llvm-6502/lib/Target/X86/X86ISelSimple.cpp
Chris Lattner 42c7786227 Make sure to pass the LLVM basic block in
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4433 91177308-0d34-0410-b5e6-96231b3b80d8
2002-10-30 00:47:40 +00:00

175 lines
5.8 KiB
C++

//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
//
// This file defines a simple peephole instruction selector for the x86 platform
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "llvm/Function.h"
#include "llvm/iTerminators.h"
#include "llvm/Type.h"
#include "llvm/Constants.h"
#include "llvm/Pass.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/InstVisitor.h"
#include <map>
namespace {
struct ISel : public FunctionPass, InstVisitor<ISel> {
TargetMachine &TM;
MachineFunction *F; // The function we are compiling into
MachineBasicBlock *BB; // The current MBB we are compiling
unsigned CurReg;
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
ISel(TargetMachine &tm)
: TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
/// runOnFunction - Top level implementation of instruction selection for
/// the entire function.
///
bool runOnFunction(Function &Fn) {
F = &MachineFunction::construct(&Fn, TM);
visit(Fn);
RegMap.clear();
F = 0;
return false; // We never modify the LLVM itself.
}
/// visitBasicBlock - This method is called when we are visiting a new basic
/// block. This simply creates a new MachineBasicBlock to emit code into
/// and adds it to the current MachineFunction. Subsequent visit* for
/// instructions will be invoked for all instructions in the basic block.
///
void visitBasicBlock(BasicBlock &LLVM_BB) {
BB = new MachineBasicBlock(&LLVM_BB);
// FIXME: Use the auto-insert form when it's available
F->getBasicBlockList().push_back(BB);
}
// Visitation methods for various instructions. These methods simply emit
// fixed X86 code for each instruction.
//
void visitReturnInst(ReturnInst &RI);
void visitAdd(BinaryOperator &B);
void visitInstruction(Instruction &I) {
std::cerr << "Cannot instruction select: " << I;
abort();
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void copyConstantToRegister(Constant *C, unsigned Reg);
/// getReg - This method turns an LLVM value into a register number. This
/// is guaranteed to produce the same register number for a particular value
/// every time it is queried.
///
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
unsigned getReg(Value *V) {
unsigned &Reg = RegMap[V];
if (Reg == 0)
Reg = CurReg++;
// If this operand is a constant, emit the code to copy the constant into
// the register here...
//
if (Constant *C = dyn_cast<Constant>(V))
copyConstantToRegister(C, Reg);
return Reg;
}
};
}
/// copyConstantToRegister - Output the instructions required to put the
/// specified constant into the specified register.
///
void ISel::copyConstantToRegister(Constant *C, unsigned R) {
assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
switch (C->getType()->getPrimitiveID()) {
case Type::SByteTyID:
BuildMI(BB, X86::MOVir8, R).addSImm(cast<ConstantSInt>(C)->getValue());
break;
case Type::UByteTyID:
BuildMI(BB, X86::MOVir8, R).addZImm(cast<ConstantUInt>(C)->getValue());
break;
case Type::ShortTyID:
BuildMI(BB, X86::MOVir16, R).addSImm(cast<ConstantSInt>(C)->getValue());
break;
case Type::UShortTyID:
BuildMI(BB, X86::MOVir16, R).addZImm(cast<ConstantUInt>(C)->getValue());
break;
case Type::IntTyID:
BuildMI(BB, X86::MOVir32, R).addSImm(cast<ConstantSInt>(C)->getValue());
break;
case Type::UIntTyID:
BuildMI(BB, X86::MOVir32, R).addZImm(cast<ConstantUInt>(C)->getValue());
break;
default: assert(0 && "Type not handled yet!");
}
}
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
/// we have the following possibilities:
///
/// ret void: No return value, simply emit a 'ret' instruction
/// ret sbyte, ubyte : Extend value into EAX and return
/// ret short, ushort: Extend value into EAX and return
/// ret int, uint : Move value into EAX and return
/// ret pointer : Move value into EAX and return
/// ret long, ulong : Move value into EAX/EDX (?) and return
/// ret float/double : ? Top of FP stack? XMM0?
///
void ISel::visitReturnInst(ReturnInst &I) {
if (I.getNumOperands() != 0) { // Not 'ret void'?
// Move result into a hard register... then emit a ret
visitInstruction(I); // abort
}
// Emit a simple 'ret' instruction... appending it to the end of the basic
// block
BuildMI(BB, X86::RET, 0);
}
/// 'add' instruction - Simply turn this into an x86 reg,reg add instruction.
void ISel::visitAdd(BinaryOperator &B) {
unsigned Op0r = getReg(B.getOperand(0)), Op1r = getReg(B.getOperand(1));
unsigned DestReg = getReg(B);
switch (B.getType()->getPrimitiveSize()) {
case 1: // UByte, SByte
BuildMI(BB, X86::ADDrr8, DestReg).addReg(Op0r).addReg(Op1r);
break;
case 2: // UShort, Short
BuildMI(BB, X86::ADDrr16, DestReg).addReg(Op0r).addReg(Op1r);
break;
case 4: // UInt, Int
BuildMI(BB, X86::ADDrr32, DestReg).addReg(Op0r).addReg(Op1r);
break;
case 8: // ULong, Long
default:
visitInstruction(B); // abort
}
}
/// createSimpleX86InstructionSelector - This pass converts an LLVM function
/// into a machine code representation is a very simple peep-hole fashion. The
/// generated code sucks but the implementation is nice and simple.
///
Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
return new ISel(TM);
}