mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216158 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			857 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Value.cpp - Implement the Value class -----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Value, ValueHandle, and User classes.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "LLVMContextImpl.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LeakDetector.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/IR/ValueSymbolTable.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                                Value Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static inline Type *checkType(Type *Ty) {
 | 
						|
  assert(Ty && "Value defined with a null type: Error!");
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
Value::Value(Type *ty, unsigned scid)
 | 
						|
    : VTy(checkType(ty)), UseList(nullptr), Name(nullptr), SubclassID(scid),
 | 
						|
      HasValueHandle(0), SubclassOptionalData(0), SubclassData(0) {
 | 
						|
  // FIXME: Why isn't this in the subclass gunk??
 | 
						|
  // Note, we cannot call isa<CallInst> before the CallInst has been
 | 
						|
  // constructed.
 | 
						|
  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
 | 
						|
    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
 | 
						|
           "invalid CallInst type!");
 | 
						|
  else if (SubclassID != BasicBlockVal &&
 | 
						|
           (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
 | 
						|
    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
 | 
						|
           "Cannot create non-first-class values except for constants!");
 | 
						|
}
 | 
						|
 | 
						|
Value::~Value() {
 | 
						|
  // Notify all ValueHandles (if present) that this value is going away.
 | 
						|
  if (HasValueHandle)
 | 
						|
    ValueHandleBase::ValueIsDeleted(this);
 | 
						|
 | 
						|
#ifndef NDEBUG      // Only in -g mode...
 | 
						|
  // Check to make sure that there are no uses of this value that are still
 | 
						|
  // around when the value is destroyed.  If there are, then we have a dangling
 | 
						|
  // reference and something is wrong.  This code is here to print out what is
 | 
						|
  // still being referenced.  The value in question should be printed as
 | 
						|
  // a <badref>
 | 
						|
  //
 | 
						|
  if (!use_empty()) {
 | 
						|
    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
 | 
						|
    for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
 | 
						|
      dbgs() << "Use still stuck around after Def is destroyed:"
 | 
						|
           << **I << "\n";
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  assert(use_empty() && "Uses remain when a value is destroyed!");
 | 
						|
 | 
						|
  // If this value is named, destroy the name.  This should not be in a symtab
 | 
						|
  // at this point.
 | 
						|
  if (Name && SubclassID != MDStringVal)
 | 
						|
    Name->Destroy();
 | 
						|
 | 
						|
  // There should be no uses of this object anymore, remove it.
 | 
						|
  LeakDetector::removeGarbageObject(this);
 | 
						|
}
 | 
						|
 | 
						|
/// hasNUses - Return true if this Value has exactly N users.
 | 
						|
///
 | 
						|
bool Value::hasNUses(unsigned N) const {
 | 
						|
  const_use_iterator UI = use_begin(), E = use_end();
 | 
						|
 | 
						|
  for (; N; --N, ++UI)
 | 
						|
    if (UI == E) return false;  // Too few.
 | 
						|
  return UI == E;
 | 
						|
}
 | 
						|
 | 
						|
/// hasNUsesOrMore - Return true if this value has N users or more.  This is
 | 
						|
/// logically equivalent to getNumUses() >= N.
 | 
						|
///
 | 
						|
bool Value::hasNUsesOrMore(unsigned N) const {
 | 
						|
  const_use_iterator UI = use_begin(), E = use_end();
 | 
						|
 | 
						|
  for (; N; --N, ++UI)
 | 
						|
    if (UI == E) return false;  // Too few.
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// isUsedInBasicBlock - Return true if this value is used in the specified
 | 
						|
/// basic block.
 | 
						|
bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
 | 
						|
  // This can be computed either by scanning the instructions in BB, or by
 | 
						|
  // scanning the use list of this Value. Both lists can be very long, but
 | 
						|
  // usually one is quite short.
 | 
						|
  //
 | 
						|
  // Scan both lists simultaneously until one is exhausted. This limits the
 | 
						|
  // search to the shorter list.
 | 
						|
  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
 | 
						|
  const_user_iterator UI = user_begin(), UE = user_end();
 | 
						|
  for (; BI != BE && UI != UE; ++BI, ++UI) {
 | 
						|
    // Scan basic block: Check if this Value is used by the instruction at BI.
 | 
						|
    if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
 | 
						|
      return true;
 | 
						|
    // Scan use list: Check if the use at UI is in BB.
 | 
						|
    const Instruction *User = dyn_cast<Instruction>(*UI);
 | 
						|
    if (User && User->getParent() == BB)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getNumUses - This method computes the number of uses of this Value.  This
 | 
						|
/// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
 | 
						|
/// values.
 | 
						|
unsigned Value::getNumUses() const {
 | 
						|
  return (unsigned)std::distance(use_begin(), use_end());
 | 
						|
}
 | 
						|
 | 
						|
static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
 | 
						|
  ST = nullptr;
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
    if (BasicBlock *P = I->getParent())
 | 
						|
      if (Function *PP = P->getParent())
 | 
						|
        ST = &PP->getValueSymbolTable();
 | 
						|
  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
 | 
						|
    if (Function *P = BB->getParent())
 | 
						|
      ST = &P->getValueSymbolTable();
 | 
						|
  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    if (Module *P = GV->getParent())
 | 
						|
      ST = &P->getValueSymbolTable();
 | 
						|
  } else if (Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
    if (Function *P = A->getParent())
 | 
						|
      ST = &P->getValueSymbolTable();
 | 
						|
  } else if (isa<MDString>(V))
 | 
						|
    return true;
 | 
						|
  else {
 | 
						|
    assert(isa<Constant>(V) && "Unknown value type!");
 | 
						|
    return true;  // no name is setable for this.
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
StringRef Value::getName() const {
 | 
						|
  // Make sure the empty string is still a C string. For historical reasons,
 | 
						|
  // some clients want to call .data() on the result and expect it to be null
 | 
						|
  // terminated.
 | 
						|
  if (!Name) return StringRef("", 0);
 | 
						|
  return Name->getKey();
 | 
						|
}
 | 
						|
 | 
						|
void Value::setName(const Twine &NewName) {
 | 
						|
  assert(SubclassID != MDStringVal &&
 | 
						|
         "Cannot set the name of MDString with this method!");
 | 
						|
 | 
						|
  // Fast path for common IRBuilder case of setName("") when there is no name.
 | 
						|
  if (NewName.isTriviallyEmpty() && !hasName())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallString<256> NameData;
 | 
						|
  StringRef NameRef = NewName.toStringRef(NameData);
 | 
						|
  assert(NameRef.find_first_of(0) == StringRef::npos &&
 | 
						|
         "Null bytes are not allowed in names");
 | 
						|
 | 
						|
  // Name isn't changing?
 | 
						|
  if (getName() == NameRef)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
 | 
						|
 | 
						|
  // Get the symbol table to update for this object.
 | 
						|
  ValueSymbolTable *ST;
 | 
						|
  if (getSymTab(this, ST))
 | 
						|
    return;  // Cannot set a name on this value (e.g. constant).
 | 
						|
 | 
						|
  if (Function *F = dyn_cast<Function>(this))
 | 
						|
    getContext().pImpl->IntrinsicIDCache.erase(F);
 | 
						|
 | 
						|
  if (!ST) { // No symbol table to update?  Just do the change.
 | 
						|
    if (NameRef.empty()) {
 | 
						|
      // Free the name for this value.
 | 
						|
      Name->Destroy();
 | 
						|
      Name = nullptr;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Name)
 | 
						|
      Name->Destroy();
 | 
						|
 | 
						|
    // NOTE: Could optimize for the case the name is shrinking to not deallocate
 | 
						|
    // then reallocated.
 | 
						|
 | 
						|
    // Create the new name.
 | 
						|
    Name = ValueName::Create(NameRef);
 | 
						|
    Name->setValue(this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // NOTE: Could optimize for the case the name is shrinking to not deallocate
 | 
						|
  // then reallocated.
 | 
						|
  if (hasName()) {
 | 
						|
    // Remove old name.
 | 
						|
    ST->removeValueName(Name);
 | 
						|
    Name->Destroy();
 | 
						|
    Name = nullptr;
 | 
						|
 | 
						|
    if (NameRef.empty())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Name is changing to something new.
 | 
						|
  Name = ST->createValueName(NameRef, this);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// takeName - transfer the name from V to this value, setting V's name to
 | 
						|
/// empty.  It is an error to call V->takeName(V).
 | 
						|
void Value::takeName(Value *V) {
 | 
						|
  assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
 | 
						|
 | 
						|
  ValueSymbolTable *ST = nullptr;
 | 
						|
  // If this value has a name, drop it.
 | 
						|
  if (hasName()) {
 | 
						|
    // Get the symtab this is in.
 | 
						|
    if (getSymTab(this, ST)) {
 | 
						|
      // We can't set a name on this value, but we need to clear V's name if
 | 
						|
      // it has one.
 | 
						|
      if (V->hasName()) V->setName("");
 | 
						|
      return;  // Cannot set a name on this value (e.g. constant).
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove old name.
 | 
						|
    if (ST)
 | 
						|
      ST->removeValueName(Name);
 | 
						|
    Name->Destroy();
 | 
						|
    Name = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we know that this has no name.
 | 
						|
 | 
						|
  // If V has no name either, we're done.
 | 
						|
  if (!V->hasName()) return;
 | 
						|
 | 
						|
  // Get this's symtab if we didn't before.
 | 
						|
  if (!ST) {
 | 
						|
    if (getSymTab(this, ST)) {
 | 
						|
      // Clear V's name.
 | 
						|
      V->setName("");
 | 
						|
      return;  // Cannot set a name on this value (e.g. constant).
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Get V's ST, this should always succed, because V has a name.
 | 
						|
  ValueSymbolTable *VST;
 | 
						|
  bool Failure = getSymTab(V, VST);
 | 
						|
  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
 | 
						|
 | 
						|
  // If these values are both in the same symtab, we can do this very fast.
 | 
						|
  // This works even if both values have no symtab yet.
 | 
						|
  if (ST == VST) {
 | 
						|
    // Take the name!
 | 
						|
    Name = V->Name;
 | 
						|
    V->Name = nullptr;
 | 
						|
    Name->setValue(this);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, things are slightly more complex.  Remove V's name from VST and
 | 
						|
  // then reinsert it into ST.
 | 
						|
 | 
						|
  if (VST)
 | 
						|
    VST->removeValueName(V->Name);
 | 
						|
  Name = V->Name;
 | 
						|
  V->Name = nullptr;
 | 
						|
  Name->setValue(this);
 | 
						|
 | 
						|
  if (ST)
 | 
						|
    ST->reinsertValue(this);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
 | 
						|
                     Constant *C) {
 | 
						|
  if (!Cache.insert(Expr))
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (auto &O : Expr->operands()) {
 | 
						|
    if (O == C)
 | 
						|
      return true;
 | 
						|
    auto *CE = dyn_cast<ConstantExpr>(O);
 | 
						|
    if (!CE)
 | 
						|
      continue;
 | 
						|
    if (contains(Cache, CE, C))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool contains(Value *Expr, Value *V) {
 | 
						|
  if (Expr == V)
 | 
						|
    return true;
 | 
						|
 | 
						|
  auto *C = dyn_cast<Constant>(V);
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
 | 
						|
  auto *CE = dyn_cast<ConstantExpr>(Expr);
 | 
						|
  if (!CE)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallPtrSet<ConstantExpr *, 4> Cache;
 | 
						|
  return contains(Cache, CE, C);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void Value::replaceAllUsesWith(Value *New) {
 | 
						|
  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
 | 
						|
  assert(!contains(New, this) &&
 | 
						|
         "this->replaceAllUsesWith(expr(this)) is NOT valid!");
 | 
						|
  assert(New->getType() == getType() &&
 | 
						|
         "replaceAllUses of value with new value of different type!");
 | 
						|
 | 
						|
  // Notify all ValueHandles (if present) that this value is going away.
 | 
						|
  if (HasValueHandle)
 | 
						|
    ValueHandleBase::ValueIsRAUWd(this, New);
 | 
						|
 | 
						|
  while (!use_empty()) {
 | 
						|
    Use &U = *UseList;
 | 
						|
    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
 | 
						|
    // constant because they are uniqued.
 | 
						|
    if (auto *C = dyn_cast<Constant>(U.getUser())) {
 | 
						|
      if (!isa<GlobalValue>(C)) {
 | 
						|
        C->replaceUsesOfWithOnConstant(this, New, &U);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    U.set(New);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
 | 
						|
    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// Various metrics for how much to strip off of pointers.
 | 
						|
enum PointerStripKind {
 | 
						|
  PSK_ZeroIndices,
 | 
						|
  PSK_ZeroIndicesAndAliases,
 | 
						|
  PSK_InBoundsConstantIndices,
 | 
						|
  PSK_InBounds
 | 
						|
};
 | 
						|
 | 
						|
template <PointerStripKind StripKind>
 | 
						|
static Value *stripPointerCastsAndOffsets(Value *V) {
 | 
						|
  if (!V->getType()->isPointerTy())
 | 
						|
    return V;
 | 
						|
 | 
						|
  // Even though we don't look through PHI nodes, we could be called on an
 | 
						|
  // instruction in an unreachable block, which may be on a cycle.
 | 
						|
  SmallPtrSet<Value *, 4> Visited;
 | 
						|
 | 
						|
  Visited.insert(V);
 | 
						|
  do {
 | 
						|
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
      switch (StripKind) {
 | 
						|
      case PSK_ZeroIndicesAndAliases:
 | 
						|
      case PSK_ZeroIndices:
 | 
						|
        if (!GEP->hasAllZeroIndices())
 | 
						|
          return V;
 | 
						|
        break;
 | 
						|
      case PSK_InBoundsConstantIndices:
 | 
						|
        if (!GEP->hasAllConstantIndices())
 | 
						|
          return V;
 | 
						|
        // fallthrough
 | 
						|
      case PSK_InBounds:
 | 
						|
        if (!GEP->isInBounds())
 | 
						|
          return V;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      V = GEP->getPointerOperand();
 | 
						|
    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
 | 
						|
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
 | 
						|
      V = cast<Operator>(V)->getOperand(0);
 | 
						|
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | 
						|
      if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
 | 
						|
        return V;
 | 
						|
      V = GA->getAliasee();
 | 
						|
    } else {
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | 
						|
  } while (Visited.insert(V));
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
} // namespace
 | 
						|
 | 
						|
Value *Value::stripPointerCasts() {
 | 
						|
  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
 | 
						|
}
 | 
						|
 | 
						|
Value *Value::stripPointerCastsNoFollowAliases() {
 | 
						|
  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
 | 
						|
}
 | 
						|
 | 
						|
Value *Value::stripInBoundsConstantOffsets() {
 | 
						|
  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
 | 
						|
}
 | 
						|
 | 
						|
Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
 | 
						|
                                                        APInt &Offset) {
 | 
						|
  if (!getType()->isPointerTy())
 | 
						|
    return this;
 | 
						|
 | 
						|
  assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
 | 
						|
                                     getType())->getAddressSpace()) &&
 | 
						|
         "The offset must have exactly as many bits as our pointer.");
 | 
						|
 | 
						|
  // Even though we don't look through PHI nodes, we could be called on an
 | 
						|
  // instruction in an unreachable block, which may be on a cycle.
 | 
						|
  SmallPtrSet<Value *, 4> Visited;
 | 
						|
  Visited.insert(this);
 | 
						|
  Value *V = this;
 | 
						|
  do {
 | 
						|
    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
      if (!GEP->isInBounds())
 | 
						|
        return V;
 | 
						|
      APInt GEPOffset(Offset);
 | 
						|
      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
 | 
						|
        return V;
 | 
						|
      Offset = GEPOffset;
 | 
						|
      V = GEP->getPointerOperand();
 | 
						|
    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
 | 
						|
               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
 | 
						|
      V = cast<Operator>(V)->getOperand(0);
 | 
						|
    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | 
						|
      V = GA->getAliasee();
 | 
						|
    } else {
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | 
						|
  } while (Visited.insert(V));
 | 
						|
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
Value *Value::stripInBoundsOffsets() {
 | 
						|
  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
 | 
						|
}
 | 
						|
 | 
						|
/// isDereferenceablePointer - Test if this value is always a pointer to
 | 
						|
/// allocated and suitably aligned memory for a simple load or store.
 | 
						|
static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
 | 
						|
                                     SmallPtrSetImpl<const Value *> &Visited) {
 | 
						|
  // Note that it is not safe to speculate into a malloc'd region because
 | 
						|
  // malloc may return null.
 | 
						|
 | 
						|
  // These are obviously ok.
 | 
						|
  if (isa<AllocaInst>(V)) return true;
 | 
						|
 | 
						|
  // It's not always safe to follow a bitcast, for example:
 | 
						|
  //   bitcast i8* (alloca i8) to i32*
 | 
						|
  // would result in a 4-byte load from a 1-byte alloca. However,
 | 
						|
  // if we're casting from a pointer from a type of larger size
 | 
						|
  // to a type of smaller size (or the same size), and the alignment
 | 
						|
  // is at least as large as for the resulting pointer type, then
 | 
						|
  // we can look through the bitcast.
 | 
						|
  if (DL)
 | 
						|
    if (const BitCastInst* BC = dyn_cast<BitCastInst>(V)) {
 | 
						|
      Type *STy = BC->getSrcTy()->getPointerElementType(),
 | 
						|
           *DTy = BC->getDestTy()->getPointerElementType();
 | 
						|
      if (STy->isSized() && DTy->isSized() &&
 | 
						|
          (DL->getTypeStoreSize(STy) >=
 | 
						|
           DL->getTypeStoreSize(DTy)) &&
 | 
						|
          (DL->getABITypeAlignment(STy) >=
 | 
						|
           DL->getABITypeAlignment(DTy)))
 | 
						|
        return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
 | 
						|
    }
 | 
						|
 | 
						|
  // Global variables which can't collapse to null are ok.
 | 
						|
  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | 
						|
    return !GV->hasExternalWeakLinkage();
 | 
						|
 | 
						|
  // byval arguments are okay. Arguments specifically marked as
 | 
						|
  // dereferenceable are okay too.
 | 
						|
  if (const Argument *A = dyn_cast<Argument>(V)) {
 | 
						|
    if (A->hasByValAttr())
 | 
						|
      return true;
 | 
						|
    else if (uint64_t Bytes = A->getDereferenceableBytes()) {
 | 
						|
      Type *Ty = V->getType()->getPointerElementType();
 | 
						|
      if (Ty->isSized() && DL && DL->getTypeStoreSize(Ty) <= Bytes)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return values from call sites specifically marked as dereferenceable are
 | 
						|
  // also okay.
 | 
						|
  if (ImmutableCallSite CS = V) {
 | 
						|
    if (uint64_t Bytes = CS.getDereferenceableBytes(0)) {
 | 
						|
      Type *Ty = V->getType()->getPointerElementType();
 | 
						|
      if (Ty->isSized() && DL && DL->getTypeStoreSize(Ty) <= Bytes)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // For GEPs, determine if the indexing lands within the allocated object.
 | 
						|
  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | 
						|
    // Conservatively require that the base pointer be fully dereferenceable.
 | 
						|
    if (!Visited.insert(GEP->getOperand(0)))
 | 
						|
      return false;
 | 
						|
    if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
 | 
						|
      return false;
 | 
						|
    // Check the indices.
 | 
						|
    gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
    for (User::const_op_iterator I = GEP->op_begin()+1,
 | 
						|
         E = GEP->op_end(); I != E; ++I) {
 | 
						|
      Value *Index = *I;
 | 
						|
      Type *Ty = *GTI++;
 | 
						|
      // Struct indices can't be out of bounds.
 | 
						|
      if (isa<StructType>(Ty))
 | 
						|
        continue;
 | 
						|
      ConstantInt *CI = dyn_cast<ConstantInt>(Index);
 | 
						|
      if (!CI)
 | 
						|
        return false;
 | 
						|
      // Zero is always ok.
 | 
						|
      if (CI->isZero())
 | 
						|
        continue;
 | 
						|
      // Check to see that it's within the bounds of an array.
 | 
						|
      ArrayType *ATy = dyn_cast<ArrayType>(Ty);
 | 
						|
      if (!ATy)
 | 
						|
        return false;
 | 
						|
      if (CI->getValue().getActiveBits() > 64)
 | 
						|
        return false;
 | 
						|
      if (CI->getZExtValue() >= ATy->getNumElements())
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    // Indices check out; this is dereferenceable.
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
 | 
						|
    return isDereferenceablePointer(ASC->getOperand(0), DL, Visited);
 | 
						|
 | 
						|
  // If we don't know, assume the worst.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isDereferenceablePointer - Test if this value is always a pointer to
 | 
						|
/// allocated and suitably aligned memory for a simple load or store.
 | 
						|
bool Value::isDereferenceablePointer(const DataLayout *DL) const {
 | 
						|
  // When dereferenceability information is provided by a dereferenceable
 | 
						|
  // attribute, we know exactly how many bytes are dereferenceable. If we can
 | 
						|
  // determine the exact offset to the attributed variable, we can use that
 | 
						|
  // information here.
 | 
						|
  Type *Ty = getType()->getPointerElementType();
 | 
						|
  if (Ty->isSized() && DL) {
 | 
						|
    APInt Offset(DL->getTypeStoreSizeInBits(getType()), 0);
 | 
						|
    const Value *BV = stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
 | 
						|
 | 
						|
    APInt DerefBytes(Offset.getBitWidth(), 0);
 | 
						|
    if (const Argument *A = dyn_cast<Argument>(BV))
 | 
						|
      DerefBytes = A->getDereferenceableBytes();
 | 
						|
    else if (ImmutableCallSite CS = BV)
 | 
						|
      DerefBytes = CS.getDereferenceableBytes(0);
 | 
						|
 | 
						|
    if (DerefBytes.getBoolValue() && Offset.isNonNegative()) {
 | 
						|
      if (DerefBytes.uge(Offset + DL->getTypeStoreSize(Ty)))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallPtrSet<const Value *, 32> Visited;
 | 
						|
  return ::isDereferenceablePointer(this, DL, Visited);
 | 
						|
}
 | 
						|
 | 
						|
/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
 | 
						|
/// return the value in the PHI node corresponding to PredBB.  If not, return
 | 
						|
/// ourself.  This is useful if you want to know the value something has in a
 | 
						|
/// predecessor block.
 | 
						|
Value *Value::DoPHITranslation(const BasicBlock *CurBB,
 | 
						|
                               const BasicBlock *PredBB) {
 | 
						|
  PHINode *PN = dyn_cast<PHINode>(this);
 | 
						|
  if (PN && PN->getParent() == CurBB)
 | 
						|
    return PN->getIncomingValueForBlock(PredBB);
 | 
						|
  return this;
 | 
						|
}
 | 
						|
 | 
						|
LLVMContext &Value::getContext() const { return VTy->getContext(); }
 | 
						|
 | 
						|
void Value::reverseUseList() {
 | 
						|
  if (!UseList || !UseList->Next)
 | 
						|
    // No need to reverse 0 or 1 uses.
 | 
						|
    return;
 | 
						|
 | 
						|
  Use *Head = UseList;
 | 
						|
  Use *Current = UseList->Next;
 | 
						|
  Head->Next = nullptr;
 | 
						|
  while (Current) {
 | 
						|
    Use *Next = Current->Next;
 | 
						|
    Current->Next = Head;
 | 
						|
    Head->setPrev(&Current->Next);
 | 
						|
    Head = Current;
 | 
						|
    Current = Next;
 | 
						|
  }
 | 
						|
  UseList = Head;
 | 
						|
  Head->setPrev(&UseList);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             ValueHandleBase Class
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
 | 
						|
/// List is known to point into the existing use list.
 | 
						|
void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
 | 
						|
  assert(List && "Handle list is null?");
 | 
						|
 | 
						|
  // Splice ourselves into the list.
 | 
						|
  Next = *List;
 | 
						|
  *List = this;
 | 
						|
  setPrevPtr(List);
 | 
						|
  if (Next) {
 | 
						|
    Next->setPrevPtr(&Next);
 | 
						|
    assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
 | 
						|
  assert(List && "Must insert after existing node");
 | 
						|
 | 
						|
  Next = List->Next;
 | 
						|
  setPrevPtr(&List->Next);
 | 
						|
  List->Next = this;
 | 
						|
  if (Next)
 | 
						|
    Next->setPrevPtr(&Next);
 | 
						|
}
 | 
						|
 | 
						|
/// AddToUseList - Add this ValueHandle to the use list for VP.
 | 
						|
void ValueHandleBase::AddToUseList() {
 | 
						|
  assert(VP.getPointer() && "Null pointer doesn't have a use list!");
 | 
						|
 | 
						|
  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
 | 
						|
 | 
						|
  if (VP.getPointer()->HasValueHandle) {
 | 
						|
    // If this value already has a ValueHandle, then it must be in the
 | 
						|
    // ValueHandles map already.
 | 
						|
    ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
 | 
						|
    assert(Entry && "Value doesn't have any handles?");
 | 
						|
    AddToExistingUseList(&Entry);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Ok, it doesn't have any handles yet, so we must insert it into the
 | 
						|
  // DenseMap.  However, doing this insertion could cause the DenseMap to
 | 
						|
  // reallocate itself, which would invalidate all of the PrevP pointers that
 | 
						|
  // point into the old table.  Handle this by checking for reallocation and
 | 
						|
  // updating the stale pointers only if needed.
 | 
						|
  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
 | 
						|
  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
 | 
						|
 | 
						|
  ValueHandleBase *&Entry = Handles[VP.getPointer()];
 | 
						|
  assert(!Entry && "Value really did already have handles?");
 | 
						|
  AddToExistingUseList(&Entry);
 | 
						|
  VP.getPointer()->HasValueHandle = true;
 | 
						|
 | 
						|
  // If reallocation didn't happen or if this was the first insertion, don't
 | 
						|
  // walk the table.
 | 
						|
  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
 | 
						|
      Handles.size() == 1) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, reallocation did happen.  Fix the Prev Pointers.
 | 
						|
  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
 | 
						|
       E = Handles.end(); I != E; ++I) {
 | 
						|
    assert(I->second && I->first == I->second->VP.getPointer() &&
 | 
						|
           "List invariant broken!");
 | 
						|
    I->second->setPrevPtr(&I->second);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveFromUseList - Remove this ValueHandle from its current use list.
 | 
						|
void ValueHandleBase::RemoveFromUseList() {
 | 
						|
  assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
 | 
						|
         "Pointer doesn't have a use list!");
 | 
						|
 | 
						|
  // Unlink this from its use list.
 | 
						|
  ValueHandleBase **PrevPtr = getPrevPtr();
 | 
						|
  assert(*PrevPtr == this && "List invariant broken");
 | 
						|
 | 
						|
  *PrevPtr = Next;
 | 
						|
  if (Next) {
 | 
						|
    assert(Next->getPrevPtr() == &Next && "List invariant broken");
 | 
						|
    Next->setPrevPtr(PrevPtr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the Next pointer was null, then it is possible that this was the last
 | 
						|
  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
 | 
						|
  // map.
 | 
						|
  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
 | 
						|
  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
 | 
						|
  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
 | 
						|
    Handles.erase(VP.getPointer());
 | 
						|
    VP.getPointer()->HasValueHandle = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ValueHandleBase::ValueIsDeleted(Value *V) {
 | 
						|
  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
 | 
						|
 | 
						|
  // Get the linked list base, which is guaranteed to exist since the
 | 
						|
  // HasValueHandle flag is set.
 | 
						|
  LLVMContextImpl *pImpl = V->getContext().pImpl;
 | 
						|
  ValueHandleBase *Entry = pImpl->ValueHandles[V];
 | 
						|
  assert(Entry && "Value bit set but no entries exist");
 | 
						|
 | 
						|
  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
 | 
						|
  // and remove themselves from the list without breaking our iteration.  This
 | 
						|
  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
 | 
						|
  // Note that we deliberately do not the support the case when dropping a value
 | 
						|
  // handle results in a new value handle being permanently added to the list
 | 
						|
  // (as might occur in theory for CallbackVH's): the new value handle will not
 | 
						|
  // be processed and the checking code will mete out righteous punishment if
 | 
						|
  // the handle is still present once we have finished processing all the other
 | 
						|
  // value handles (it is fine to momentarily add then remove a value handle).
 | 
						|
  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
 | 
						|
    Iterator.RemoveFromUseList();
 | 
						|
    Iterator.AddToExistingUseListAfter(Entry);
 | 
						|
    assert(Entry->Next == &Iterator && "Loop invariant broken.");
 | 
						|
 | 
						|
    switch (Entry->getKind()) {
 | 
						|
    case Assert:
 | 
						|
      break;
 | 
						|
    case Tracking:
 | 
						|
      // Mark that this value has been deleted by setting it to an invalid Value
 | 
						|
      // pointer.
 | 
						|
      Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
 | 
						|
      break;
 | 
						|
    case Weak:
 | 
						|
      // Weak just goes to null, which will unlink it from the list.
 | 
						|
      Entry->operator=(nullptr);
 | 
						|
      break;
 | 
						|
    case Callback:
 | 
						|
      // Forward to the subclass's implementation.
 | 
						|
      static_cast<CallbackVH*>(Entry)->deleted();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // All callbacks, weak references, and assertingVHs should be dropped by now.
 | 
						|
  if (V->HasValueHandle) {
 | 
						|
#ifndef NDEBUG      // Only in +Asserts mode...
 | 
						|
    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
 | 
						|
           << "\n";
 | 
						|
    if (pImpl->ValueHandles[V]->getKind() == Assert)
 | 
						|
      llvm_unreachable("An asserting value handle still pointed to this"
 | 
						|
                       " value!");
 | 
						|
 | 
						|
#endif
 | 
						|
    llvm_unreachable("All references to V were not removed?");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
 | 
						|
  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
 | 
						|
  assert(Old != New && "Changing value into itself!");
 | 
						|
 | 
						|
  // Get the linked list base, which is guaranteed to exist since the
 | 
						|
  // HasValueHandle flag is set.
 | 
						|
  LLVMContextImpl *pImpl = Old->getContext().pImpl;
 | 
						|
  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
 | 
						|
 | 
						|
  assert(Entry && "Value bit set but no entries exist");
 | 
						|
 | 
						|
  // We use a local ValueHandleBase as an iterator so that
 | 
						|
  // ValueHandles can add and remove themselves from the list without
 | 
						|
  // breaking our iteration.  This is not really an AssertingVH; we
 | 
						|
  // just have to give ValueHandleBase some kind.
 | 
						|
  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
 | 
						|
    Iterator.RemoveFromUseList();
 | 
						|
    Iterator.AddToExistingUseListAfter(Entry);
 | 
						|
    assert(Entry->Next == &Iterator && "Loop invariant broken.");
 | 
						|
 | 
						|
    switch (Entry->getKind()) {
 | 
						|
    case Assert:
 | 
						|
      // Asserting handle does not follow RAUW implicitly.
 | 
						|
      break;
 | 
						|
    case Tracking:
 | 
						|
      // Tracking goes to new value like a WeakVH. Note that this may make it
 | 
						|
      // something incompatible with its templated type. We don't want to have a
 | 
						|
      // virtual (or inline) interface to handle this though, so instead we make
 | 
						|
      // the TrackingVH accessors guarantee that a client never sees this value.
 | 
						|
 | 
						|
      // FALLTHROUGH
 | 
						|
    case Weak:
 | 
						|
      // Weak goes to the new value, which will unlink it from Old's list.
 | 
						|
      Entry->operator=(New);
 | 
						|
      break;
 | 
						|
    case Callback:
 | 
						|
      // Forward to the subclass's implementation.
 | 
						|
      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // If any new tracking or weak value handles were added while processing the
 | 
						|
  // list, then complain about it now.
 | 
						|
  if (Old->HasValueHandle)
 | 
						|
    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
 | 
						|
      switch (Entry->getKind()) {
 | 
						|
      case Tracking:
 | 
						|
      case Weak:
 | 
						|
        dbgs() << "After RAUW from " << *Old->getType() << " %"
 | 
						|
               << Old->getName() << " to " << *New->getType() << " %"
 | 
						|
               << New->getName() << "\n";
 | 
						|
        llvm_unreachable("A tracking or weak value handle still pointed to the"
 | 
						|
                         " old value!\n");
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Pin the vtable to this file.
 | 
						|
void CallbackVH::anchor() {}
 |