mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Summary: In PNaCl, most atomic instructions have their own @llvm.nacl.atomic.* function, each one, with a few exceptions, represents a consistent behaviour across all NaCl-supported targets. Unfortunately, the atomic RMW operations nand, [u]min, and [u]max aren't directly represented by any such @llvm.nacl.atomic.* function. This patch refines shouldExpandAtomicRMWInIR in TargetLowering so that a future `Le32TargetLowering` class can selectively inform the caller how the target desires the atomic RMW instruction to be expanded (ie via load-linked/store-conditional for ARM/AArch64, via cmpxchg for X86/others?, or not at all for Mips) if at all. This does not represent a behavioural change and as such no tests were added. Patch by: Richard Diamond. Reviewers: jfb Reviewed By: jfb Subscribers: jfb, aemerson, t.p.northover, llvm-commits Differential Revision: http://reviews.llvm.org/D7713 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231250 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			565 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			565 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- AtomicExpandPass.cpp - Expand atomic instructions -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a pass (at IR level) to replace atomic instructions with
 | |
| // either (intrinsic-based) load-linked/store-conditional loops or AtomicCmpXchg.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "atomic-expand"
 | |
| 
 | |
| namespace {
 | |
|   class AtomicExpand: public FunctionPass {
 | |
|     const TargetMachine *TM;
 | |
|     const TargetLowering *TLI;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     explicit AtomicExpand(const TargetMachine *TM = nullptr)
 | |
|       : FunctionPass(ID), TM(TM), TLI(nullptr) {
 | |
|       initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   private:
 | |
|     bool bracketInstWithFences(Instruction *I, AtomicOrdering Order,
 | |
|                                bool IsStore, bool IsLoad);
 | |
|     bool expandAtomicLoad(LoadInst *LI);
 | |
|     bool expandAtomicLoadToLL(LoadInst *LI);
 | |
|     bool expandAtomicLoadToCmpXchg(LoadInst *LI);
 | |
|     bool expandAtomicStore(StoreInst *SI);
 | |
|     bool tryExpandAtomicRMW(AtomicRMWInst *AI);
 | |
|     bool expandAtomicRMWToLLSC(AtomicRMWInst *AI);
 | |
|     bool expandAtomicRMWToCmpXchg(AtomicRMWInst *AI);
 | |
|     bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
 | |
|     bool isIdempotentRMW(AtomicRMWInst *AI);
 | |
|     bool simplifyIdempotentRMW(AtomicRMWInst *AI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char AtomicExpand::ID = 0;
 | |
| char &llvm::AtomicExpandID = AtomicExpand::ID;
 | |
| INITIALIZE_TM_PASS(AtomicExpand, "atomic-expand",
 | |
|     "Expand Atomic calls in terms of either load-linked & store-conditional or cmpxchg",
 | |
|     false, false)
 | |
| 
 | |
| FunctionPass *llvm::createAtomicExpandPass(const TargetMachine *TM) {
 | |
|   return new AtomicExpand(TM);
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::runOnFunction(Function &F) {
 | |
|   if (!TM || !TM->getSubtargetImpl(F)->enableAtomicExpand())
 | |
|     return false;
 | |
|   TLI = TM->getSubtargetImpl(F)->getTargetLowering();
 | |
| 
 | |
|   SmallVector<Instruction *, 1> AtomicInsts;
 | |
| 
 | |
|   // Changing control-flow while iterating through it is a bad idea, so gather a
 | |
|   // list of all atomic instructions before we start.
 | |
|   for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
 | |
|     if (I->isAtomic())
 | |
|       AtomicInsts.push_back(&*I);
 | |
|   }
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (auto I : AtomicInsts) {
 | |
|     auto LI = dyn_cast<LoadInst>(I);
 | |
|     auto SI = dyn_cast<StoreInst>(I);
 | |
|     auto RMWI = dyn_cast<AtomicRMWInst>(I);
 | |
|     auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
 | |
|     assert((LI || SI || RMWI || CASI || isa<FenceInst>(I)) &&
 | |
|            "Unknown atomic instruction");
 | |
| 
 | |
|     auto FenceOrdering = Monotonic;
 | |
|     bool IsStore, IsLoad;
 | |
|     if (TLI->getInsertFencesForAtomic()) {
 | |
|       if (LI && isAtLeastAcquire(LI->getOrdering())) {
 | |
|         FenceOrdering = LI->getOrdering();
 | |
|         LI->setOrdering(Monotonic);
 | |
|         IsStore = false;
 | |
|         IsLoad = true;
 | |
|       } else if (SI && isAtLeastRelease(SI->getOrdering())) {
 | |
|         FenceOrdering = SI->getOrdering();
 | |
|         SI->setOrdering(Monotonic);
 | |
|         IsStore = true;
 | |
|         IsLoad = false;
 | |
|       } else if (RMWI && (isAtLeastRelease(RMWI->getOrdering()) ||
 | |
|                           isAtLeastAcquire(RMWI->getOrdering()))) {
 | |
|         FenceOrdering = RMWI->getOrdering();
 | |
|         RMWI->setOrdering(Monotonic);
 | |
|         IsStore = IsLoad = true;
 | |
|       } else if (CASI && !TLI->hasLoadLinkedStoreConditional() &&
 | |
|                  (isAtLeastRelease(CASI->getSuccessOrdering()) ||
 | |
|                   isAtLeastAcquire(CASI->getSuccessOrdering()))) {
 | |
|         // If a compare and swap is lowered to LL/SC, we can do smarter fence
 | |
|         // insertion, with a stronger one on the success path than on the
 | |
|         // failure path. As a result, fence insertion is directly done by
 | |
|         // expandAtomicCmpXchg in that case.
 | |
|         FenceOrdering = CASI->getSuccessOrdering();
 | |
|         CASI->setSuccessOrdering(Monotonic);
 | |
|         CASI->setFailureOrdering(Monotonic);
 | |
|         IsStore = IsLoad = true;
 | |
|       }
 | |
| 
 | |
|       if (FenceOrdering != Monotonic) {
 | |
|         MadeChange |= bracketInstWithFences(I, FenceOrdering, IsStore, IsLoad);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (LI && TLI->shouldExpandAtomicLoadInIR(LI)) {
 | |
|       MadeChange |= expandAtomicLoad(LI);
 | |
|     } else if (SI && TLI->shouldExpandAtomicStoreInIR(SI)) {
 | |
|       MadeChange |= expandAtomicStore(SI);
 | |
|     } else if (RMWI) {
 | |
|       // There are two different ways of expanding RMW instructions:
 | |
|       // - into a load if it is idempotent
 | |
|       // - into a Cmpxchg/LL-SC loop otherwise
 | |
|       // we try them in that order.
 | |
| 
 | |
|       if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
 | |
|         MadeChange = true;
 | |
|       } else {
 | |
|         MadeChange |= tryExpandAtomicRMW(RMWI);
 | |
|       }
 | |
|     } else if (CASI && TLI->hasLoadLinkedStoreConditional()) {
 | |
|       MadeChange |= expandAtomicCmpXchg(CASI);
 | |
|     }
 | |
|   }
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order,
 | |
|                                          bool IsStore, bool IsLoad) {
 | |
|   IRBuilder<> Builder(I);
 | |
| 
 | |
|   auto LeadingFence = TLI->emitLeadingFence(Builder, Order, IsStore, IsLoad);
 | |
| 
 | |
|   auto TrailingFence = TLI->emitTrailingFence(Builder, Order, IsStore, IsLoad);
 | |
|   // The trailing fence is emitted before the instruction instead of after
 | |
|   // because there is no easy way of setting Builder insertion point after
 | |
|   // an instruction. So we must erase it from the BB, and insert it back
 | |
|   // in the right place.
 | |
|   // We have a guard here because not every atomic operation generates a
 | |
|   // trailing fence.
 | |
|   if (TrailingFence) {
 | |
|     TrailingFence->removeFromParent();
 | |
|     TrailingFence->insertAfter(I);
 | |
|   }
 | |
| 
 | |
|   return (LeadingFence || TrailingFence);
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicLoad(LoadInst *LI) {
 | |
|   if (TLI->hasLoadLinkedStoreConditional())
 | |
|     return expandAtomicLoadToLL(LI);
 | |
|   else
 | |
|     return expandAtomicLoadToCmpXchg(LI);
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
 | |
|   IRBuilder<> Builder(LI);
 | |
| 
 | |
|   // On some architectures, load-linked instructions are atomic for larger
 | |
|   // sizes than normal loads. For example, the only 64-bit load guaranteed
 | |
|   // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
 | |
|   Value *Val =
 | |
|       TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
 | |
| 
 | |
|   LI->replaceAllUsesWith(Val);
 | |
|   LI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
 | |
|   IRBuilder<> Builder(LI);
 | |
|   AtomicOrdering Order = LI->getOrdering();
 | |
|   Value *Addr = LI->getPointerOperand();
 | |
|   Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
 | |
|   Constant *DummyVal = Constant::getNullValue(Ty);
 | |
| 
 | |
|   Value *Pair = Builder.CreateAtomicCmpXchg(
 | |
|       Addr, DummyVal, DummyVal, Order,
 | |
|       AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
 | |
|   Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
 | |
| 
 | |
|   LI->replaceAllUsesWith(Loaded);
 | |
|   LI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
 | |
|   // This function is only called on atomic stores that are too large to be
 | |
|   // atomic if implemented as a native store. So we replace them by an
 | |
|   // atomic swap, that can be implemented for example as a ldrex/strex on ARM
 | |
|   // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
 | |
|   // It is the responsibility of the target to only signal expansion via
 | |
|   // shouldExpandAtomicRMW in cases where this is required and possible.
 | |
|   IRBuilder<> Builder(SI);
 | |
|   AtomicRMWInst *AI =
 | |
|       Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
 | |
|                               SI->getValueOperand(), SI->getOrdering());
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   // Now we have an appropriate swap instruction, lower it as usual.
 | |
|   return tryExpandAtomicRMW(AI);
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
 | |
|   switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
 | |
|   case TargetLoweringBase::AtomicRMWExpansionKind::None:
 | |
|     return false;
 | |
|   case TargetLoweringBase::AtomicRMWExpansionKind::LLSC: {
 | |
|     assert(TLI->hasLoadLinkedStoreConditional() &&
 | |
|            "TargetLowering requested we expand AtomicRMW instruction into "
 | |
|            "load-linked/store-conditional combos, but such instructions aren't "
 | |
|            "supported");
 | |
| 
 | |
|     return expandAtomicRMWToLLSC(AI);
 | |
|   }
 | |
|   case TargetLoweringBase::AtomicRMWExpansionKind::CmpXChg: {
 | |
|     return expandAtomicRMWToCmpXchg(AI);
 | |
|   }
 | |
|   }
 | |
|   llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
 | |
| }
 | |
| 
 | |
| /// Emit IR to implement the given atomicrmw operation on values in registers,
 | |
| /// returning the new value.
 | |
| static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
 | |
|                               Value *Loaded, Value *Inc) {
 | |
|   Value *NewVal;
 | |
|   switch (Op) {
 | |
|   case AtomicRMWInst::Xchg:
 | |
|     return Inc;
 | |
|   case AtomicRMWInst::Add:
 | |
|     return Builder.CreateAdd(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Sub:
 | |
|     return Builder.CreateSub(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::And:
 | |
|     return Builder.CreateAnd(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Nand:
 | |
|     return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
 | |
|   case AtomicRMWInst::Or:
 | |
|     return Builder.CreateOr(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Xor:
 | |
|     return Builder.CreateXor(Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Max:
 | |
|     NewVal = Builder.CreateICmpSGT(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::Min:
 | |
|     NewVal = Builder.CreateICmpSLE(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::UMax:
 | |
|     NewVal = Builder.CreateICmpUGT(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   case AtomicRMWInst::UMin:
 | |
|     NewVal = Builder.CreateICmpULE(Loaded, Inc);
 | |
|     return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
 | |
|   default:
 | |
|     llvm_unreachable("Unknown atomic op");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicRMWToLLSC(AtomicRMWInst *AI) {
 | |
|   AtomicOrdering MemOpOrder = AI->getOrdering();
 | |
|   Value *Addr = AI->getPointerOperand();
 | |
|   BasicBlock *BB = AI->getParent();
 | |
|   Function *F = BB->getParent();
 | |
|   LLVMContext &Ctx = F->getContext();
 | |
| 
 | |
|   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | |
|   //
 | |
|   // The standard expansion we produce is:
 | |
|   //     [...]
 | |
|   //     fence?
 | |
|   // atomicrmw.start:
 | |
|   //     %loaded = @load.linked(%addr)
 | |
|   //     %new = some_op iN %loaded, %incr
 | |
|   //     %stored = @store_conditional(%new, %addr)
 | |
|   //     %try_again = icmp i32 ne %stored, 0
 | |
|   //     br i1 %try_again, label %loop, label %atomicrmw.end
 | |
|   // atomicrmw.end:
 | |
|   //     fence?
 | |
|   //     [...]
 | |
|   BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
 | |
|   BasicBlock *LoopBB =  BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | |
| 
 | |
|   // This grabs the DebugLoc from AI.
 | |
|   IRBuilder<> Builder(AI);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB (to the
 | |
|   // wrong place), but we might want a fence too. It's easiest to just remove
 | |
|   // the branch entirely.
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start the main loop block now that we've taken care of the preliminaries.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | |
| 
 | |
|   Value *NewVal =
 | |
|       performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
 | |
| 
 | |
|   Value *StoreSuccess =
 | |
|       TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
 | |
|   Value *TryAgain = Builder.CreateICmpNE(
 | |
|       StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
 | |
|   Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | |
| 
 | |
|   AI->replaceAllUsesWith(Loaded);
 | |
|   AI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI) {
 | |
|   AtomicOrdering MemOpOrder =
 | |
|       AI->getOrdering() == Unordered ? Monotonic : AI->getOrdering();
 | |
|   Value *Addr = AI->getPointerOperand();
 | |
|   BasicBlock *BB = AI->getParent();
 | |
|   Function *F = BB->getParent();
 | |
|   LLVMContext &Ctx = F->getContext();
 | |
| 
 | |
|   // Given: atomicrmw some_op iN* %addr, iN %incr ordering
 | |
|   //
 | |
|   // The standard expansion we produce is:
 | |
|   //     [...]
 | |
|   //     %init_loaded = load atomic iN* %addr
 | |
|   //     br label %loop
 | |
|   // loop:
 | |
|   //     %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
 | |
|   //     %new = some_op iN %loaded, %incr
 | |
|   //     %pair = cmpxchg iN* %addr, iN %loaded, iN %new
 | |
|   //     %new_loaded = extractvalue { iN, i1 } %pair, 0
 | |
|   //     %success = extractvalue { iN, i1 } %pair, 1
 | |
|   //     br i1 %success, label %atomicrmw.end, label %loop
 | |
|   // atomicrmw.end:
 | |
|   //     [...]
 | |
|   BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
 | |
|   BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
 | |
| 
 | |
|   // This grabs the DebugLoc from AI.
 | |
|   IRBuilder<> Builder(AI);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB (to the
 | |
|   // wrong place), but we want a load. It's easiest to just remove
 | |
|   // the branch entirely.
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   LoadInst *InitLoaded = Builder.CreateLoad(Addr);
 | |
|   // Atomics require at least natural alignment.
 | |
|   InitLoaded->setAlignment(AI->getType()->getPrimitiveSizeInBits());
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start the main loop block now that we've taken care of the preliminaries.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   PHINode *Loaded = Builder.CreatePHI(AI->getType(), 2, "loaded");
 | |
|   Loaded->addIncoming(InitLoaded, BB);
 | |
| 
 | |
|   Value *NewVal =
 | |
|       performAtomicOp(AI->getOperation(), Builder, Loaded, AI->getValOperand());
 | |
| 
 | |
|   Value *Pair = Builder.CreateAtomicCmpXchg(
 | |
|       Addr, Loaded, NewVal, MemOpOrder,
 | |
|       AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
 | |
|   Value *NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
 | |
|   Loaded->addIncoming(NewLoaded, LoopBB);
 | |
| 
 | |
|   Value *Success = Builder.CreateExtractValue(Pair, 1, "success");
 | |
|   Builder.CreateCondBr(Success, ExitBB, LoopBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | |
| 
 | |
|   AI->replaceAllUsesWith(NewLoaded);
 | |
|   AI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
 | |
|   AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
 | |
|   AtomicOrdering FailureOrder = CI->getFailureOrdering();
 | |
|   Value *Addr = CI->getPointerOperand();
 | |
|   BasicBlock *BB = CI->getParent();
 | |
|   Function *F = BB->getParent();
 | |
|   LLVMContext &Ctx = F->getContext();
 | |
|   // If getInsertFencesForAtomic() returns true, then the target does not want
 | |
|   // to deal with memory orders, and emitLeading/TrailingFence should take care
 | |
|   // of everything. Otherwise, emitLeading/TrailingFence are no-op and we
 | |
|   // should preserve the ordering.
 | |
|   AtomicOrdering MemOpOrder =
 | |
|       TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder;
 | |
| 
 | |
|   // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
 | |
|   //
 | |
|   // The full expansion we produce is:
 | |
|   //     [...]
 | |
|   //     fence?
 | |
|   // cmpxchg.start:
 | |
|   //     %loaded = @load.linked(%addr)
 | |
|   //     %should_store = icmp eq %loaded, %desired
 | |
|   //     br i1 %should_store, label %cmpxchg.trystore,
 | |
|   //                          label %cmpxchg.failure
 | |
|   // cmpxchg.trystore:
 | |
|   //     %stored = @store_conditional(%new, %addr)
 | |
|   //     %success = icmp eq i32 %stored, 0
 | |
|   //     br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
 | |
|   // cmpxchg.success:
 | |
|   //     fence?
 | |
|   //     br label %cmpxchg.end
 | |
|   // cmpxchg.failure:
 | |
|   //     fence?
 | |
|   //     br label %cmpxchg.end
 | |
|   // cmpxchg.end:
 | |
|   //     %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
 | |
|   //     %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
 | |
|   //     %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
 | |
|   //     [...]
 | |
|   BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
 | |
|   auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
 | |
|   auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
 | |
|   auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
 | |
|   auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
 | |
| 
 | |
|   // This grabs the DebugLoc from CI
 | |
|   IRBuilder<> Builder(CI);
 | |
| 
 | |
|   // The split call above "helpfully" added a branch at the end of BB (to the
 | |
|   // wrong place), but we might want a fence too. It's easiest to just remove
 | |
|   // the branch entirely.
 | |
|   std::prev(BB->end())->eraseFromParent();
 | |
|   Builder.SetInsertPoint(BB);
 | |
|   TLI->emitLeadingFence(Builder, SuccessOrder, /*IsStore=*/true,
 | |
|                         /*IsLoad=*/true);
 | |
|   Builder.CreateBr(LoopBB);
 | |
| 
 | |
|   // Start the main loop block now that we've taken care of the preliminaries.
 | |
|   Builder.SetInsertPoint(LoopBB);
 | |
|   Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
 | |
|   Value *ShouldStore =
 | |
|       Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
 | |
| 
 | |
|   // If the the cmpxchg doesn't actually need any ordering when it fails, we can
 | |
|   // jump straight past that fence instruction (if it exists).
 | |
|   Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(TryStoreBB);
 | |
|   Value *StoreSuccess = TLI->emitStoreConditional(
 | |
|       Builder, CI->getNewValOperand(), Addr, MemOpOrder);
 | |
|   StoreSuccess = Builder.CreateICmpEQ(
 | |
|       StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
 | |
|   Builder.CreateCondBr(StoreSuccess, SuccessBB,
 | |
|                        CI->isWeak() ? FailureBB : LoopBB);
 | |
| 
 | |
|   // Make sure later instructions don't get reordered with a fence if necessary.
 | |
|   Builder.SetInsertPoint(SuccessBB);
 | |
|   TLI->emitTrailingFence(Builder, SuccessOrder, /*IsStore=*/true,
 | |
|                          /*IsLoad=*/true);
 | |
|   Builder.CreateBr(ExitBB);
 | |
| 
 | |
|   Builder.SetInsertPoint(FailureBB);
 | |
|   TLI->emitTrailingFence(Builder, FailureOrder, /*IsStore=*/true,
 | |
|                          /*IsLoad=*/true);
 | |
|   Builder.CreateBr(ExitBB);
 | |
| 
 | |
|   // Finally, we have control-flow based knowledge of whether the cmpxchg
 | |
|   // succeeded or not. We expose this to later passes by converting any
 | |
|   // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
 | |
| 
 | |
|   // Setup the builder so we can create any PHIs we need.
 | |
|   Builder.SetInsertPoint(ExitBB, ExitBB->begin());
 | |
|   PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
 | |
|   Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
 | |
|   Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
 | |
| 
 | |
|   // Look for any users of the cmpxchg that are just comparing the loaded value
 | |
|   // against the desired one, and replace them with the CFG-derived version.
 | |
|   SmallVector<ExtractValueInst *, 2> PrunedInsts;
 | |
|   for (auto User : CI->users()) {
 | |
|     ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
 | |
|     if (!EV)
 | |
|       continue;
 | |
| 
 | |
|     assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
 | |
|            "weird extraction from { iN, i1 }");
 | |
| 
 | |
|     if (EV->getIndices()[0] == 0)
 | |
|       EV->replaceAllUsesWith(Loaded);
 | |
|     else
 | |
|       EV->replaceAllUsesWith(Success);
 | |
| 
 | |
|     PrunedInsts.push_back(EV);
 | |
|   }
 | |
| 
 | |
|   // We can remove the instructions now we're no longer iterating through them.
 | |
|   for (auto EV : PrunedInsts)
 | |
|     EV->eraseFromParent();
 | |
| 
 | |
|   if (!CI->use_empty()) {
 | |
|     // Some use of the full struct return that we don't understand has happened,
 | |
|     // so we've got to reconstruct it properly.
 | |
|     Value *Res;
 | |
|     Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
 | |
|     Res = Builder.CreateInsertValue(Res, Success, 1);
 | |
| 
 | |
|     CI->replaceAllUsesWith(Res);
 | |
|   }
 | |
| 
 | |
|   CI->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
 | |
|   auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
 | |
|   if(!C)
 | |
|     return false;
 | |
| 
 | |
|   AtomicRMWInst::BinOp Op = RMWI->getOperation();
 | |
|   switch(Op) {
 | |
|     case AtomicRMWInst::Add:
 | |
|     case AtomicRMWInst::Sub:
 | |
|     case AtomicRMWInst::Or:
 | |
|     case AtomicRMWInst::Xor:
 | |
|       return C->isZero();
 | |
|     case AtomicRMWInst::And:
 | |
|       return C->isMinusOne();
 | |
|     // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
 | |
|     default:
 | |
|       return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
 | |
|   if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
 | |
|     if (TLI->shouldExpandAtomicLoadInIR(ResultingLoad))
 | |
|       expandAtomicLoad(ResultingLoad);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 |