mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-26 18:20:39 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80621 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1044 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1044 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a top-down list scheduler, using standard algorithms.
 | |
| // The basic approach uses a priority queue of available nodes to schedule.
 | |
| // One at a time, nodes are taken from the priority queue (thus in priority
 | |
| // order), checked for legality to schedule, and emitted if legal.
 | |
| //
 | |
| // Nodes may not be legal to schedule either due to structural hazards (e.g.
 | |
| // pipeline or resource constraints) or because an input to the instruction has
 | |
| // not completed execution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "post-RA-sched"
 | |
| #include "ExactHazardRecognizer.h"
 | |
| #include "SimpleHazardRecognizer.h"
 | |
| #include "ScheduleDAGInstrs.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/LatencyPriorityQueue.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include <map>
 | |
| #include <set>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumNoops, "Number of noops inserted");
 | |
| STATISTIC(NumStalls, "Number of pipeline stalls");
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableAntiDepBreaking("break-anti-dependencies",
 | |
|                       cl::desc("Break post-RA scheduling anti-dependencies"),
 | |
|                       cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnablePostRAHazardAvoidance("avoid-hazards",
 | |
|                       cl::desc("Enable exact hazard avoidance"),
 | |
|                       cl::init(false), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN PostRAScheduler : public MachineFunctionPass {
 | |
|   public:
 | |
|     static char ID;
 | |
|     PostRAScheduler() : MachineFunctionPass(&ID) {}
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     const char *getPassName() const {
 | |
|       return "Post RA top-down list latency scheduler";
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &Fn);
 | |
|   };
 | |
|   char PostRAScheduler::ID = 0;
 | |
| 
 | |
|   class VISIBILITY_HIDDEN SchedulePostRATDList : public ScheduleDAGInstrs {
 | |
|     /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|     ///
 | |
|     LatencyPriorityQueue AvailableQueue;
 | |
|   
 | |
|     /// PendingQueue - This contains all of the instructions whose operands have
 | |
|     /// been issued, but their results are not ready yet (due to the latency of
 | |
|     /// the operation).  Once the operands becomes available, the instruction is
 | |
|     /// added to the AvailableQueue.
 | |
|     std::vector<SUnit*> PendingQueue;
 | |
| 
 | |
|     /// Topo - A topological ordering for SUnits.
 | |
|     ScheduleDAGTopologicalSort Topo;
 | |
| 
 | |
|     /// AllocatableSet - The set of allocatable registers.
 | |
|     /// We'll be ignoring anti-dependencies on non-allocatable registers,
 | |
|     /// because they may not be safe to break.
 | |
|     const BitVector AllocatableSet;
 | |
| 
 | |
|     /// HazardRec - The hazard recognizer to use.
 | |
|     ScheduleHazardRecognizer *HazardRec;
 | |
| 
 | |
|     /// Classes - For live regs that are only used in one register class in a
 | |
|     /// live range, the register class. If the register is not live, the
 | |
|     /// corresponding value is null. If the register is live but used in
 | |
|     /// multiple register classes, the corresponding value is -1 casted to a
 | |
|     /// pointer.
 | |
|     const TargetRegisterClass *
 | |
|       Classes[TargetRegisterInfo::FirstVirtualRegister];
 | |
| 
 | |
|     /// RegRegs - Map registers to all their references within a live range.
 | |
|     std::multimap<unsigned, MachineOperand *> RegRefs;
 | |
| 
 | |
|     /// The index of the most recent kill (proceding bottom-up), or ~0u if
 | |
|     /// the register is not live.
 | |
|     unsigned KillIndices[TargetRegisterInfo::FirstVirtualRegister];
 | |
| 
 | |
|     /// The index of the most recent complete def (proceding bottom up), or ~0u
 | |
|     /// if the register is live.
 | |
|     unsigned DefIndices[TargetRegisterInfo::FirstVirtualRegister];
 | |
| 
 | |
|   public:
 | |
|     SchedulePostRATDList(MachineFunction &MF,
 | |
|                          const MachineLoopInfo &MLI,
 | |
|                          const MachineDominatorTree &MDT,
 | |
|                          ScheduleHazardRecognizer *HR)
 | |
|       : ScheduleDAGInstrs(MF, MLI, MDT), Topo(SUnits),
 | |
|         AllocatableSet(TRI->getAllocatableSet(MF)),
 | |
|         HazardRec(HR) {}
 | |
| 
 | |
|     ~SchedulePostRATDList() {
 | |
|       delete HazardRec;
 | |
|     }
 | |
| 
 | |
|     /// StartBlock - Initialize register live-range state for scheduling in
 | |
|     /// this block.
 | |
|     ///
 | |
|     void StartBlock(MachineBasicBlock *BB);
 | |
| 
 | |
|     /// Schedule - Schedule the instruction range using list scheduling.
 | |
|     ///
 | |
|     void Schedule();
 | |
|     
 | |
|     /// FixupKills - Fix register kill flags that have been made
 | |
|     /// invalid due to scheduling
 | |
|     ///
 | |
|     void FixupKills(MachineBasicBlock *MBB);
 | |
| 
 | |
|     /// Observe - Update liveness information to account for the current
 | |
|     /// instruction, which will not be scheduled.
 | |
|     ///
 | |
|     void Observe(MachineInstr *MI, unsigned Count);
 | |
| 
 | |
|     /// FinishBlock - Clean up register live-range state.
 | |
|     ///
 | |
|     void FinishBlock();
 | |
| 
 | |
|     /// GenerateLivenessForKills - If true then generate Def/Kill
 | |
|     /// information for use in updating register kill. If false then
 | |
|     /// generate Def/Kill information for anti-dependence breaking.
 | |
|     bool GenerateLivenessForKills;
 | |
| 
 | |
|   private:
 | |
|     void PrescanInstruction(MachineInstr *MI);
 | |
|     void ScanInstruction(MachineInstr *MI, unsigned Count);
 | |
|     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
 | |
|     void ReleaseSuccessors(SUnit *SU);
 | |
|     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | |
|     void ListScheduleTopDown();
 | |
|     bool BreakAntiDependencies();
 | |
|     unsigned findSuitableFreeRegister(unsigned AntiDepReg,
 | |
|                                       unsigned LastNewReg,
 | |
|                                       const TargetRegisterClass *);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// isSchedulingBoundary - Test if the given instruction should be
 | |
| /// considered a scheduling boundary. This primarily includes labels
 | |
| /// and terminators.
 | |
| ///
 | |
| static bool isSchedulingBoundary(const MachineInstr *MI,
 | |
|                                  const MachineFunction &MF) {
 | |
|   // Terminators and labels can't be scheduled around.
 | |
|   if (MI->getDesc().isTerminator() || MI->isLabel())
 | |
|     return true;
 | |
| 
 | |
|   // Don't attempt to schedule around any instruction that modifies
 | |
|   // a stack-oriented pointer, as it's unlikely to be profitable. This
 | |
|   // saves compile time, because it doesn't require every single
 | |
|   // stack slot reference to depend on the instruction that does the
 | |
|   // modification.
 | |
|   const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
 | |
|   if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore()))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
 | |
|   DEBUG(errs() << "PostRAScheduler\n");
 | |
| 
 | |
|   const MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | |
|   const MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
 | |
|   const InstrItineraryData &InstrItins = Fn.getTarget().getInstrItineraryData();
 | |
|   ScheduleHazardRecognizer *HR = EnablePostRAHazardAvoidance ?
 | |
|     (ScheduleHazardRecognizer *)new ExactHazardRecognizer(InstrItins) :
 | |
|     (ScheduleHazardRecognizer *)new SimpleHazardRecognizer();
 | |
| 
 | |
|   SchedulePostRATDList Scheduler(Fn, MLI, MDT, HR);
 | |
| 
 | |
|   // Loop over all of the basic blocks
 | |
|   for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
 | |
|        MBB != MBBe; ++MBB) {
 | |
|     // Initialize register live-range state for scheduling in this block.
 | |
|     Scheduler.GenerateLivenessForKills = false;
 | |
|     Scheduler.StartBlock(MBB);
 | |
| 
 | |
|     // Schedule each sequence of instructions not interrupted by a label
 | |
|     // or anything else that effectively needs to shut down scheduling.
 | |
|     MachineBasicBlock::iterator Current = MBB->end();
 | |
|     unsigned Count = MBB->size(), CurrentCount = Count;
 | |
|     for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
 | |
|       MachineInstr *MI = prior(I);
 | |
|       if (isSchedulingBoundary(MI, Fn)) {
 | |
|         Scheduler.Run(MBB, I, Current, CurrentCount);
 | |
|         Scheduler.EmitSchedule();
 | |
|         Current = MI;
 | |
|         CurrentCount = Count - 1;
 | |
|         Scheduler.Observe(MI, CurrentCount);
 | |
|       }
 | |
|       I = MI;
 | |
|       --Count;
 | |
|     }
 | |
|     assert(Count == 0 && "Instruction count mismatch!");
 | |
|     assert((MBB->begin() == Current || CurrentCount != 0) &&
 | |
|            "Instruction count mismatch!");
 | |
|     Scheduler.Run(MBB, MBB->begin(), Current, CurrentCount);
 | |
|     Scheduler.EmitSchedule();
 | |
| 
 | |
|     // Clean up register live-range state.
 | |
|     Scheduler.FinishBlock();
 | |
| 
 | |
|     // Initialize register live-range state again and update register kills
 | |
|     Scheduler.GenerateLivenessForKills = true;
 | |
|     Scheduler.StartBlock(MBB);
 | |
|     Scheduler.FixupKills(MBB);
 | |
|     Scheduler.FinishBlock();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| /// StartBlock - Initialize register live-range state for scheduling in
 | |
| /// this block.
 | |
| ///
 | |
| void SchedulePostRATDList::StartBlock(MachineBasicBlock *BB) {
 | |
|   // Call the superclass.
 | |
|   ScheduleDAGInstrs::StartBlock(BB);
 | |
| 
 | |
|   // Reset the hazard recognizer.
 | |
|   HazardRec->Reset();
 | |
| 
 | |
|   // Clear out the register class data.
 | |
|   std::fill(Classes, array_endof(Classes),
 | |
|             static_cast<const TargetRegisterClass *>(0));
 | |
| 
 | |
|   // Initialize the indices to indicate that no registers are live.
 | |
|   std::fill(KillIndices, array_endof(KillIndices), ~0u);
 | |
|   std::fill(DefIndices, array_endof(DefIndices), BB->size());
 | |
| 
 | |
|   // Determine the live-out physregs for this block.
 | |
|   if (!BB->empty() && BB->back().getDesc().isReturn())
 | |
|     // In a return block, examine the function live-out regs.
 | |
|     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
 | |
|          E = MRI.liveout_end(); I != E; ++I) {
 | |
|       unsigned Reg = *I;
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       KillIndices[Reg] = BB->size();
 | |
|       DefIndices[Reg] = ~0u;
 | |
|       // Repeat, for all aliases.
 | |
|       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|         unsigned AliasReg = *Alias;
 | |
|         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|         KillIndices[AliasReg] = BB->size();
 | |
|         DefIndices[AliasReg] = ~0u;
 | |
|       }
 | |
|     }
 | |
|   else
 | |
|     // In a non-return block, examine the live-in regs of all successors.
 | |
|     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
 | |
|          SE = BB->succ_end(); SI != SE; ++SI)
 | |
|       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
 | |
|            E = (*SI)->livein_end(); I != E; ++I) {
 | |
|         unsigned Reg = *I;
 | |
|         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|         KillIndices[Reg] = BB->size();
 | |
|         DefIndices[Reg] = ~0u;
 | |
|         // Repeat, for all aliases.
 | |
|         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|           unsigned AliasReg = *Alias;
 | |
|           Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|           KillIndices[AliasReg] = BB->size();
 | |
|           DefIndices[AliasReg] = ~0u;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|   if (!GenerateLivenessForKills) {
 | |
|     // Consider callee-saved registers as live-out, since we're running after
 | |
|     // prologue/epilogue insertion so there's no way to add additional
 | |
|     // saved registers.
 | |
|     //
 | |
|     // TODO: there is a new method
 | |
|     // MachineFrameInfo::getPristineRegs(MBB). It gives you a list of
 | |
|     // CSRs that have not been saved when entering the MBB. The
 | |
|     // remaining CSRs have been saved and can be treated like call
 | |
|     // clobbered registers.
 | |
|     for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
 | |
|       unsigned Reg = *I;
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       KillIndices[Reg] = BB->size();
 | |
|       DefIndices[Reg] = ~0u;
 | |
|       // Repeat, for all aliases.
 | |
|       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|         unsigned AliasReg = *Alias;
 | |
|         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|         KillIndices[AliasReg] = BB->size();
 | |
|         DefIndices[AliasReg] = ~0u;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Schedule - Schedule the instruction range using list scheduling.
 | |
| ///
 | |
| void SchedulePostRATDList::Schedule() {
 | |
|   DEBUG(errs() << "********** List Scheduling **********\n");
 | |
|   
 | |
|   // Build the scheduling graph.
 | |
|   BuildSchedGraph();
 | |
| 
 | |
|   if (EnableAntiDepBreaking) {
 | |
|     if (BreakAntiDependencies()) {
 | |
|       // We made changes. Update the dependency graph.
 | |
|       // Theoretically we could update the graph in place:
 | |
|       // When a live range is changed to use a different register, remove
 | |
|       // the def's anti-dependence *and* output-dependence edges due to
 | |
|       // that register, and add new anti-dependence and output-dependence
 | |
|       // edges based on the next live range of the register.
 | |
|       SUnits.clear();
 | |
|       EntrySU = SUnit();
 | |
|       ExitSU = SUnit();
 | |
|       BuildSchedGraph();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(this));
 | |
| 
 | |
|   AvailableQueue.initNodes(SUnits);
 | |
| 
 | |
|   ListScheduleTopDown();
 | |
|   
 | |
|   AvailableQueue.releaseState();
 | |
| }
 | |
| 
 | |
| /// Observe - Update liveness information to account for the current
 | |
| /// instruction, which will not be scheduled.
 | |
| ///
 | |
| void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
 | |
|   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
 | |
| 
 | |
|   // Any register which was defined within the previous scheduling region
 | |
|   // may have been rescheduled and its lifetime may overlap with registers
 | |
|   // in ways not reflected in our current liveness state. For each such
 | |
|   // register, adjust the liveness state to be conservatively correct.
 | |
|   for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
 | |
|     if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
 | |
|       assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
 | |
|       // Mark this register to be non-renamable.
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       // Move the def index to the end of the previous region, to reflect
 | |
|       // that the def could theoretically have been scheduled at the end.
 | |
|       DefIndices[Reg] = InsertPosIndex;
 | |
|     }
 | |
| 
 | |
|   PrescanInstruction(MI);
 | |
|   ScanInstruction(MI, Count);
 | |
| }
 | |
| 
 | |
| /// FinishBlock - Clean up register live-range state.
 | |
| ///
 | |
| void SchedulePostRATDList::FinishBlock() {
 | |
|   RegRefs.clear();
 | |
| 
 | |
|   // Call the superclass.
 | |
|   ScheduleDAGInstrs::FinishBlock();
 | |
| }
 | |
| 
 | |
| /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
 | |
| /// critical path.
 | |
| static SDep *CriticalPathStep(SUnit *SU) {
 | |
|   SDep *Next = 0;
 | |
|   unsigned NextDepth = 0;
 | |
|   // Find the predecessor edge with the greatest depth.
 | |
|   for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
 | |
|        P != PE; ++P) {
 | |
|     SUnit *PredSU = P->getSUnit();
 | |
|     unsigned PredLatency = P->getLatency();
 | |
|     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
 | |
|     // In the case of a latency tie, prefer an anti-dependency edge over
 | |
|     // other types of edges.
 | |
|     if (NextDepth < PredTotalLatency ||
 | |
|         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
 | |
|       NextDepth = PredTotalLatency;
 | |
|       Next = &*P;
 | |
|     }
 | |
|   }
 | |
|   return Next;
 | |
| }
 | |
| 
 | |
| void SchedulePostRATDList::PrescanInstruction(MachineInstr *MI) {
 | |
|   // Scan the register operands for this instruction and update
 | |
|   // Classes and RegRefs.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     const TargetRegisterClass *NewRC = 0;
 | |
|     
 | |
|     if (i < MI->getDesc().getNumOperands())
 | |
|       NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
 | |
| 
 | |
|     // For now, only allow the register to be changed if its register
 | |
|     // class is consistent across all uses.
 | |
|     if (!Classes[Reg] && NewRC)
 | |
|       Classes[Reg] = NewRC;
 | |
|     else if (!NewRC || Classes[Reg] != NewRC)
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
| 
 | |
|     // Now check for aliases.
 | |
|     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|       // If an alias of the reg is used during the live range, give up.
 | |
|       // Note that this allows us to skip checking if AntiDepReg
 | |
|       // overlaps with any of the aliases, among other things.
 | |
|       unsigned AliasReg = *Alias;
 | |
|       if (Classes[AliasReg]) {
 | |
|         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we're still willing to consider this register, note the reference.
 | |
|     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
 | |
|       RegRefs.insert(std::make_pair(Reg, &MO));
 | |
|   }
 | |
| }
 | |
| 
 | |
| void SchedulePostRATDList::ScanInstruction(MachineInstr *MI,
 | |
|                                            unsigned Count) {
 | |
|   // Update liveness.
 | |
|   // Proceding upwards, registers that are defed but not used in this
 | |
|   // instruction are now dead.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     if (!MO.isDef()) continue;
 | |
|     // Ignore two-addr defs.
 | |
|     if (MI->isRegTiedToUseOperand(i)) continue;
 | |
| 
 | |
|     DefIndices[Reg] = Count;
 | |
|     KillIndices[Reg] = ~0u;
 | |
|           assert(((KillIndices[Reg] == ~0u) !=
 | |
|                   (DefIndices[Reg] == ~0u)) &&
 | |
|                "Kill and Def maps aren't consistent for Reg!");
 | |
|     Classes[Reg] = 0;
 | |
|     RegRefs.erase(Reg);
 | |
|     // Repeat, for all subregs.
 | |
|     for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | |
|          *Subreg; ++Subreg) {
 | |
|       unsigned SubregReg = *Subreg;
 | |
|       DefIndices[SubregReg] = Count;
 | |
|       KillIndices[SubregReg] = ~0u;
 | |
|       Classes[SubregReg] = 0;
 | |
|       RegRefs.erase(SubregReg);
 | |
|     }
 | |
|     // Conservatively mark super-registers as unusable.
 | |
|     for (const unsigned *Super = TRI->getSuperRegisters(Reg);
 | |
|          *Super; ++Super) {
 | |
|       unsigned SuperReg = *Super;
 | |
|       Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg()) continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0) continue;
 | |
|     if (!MO.isUse()) continue;
 | |
| 
 | |
|     const TargetRegisterClass *NewRC = 0;
 | |
|     if (i < MI->getDesc().getNumOperands())
 | |
|       NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
 | |
| 
 | |
|     // For now, only allow the register to be changed if its register
 | |
|     // class is consistent across all uses.
 | |
|     if (!Classes[Reg] && NewRC)
 | |
|       Classes[Reg] = NewRC;
 | |
|     else if (!NewRC || Classes[Reg] != NewRC)
 | |
|       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
 | |
| 
 | |
|     RegRefs.insert(std::make_pair(Reg, &MO));
 | |
| 
 | |
|     // It wasn't previously live but now it is, this is a kill.
 | |
|     if (KillIndices[Reg] == ~0u) {
 | |
|       KillIndices[Reg] = Count;
 | |
|       DefIndices[Reg] = ~0u;
 | |
|           assert(((KillIndices[Reg] == ~0u) !=
 | |
|                   (DefIndices[Reg] == ~0u)) &&
 | |
|                "Kill and Def maps aren't consistent for Reg!");
 | |
|     }
 | |
|     // Repeat, for all aliases.
 | |
|     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
 | |
|       unsigned AliasReg = *Alias;
 | |
|       if (KillIndices[AliasReg] == ~0u) {
 | |
|         KillIndices[AliasReg] = Count;
 | |
|         DefIndices[AliasReg] = ~0u;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| SchedulePostRATDList::findSuitableFreeRegister(unsigned AntiDepReg,
 | |
|                                                unsigned LastNewReg,
 | |
|                                                const TargetRegisterClass *RC) {
 | |
|   for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
 | |
|        RE = RC->allocation_order_end(MF); R != RE; ++R) {
 | |
|     unsigned NewReg = *R;
 | |
|     // Don't replace a register with itself.
 | |
|     if (NewReg == AntiDepReg) continue;
 | |
|     // Don't replace a register with one that was recently used to repair
 | |
|     // an anti-dependence with this AntiDepReg, because that would
 | |
|     // re-introduce that anti-dependence.
 | |
|     if (NewReg == LastNewReg) continue;
 | |
|     // If NewReg is dead and NewReg's most recent def is not before
 | |
|     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
 | |
|     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
 | |
|            "Kill and Def maps aren't consistent for AntiDepReg!");
 | |
|     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
 | |
|            "Kill and Def maps aren't consistent for NewReg!");
 | |
|     if (KillIndices[NewReg] != ~0u ||
 | |
|         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
 | |
|         KillIndices[AntiDepReg] > DefIndices[NewReg])
 | |
|       continue;
 | |
|     return NewReg;
 | |
|   }
 | |
| 
 | |
|   // No registers are free and available!
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// BreakAntiDependencies - Identifiy anti-dependencies along the critical path
 | |
| /// of the ScheduleDAG and break them by renaming registers.
 | |
| ///
 | |
| bool SchedulePostRATDList::BreakAntiDependencies() {
 | |
|   // The code below assumes that there is at least one instruction,
 | |
|   // so just duck out immediately if the block is empty.
 | |
|   if (SUnits.empty()) return false;
 | |
| 
 | |
|   // Find the node at the bottom of the critical path.
 | |
|   SUnit *Max = 0;
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     SUnit *SU = &SUnits[i];
 | |
|     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
 | |
|       Max = SU;
 | |
|   }
 | |
| 
 | |
|   DEBUG(errs() << "Critical path has total latency "
 | |
|         << (Max->getDepth() + Max->Latency) << "\n");
 | |
| 
 | |
|   // Track progress along the critical path through the SUnit graph as we walk
 | |
|   // the instructions.
 | |
|   SUnit *CriticalPathSU = Max;
 | |
|   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
 | |
| 
 | |
|   // Consider this pattern:
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   // There are three anti-dependencies here, and without special care,
 | |
|   // we'd break all of them using the same register:
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   // because at each anti-dependence, B is the first register that
 | |
|   // isn't A which is free.  This re-introduces anti-dependencies
 | |
|   // at all but one of the original anti-dependencies that we were
 | |
|   // trying to break.  To avoid this, keep track of the most recent
 | |
|   // register that each register was replaced with, avoid
 | |
|   // using it to repair an anti-dependence on the same register.
 | |
|   // This lets us produce this:
 | |
|   //   A = ...
 | |
|   //   ... = A
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   //   C = ...
 | |
|   //   ... = C
 | |
|   //   B = ...
 | |
|   //   ... = B
 | |
|   // This still has an anti-dependence on B, but at least it isn't on the
 | |
|   // original critical path.
 | |
|   //
 | |
|   // TODO: If we tracked more than one register here, we could potentially
 | |
|   // fix that remaining critical edge too. This is a little more involved,
 | |
|   // because unlike the most recent register, less recent registers should
 | |
|   // still be considered, though only if no other registers are available.
 | |
|   unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
 | |
| 
 | |
|   // Attempt to break anti-dependence edges on the critical path. Walk the
 | |
|   // instructions from the bottom up, tracking information about liveness
 | |
|   // as we go to help determine which registers are available.
 | |
|   bool Changed = false;
 | |
|   unsigned Count = InsertPosIndex - 1;
 | |
|   for (MachineBasicBlock::iterator I = InsertPos, E = Begin;
 | |
|        I != E; --Count) {
 | |
|     MachineInstr *MI = --I;
 | |
| 
 | |
|     // After regalloc, IMPLICIT_DEF instructions aren't safe to treat as
 | |
|     // dependence-breaking. In the case of an INSERT_SUBREG, the IMPLICIT_DEF
 | |
|     // is left behind appearing to clobber the super-register, while the
 | |
|     // subregister needs to remain live. So we just ignore them.
 | |
|     if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
 | |
|       continue;
 | |
| 
 | |
|     // Check if this instruction has a dependence on the critical path that
 | |
|     // is an anti-dependence that we may be able to break. If it is, set
 | |
|     // AntiDepReg to the non-zero register associated with the anti-dependence.
 | |
|     //
 | |
|     // We limit our attention to the critical path as a heuristic to avoid
 | |
|     // breaking anti-dependence edges that aren't going to significantly
 | |
|     // impact the overall schedule. There are a limited number of registers
 | |
|     // and we want to save them for the important edges.
 | |
|     // 
 | |
|     // TODO: Instructions with multiple defs could have multiple
 | |
|     // anti-dependencies. The current code here only knows how to break one
 | |
|     // edge per instruction. Note that we'd have to be able to break all of
 | |
|     // the anti-dependencies in an instruction in order to be effective.
 | |
|     unsigned AntiDepReg = 0;
 | |
|     if (MI == CriticalPathMI) {
 | |
|       if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
 | |
|         SUnit *NextSU = Edge->getSUnit();
 | |
| 
 | |
|         // Only consider anti-dependence edges.
 | |
|         if (Edge->getKind() == SDep::Anti) {
 | |
|           AntiDepReg = Edge->getReg();
 | |
|           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
 | |
|           // Don't break anti-dependencies on non-allocatable registers.
 | |
|           if (!AllocatableSet.test(AntiDepReg))
 | |
|             AntiDepReg = 0;
 | |
|           else {
 | |
|             // If the SUnit has other dependencies on the SUnit that it
 | |
|             // anti-depends on, don't bother breaking the anti-dependency
 | |
|             // since those edges would prevent such units from being
 | |
|             // scheduled past each other regardless.
 | |
|             //
 | |
|             // Also, if there are dependencies on other SUnits with the
 | |
|             // same register as the anti-dependency, don't attempt to
 | |
|             // break it.
 | |
|             for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
 | |
|                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
 | |
|               if (P->getSUnit() == NextSU ?
 | |
|                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
 | |
|                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
 | |
|                 AntiDepReg = 0;
 | |
|                 break;
 | |
|               }
 | |
|           }
 | |
|         }
 | |
|         CriticalPathSU = NextSU;
 | |
|         CriticalPathMI = CriticalPathSU->getInstr();
 | |
|       } else {
 | |
|         // We've reached the end of the critical path.
 | |
|         CriticalPathSU = 0;
 | |
|         CriticalPathMI = 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PrescanInstruction(MI);
 | |
| 
 | |
|     // If this instruction has a use of AntiDepReg, breaking it
 | |
|     // is invalid.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
|       if (MO.isUse() && AntiDepReg == Reg) {
 | |
|         AntiDepReg = 0;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Determine AntiDepReg's register class, if it is live and is
 | |
|     // consistently used within a single class.
 | |
|     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
 | |
|     assert((AntiDepReg == 0 || RC != NULL) &&
 | |
|            "Register should be live if it's causing an anti-dependence!");
 | |
|     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
 | |
|       AntiDepReg = 0;
 | |
| 
 | |
|     // Look for a suitable register to use to break the anti-depenence.
 | |
|     //
 | |
|     // TODO: Instead of picking the first free register, consider which might
 | |
|     // be the best.
 | |
|     if (AntiDepReg != 0) {
 | |
|       if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
 | |
|                                                      LastNewReg[AntiDepReg],
 | |
|                                                      RC)) {
 | |
|         DEBUG(errs() << "Breaking anti-dependence edge on "
 | |
|               << TRI->getName(AntiDepReg)
 | |
|               << " with " << RegRefs.count(AntiDepReg) << " references"
 | |
|               << " using " << TRI->getName(NewReg) << "!\n");
 | |
| 
 | |
|         // Update the references to the old register to refer to the new
 | |
|         // register.
 | |
|         std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
 | |
|                   std::multimap<unsigned, MachineOperand *>::iterator>
 | |
|            Range = RegRefs.equal_range(AntiDepReg);
 | |
|         for (std::multimap<unsigned, MachineOperand *>::iterator
 | |
|              Q = Range.first, QE = Range.second; Q != QE; ++Q)
 | |
|           Q->second->setReg(NewReg);
 | |
| 
 | |
|         // We just went back in time and modified history; the
 | |
|         // liveness information for the anti-depenence reg is now
 | |
|         // inconsistent. Set the state as if it were dead.
 | |
|         Classes[NewReg] = Classes[AntiDepReg];
 | |
|         DefIndices[NewReg] = DefIndices[AntiDepReg];
 | |
|         KillIndices[NewReg] = KillIndices[AntiDepReg];
 | |
|         assert(((KillIndices[NewReg] == ~0u) !=
 | |
|                 (DefIndices[NewReg] == ~0u)) &&
 | |
|              "Kill and Def maps aren't consistent for NewReg!");
 | |
| 
 | |
|         Classes[AntiDepReg] = 0;
 | |
|         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
 | |
|         KillIndices[AntiDepReg] = ~0u;
 | |
|         assert(((KillIndices[AntiDepReg] == ~0u) !=
 | |
|                 (DefIndices[AntiDepReg] == ~0u)) &&
 | |
|              "Kill and Def maps aren't consistent for AntiDepReg!");
 | |
| 
 | |
|         RegRefs.erase(AntiDepReg);
 | |
|         Changed = true;
 | |
|         LastNewReg[AntiDepReg] = NewReg;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ScanInstruction(MI, Count);
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// FixupKills - Fix the register kill flags, they may have been made
 | |
| /// incorrect by instruction reordering.
 | |
| ///
 | |
| void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
 | |
|   DEBUG(errs() << "Fixup kills for BB ID#" << MBB->getNumber() << '\n');
 | |
| 
 | |
|   std::set<unsigned> killedRegs;
 | |
|   BitVector ReservedRegs = TRI->getReservedRegs(MF);
 | |
|   
 | |
|   // Examine block from end to start...
 | |
|   unsigned Count = MBB->size();
 | |
|   for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
 | |
|        I != E; --Count) {
 | |
|     MachineInstr *MI = --I;
 | |
| 
 | |
|     // Update liveness.  Registers that are defed but not used in this
 | |
|     // instruction are now dead. Mark register and all subregs as they
 | |
|     // are completely defined.
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (Reg == 0) continue;
 | |
|       if (!MO.isDef()) continue;
 | |
|       // Ignore two-addr defs.
 | |
|       if (MI->isRegTiedToUseOperand(i)) continue;
 | |
|       
 | |
|       KillIndices[Reg] = ~0u;
 | |
|       
 | |
|       // Repeat for all subregs.
 | |
|       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | |
|            *Subreg; ++Subreg) {
 | |
|         KillIndices[*Subreg] = ~0u;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Examine all used registers and set kill flag. When a register
 | |
|     // is used multiple times we only set the kill flag on the first
 | |
|     // use.
 | |
|     killedRegs.clear();
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isUse()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
 | |
| 
 | |
|       bool kill = false;
 | |
|       if (killedRegs.find(Reg) == killedRegs.end()) {
 | |
|         kill = true;
 | |
|         // A register is not killed if any subregs are live...
 | |
|         for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | |
|              *Subreg; ++Subreg) {
 | |
|           if (KillIndices[*Subreg] != ~0u) {
 | |
|             kill = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If subreg is not live, then register is killed if it became
 | |
|         // live in this instruction
 | |
|         if (kill)
 | |
|           kill = (KillIndices[Reg] == ~0u);
 | |
|       }
 | |
|       
 | |
|       if (MO.isKill() != kill) {
 | |
|         MO.setIsKill(kill);
 | |
|         DEBUG(errs() << "Fixed " << MO << " in ");
 | |
|         DEBUG(MI->dump());
 | |
|       }
 | |
|       
 | |
|       killedRegs.insert(Reg);
 | |
|     }
 | |
|     
 | |
|     // Mark any used register (that is not using undef) and subregs as
 | |
|     // now live...
 | |
|     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &MO = MI->getOperand(i);
 | |
|       if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if ((Reg == 0) || ReservedRegs.test(Reg)) continue;
 | |
| 
 | |
|       KillIndices[Reg] = Count;
 | |
|       
 | |
|       for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
 | |
|            *Subreg; ++Subreg) {
 | |
|         KillIndices[*Subreg] = Count;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the PendingQueue if the count reaches zero. Also update its cycle bound.
 | |
| void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
|   --SuccSU->NumPredsLeft;
 | |
|   
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft < 0) {
 | |
|     errs() << "*** Scheduling failed! ***\n";
 | |
|     SuccSU->dump(this);
 | |
|     errs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   
 | |
|   // Compute how many cycles it will be before this actually becomes
 | |
|   // available.  This is the max of the start time of all predecessors plus
 | |
|   // their latencies.
 | |
|   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
 | |
|   
 | |
|   // If all the node's predecessors are scheduled, this node is ready
 | |
|   // to be scheduled. Ignore the special ExitSU node.
 | |
|   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | |
|     PendingQueue.push_back(SuccSU);
 | |
| }
 | |
| 
 | |
| /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
 | |
| void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I)
 | |
|     ReleaseSucc(SU, &*I);
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   DEBUG(errs() << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   DEBUG(SU->dump(this));
 | |
|   
 | |
|   Sequence.push_back(SU);
 | |
|   assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!");
 | |
|   SU->setDepthToAtLeast(CurCycle);
 | |
| 
 | |
|   ReleaseSuccessors(SU);
 | |
|   SU->isScheduled = true;
 | |
|   AvailableQueue.ScheduledNode(SU);
 | |
| }
 | |
| 
 | |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down
 | |
| /// schedulers.
 | |
| void SchedulePostRATDList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
| 
 | |
|   // Release any successors of the special Entry node.
 | |
|   ReleaseSuccessors(&EntrySU);
 | |
| 
 | |
|   // All leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (SUnits[i].Preds.empty()) {
 | |
|       AvailableQueue.push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In any cycle where we can't schedule any instructions, we must
 | |
|   // stall or emit a noop, depending on the target.
 | |
|   bool CycleInstCnt = 0;
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   Sequence.reserve(SUnits.size());
 | |
|   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
 | |
|     // Check to see if any of the pending instructions are ready to issue.  If
 | |
|     // so, add them to the available queue.
 | |
|     unsigned MinDepth = ~0u;
 | |
|     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | |
|       if (PendingQueue[i]->getDepth() <= CurCycle) {
 | |
|         AvailableQueue.push(PendingQueue[i]);
 | |
|         PendingQueue[i]->isAvailable = true;
 | |
|         PendingQueue[i] = PendingQueue.back();
 | |
|         PendingQueue.pop_back();
 | |
|         --i; --e;
 | |
|       } else if (PendingQueue[i]->getDepth() < MinDepth)
 | |
|         MinDepth = PendingQueue[i]->getDepth();
 | |
|     }
 | |
| 
 | |
|     DEBUG(errs() << "\n*** Examining Available\n";
 | |
|           LatencyPriorityQueue q = AvailableQueue;
 | |
|           while (!q.empty()) {
 | |
|             SUnit *su = q.pop();
 | |
|             errs() << "Height " << su->getHeight() << ": ";
 | |
|             su->dump(this);
 | |
|           });
 | |
| 
 | |
|     SUnit *FoundSUnit = 0;
 | |
| 
 | |
|     bool HasNoopHazards = false;
 | |
|     while (!AvailableQueue.empty()) {
 | |
|       SUnit *CurSUnit = AvailableQueue.pop();
 | |
| 
 | |
|       ScheduleHazardRecognizer::HazardType HT =
 | |
|         HazardRec->getHazardType(CurSUnit);
 | |
|       if (HT == ScheduleHazardRecognizer::NoHazard) {
 | |
|         FoundSUnit = CurSUnit;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Remember if this is a noop hazard.
 | |
|       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
 | |
| 
 | |
|       NotReady.push_back(CurSUnit);
 | |
|     }
 | |
| 
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     if (!NotReady.empty()) {
 | |
|       AvailableQueue.push_all(NotReady);
 | |
|       NotReady.clear();
 | |
|     }
 | |
| 
 | |
|     // If we found a node to schedule, do it now.
 | |
|     if (FoundSUnit) {
 | |
|       ScheduleNodeTopDown(FoundSUnit, CurCycle);
 | |
|       HazardRec->EmitInstruction(FoundSUnit);
 | |
|       CycleInstCnt++;
 | |
| 
 | |
|       // If we are using the target-specific hazards, then don't
 | |
|       // advance the cycle time just because we schedule a node. If
 | |
|       // the target allows it we can schedule multiple nodes in the
 | |
|       // same cycle.
 | |
|       if (!EnablePostRAHazardAvoidance) {
 | |
|         if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
 | |
|           ++CurCycle;
 | |
|       }
 | |
|     } else {
 | |
|       if (CycleInstCnt > 0) {
 | |
|         DEBUG(errs() << "*** Finished cycle " << CurCycle << '\n');
 | |
|         HazardRec->AdvanceCycle();
 | |
|       } else if (!HasNoopHazards) {
 | |
|         // Otherwise, we have a pipeline stall, but no other problem,
 | |
|         // just advance the current cycle and try again.
 | |
|         DEBUG(errs() << "*** Stall in cycle " << CurCycle << '\n');
 | |
|         HazardRec->AdvanceCycle();
 | |
|         ++NumStalls;
 | |
|       } else {
 | |
|         // Otherwise, we have no instructions to issue and we have instructions
 | |
|         // that will fault if we don't do this right.  This is the case for
 | |
|         // processors without pipeline interlocks and other cases.
 | |
|         DEBUG(errs() << "*** Emitting noop in cycle " << CurCycle << '\n');
 | |
|         HazardRec->EmitNoop();
 | |
|         Sequence.push_back(0);   // NULL here means noop
 | |
|         ++NumNoops;
 | |
|       }
 | |
| 
 | |
|       ++CurCycle;
 | |
|       CycleInstCnt = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   VerifySchedule(/*isBottomUp=*/false);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         Public Constructor Functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FunctionPass *llvm::createPostRAScheduler() {
 | |
|   return new PostRAScheduler();
 | |
| }
 |