                               SmallPtrSet<Argument*, 8> &ByValArgsToTransform) {
 | |
| 
 | |
|   // Start by computing a new prototype for the function, which is the same as
 | |
|   // the old function, but has modified arguments.
 | |
|   FunctionType *FTy = F->getFunctionType();
 | |
|   std::vector<Type*> Params;
 | |
| 
 | |
|   typedef std::set<IndicesVector> ScalarizeTable;
 | |
| 
 | |
|   // ScalarizedElements - If we are promoting a pointer that has elements
 | |
|   // accessed out of it, keep track of which elements are accessed so that we
 | |
|   // can add one argument for each.
 | |
|   //
 | |
|   // Arguments that are directly loaded will have a zero element value here, to
 | |
|   // handle cases where there are both a direct load and GEP accesses.
 | |
|   //
 | |
|   std::map<Argument*, ScalarizeTable> ScalarizedElements;
 | |
| 
 | |
|   // OriginalLoads - Keep track of a representative load instruction from the
 | |
|   // original function so that we can tell the alias analysis implementation
 | |
|   // what the new GEP/Load instructions we are inserting look like.
 | |
|   std::map<IndicesVector, LoadInst*> OriginalLoads;
 | |
| 
 | |
|   // Attributes - Keep track of the parameter attributes for the arguments
 | |
|   // that we are *not* promoting. For the ones that we do promote, the parameter
 | |
|   // attributes are lost
 | |
|   SmallVector<AttributeWithIndex, 8> AttributesVec;
 | |
|   const AttrListPtr &PAL = F->getAttributes();
 | |
| 
 | |
|   // Add any return attributes.
 | |
|   if (Attributes attrs = PAL.getRetAttributes())
 | |
|     AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
 | |
| 
 | |
|   // First, determine the new argument list
 | |
|   unsigned ArgIndex = 1;
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
 | |
|        ++I, ++ArgIndex) {
 | |
|     if (ByValArgsToTransform.count(I)) {
 | |
|       // Simple byval argument? Just add all the struct element types.
 | |
|       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | |
|       StructType *STy = cast<StructType>(AgTy);
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|         Params.push_back(STy->getElementType(i));
 | |
|       ++NumByValArgsPromoted;
 | |
|     } else if (!ArgsToPromote.count(I)) {
 | |
|       // Unchanged argument
 | |
|       Params.push_back(I->getType());
 | |
|       if (Attributes attrs = PAL.getParamAttributes(ArgIndex))
 | |
|         AttributesVec.push_back(AttributeWithIndex::get(Params.size(), attrs));
 | |
|     } else if (I->use_empty()) {
 | |
|       // Dead argument (which are always marked as promotable)
 | |
|       ++NumArgumentsDead;
 | |
|     } else {
 | |
|       // Okay, this is being promoted. This means that the only uses are loads
 | |
|       // or GEPs which are only used by loads
 | |
| 
 | |
|       // In this table, we will track which indices are loaded from the argument
 | |
|       // (where direct loads are tracked as no indices).
 | |
|       ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | |
|       for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|            ++UI) {
 | |
|         Instruction *User = cast<Instruction>(*UI);
 | |
|         assert(isa<LoadInst>(User) || isa<GetElementPtrInst>(User));
 | |
|         IndicesVector Indices;
 | |
|         Indices.reserve(User->getNumOperands() - 1);
 | |
|         // Since loads will only have a single operand, and GEPs only a single
 | |
|         // non-index operand, this will record direct loads without any indices,
 | |
|         // and gep+loads with the GEP indices.
 | |
|         for (User::op_iterator II = User->op_begin() + 1, IE = User->op_end();
 | |
|              II != IE; ++II)
 | |
|           Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
 | |
|         // GEPs with a single 0 index can be merged with direct loads
 | |
|         if (Indices.size() == 1 && Indices.front() == 0)
 | |
|           Indices.clear();
 | |
|         ArgIndices.insert(Indices);
 | |
|         LoadInst *OrigLoad;
 | |
|         if (LoadInst *L = dyn_cast<LoadInst>(User))
 | |
|           OrigLoad = L;
 | |
|         else
 | |
|           // Take any load, we will use it only to update Alias Analysis
 | |
|           OrigLoad = cast<LoadInst>(User->use_back());
 | |
|         OriginalLoads[Indices] = OrigLoad;
 | |
|       }
 | |
| 
 | |
|       // Add a parameter to the function for each element passed in.
 | |
|       for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | |
|              E = ArgIndices.end(); SI != E; ++SI) {
 | |
|         // not allowed to dereference ->begin() if size() is 0
 | |
|         Params.push_back(GetElementPtrInst::getIndexedType(I->getType(), *SI));
 | |
|         assert(Params.back());
 | |
|       }
 | |
| 
 | |
|       if (ArgIndices.size() == 1 && ArgIndices.begin()->empty())
 | |
|         ++NumArgumentsPromoted;
 | |
|       else
 | |
|         ++NumAggregatesPromoted;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add any function attributes.
 | |
|   if (Attributes attrs = PAL.getFnAttributes())
 | |
|     AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
 | |
| 
 | |
|   Type *RetTy = FTy->getReturnType();
 | |
| 
 | |
|   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
 | |
|   // have zero fixed arguments.
 | |
|   bool ExtraArgHack = false;
 | |
|   if (Params.empty() && FTy->isVarArg()) {
 | |
|     ExtraArgHack = true;
 | |
|     Params.push_back(Type::getInt32Ty(F->getContext()));
 | |
|   }
 | |
| 
 | |
|   // Construct the new function type using the new arguments.
 | |
|   FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
 | |
| 
 | |
|   // Create the new function body and insert it into the module.
 | |
|   Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName());
 | |
|   NF->copyAttributesFrom(F);
 | |
| 
 | |
|   
 | |
|   DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n"
 | |
|         << "From: " << *F);
 | |
|   
 | |
|   // Recompute the parameter attributes list based on the new arguments for
 | |
|   // the function.
 | |
|   NF->setAttributes(AttrListPtr::get(AttributesVec.begin(),
 | |
|                                      AttributesVec.end()));
 | |
|   AttributesVec.clear();
 | |
| 
 | |
|   F->getParent()->getFunctionList().insert(F, NF);
 | |
|   NF->takeName(F);
 | |
| 
 | |
|   // Get the alias analysis information that we need to update to reflect our
 | |
|   // changes.
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   // Get the callgraph information that we need to update to reflect our
 | |
|   // changes.
 | |
|   CallGraph &CG = getAnalysis<CallGraph>();
 | |
|   
 | |
|   // Get a new callgraph node for NF.
 | |
|   CallGraphNode *NF_CGN = CG.getOrInsertFunction(NF);
 | |
| 
 | |
|   // Loop over all of the callers of the function, transforming the call sites
 | |
|   // to pass in the loaded pointers.
 | |
|   //
 | |
|   SmallVector<Value*, 16> Args;
 | |
|   while (!F->use_empty()) {
 | |
|     CallSite CS(F->use_back());
 | |
|     assert(CS.getCalledFunction() == F);
 | |
|     Instruction *Call = CS.getInstruction();
 | |
|     const AttrListPtr &CallPAL = CS.getAttributes();
 | |
| 
 | |
|     // Add any return attributes.
 | |
|     if (Attributes attrs = CallPAL.getRetAttributes())
 | |
|       AttributesVec.push_back(AttributeWithIndex::get(0, attrs));
 | |
| 
 | |
|     // Loop over the operands, inserting GEP and loads in the caller as
 | |
|     // appropriate.
 | |
|     CallSite::arg_iterator AI = CS.arg_begin();
 | |
|     ArgIndex = 1;
 | |
|     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | |
|          I != E; ++I, ++AI, ++ArgIndex)
 | |
|       if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
 | |
|         Args.push_back(*AI);          // Unmodified argument
 | |
| 
 | |
|         if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
 | |
|           AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
 | |
| 
 | |
|       } else if (ByValArgsToTransform.count(I)) {
 | |
|         // Emit a GEP and load for each element of the struct.
 | |
|         Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | |
|         StructType *STy = cast<StructType>(AgTy);
 | |
|         Value *Idxs[2] = {
 | |
|               ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
 | |
|         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|           Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
 | |
|           Value *Idx = GetElementPtrInst::Create(*AI, Idxs,
 | |
|                                                  (*AI)->getName()+"."+utostr(i),
 | |
|                                                  Call);
 | |
|           // TODO: Tell AA about the new values?
 | |
|           Args.push_back(new LoadInst(Idx, Idx->getName()+".val", Call));
 | |
|         }
 | |
|       } else if (!I->use_empty()) {
 | |
|         // Non-dead argument: insert GEPs and loads as appropriate.
 | |
|         ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | |
|         // Store the Value* version of the indices in here, but declare it now
 | |
|         // for reuse.
 | |
|         std::vector<Value*> Ops;
 | |
|         for (ScalarizeTable::iterator SI = ArgIndices.begin(),
 | |
|                E = ArgIndices.end(); SI != E; ++SI) {
 | |
|           Value *V = *AI;
 | |
|           LoadInst *OrigLoad = OriginalLoads[*SI];
 | |
|           if (!SI->empty()) {
 | |
|             Ops.reserve(SI->size());
 | |
|             Type *ElTy = V->getType();
 | |
|             for (IndicesVector::const_iterator II = SI->begin(),
 | |
|                  IE = SI->end(); II != IE; ++II) {
 | |
|               // Use i32 to index structs, and i64 for others (pointers/arrays).
 | |
|               // This satisfies GEP constraints.
 | |
|               Type *IdxTy = (ElTy->isStructTy() ?
 | |
|                     Type::getInt32Ty(F->getContext()) : 
 | |
|                     Type::getInt64Ty(F->getContext()));
 | |
|               Ops.push_back(ConstantInt::get(IdxTy, *II));
 | |
|               // Keep track of the type we're currently indexing.
 | |
|               ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(*II);
 | |
|             }
 | |
|             // And create a GEP to extract those indices.
 | |
|             V = GetElementPtrInst::Create(V, Ops, V->getName()+".idx", Call);
 | |
|             Ops.clear();
 | |
|             AA.copyValue(OrigLoad->getOperand(0), V);
 | |
|           }
 | |
|           // Since we're replacing a load make sure we take the alignment
 | |
|           // of the previous load.
 | |
|           LoadInst *newLoad = new LoadInst(V, V->getName()+".val", Call);
 | |
|           newLoad->setAlignment(OrigLoad->getAlignment());
 | |
|           // Transfer the TBAA info too.
 | |
|           newLoad->setMetadata(LLVMContext::MD_tbaa,
 | |
|                                OrigLoad->getMetadata(LLVMContext::MD_tbaa));
 | |
|           Args.push_back(newLoad);
 | |
|           AA.copyValue(OrigLoad, Args.back());
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     if (ExtraArgHack)
 | |
|       Args.push_back(Constant::getNullValue(Type::getInt32Ty(F->getContext())));
 | |
| 
 | |
|     // Push any varargs arguments on the list.
 | |
|     for (; AI != CS.arg_end(); ++AI, ++ArgIndex) {
 | |
|       Args.push_back(*AI);
 | |
|       if (Attributes Attrs = CallPAL.getParamAttributes(ArgIndex))
 | |
|         AttributesVec.push_back(AttributeWithIndex::get(Args.size(), Attrs));
 | |
|     }
 | |
| 
 | |
|     // Add any function attributes.
 | |
|     if (Attributes attrs = CallPAL.getFnAttributes())
 | |
|       AttributesVec.push_back(AttributeWithIndex::get(~0, attrs));
 | |
| 
 | |
|     Instruction *New;
 | |
|     if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | |
|       New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
 | |
|                                Args, "", Call);
 | |
|       cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<InvokeInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
 | |
|                                                           AttributesVec.end()));
 | |
|     } else {
 | |
|       New = CallInst::Create(NF, Args, "", Call);
 | |
|       cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
 | |
|       cast<CallInst>(New)->setAttributes(AttrListPtr::get(AttributesVec.begin(),
 | |
|                                                         AttributesVec.end()));
 | |
|       if (cast<CallInst>(Call)->isTailCall())
 | |
|         cast<CallInst>(New)->setTailCall();
 | |
|     }
 | |
|     Args.clear();
 | |
|     AttributesVec.clear();
 | |
| 
 | |
|     // Update the alias analysis implementation to know that we are replacing
 | |
|     // the old call with a new one.
 | |
|     AA.replaceWithNewValue(Call, New);
 | |
| 
 | |
|     // Update the callgraph to know that the callsite has been transformed.
 | |
|     CallGraphNode *CalleeNode = CG[Call->getParent()->getParent()];
 | |
|     CalleeNode->replaceCallEdge(Call, New, NF_CGN);
 | |
| 
 | |
|     if (!Call->use_empty()) {
 | |
|       Call->replaceAllUsesWith(New);
 | |
|       New->takeName(Call);
 | |
|     }
 | |
| 
 | |
|     // Finally, remove the old call from the program, reducing the use-count of
 | |
|     // F.
 | |
|     Call->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // Since we have now created the new function, splice the body of the old
 | |
|   // function right into the new function, leaving the old rotting hulk of the
 | |
|   // function empty.
 | |
|   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 | |
| 
 | |
|   // Loop over the argument list, transferring uses of the old arguments over to
 | |
|   // the new arguments, also transferring over the names as well.
 | |
|   //
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
 | |
|        I2 = NF->arg_begin(); I != E; ++I) {
 | |
|     if (!ArgsToPromote.count(I) && !ByValArgsToTransform.count(I)) {
 | |
|       // If this is an unmodified argument, move the name and users over to the
 | |
|       // new version.
 | |
|       I->replaceAllUsesWith(I2);
 | |
|       I2->takeName(I);
 | |
|       AA.replaceWithNewValue(I, I2);
 | |
|       ++I2;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (ByValArgsToTransform.count(I)) {
 | |
|       // In the callee, we create an alloca, and store each of the new incoming
 | |
|       // arguments into the alloca.
 | |
|       Instruction *InsertPt = NF->begin()->begin();
 | |
| 
 | |
|       // Just add all the struct element types.
 | |
|       Type *AgTy = cast<PointerType>(I->getType())->getElementType();
 | |
|       Value *TheAlloca = new AllocaInst(AgTy, 0, "", InsertPt);
 | |
|       StructType *STy = cast<StructType>(AgTy);
 | |
|       Value *Idxs[2] = {
 | |
|             ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), 0 };
 | |
| 
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|         Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
 | |
|         Value *Idx = 
 | |
|           GetElementPtrInst::Create(TheAlloca, Idxs,
 | |
|                                     TheAlloca->getName()+"."+Twine(i), 
 | |
|                                     InsertPt);
 | |
|         I2->setName(I->getName()+"."+Twine(i));
 | |
|         new StoreInst(I2++, Idx, InsertPt);
 | |
|       }
 | |
| 
 | |
|       // Anything that used the arg should now use the alloca.
 | |
|       I->replaceAllUsesWith(TheAlloca);
 | |
|       TheAlloca->takeName(I);
 | |
|       AA.replaceWithNewValue(I, TheAlloca);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (I->use_empty()) {
 | |
|       AA.deleteValue(I);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, if we promoted this argument, then all users are load
 | |
|     // instructions (or GEPs with only load users), and all loads should be
 | |
|     // using the new argument that we added.
 | |
|     ScalarizeTable &ArgIndices = ScalarizedElements[I];
 | |
| 
 | |
|     while (!I->use_empty()) {
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I->use_back())) {
 | |
|         assert(ArgIndices.begin()->empty() &&
 | |
|                "Load element should sort to front!");
 | |
|         I2->setName(I->getName()+".val");
 | |
|         LI->replaceAllUsesWith(I2);
 | |
|         AA.replaceWithNewValue(LI, I2);
 | |
|         LI->eraseFromParent();
 | |
|         DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
 | |
|               << "' in function '" << F->getName() << "'\n");
 | |
|       } else {
 | |
|         GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->use_back());
 | |
|         IndicesVector Operands;
 | |
|         Operands.reserve(GEP->getNumIndices());
 | |
|         for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end();
 | |
|              II != IE; ++II)
 | |
|           Operands.push_back(cast<ConstantInt>(*II)->getSExtValue());
 | |
| 
 | |
|         // GEPs with a single 0 index can be merged with direct loads
 | |
|         if (Operands.size() == 1 && Operands.front() == 0)
 | |
|           Operands.clear();
 | |
| 
 | |
|         Function::arg_iterator TheArg = I2;
 | |
|         for (ScalarizeTable::iterator It = ArgIndices.begin();
 | |
|              *It != Operands; ++It, ++TheArg) {
 | |
|           assert(It != ArgIndices.end() && "GEP not handled??");
 | |
|         }
 | |
| 
 | |
|         std::string NewName = I->getName();
 | |
|         for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | |
|             NewName += "." + utostr(Operands[i]);
 | |
|         }
 | |
|         NewName += ".val";
 | |
|         TheArg->setName(NewName);
 | |
| 
 | |
|         DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
 | |
|               << "' of function '" << NF->getName() << "'\n");
 | |
| 
 | |
|         // All of the uses must be load instructions.  Replace them all with
 | |
|         // the argument specified by ArgNo.
 | |
|         while (!GEP->use_empty()) {
 | |
|           LoadInst *L = cast<LoadInst>(GEP->use_back());
 | |
|           L->replaceAllUsesWith(TheArg);
 | |
|           AA.replaceWithNewValue(L, TheArg);
 | |
|           L->eraseFromParent();
 | |
|         }
 | |
|         AA.deleteValue(GEP);
 | |
|         GEP->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Increment I2 past all of the arguments added for this promoted pointer.
 | |
|     for (unsigned i = 0, e = ArgIndices.size(); i != e; ++i)
 | |
|       ++I2;
 | |
|   }
 | |
| 
 | |
|   // Notify the alias analysis implementation that we inserted a new argument.
 | |
|   if (ExtraArgHack)
 | |
|     AA.copyValue(Constant::getNullValue(Type::getInt32Ty(F->getContext())), 
 | |
|                  NF->arg_begin());
 | |
| 
 | |
| 
 | |
|   // Tell the alias analysis that the old function is about to disappear.
 | |
|   AA.replaceWithNewValue(F, NF);
 | |
| 
 | |
|   
 | |
|   NF_CGN->stealCalledFunctionsFrom(CG[F]);
 | |
|   
 | |
|   // Now that the old function is dead, delete it.  If there is a dangling
 | |
|   // reference to the CallgraphNode, just leave the dead function around for
 | |
|   // someone else to nuke.
 | |
|   CallGraphNode *CGN = CG[F];
 | |
|   if (CGN->getNumReferences() == 0)
 | |
|     delete CG.removeFunctionFromModule(CGN);
 | |
|   else
 | |
|     F->setLinkage(Function::ExternalLinkage);
 | |
|   
 | |
|   return NF_CGN;
 | |
| }
 |