mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-29 08:16:51 +00:00 
			
		
		
		
	functionality change. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183709 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1539 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1539 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements an analysis that determines, for a given memory
 | |
| // operation, what preceding memory operations it depends on.  It builds on
 | |
| // alias analysis information, and tries to provide a lazy, caching interface to
 | |
| // a common kind of alias information query.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "memdep"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Analysis/PHITransAddr.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/PredIteratorCache.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
 | |
| STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
 | |
| STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
 | |
| 
 | |
| STATISTIC(NumCacheNonLocalPtr,
 | |
|           "Number of fully cached non-local ptr responses");
 | |
| STATISTIC(NumCacheDirtyNonLocalPtr,
 | |
|           "Number of cached, but dirty, non-local ptr responses");
 | |
| STATISTIC(NumUncacheNonLocalPtr,
 | |
|           "Number of uncached non-local ptr responses");
 | |
| STATISTIC(NumCacheCompleteNonLocalPtr,
 | |
|           "Number of block queries that were completely cached");
 | |
| 
 | |
| // Limit for the number of instructions to scan in a block.
 | |
| static const int BlockScanLimit = 100;
 | |
| 
 | |
| char MemoryDependenceAnalysis::ID = 0;
 | |
| 
 | |
| // Register this pass...
 | |
| INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",
 | |
|                 "Memory Dependence Analysis", false, true)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",
 | |
|                       "Memory Dependence Analysis", false, true)
 | |
| 
 | |
| MemoryDependenceAnalysis::MemoryDependenceAnalysis()
 | |
| : FunctionPass(ID), PredCache(0) {
 | |
|   initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
 | |
| }
 | |
| 
 | |
| /// Clean up memory in between runs
 | |
| void MemoryDependenceAnalysis::releaseMemory() {
 | |
|   LocalDeps.clear();
 | |
|   NonLocalDeps.clear();
 | |
|   NonLocalPointerDeps.clear();
 | |
|   ReverseLocalDeps.clear();
 | |
|   ReverseNonLocalDeps.clear();
 | |
|   ReverseNonLocalPtrDeps.clear();
 | |
|   PredCache->clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// getAnalysisUsage - Does not modify anything.  It uses Alias Analysis.
 | |
| ///
 | |
| void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<AliasAnalysis>();
 | |
| }
 | |
| 
 | |
| bool MemoryDependenceAnalysis::runOnFunction(Function &) {
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
|   TD = getAnalysisIfAvailable<DataLayout>();
 | |
|   DT = getAnalysisIfAvailable<DominatorTree>();
 | |
|   if (!PredCache)
 | |
|     PredCache.reset(new PredIteratorCache());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RemoveFromReverseMap - This is a helper function that removes Val from
 | |
| /// 'Inst's set in ReverseMap.  If the set becomes empty, remove Inst's entry.
 | |
| template <typename KeyTy>
 | |
| static void RemoveFromReverseMap(DenseMap<Instruction*,
 | |
|                                  SmallPtrSet<KeyTy, 4> > &ReverseMap,
 | |
|                                  Instruction *Inst, KeyTy Val) {
 | |
|   typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
 | |
|   InstIt = ReverseMap.find(Inst);
 | |
|   assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
 | |
|   bool Found = InstIt->second.erase(Val);
 | |
|   assert(Found && "Invalid reverse map!"); (void)Found;
 | |
|   if (InstIt->second.empty())
 | |
|     ReverseMap.erase(InstIt);
 | |
| }
 | |
| 
 | |
| /// GetLocation - If the given instruction references a specific memory
 | |
| /// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
 | |
| /// Return a ModRefInfo value describing the general behavior of the
 | |
| /// instruction.
 | |
| static
 | |
| AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
 | |
|                                         AliasAnalysis::Location &Loc,
 | |
|                                         AliasAnalysis *AA) {
 | |
|   if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|     if (LI->isUnordered()) {
 | |
|       Loc = AA->getLocation(LI);
 | |
|       return AliasAnalysis::Ref;
 | |
|     }
 | |
|     if (LI->getOrdering() == Monotonic) {
 | |
|       Loc = AA->getLocation(LI);
 | |
|       return AliasAnalysis::ModRef;
 | |
|     }
 | |
|     Loc = AliasAnalysis::Location();
 | |
|     return AliasAnalysis::ModRef;
 | |
|   }
 | |
| 
 | |
|   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|     if (SI->isUnordered()) {
 | |
|       Loc = AA->getLocation(SI);
 | |
|       return AliasAnalysis::Mod;
 | |
|     }
 | |
|     if (SI->getOrdering() == Monotonic) {
 | |
|       Loc = AA->getLocation(SI);
 | |
|       return AliasAnalysis::ModRef;
 | |
|     }
 | |
|     Loc = AliasAnalysis::Location();
 | |
|     return AliasAnalysis::ModRef;
 | |
|   }
 | |
| 
 | |
|   if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
 | |
|     Loc = AA->getLocation(V);
 | |
|     return AliasAnalysis::ModRef;
 | |
|   }
 | |
| 
 | |
|   if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
 | |
|     // calls to free() deallocate the entire structure
 | |
|     Loc = AliasAnalysis::Location(CI->getArgOperand(0));
 | |
|     return AliasAnalysis::Mod;
 | |
|   }
 | |
| 
 | |
|   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
 | |
|     switch (II->getIntrinsicID()) {
 | |
|     case Intrinsic::lifetime_start:
 | |
|     case Intrinsic::lifetime_end:
 | |
|     case Intrinsic::invariant_start:
 | |
|       Loc = AliasAnalysis::Location(II->getArgOperand(1),
 | |
|                                     cast<ConstantInt>(II->getArgOperand(0))
 | |
|                                       ->getZExtValue(),
 | |
|                                     II->getMetadata(LLVMContext::MD_tbaa));
 | |
|       // These intrinsics don't really modify the memory, but returning Mod
 | |
|       // will allow them to be handled conservatively.
 | |
|       return AliasAnalysis::Mod;
 | |
|     case Intrinsic::invariant_end:
 | |
|       Loc = AliasAnalysis::Location(II->getArgOperand(2),
 | |
|                                     cast<ConstantInt>(II->getArgOperand(1))
 | |
|                                       ->getZExtValue(),
 | |
|                                     II->getMetadata(LLVMContext::MD_tbaa));
 | |
|       // These intrinsics don't really modify the memory, but returning Mod
 | |
|       // will allow them to be handled conservatively.
 | |
|       return AliasAnalysis::Mod;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   // Otherwise, just do the coarse-grained thing that always works.
 | |
|   if (Inst->mayWriteToMemory())
 | |
|     return AliasAnalysis::ModRef;
 | |
|   if (Inst->mayReadFromMemory())
 | |
|     return AliasAnalysis::Ref;
 | |
|   return AliasAnalysis::NoModRef;
 | |
| }
 | |
| 
 | |
| /// getCallSiteDependencyFrom - Private helper for finding the local
 | |
| /// dependencies of a call site.
 | |
| MemDepResult MemoryDependenceAnalysis::
 | |
| getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
 | |
|                           BasicBlock::iterator ScanIt, BasicBlock *BB) {
 | |
|   unsigned Limit = BlockScanLimit;
 | |
| 
 | |
|   // Walk backwards through the block, looking for dependencies
 | |
|   while (ScanIt != BB->begin()) {
 | |
|     // Limit the amount of scanning we do so we don't end up with quadratic
 | |
|     // running time on extreme testcases.
 | |
|     --Limit;
 | |
|     if (!Limit)
 | |
|       return MemDepResult::getUnknown();
 | |
| 
 | |
|     Instruction *Inst = --ScanIt;
 | |
| 
 | |
|     // If this inst is a memory op, get the pointer it accessed
 | |
|     AliasAnalysis::Location Loc;
 | |
|     AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
 | |
|     if (Loc.Ptr) {
 | |
|       // A simple instruction.
 | |
|       if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
 | |
|         return MemDepResult::getClobber(Inst);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CallSite InstCS = cast<Value>(Inst)) {
 | |
|       // Debug intrinsics don't cause dependences.
 | |
|       if (isa<DbgInfoIntrinsic>(Inst)) continue;
 | |
|       // If these two calls do not interfere, look past it.
 | |
|       switch (AA->getModRefInfo(CS, InstCS)) {
 | |
|       case AliasAnalysis::NoModRef:
 | |
|         // If the two calls are the same, return InstCS as a Def, so that
 | |
|         // CS can be found redundant and eliminated.
 | |
|         if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
 | |
|             CS.getInstruction()->isIdenticalToWhenDefined(Inst))
 | |
|           return MemDepResult::getDef(Inst);
 | |
| 
 | |
|         // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
 | |
|         // keep scanning.
 | |
|         continue;
 | |
|       default:
 | |
|         return MemDepResult::getClobber(Inst);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we could not obtain a pointer for the instruction and the instruction
 | |
|     // touches memory then assume that this is a dependency.
 | |
|     if (MR != AliasAnalysis::NoModRef)
 | |
|       return MemDepResult::getClobber(Inst);
 | |
|   }
 | |
| 
 | |
|   // No dependence found.  If this is the entry block of the function, it is
 | |
|   // unknown, otherwise it is non-local.
 | |
|   if (BB != &BB->getParent()->getEntryBlock())
 | |
|     return MemDepResult::getNonLocal();
 | |
|   return MemDepResult::getNonFuncLocal();
 | |
| }
 | |
| 
 | |
| /// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
 | |
| /// would fully overlap MemLoc if done as a wider legal integer load.
 | |
| ///
 | |
| /// MemLocBase, MemLocOffset are lazily computed here the first time the
 | |
| /// base/offs of memloc is needed.
 | |
| static bool
 | |
| isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
 | |
|                                        const Value *&MemLocBase,
 | |
|                                        int64_t &MemLocOffs,
 | |
|                                        const LoadInst *LI,
 | |
|                                        const DataLayout *TD) {
 | |
|   // If we have no target data, we can't do this.
 | |
|   if (TD == 0) return false;
 | |
| 
 | |
|   // If we haven't already computed the base/offset of MemLoc, do so now.
 | |
|   if (MemLocBase == 0)
 | |
|     MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, TD);
 | |
| 
 | |
|   unsigned Size = MemoryDependenceAnalysis::
 | |
|     getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
 | |
|                                     LI, *TD);
 | |
|   return Size != 0;
 | |
| }
 | |
| 
 | |
| /// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
 | |
| /// looks at a memory location for a load (specified by MemLocBase, Offs,
 | |
| /// and Size) and compares it against a load.  If the specified load could
 | |
| /// be safely widened to a larger integer load that is 1) still efficient,
 | |
| /// 2) safe for the target, and 3) would provide the specified memory
 | |
| /// location value, then this function returns the size in bytes of the
 | |
| /// load width to use.  If not, this returns zero.
 | |
| unsigned MemoryDependenceAnalysis::
 | |
| getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
 | |
|                                 unsigned MemLocSize, const LoadInst *LI,
 | |
|                                 const DataLayout &TD) {
 | |
|   // We can only extend simple integer loads.
 | |
|   if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
 | |
| 
 | |
|   // Load widening is hostile to ThreadSanitizer: it may cause false positives
 | |
|   // or make the reports more cryptic (access sizes are wrong).
 | |
|   if (LI->getParent()->getParent()->getAttributes().
 | |
|       hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
 | |
|     return 0;
 | |
| 
 | |
|   // Get the base of this load.
 | |
|   int64_t LIOffs = 0;
 | |
|   const Value *LIBase =
 | |
|     GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &TD);
 | |
| 
 | |
|   // If the two pointers are not based on the same pointer, we can't tell that
 | |
|   // they are related.
 | |
|   if (LIBase != MemLocBase) return 0;
 | |
| 
 | |
|   // Okay, the two values are based on the same pointer, but returned as
 | |
|   // no-alias.  This happens when we have things like two byte loads at "P+1"
 | |
|   // and "P+3".  Check to see if increasing the size of the "LI" load up to its
 | |
|   // alignment (or the largest native integer type) will allow us to load all
 | |
|   // the bits required by MemLoc.
 | |
| 
 | |
|   // If MemLoc is before LI, then no widening of LI will help us out.
 | |
|   if (MemLocOffs < LIOffs) return 0;
 | |
| 
 | |
|   // Get the alignment of the load in bytes.  We assume that it is safe to load
 | |
|   // any legal integer up to this size without a problem.  For example, if we're
 | |
|   // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
 | |
|   // widen it up to an i32 load.  If it is known 2-byte aligned, we can widen it
 | |
|   // to i16.
 | |
|   unsigned LoadAlign = LI->getAlignment();
 | |
| 
 | |
|   int64_t MemLocEnd = MemLocOffs+MemLocSize;
 | |
| 
 | |
|   // If no amount of rounding up will let MemLoc fit into LI, then bail out.
 | |
|   if (LIOffs+LoadAlign < MemLocEnd) return 0;
 | |
| 
 | |
|   // This is the size of the load to try.  Start with the next larger power of
 | |
|   // two.
 | |
|   unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
 | |
|   NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
 | |
| 
 | |
|   while (1) {
 | |
|     // If this load size is bigger than our known alignment or would not fit
 | |
|     // into a native integer register, then we fail.
 | |
|     if (NewLoadByteSize > LoadAlign ||
 | |
|         !TD.fitsInLegalInteger(NewLoadByteSize*8))
 | |
|       return 0;
 | |
| 
 | |
|     if (LIOffs+NewLoadByteSize > MemLocEnd &&
 | |
|         LI->getParent()->getParent()->getAttributes().
 | |
|           hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
 | |
|       // We will be reading past the location accessed by the original program.
 | |
|       // While this is safe in a regular build, Address Safety analysis tools
 | |
|       // may start reporting false warnings. So, don't do widening.
 | |
|       return 0;
 | |
| 
 | |
|     // If a load of this width would include all of MemLoc, then we succeed.
 | |
|     if (LIOffs+NewLoadByteSize >= MemLocEnd)
 | |
|       return NewLoadByteSize;
 | |
| 
 | |
|     NewLoadByteSize <<= 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPointerDependencyFrom - Return the instruction on which a memory
 | |
| /// location depends.  If isLoad is true, this routine ignores may-aliases with
 | |
| /// read-only operations.  If isLoad is false, this routine ignores may-aliases
 | |
| /// with reads from read-only locations.  If possible, pass the query
 | |
| /// instruction as well; this function may take advantage of the metadata
 | |
| /// annotated to the query instruction to refine the result.
 | |
| MemDepResult MemoryDependenceAnalysis::
 | |
| getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
 | |
|                          BasicBlock::iterator ScanIt, BasicBlock *BB,
 | |
|                          Instruction *QueryInst) {
 | |
| 
 | |
|   const Value *MemLocBase = 0;
 | |
|   int64_t MemLocOffset = 0;
 | |
|   unsigned Limit = BlockScanLimit;
 | |
|   bool isInvariantLoad = false;
 | |
|   if (isLoad && QueryInst) {
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
 | |
|     if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != 0)
 | |
|       isInvariantLoad = true;
 | |
|   }
 | |
| 
 | |
|   // Walk backwards through the basic block, looking for dependencies.
 | |
|   while (ScanIt != BB->begin()) {
 | |
|     // Limit the amount of scanning we do so we don't end up with quadratic
 | |
|     // running time on extreme testcases.
 | |
|     --Limit;
 | |
|     if (!Limit)
 | |
|       return MemDepResult::getUnknown();
 | |
| 
 | |
|     Instruction *Inst = --ScanIt;
 | |
| 
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
 | |
|       // Debug intrinsics don't (and can't) cause dependences.
 | |
|       if (isa<DbgInfoIntrinsic>(II)) continue;
 | |
| 
 | |
|       // If we reach a lifetime begin or end marker, then the query ends here
 | |
|       // because the value is undefined.
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
 | |
|         // FIXME: This only considers queries directly on the invariant-tagged
 | |
|         // pointer, not on query pointers that are indexed off of them.  It'd
 | |
|         // be nice to handle that at some point (the right approach is to use
 | |
|         // GetPointerBaseWithConstantOffset).
 | |
|         if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
 | |
|                             MemLoc))
 | |
|           return MemDepResult::getDef(II);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Values depend on loads if the pointers are must aliased.  This means that
 | |
|     // a load depends on another must aliased load from the same value.
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|       // Atomic loads have complications involved.
 | |
|       // FIXME: This is overly conservative.
 | |
|       if (!LI->isUnordered())
 | |
|         return MemDepResult::getClobber(LI);
 | |
| 
 | |
|       AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
 | |
| 
 | |
|       // If we found a pointer, check if it could be the same as our pointer.
 | |
|       AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
 | |
| 
 | |
|       if (isLoad) {
 | |
|         if (R == AliasAnalysis::NoAlias) {
 | |
|           // If this is an over-aligned integer load (for example,
 | |
|           // "load i8* %P, align 4") see if it would obviously overlap with the
 | |
|           // queried location if widened to a larger load (e.g. if the queried
 | |
|           // location is 1 byte at P+1).  If so, return it as a load/load
 | |
|           // clobber result, allowing the client to decide to widen the load if
 | |
|           // it wants to.
 | |
|           if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
 | |
|             if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
 | |
|                 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
 | |
|                                                        MemLocOffset, LI, TD))
 | |
|               return MemDepResult::getClobber(Inst);
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Must aliased loads are defs of each other.
 | |
|         if (R == AliasAnalysis::MustAlias)
 | |
|           return MemDepResult::getDef(Inst);
 | |
| 
 | |
| #if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
 | |
|       // in terms of clobbering loads, but since it does this by looking
 | |
|       // at the clobbering load directly, it doesn't know about any
 | |
|       // phi translation that may have happened along the way.
 | |
| 
 | |
|         // If we have a partial alias, then return this as a clobber for the
 | |
|         // client to handle.
 | |
|         if (R == AliasAnalysis::PartialAlias)
 | |
|           return MemDepResult::getClobber(Inst);
 | |
| #endif
 | |
| 
 | |
|         // Random may-alias loads don't depend on each other without a
 | |
|         // dependence.
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Stores don't depend on other no-aliased accesses.
 | |
|       if (R == AliasAnalysis::NoAlias)
 | |
|         continue;
 | |
| 
 | |
|       // Stores don't alias loads from read-only memory.
 | |
|       if (AA->pointsToConstantMemory(LoadLoc))
 | |
|         continue;
 | |
| 
 | |
|       // Stores depend on may/must aliased loads.
 | |
|       return MemDepResult::getDef(Inst);
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       // Atomic stores have complications involved.
 | |
|       // FIXME: This is overly conservative.
 | |
|       if (!SI->isUnordered())
 | |
|         return MemDepResult::getClobber(SI);
 | |
| 
 | |
|       // If alias analysis can tell that this store is guaranteed to not modify
 | |
|       // the query pointer, ignore it.  Use getModRefInfo to handle cases where
 | |
|       // the query pointer points to constant memory etc.
 | |
|       if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
 | |
|         continue;
 | |
| 
 | |
|       // Ok, this store might clobber the query pointer.  Check to see if it is
 | |
|       // a must alias: in this case, we want to return this as a def.
 | |
|       AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
 | |
| 
 | |
|       // If we found a pointer, check if it could be the same as our pointer.
 | |
|       AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
 | |
| 
 | |
|       if (R == AliasAnalysis::NoAlias)
 | |
|         continue;
 | |
|       if (R == AliasAnalysis::MustAlias)
 | |
|         return MemDepResult::getDef(Inst);
 | |
|       if (isInvariantLoad)
 | |
|        continue;
 | |
|       return MemDepResult::getClobber(Inst);
 | |
|     }
 | |
| 
 | |
|     // If this is an allocation, and if we know that the accessed pointer is to
 | |
|     // the allocation, return Def.  This means that there is no dependence and
 | |
|     // the access can be optimized based on that.  For example, a load could
 | |
|     // turn into undef.
 | |
|     // Note: Only determine this to be a malloc if Inst is the malloc call, not
 | |
|     // a subsequent bitcast of the malloc call result.  There can be stores to
 | |
|     // the malloced memory between the malloc call and its bitcast uses, and we
 | |
|     // need to continue scanning until the malloc call.
 | |
|     const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
 | |
|     if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
 | |
|       const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, TD);
 | |
| 
 | |
|       if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
 | |
|         return MemDepResult::getDef(Inst);
 | |
|       // Be conservative if the accessed pointer may alias the allocation.
 | |
|       if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
 | |
|         return MemDepResult::getClobber(Inst);
 | |
|       // If the allocation is not aliased and does not read memory (like
 | |
|       // strdup), it is safe to ignore.
 | |
|       if (isa<AllocaInst>(Inst) ||
 | |
|           isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
 | |
|     AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
 | |
|     // If necessary, perform additional analysis.
 | |
|     if (MR == AliasAnalysis::ModRef)
 | |
|       MR = AA->callCapturesBefore(Inst, MemLoc, DT);
 | |
|     switch (MR) {
 | |
|     case AliasAnalysis::NoModRef:
 | |
|       // If the call has no effect on the queried pointer, just ignore it.
 | |
|       continue;
 | |
|     case AliasAnalysis::Mod:
 | |
|       return MemDepResult::getClobber(Inst);
 | |
|     case AliasAnalysis::Ref:
 | |
|       // If the call is known to never store to the pointer, and if this is a
 | |
|       // load query, we can safely ignore it (scan past it).
 | |
|       if (isLoad)
 | |
|         continue;
 | |
|     default:
 | |
|       // Otherwise, there is a potential dependence.  Return a clobber.
 | |
|       return MemDepResult::getClobber(Inst);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No dependence found.  If this is the entry block of the function, it is
 | |
|   // unknown, otherwise it is non-local.
 | |
|   if (BB != &BB->getParent()->getEntryBlock())
 | |
|     return MemDepResult::getNonLocal();
 | |
|   return MemDepResult::getNonFuncLocal();
 | |
| }
 | |
| 
 | |
| /// getDependency - Return the instruction on which a memory operation
 | |
| /// depends.
 | |
| MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
 | |
|   Instruction *ScanPos = QueryInst;
 | |
| 
 | |
|   // Check for a cached result
 | |
|   MemDepResult &LocalCache = LocalDeps[QueryInst];
 | |
| 
 | |
|   // If the cached entry is non-dirty, just return it.  Note that this depends
 | |
|   // on MemDepResult's default constructing to 'dirty'.
 | |
|   if (!LocalCache.isDirty())
 | |
|     return LocalCache;
 | |
| 
 | |
|   // Otherwise, if we have a dirty entry, we know we can start the scan at that
 | |
|   // instruction, which may save us some work.
 | |
|   if (Instruction *Inst = LocalCache.getInst()) {
 | |
|     ScanPos = Inst;
 | |
| 
 | |
|     RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
 | |
|   }
 | |
| 
 | |
|   BasicBlock *QueryParent = QueryInst->getParent();
 | |
| 
 | |
|   // Do the scan.
 | |
|   if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
 | |
|     // No dependence found.  If this is the entry block of the function, it is
 | |
|     // unknown, otherwise it is non-local.
 | |
|     if (QueryParent != &QueryParent->getParent()->getEntryBlock())
 | |
|       LocalCache = MemDepResult::getNonLocal();
 | |
|     else
 | |
|       LocalCache = MemDepResult::getNonFuncLocal();
 | |
|   } else {
 | |
|     AliasAnalysis::Location MemLoc;
 | |
|     AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
 | |
|     if (MemLoc.Ptr) {
 | |
|       // If we can do a pointer scan, make it happen.
 | |
|       bool isLoad = !(MR & AliasAnalysis::Mod);
 | |
|       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
 | |
|         isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
 | |
| 
 | |
|       LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
 | |
|                                             QueryParent, QueryInst);
 | |
|     } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
 | |
|       CallSite QueryCS(QueryInst);
 | |
|       bool isReadOnly = AA->onlyReadsMemory(QueryCS);
 | |
|       LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
 | |
|                                              QueryParent);
 | |
|     } else
 | |
|       // Non-memory instruction.
 | |
|       LocalCache = MemDepResult::getUnknown();
 | |
|   }
 | |
| 
 | |
|   // Remember the result!
 | |
|   if (Instruction *I = LocalCache.getInst())
 | |
|     ReverseLocalDeps[I].insert(QueryInst);
 | |
| 
 | |
|   return LocalCache;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// AssertSorted - This method is used when -debug is specified to verify that
 | |
| /// cache arrays are properly kept sorted.
 | |
| static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
 | |
|                          int Count = -1) {
 | |
|   if (Count == -1) Count = Cache.size();
 | |
|   if (Count == 0) return;
 | |
| 
 | |
|   for (unsigned i = 1; i != unsigned(Count); ++i)
 | |
|     assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// getNonLocalCallDependency - Perform a full dependency query for the
 | |
| /// specified call, returning the set of blocks that the value is
 | |
| /// potentially live across.  The returned set of results will include a
 | |
| /// "NonLocal" result for all blocks where the value is live across.
 | |
| ///
 | |
| /// This method assumes the instruction returns a "NonLocal" dependency
 | |
| /// within its own block.
 | |
| ///
 | |
| /// This returns a reference to an internal data structure that may be
 | |
| /// invalidated on the next non-local query or when an instruction is
 | |
| /// removed.  Clients must copy this data if they want it around longer than
 | |
| /// that.
 | |
| const MemoryDependenceAnalysis::NonLocalDepInfo &
 | |
| MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
 | |
|   assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&
 | |
|  "getNonLocalCallDependency should only be used on calls with non-local deps!");
 | |
|   PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
 | |
|   NonLocalDepInfo &Cache = CacheP.first;
 | |
| 
 | |
|   /// DirtyBlocks - This is the set of blocks that need to be recomputed.  In
 | |
|   /// the cached case, this can happen due to instructions being deleted etc. In
 | |
|   /// the uncached case, this starts out as the set of predecessors we care
 | |
|   /// about.
 | |
|   SmallVector<BasicBlock*, 32> DirtyBlocks;
 | |
| 
 | |
|   if (!Cache.empty()) {
 | |
|     // Okay, we have a cache entry.  If we know it is not dirty, just return it
 | |
|     // with no computation.
 | |
|     if (!CacheP.second) {
 | |
|       ++NumCacheNonLocal;
 | |
|       return Cache;
 | |
|     }
 | |
| 
 | |
|     // If we already have a partially computed set of results, scan them to
 | |
|     // determine what is dirty, seeding our initial DirtyBlocks worklist.
 | |
|     for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
 | |
|        I != E; ++I)
 | |
|       if (I->getResult().isDirty())
 | |
|         DirtyBlocks.push_back(I->getBB());
 | |
| 
 | |
|     // Sort the cache so that we can do fast binary search lookups below.
 | |
|     std::sort(Cache.begin(), Cache.end());
 | |
| 
 | |
|     ++NumCacheDirtyNonLocal;
 | |
|     //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
 | |
|     //     << Cache.size() << " cached: " << *QueryInst;
 | |
|   } else {
 | |
|     // Seed DirtyBlocks with each of the preds of QueryInst's block.
 | |
|     BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
 | |
|     for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
 | |
|       DirtyBlocks.push_back(*PI);
 | |
|     ++NumUncacheNonLocal;
 | |
|   }
 | |
| 
 | |
|   // isReadonlyCall - If this is a read-only call, we can be more aggressive.
 | |
|   bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
 | |
| 
 | |
|   SmallPtrSet<BasicBlock*, 64> Visited;
 | |
| 
 | |
|   unsigned NumSortedEntries = Cache.size();
 | |
|   DEBUG(AssertSorted(Cache));
 | |
| 
 | |
|   // Iterate while we still have blocks to update.
 | |
|   while (!DirtyBlocks.empty()) {
 | |
|     BasicBlock *DirtyBB = DirtyBlocks.back();
 | |
|     DirtyBlocks.pop_back();
 | |
| 
 | |
|     // Already processed this block?
 | |
|     if (!Visited.insert(DirtyBB))
 | |
|       continue;
 | |
| 
 | |
|     // Do a binary search to see if we already have an entry for this block in
 | |
|     // the cache set.  If so, find it.
 | |
|     DEBUG(AssertSorted(Cache, NumSortedEntries));
 | |
|     NonLocalDepInfo::iterator Entry =
 | |
|       std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
 | |
|                        NonLocalDepEntry(DirtyBB));
 | |
|     if (Entry != Cache.begin() && prior(Entry)->getBB() == DirtyBB)
 | |
|       --Entry;
 | |
| 
 | |
|     NonLocalDepEntry *ExistingResult = 0;
 | |
|     if (Entry != Cache.begin()+NumSortedEntries &&
 | |
|         Entry->getBB() == DirtyBB) {
 | |
|       // If we already have an entry, and if it isn't already dirty, the block
 | |
|       // is done.
 | |
|       if (!Entry->getResult().isDirty())
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, remember this slot so we can update the value.
 | |
|       ExistingResult = &*Entry;
 | |
|     }
 | |
| 
 | |
|     // If the dirty entry has a pointer, start scanning from it so we don't have
 | |
|     // to rescan the entire block.
 | |
|     BasicBlock::iterator ScanPos = DirtyBB->end();
 | |
|     if (ExistingResult) {
 | |
|       if (Instruction *Inst = ExistingResult->getResult().getInst()) {
 | |
|         ScanPos = Inst;
 | |
|         // We're removing QueryInst's use of Inst.
 | |
|         RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
 | |
|                              QueryCS.getInstruction());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Find out if this block has a local dependency for QueryInst.
 | |
|     MemDepResult Dep;
 | |
| 
 | |
|     if (ScanPos != DirtyBB->begin()) {
 | |
|       Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
 | |
|     } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
 | |
|       // No dependence found.  If this is the entry block of the function, it is
 | |
|       // a clobber, otherwise it is unknown.
 | |
|       Dep = MemDepResult::getNonLocal();
 | |
|     } else {
 | |
|       Dep = MemDepResult::getNonFuncLocal();
 | |
|     }
 | |
| 
 | |
|     // If we had a dirty entry for the block, update it.  Otherwise, just add
 | |
|     // a new entry.
 | |
|     if (ExistingResult)
 | |
|       ExistingResult->setResult(Dep);
 | |
|     else
 | |
|       Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
 | |
| 
 | |
|     // If the block has a dependency (i.e. it isn't completely transparent to
 | |
|     // the value), remember the association!
 | |
|     if (!Dep.isNonLocal()) {
 | |
|       // Keep the ReverseNonLocalDeps map up to date so we can efficiently
 | |
|       // update this when we remove instructions.
 | |
|       if (Instruction *Inst = Dep.getInst())
 | |
|         ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
 | |
|     } else {
 | |
| 
 | |
|       // If the block *is* completely transparent to the load, we need to check
 | |
|       // the predecessors of this block.  Add them to our worklist.
 | |
|       for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
 | |
|         DirtyBlocks.push_back(*PI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Cache;
 | |
| }
 | |
| 
 | |
| /// getNonLocalPointerDependency - Perform a full dependency query for an
 | |
| /// access to the specified (non-volatile) memory location, returning the
 | |
| /// set of instructions that either define or clobber the value.
 | |
| ///
 | |
| /// This method assumes the pointer has a "NonLocal" dependency within its
 | |
| /// own block.
 | |
| ///
 | |
| void MemoryDependenceAnalysis::
 | |
| getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
 | |
|                              BasicBlock *FromBB,
 | |
|                              SmallVectorImpl<NonLocalDepResult> &Result) {
 | |
|   assert(Loc.Ptr->getType()->isPointerTy() &&
 | |
|          "Can't get pointer deps of a non-pointer!");
 | |
|   Result.clear();
 | |
| 
 | |
|   PHITransAddr Address(const_cast<Value *>(Loc.Ptr), TD);
 | |
| 
 | |
|   // This is the set of blocks we've inspected, and the pointer we consider in
 | |
|   // each block.  Because of critical edges, we currently bail out if querying
 | |
|   // a block with multiple different pointers.  This can happen during PHI
 | |
|   // translation.
 | |
|   DenseMap<BasicBlock*, Value*> Visited;
 | |
|   if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
 | |
|                                    Result, Visited, true))
 | |
|     return;
 | |
|   Result.clear();
 | |
|   Result.push_back(NonLocalDepResult(FromBB,
 | |
|                                      MemDepResult::getUnknown(),
 | |
|                                      const_cast<Value *>(Loc.Ptr)));
 | |
| }
 | |
| 
 | |
| /// GetNonLocalInfoForBlock - Compute the memdep value for BB with
 | |
| /// Pointer/PointeeSize using either cached information in Cache or by doing a
 | |
| /// lookup (which may use dirty cache info if available).  If we do a lookup,
 | |
| /// add the result to the cache.
 | |
| MemDepResult MemoryDependenceAnalysis::
 | |
| GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
 | |
|                         bool isLoad, BasicBlock *BB,
 | |
|                         NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
 | |
| 
 | |
|   // Do a binary search to see if we already have an entry for this block in
 | |
|   // the cache set.  If so, find it.
 | |
|   NonLocalDepInfo::iterator Entry =
 | |
|     std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
 | |
|                      NonLocalDepEntry(BB));
 | |
|   if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
 | |
|     --Entry;
 | |
| 
 | |
|   NonLocalDepEntry *ExistingResult = 0;
 | |
|   if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
 | |
|     ExistingResult = &*Entry;
 | |
| 
 | |
|   // If we have a cached entry, and it is non-dirty, use it as the value for
 | |
|   // this dependency.
 | |
|   if (ExistingResult && !ExistingResult->getResult().isDirty()) {
 | |
|     ++NumCacheNonLocalPtr;
 | |
|     return ExistingResult->getResult();
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have to scan for the value.  If we have a dirty cache
 | |
|   // entry, start scanning from its position, otherwise we scan from the end
 | |
|   // of the block.
 | |
|   BasicBlock::iterator ScanPos = BB->end();
 | |
|   if (ExistingResult && ExistingResult->getResult().getInst()) {
 | |
|     assert(ExistingResult->getResult().getInst()->getParent() == BB &&
 | |
|            "Instruction invalidated?");
 | |
|     ++NumCacheDirtyNonLocalPtr;
 | |
|     ScanPos = ExistingResult->getResult().getInst();
 | |
| 
 | |
|     // Eliminating the dirty entry from 'Cache', so update the reverse info.
 | |
|     ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
 | |
|     RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
 | |
|   } else {
 | |
|     ++NumUncacheNonLocalPtr;
 | |
|   }
 | |
| 
 | |
|   // Scan the block for the dependency.
 | |
|   MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
 | |
| 
 | |
|   // If we had a dirty entry for the block, update it.  Otherwise, just add
 | |
|   // a new entry.
 | |
|   if (ExistingResult)
 | |
|     ExistingResult->setResult(Dep);
 | |
|   else
 | |
|     Cache->push_back(NonLocalDepEntry(BB, Dep));
 | |
| 
 | |
|   // If the block has a dependency (i.e. it isn't completely transparent to
 | |
|   // the value), remember the reverse association because we just added it
 | |
|   // to Cache!
 | |
|   if (!Dep.isDef() && !Dep.isClobber())
 | |
|     return Dep;
 | |
| 
 | |
|   // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
 | |
|   // update MemDep when we remove instructions.
 | |
|   Instruction *Inst = Dep.getInst();
 | |
|   assert(Inst && "Didn't depend on anything?");
 | |
|   ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
 | |
|   ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
 | |
|   return Dep;
 | |
| }
 | |
| 
 | |
| /// SortNonLocalDepInfoCache - Sort the a NonLocalDepInfo cache, given a certain
 | |
| /// number of elements in the array that are already properly ordered.  This is
 | |
| /// optimized for the case when only a few entries are added.
 | |
| static void
 | |
| SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
 | |
|                          unsigned NumSortedEntries) {
 | |
|   switch (Cache.size() - NumSortedEntries) {
 | |
|   case 0:
 | |
|     // done, no new entries.
 | |
|     break;
 | |
|   case 2: {
 | |
|     // Two new entries, insert the last one into place.
 | |
|     NonLocalDepEntry Val = Cache.back();
 | |
|     Cache.pop_back();
 | |
|     MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
 | |
|       std::upper_bound(Cache.begin(), Cache.end()-1, Val);
 | |
|     Cache.insert(Entry, Val);
 | |
|     // FALL THROUGH.
 | |
|   }
 | |
|   case 1:
 | |
|     // One new entry, Just insert the new value at the appropriate position.
 | |
|     if (Cache.size() != 1) {
 | |
|       NonLocalDepEntry Val = Cache.back();
 | |
|       Cache.pop_back();
 | |
|       MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
 | |
|         std::upper_bound(Cache.begin(), Cache.end(), Val);
 | |
|       Cache.insert(Entry, Val);
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     // Added many values, do a full scale sort.
 | |
|     std::sort(Cache.begin(), Cache.end());
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getNonLocalPointerDepFromBB - Perform a dependency query based on
 | |
| /// pointer/pointeesize starting at the end of StartBB.  Add any clobber/def
 | |
| /// results to the results vector and keep track of which blocks are visited in
 | |
| /// 'Visited'.
 | |
| ///
 | |
| /// This has special behavior for the first block queries (when SkipFirstBlock
 | |
| /// is true).  In this special case, it ignores the contents of the specified
 | |
| /// block and starts returning dependence info for its predecessors.
 | |
| ///
 | |
| /// This function returns false on success, or true to indicate that it could
 | |
| /// not compute dependence information for some reason.  This should be treated
 | |
| /// as a clobber dependence on the first instruction in the predecessor block.
 | |
| bool MemoryDependenceAnalysis::
 | |
| getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
 | |
|                             const AliasAnalysis::Location &Loc,
 | |
|                             bool isLoad, BasicBlock *StartBB,
 | |
|                             SmallVectorImpl<NonLocalDepResult> &Result,
 | |
|                             DenseMap<BasicBlock*, Value*> &Visited,
 | |
|                             bool SkipFirstBlock) {
 | |
|   // Look up the cached info for Pointer.
 | |
|   ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
 | |
| 
 | |
|   // Set up a temporary NLPI value. If the map doesn't yet have an entry for
 | |
|   // CacheKey, this value will be inserted as the associated value. Otherwise,
 | |
|   // it'll be ignored, and we'll have to check to see if the cached size and
 | |
|   // tbaa tag are consistent with the current query.
 | |
|   NonLocalPointerInfo InitialNLPI;
 | |
|   InitialNLPI.Size = Loc.Size;
 | |
|   InitialNLPI.TBAATag = Loc.TBAATag;
 | |
| 
 | |
|   // Get the NLPI for CacheKey, inserting one into the map if it doesn't
 | |
|   // already have one.
 | |
|   std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
 | |
|     NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
 | |
|   NonLocalPointerInfo *CacheInfo = &Pair.first->second;
 | |
| 
 | |
|   // If we already have a cache entry for this CacheKey, we may need to do some
 | |
|   // work to reconcile the cache entry and the current query.
 | |
|   if (!Pair.second) {
 | |
|     if (CacheInfo->Size < Loc.Size) {
 | |
|       // The query's Size is greater than the cached one. Throw out the
 | |
|       // cached data and proceed with the query at the greater size.
 | |
|       CacheInfo->Pair = BBSkipFirstBlockPair();
 | |
|       CacheInfo->Size = Loc.Size;
 | |
|       for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
 | |
|            DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
 | |
|         if (Instruction *Inst = DI->getResult().getInst())
 | |
|           RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
 | |
|       CacheInfo->NonLocalDeps.clear();
 | |
|     } else if (CacheInfo->Size > Loc.Size) {
 | |
|       // This query's Size is less than the cached one. Conservatively restart
 | |
|       // the query using the greater size.
 | |
|       return getNonLocalPointerDepFromBB(Pointer,
 | |
|                                          Loc.getWithNewSize(CacheInfo->Size),
 | |
|                                          isLoad, StartBB, Result, Visited,
 | |
|                                          SkipFirstBlock);
 | |
|     }
 | |
| 
 | |
|     // If the query's TBAATag is inconsistent with the cached one,
 | |
|     // conservatively throw out the cached data and restart the query with
 | |
|     // no tag if needed.
 | |
|     if (CacheInfo->TBAATag != Loc.TBAATag) {
 | |
|       if (CacheInfo->TBAATag) {
 | |
|         CacheInfo->Pair = BBSkipFirstBlockPair();
 | |
|         CacheInfo->TBAATag = 0;
 | |
|         for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
 | |
|              DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
 | |
|           if (Instruction *Inst = DI->getResult().getInst())
 | |
|             RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
 | |
|         CacheInfo->NonLocalDeps.clear();
 | |
|       }
 | |
|       if (Loc.TBAATag)
 | |
|         return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutTBAATag(),
 | |
|                                            isLoad, StartBB, Result, Visited,
 | |
|                                            SkipFirstBlock);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
 | |
| 
 | |
|   // If we have valid cached information for exactly the block we are
 | |
|   // investigating, just return it with no recomputation.
 | |
|   if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
 | |
|     // We have a fully cached result for this query then we can just return the
 | |
|     // cached results and populate the visited set.  However, we have to verify
 | |
|     // that we don't already have conflicting results for these blocks.  Check
 | |
|     // to ensure that if a block in the results set is in the visited set that
 | |
|     // it was for the same pointer query.
 | |
|     if (!Visited.empty()) {
 | |
|       for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
 | |
|            I != E; ++I) {
 | |
|         DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
 | |
|         if (VI == Visited.end() || VI->second == Pointer.getAddr())
 | |
|           continue;
 | |
| 
 | |
|         // We have a pointer mismatch in a block.  Just return clobber, saying
 | |
|         // that something was clobbered in this result.  We could also do a
 | |
|         // non-fully cached query, but there is little point in doing this.
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Value *Addr = Pointer.getAddr();
 | |
|     for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
 | |
|          I != E; ++I) {
 | |
|       Visited.insert(std::make_pair(I->getBB(), Addr));
 | |
|       if (I->getResult().isNonLocal()) {
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!DT) {
 | |
|         Result.push_back(NonLocalDepResult(I->getBB(),
 | |
|                                            MemDepResult::getUnknown(),
 | |
|                                            Addr));
 | |
|       } else if (DT->isReachableFromEntry(I->getBB())) {
 | |
|         Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
 | |
|       }
 | |
|     }
 | |
|     ++NumCacheCompleteNonLocalPtr;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, either this is a new block, a block with an invalid cache
 | |
|   // pointer or one that we're about to invalidate by putting more info into it
 | |
|   // than its valid cache info.  If empty, the result will be valid cache info,
 | |
|   // otherwise it isn't.
 | |
|   if (Cache->empty())
 | |
|     CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
 | |
|   else
 | |
|     CacheInfo->Pair = BBSkipFirstBlockPair();
 | |
| 
 | |
|   SmallVector<BasicBlock*, 32> Worklist;
 | |
|   Worklist.push_back(StartBB);
 | |
| 
 | |
|   // PredList used inside loop.
 | |
|   SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
 | |
| 
 | |
|   // Keep track of the entries that we know are sorted.  Previously cached
 | |
|   // entries will all be sorted.  The entries we add we only sort on demand (we
 | |
|   // don't insert every element into its sorted position).  We know that we
 | |
|   // won't get any reuse from currently inserted values, because we don't
 | |
|   // revisit blocks after we insert info for them.
 | |
|   unsigned NumSortedEntries = Cache->size();
 | |
|   DEBUG(AssertSorted(*Cache));
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     BasicBlock *BB = Worklist.pop_back_val();
 | |
| 
 | |
|     // Skip the first block if we have it.
 | |
|     if (!SkipFirstBlock) {
 | |
|       // Analyze the dependency of *Pointer in FromBB.  See if we already have
 | |
|       // been here.
 | |
|       assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
 | |
| 
 | |
|       // Get the dependency info for Pointer in BB.  If we have cached
 | |
|       // information, we will use it, otherwise we compute it.
 | |
|       DEBUG(AssertSorted(*Cache, NumSortedEntries));
 | |
|       MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
 | |
|                                                  NumSortedEntries);
 | |
| 
 | |
|       // If we got a Def or Clobber, add this to the list of results.
 | |
|       if (!Dep.isNonLocal()) {
 | |
|         if (!DT) {
 | |
|           Result.push_back(NonLocalDepResult(BB,
 | |
|                                              MemDepResult::getUnknown(),
 | |
|                                              Pointer.getAddr()));
 | |
|           continue;
 | |
|         } else if (DT->isReachableFromEntry(BB)) {
 | |
|           Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If 'Pointer' is an instruction defined in this block, then we need to do
 | |
|     // phi translation to change it into a value live in the predecessor block.
 | |
|     // If not, we just add the predecessors to the worklist and scan them with
 | |
|     // the same Pointer.
 | |
|     if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
 | |
|       SkipFirstBlock = false;
 | |
|       SmallVector<BasicBlock*, 16> NewBlocks;
 | |
|       for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
 | |
|         // Verify that we haven't looked at this block yet.
 | |
|         std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
 | |
|           InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
 | |
|         if (InsertRes.second) {
 | |
|           // First time we've looked at *PI.
 | |
|           NewBlocks.push_back(*PI);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If we have seen this block before, but it was with a different
 | |
|         // pointer then we have a phi translation failure and we have to treat
 | |
|         // this as a clobber.
 | |
|         if (InsertRes.first->second != Pointer.getAddr()) {
 | |
|           // Make sure to clean up the Visited map before continuing on to
 | |
|           // PredTranslationFailure.
 | |
|           for (unsigned i = 0; i < NewBlocks.size(); i++)
 | |
|             Visited.erase(NewBlocks[i]);
 | |
|           goto PredTranslationFailure;
 | |
|         }
 | |
|       }
 | |
|       Worklist.append(NewBlocks.begin(), NewBlocks.end());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We do need to do phi translation, if we know ahead of time we can't phi
 | |
|     // translate this value, don't even try.
 | |
|     if (!Pointer.IsPotentiallyPHITranslatable())
 | |
|       goto PredTranslationFailure;
 | |
| 
 | |
|     // We may have added values to the cache list before this PHI translation.
 | |
|     // If so, we haven't done anything to ensure that the cache remains sorted.
 | |
|     // Sort it now (if needed) so that recursive invocations of
 | |
|     // getNonLocalPointerDepFromBB and other routines that could reuse the cache
 | |
|     // value will only see properly sorted cache arrays.
 | |
|     if (Cache && NumSortedEntries != Cache->size()) {
 | |
|       SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | |
|       NumSortedEntries = Cache->size();
 | |
|     }
 | |
|     Cache = 0;
 | |
| 
 | |
|     PredList.clear();
 | |
|     for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
 | |
|       BasicBlock *Pred = *PI;
 | |
|       PredList.push_back(std::make_pair(Pred, Pointer));
 | |
| 
 | |
|       // Get the PHI translated pointer in this predecessor.  This can fail if
 | |
|       // not translatable, in which case the getAddr() returns null.
 | |
|       PHITransAddr &PredPointer = PredList.back().second;
 | |
|       PredPointer.PHITranslateValue(BB, Pred, 0);
 | |
| 
 | |
|       Value *PredPtrVal = PredPointer.getAddr();
 | |
| 
 | |
|       // Check to see if we have already visited this pred block with another
 | |
|       // pointer.  If so, we can't do this lookup.  This failure can occur
 | |
|       // with PHI translation when a critical edge exists and the PHI node in
 | |
|       // the successor translates to a pointer value different than the
 | |
|       // pointer the block was first analyzed with.
 | |
|       std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
 | |
|         InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
 | |
| 
 | |
|       if (!InsertRes.second) {
 | |
|         // We found the pred; take it off the list of preds to visit.
 | |
|         PredList.pop_back();
 | |
| 
 | |
|         // If the predecessor was visited with PredPtr, then we already did
 | |
|         // the analysis and can ignore it.
 | |
|         if (InsertRes.first->second == PredPtrVal)
 | |
|           continue;
 | |
| 
 | |
|         // Otherwise, the block was previously analyzed with a different
 | |
|         // pointer.  We can't represent the result of this case, so we just
 | |
|         // treat this as a phi translation failure.
 | |
| 
 | |
|         // Make sure to clean up the Visited map before continuing on to
 | |
|         // PredTranslationFailure.
 | |
|         for (unsigned i = 0, n = PredList.size(); i < n; ++i)
 | |
|           Visited.erase(PredList[i].first);
 | |
| 
 | |
|         goto PredTranslationFailure;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Actually process results here; this need to be a separate loop to avoid
 | |
|     // calling getNonLocalPointerDepFromBB for blocks we don't want to return
 | |
|     // any results for.  (getNonLocalPointerDepFromBB will modify our
 | |
|     // datastructures in ways the code after the PredTranslationFailure label
 | |
|     // doesn't expect.)
 | |
|     for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
 | |
|       BasicBlock *Pred = PredList[i].first;
 | |
|       PHITransAddr &PredPointer = PredList[i].second;
 | |
|       Value *PredPtrVal = PredPointer.getAddr();
 | |
| 
 | |
|       bool CanTranslate = true;
 | |
|       // If PHI translation was unable to find an available pointer in this
 | |
|       // predecessor, then we have to assume that the pointer is clobbered in
 | |
|       // that predecessor.  We can still do PRE of the load, which would insert
 | |
|       // a computation of the pointer in this predecessor.
 | |
|       if (PredPtrVal == 0)
 | |
|         CanTranslate = false;
 | |
| 
 | |
|       // FIXME: it is entirely possible that PHI translating will end up with
 | |
|       // the same value.  Consider PHI translating something like:
 | |
|       // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
 | |
|       // to recurse here, pedantically speaking.
 | |
| 
 | |
|       // If getNonLocalPointerDepFromBB fails here, that means the cached
 | |
|       // result conflicted with the Visited list; we have to conservatively
 | |
|       // assume it is unknown, but this also does not block PRE of the load.
 | |
|       if (!CanTranslate ||
 | |
|           getNonLocalPointerDepFromBB(PredPointer,
 | |
|                                       Loc.getWithNewPtr(PredPtrVal),
 | |
|                                       isLoad, Pred,
 | |
|                                       Result, Visited)) {
 | |
|         // Add the entry to the Result list.
 | |
|         NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
 | |
|         Result.push_back(Entry);
 | |
| 
 | |
|         // Since we had a phi translation failure, the cache for CacheKey won't
 | |
|         // include all of the entries that we need to immediately satisfy future
 | |
|         // queries.  Mark this in NonLocalPointerDeps by setting the
 | |
|         // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
 | |
|         // cached value to do more work but not miss the phi trans failure.
 | |
|         NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
 | |
|         NLPI.Pair = BBSkipFirstBlockPair();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
 | |
|     CacheInfo = &NonLocalPointerDeps[CacheKey];
 | |
|     Cache = &CacheInfo->NonLocalDeps;
 | |
|     NumSortedEntries = Cache->size();
 | |
| 
 | |
|     // Since we did phi translation, the "Cache" set won't contain all of the
 | |
|     // results for the query.  This is ok (we can still use it to accelerate
 | |
|     // specific block queries) but we can't do the fastpath "return all
 | |
|     // results from the set"  Clear out the indicator for this.
 | |
|     CacheInfo->Pair = BBSkipFirstBlockPair();
 | |
|     SkipFirstBlock = false;
 | |
|     continue;
 | |
| 
 | |
|   PredTranslationFailure:
 | |
|     // The following code is "failure"; we can't produce a sane translation
 | |
|     // for the given block.  It assumes that we haven't modified any of
 | |
|     // our datastructures while processing the current block.
 | |
| 
 | |
|     if (Cache == 0) {
 | |
|       // Refresh the CacheInfo/Cache pointer if it got invalidated.
 | |
|       CacheInfo = &NonLocalPointerDeps[CacheKey];
 | |
|       Cache = &CacheInfo->NonLocalDeps;
 | |
|       NumSortedEntries = Cache->size();
 | |
|     }
 | |
| 
 | |
|     // Since we failed phi translation, the "Cache" set won't contain all of the
 | |
|     // results for the query.  This is ok (we can still use it to accelerate
 | |
|     // specific block queries) but we can't do the fastpath "return all
 | |
|     // results from the set".  Clear out the indicator for this.
 | |
|     CacheInfo->Pair = BBSkipFirstBlockPair();
 | |
| 
 | |
|     // If *nothing* works, mark the pointer as unknown.
 | |
|     //
 | |
|     // If this is the magic first block, return this as a clobber of the whole
 | |
|     // incoming value.  Since we can't phi translate to one of the predecessors,
 | |
|     // we have to bail out.
 | |
|     if (SkipFirstBlock)
 | |
|       return true;
 | |
| 
 | |
|     for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
 | |
|       assert(I != Cache->rend() && "Didn't find current block??");
 | |
|       if (I->getBB() != BB)
 | |
|         continue;
 | |
| 
 | |
|       assert(I->getResult().isNonLocal() &&
 | |
|              "Should only be here with transparent block");
 | |
|       I->setResult(MemDepResult::getUnknown());
 | |
|       Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
 | |
|                                          Pointer.getAddr()));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, we're done now.  If we added new values to the cache, re-sort it.
 | |
|   SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
 | |
|   DEBUG(AssertSorted(*Cache));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// RemoveCachedNonLocalPointerDependencies - If P exists in
 | |
| /// CachedNonLocalPointerInfo, remove it.
 | |
| void MemoryDependenceAnalysis::
 | |
| RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
 | |
|   CachedNonLocalPointerInfo::iterator It =
 | |
|     NonLocalPointerDeps.find(P);
 | |
|   if (It == NonLocalPointerDeps.end()) return;
 | |
| 
 | |
|   // Remove all of the entries in the BB->val map.  This involves removing
 | |
|   // instructions from the reverse map.
 | |
|   NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
 | |
| 
 | |
|   for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
 | |
|     Instruction *Target = PInfo[i].getResult().getInst();
 | |
|     if (Target == 0) continue;  // Ignore non-local dep results.
 | |
|     assert(Target->getParent() == PInfo[i].getBB());
 | |
| 
 | |
|     // Eliminating the dirty entry from 'Cache', so update the reverse info.
 | |
|     RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
 | |
|   }
 | |
| 
 | |
|   // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
 | |
|   NonLocalPointerDeps.erase(It);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// invalidateCachedPointerInfo - This method is used to invalidate cached
 | |
| /// information about the specified pointer, because it may be too
 | |
| /// conservative in memdep.  This is an optional call that can be used when
 | |
| /// the client detects an equivalence between the pointer and some other
 | |
| /// value and replaces the other value with ptr. This can make Ptr available
 | |
| /// in more places that cached info does not necessarily keep.
 | |
| void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
 | |
|   // If Ptr isn't really a pointer, just ignore it.
 | |
|   if (!Ptr->getType()->isPointerTy()) return;
 | |
|   // Flush store info for the pointer.
 | |
|   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
 | |
|   // Flush load info for the pointer.
 | |
|   RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
 | |
| }
 | |
| 
 | |
| /// invalidateCachedPredecessors - Clear the PredIteratorCache info.
 | |
| /// This needs to be done when the CFG changes, e.g., due to splitting
 | |
| /// critical edges.
 | |
| void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
 | |
|   PredCache->clear();
 | |
| }
 | |
| 
 | |
| /// removeInstruction - Remove an instruction from the dependence analysis,
 | |
| /// updating the dependence of instructions that previously depended on it.
 | |
| /// This method attempts to keep the cache coherent using the reverse map.
 | |
| void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
 | |
|   // Walk through the Non-local dependencies, removing this one as the value
 | |
|   // for any cached queries.
 | |
|   NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
 | |
|   if (NLDI != NonLocalDeps.end()) {
 | |
|     NonLocalDepInfo &BlockMap = NLDI->second.first;
 | |
|     for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
 | |
|          DI != DE; ++DI)
 | |
|       if (Instruction *Inst = DI->getResult().getInst())
 | |
|         RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
 | |
|     NonLocalDeps.erase(NLDI);
 | |
|   }
 | |
| 
 | |
|   // If we have a cached local dependence query for this instruction, remove it.
 | |
|   //
 | |
|   LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
 | |
|   if (LocalDepEntry != LocalDeps.end()) {
 | |
|     // Remove us from DepInst's reverse set now that the local dep info is gone.
 | |
|     if (Instruction *Inst = LocalDepEntry->second.getInst())
 | |
|       RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
 | |
| 
 | |
|     // Remove this local dependency info.
 | |
|     LocalDeps.erase(LocalDepEntry);
 | |
|   }
 | |
| 
 | |
|   // If we have any cached pointer dependencies on this instruction, remove
 | |
|   // them.  If the instruction has non-pointer type, then it can't be a pointer
 | |
|   // base.
 | |
| 
 | |
|   // Remove it from both the load info and the store info.  The instruction
 | |
|   // can't be in either of these maps if it is non-pointer.
 | |
|   if (RemInst->getType()->isPointerTy()) {
 | |
|     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
 | |
|     RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the things that depend on the instruction we're removing.
 | |
|   //
 | |
|   SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
 | |
| 
 | |
|   // If we find RemInst as a clobber or Def in any of the maps for other values,
 | |
|   // we need to replace its entry with a dirty version of the instruction after
 | |
|   // it.  If RemInst is a terminator, we use a null dirty value.
 | |
|   //
 | |
|   // Using a dirty version of the instruction after RemInst saves having to scan
 | |
|   // the entire block to get to this point.
 | |
|   MemDepResult NewDirtyVal;
 | |
|   if (!RemInst->isTerminator())
 | |
|     NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
 | |
| 
 | |
|   ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
 | |
|   if (ReverseDepIt != ReverseLocalDeps.end()) {
 | |
|     SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
 | |
|     // RemInst can't be the terminator if it has local stuff depending on it.
 | |
|     assert(!ReverseDeps.empty() && !isa<TerminatorInst>(RemInst) &&
 | |
|            "Nothing can locally depend on a terminator");
 | |
| 
 | |
|     for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
 | |
|          E = ReverseDeps.end(); I != E; ++I) {
 | |
|       Instruction *InstDependingOnRemInst = *I;
 | |
|       assert(InstDependingOnRemInst != RemInst &&
 | |
|              "Already removed our local dep info");
 | |
| 
 | |
|       LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
 | |
| 
 | |
|       // Make sure to remember that new things depend on NewDepInst.
 | |
|       assert(NewDirtyVal.getInst() && "There is no way something else can have "
 | |
|              "a local dep on this if it is a terminator!");
 | |
|       ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
 | |
|                                                 InstDependingOnRemInst));
 | |
|     }
 | |
| 
 | |
|     ReverseLocalDeps.erase(ReverseDepIt);
 | |
| 
 | |
|     // Add new reverse deps after scanning the set, to avoid invalidating the
 | |
|     // 'ReverseDeps' reference.
 | |
|     while (!ReverseDepsToAdd.empty()) {
 | |
|       ReverseLocalDeps[ReverseDepsToAdd.back().first]
 | |
|         .insert(ReverseDepsToAdd.back().second);
 | |
|       ReverseDepsToAdd.pop_back();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
 | |
|   if (ReverseDepIt != ReverseNonLocalDeps.end()) {
 | |
|     SmallPtrSet<Instruction*, 4> &Set = ReverseDepIt->second;
 | |
|     for (SmallPtrSet<Instruction*, 4>::iterator I = Set.begin(), E = Set.end();
 | |
|          I != E; ++I) {
 | |
|       assert(*I != RemInst && "Already removed NonLocalDep info for RemInst");
 | |
| 
 | |
|       PerInstNLInfo &INLD = NonLocalDeps[*I];
 | |
|       // The information is now dirty!
 | |
|       INLD.second = true;
 | |
| 
 | |
|       for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
 | |
|            DE = INLD.first.end(); DI != DE; ++DI) {
 | |
|         if (DI->getResult().getInst() != RemInst) continue;
 | |
| 
 | |
|         // Convert to a dirty entry for the subsequent instruction.
 | |
|         DI->setResult(NewDirtyVal);
 | |
| 
 | |
|         if (Instruction *NextI = NewDirtyVal.getInst())
 | |
|           ReverseDepsToAdd.push_back(std::make_pair(NextI, *I));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ReverseNonLocalDeps.erase(ReverseDepIt);
 | |
| 
 | |
|     // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
 | |
|     while (!ReverseDepsToAdd.empty()) {
 | |
|       ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
 | |
|         .insert(ReverseDepsToAdd.back().second);
 | |
|       ReverseDepsToAdd.pop_back();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
 | |
|   // value in the NonLocalPointerDeps info.
 | |
|   ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
 | |
|     ReverseNonLocalPtrDeps.find(RemInst);
 | |
|   if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
 | |
|     SmallPtrSet<ValueIsLoadPair, 4> &Set = ReversePtrDepIt->second;
 | |
|     SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
 | |
| 
 | |
|     for (SmallPtrSet<ValueIsLoadPair, 4>::iterator I = Set.begin(),
 | |
|          E = Set.end(); I != E; ++I) {
 | |
|       ValueIsLoadPair P = *I;
 | |
|       assert(P.getPointer() != RemInst &&
 | |
|              "Already removed NonLocalPointerDeps info for RemInst");
 | |
| 
 | |
|       NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
 | |
| 
 | |
|       // The cache is not valid for any specific block anymore.
 | |
|       NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
 | |
| 
 | |
|       // Update any entries for RemInst to use the instruction after it.
 | |
|       for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
 | |
|            DI != DE; ++DI) {
 | |
|         if (DI->getResult().getInst() != RemInst) continue;
 | |
| 
 | |
|         // Convert to a dirty entry for the subsequent instruction.
 | |
|         DI->setResult(NewDirtyVal);
 | |
| 
 | |
|         if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
 | |
|           ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
 | |
|       }
 | |
| 
 | |
|       // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
 | |
|       // subsequent value may invalidate the sortedness.
 | |
|       std::sort(NLPDI.begin(), NLPDI.end());
 | |
|     }
 | |
| 
 | |
|     ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
 | |
| 
 | |
|     while (!ReversePtrDepsToAdd.empty()) {
 | |
|       ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
 | |
|         .insert(ReversePtrDepsToAdd.back().second);
 | |
|       ReversePtrDepsToAdd.pop_back();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?");
 | |
|   AA->deleteValue(RemInst);
 | |
|   DEBUG(verifyRemoved(RemInst));
 | |
| }
 | |
| /// verifyRemoved - Verify that the specified instruction does not occur
 | |
| /// in our internal data structures.
 | |
| void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
 | |
|   for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
 | |
|        E = LocalDeps.end(); I != E; ++I) {
 | |
|     assert(I->first != D && "Inst occurs in data structures");
 | |
|     assert(I->second.getInst() != D &&
 | |
|            "Inst occurs in data structures");
 | |
|   }
 | |
| 
 | |
|   for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
 | |
|        E = NonLocalPointerDeps.end(); I != E; ++I) {
 | |
|     assert(I->first.getPointer() != D && "Inst occurs in NLPD map key");
 | |
|     const NonLocalDepInfo &Val = I->second.NonLocalDeps;
 | |
|     for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
 | |
|          II != E; ++II)
 | |
|       assert(II->getResult().getInst() != D && "Inst occurs as NLPD value");
 | |
|   }
 | |
| 
 | |
|   for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
 | |
|        E = NonLocalDeps.end(); I != E; ++I) {
 | |
|     assert(I->first != D && "Inst occurs in data structures");
 | |
|     const PerInstNLInfo &INLD = I->second;
 | |
|     for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
 | |
|          EE = INLD.first.end(); II  != EE; ++II)
 | |
|       assert(II->getResult().getInst() != D && "Inst occurs in data structures");
 | |
|   }
 | |
| 
 | |
|   for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
 | |
|        E = ReverseLocalDeps.end(); I != E; ++I) {
 | |
|     assert(I->first != D && "Inst occurs in data structures");
 | |
|     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
 | |
|          EE = I->second.end(); II != EE; ++II)
 | |
|       assert(*II != D && "Inst occurs in data structures");
 | |
|   }
 | |
| 
 | |
|   for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
 | |
|        E = ReverseNonLocalDeps.end();
 | |
|        I != E; ++I) {
 | |
|     assert(I->first != D && "Inst occurs in data structures");
 | |
|     for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
 | |
|          EE = I->second.end(); II != EE; ++II)
 | |
|       assert(*II != D && "Inst occurs in data structures");
 | |
|   }
 | |
| 
 | |
|   for (ReverseNonLocalPtrDepTy::const_iterator
 | |
|        I = ReverseNonLocalPtrDeps.begin(),
 | |
|        E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
 | |
|     assert(I->first != D && "Inst occurs in rev NLPD map");
 | |
| 
 | |
|     for (SmallPtrSet<ValueIsLoadPair, 4>::const_iterator II = I->second.begin(),
 | |
|          E = I->second.end(); II != E; ++II)
 | |
|       assert(*II != ValueIsLoadPair(D, false) &&
 | |
|              *II != ValueIsLoadPair(D, true) &&
 | |
|              "Inst occurs in ReverseNonLocalPtrDeps map");
 | |
|   }
 | |
| 
 | |
| }
 |