mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-21 21:29:41 +00:00
LLVM's include tree and the use of using declarations to hide the 'legacy' namespace for the old pass manager. This undoes the primary modules-hostile change I made to keep out-of-tree targets building. I sent an email inquiring about whether this would be reasonable to do at this phase and people seemed fine with it, so making it a reality. This should allow us to start bootstrapping with modules to a certain extent along with making it easier to mix and match headers in general. The updates to any code for users of LLVM are very mechanical. Switch from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h". Qualify the types which now produce compile errors with "legacy::". The most common ones are "PassManager", "PassManagerBase", and "FunctionPassManager". git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229094 91177308-0d34-0410-b5e6-96231b3b80d8
To-do ----- * Keep the address of the constant pool in a register instead of forming its address all of the time. * We can fold small constant offsets into the %hi/%lo references to constant pool addresses as well. * When in V9 mode, register allocate %icc[0-3]. * Add support for isel'ing UMUL_LOHI instead of marking it as Expand. * Emit the 'Branch on Integer Register with Prediction' instructions. It's not clear how to write a pattern for this though: float %t1(int %a, int* %p) { %C = seteq int %a, 0 br bool %C, label %T, label %F T: store int 123, int* %p br label %F F: ret float undef } codegens to this: t1: save -96, %o6, %o6 1) subcc %i0, 0, %l0 1) bne .LBBt1_2 ! F nop .LBBt1_1: ! T or %g0, 123, %l0 st %l0, [%i1] .LBBt1_2: ! F restore %g0, %g0, %g0 retl nop 1) should be replaced with a brz in V9 mode. * Same as above, but emit conditional move on register zero (p192) in V9 mode. Testcase: int %t1(int %a, int %b) { %C = seteq int %a, 0 %D = select bool %C, int %a, int %b ret int %D } * Emit MULX/[SU]DIVX instructions in V9 mode instead of fiddling with the Y register, if they are faster. * Codegen bswap(load)/store(bswap) -> load/store ASI * Implement frame pointer elimination, e.g. eliminate save/restore for leaf fns. * Fill delay slots * Use %g0 directly to materialize 0. No instruction is required.