mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237855 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			936 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			936 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating functions from LLVM IR into
 | |
| // Machine IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/WinEHFuncInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetFrameLowering.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetSubtargetInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "function-lowering-info"
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a
 | |
| /// switch or atomic instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
 | |
|   if (I->use_empty()) return false;
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   const BasicBlock *BB = I->getParent();
 | |
|   for (const User *U : I->users())
 | |
|     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static ISD::NodeType getPreferredExtendForValue(const Value *V) {
 | |
|   // For the users of the source value being used for compare instruction, if
 | |
|   // the number of signed predicate is greater than unsigned predicate, we
 | |
|   // prefer to use SIGN_EXTEND.
 | |
|   //
 | |
|   // With this optimization, we would be able to reduce some redundant sign or
 | |
|   // zero extension instruction, and eventually more machine CSE opportunities
 | |
|   // can be exposed.
 | |
|   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
 | |
|   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
 | |
|   for (const User *U : V->users()) {
 | |
|     if (const auto *CI = dyn_cast<CmpInst>(U)) {
 | |
|       NumOfSigned += CI->isSigned();
 | |
|       NumOfUnsigned += CI->isUnsigned();
 | |
|     }
 | |
|   }
 | |
|   if (NumOfSigned > NumOfUnsigned)
 | |
|     ExtendKind = ISD::SIGN_EXTEND;
 | |
| 
 | |
|   return ExtendKind;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct WinEHNumbering {
 | |
|   WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo),
 | |
|       CurrentBaseState(-1), NextState(0) {}
 | |
| 
 | |
|   WinEHFuncInfo &FuncInfo;
 | |
|   int CurrentBaseState;
 | |
|   int NextState;
 | |
| 
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> HandlerStack;
 | |
|   SmallPtrSet<const Function *, 4> VisitedHandlers;
 | |
| 
 | |
|   int currentEHNumber() const {
 | |
|     return HandlerStack.empty() ? CurrentBaseState : HandlerStack.back()->getEHState();
 | |
|   }
 | |
| 
 | |
|   void createUnwindMapEntry(int ToState, ActionHandler *AH);
 | |
|   void createTryBlockMapEntry(int TryLow, int TryHigh,
 | |
|                               ArrayRef<CatchHandler *> Handlers);
 | |
|   void processCallSite(MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
 | |
|                        ImmutableCallSite CS);
 | |
|   void popUnmatchedActions(int FirstMismatch);
 | |
|   void calculateStateNumbers(const Function &F);
 | |
|   void findActionRootLPads(const Function &F);
 | |
| };
 | |
| }
 | |
| 
 | |
| void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
 | |
|                                SelectionDAG *DAG) {
 | |
|   Fn = &fn;
 | |
|   MF = &mf;
 | |
|   TLI = MF->getSubtarget().getTargetLowering();
 | |
|   RegInfo = &MF->getRegInfo();
 | |
|   MachineModuleInfo &MMI = MF->getMMI();
 | |
| 
 | |
|   // Check whether the function can return without sret-demotion.
 | |
|   SmallVector<ISD::OutputArg, 4> Outs;
 | |
|   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
 | |
|   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
 | |
|                                        Fn->isVarArg(), Outs, Fn->getContext());
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
 | |
|          I != E; ++I) {
 | |
|       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
 | |
|         // Static allocas can be folded into the initial stack frame adjustment.
 | |
|         if (AI->isStaticAlloca()) {
 | |
|           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
 | |
|           Type *Ty = AI->getAllocatedType();
 | |
|           uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
 | |
|           unsigned Align =
 | |
|               std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
 | |
|                        AI->getAlignment());
 | |
| 
 | |
|           TySize *= CUI->getZExtValue();   // Get total allocated size.
 | |
|           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
| 
 | |
|           StaticAllocaMap[AI] =
 | |
|             MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
 | |
| 
 | |
|         } else {
 | |
|           unsigned Align = std::max(
 | |
|               (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
 | |
|                 AI->getAllocatedType()),
 | |
|               AI->getAlignment());
 | |
|           unsigned StackAlign =
 | |
|               MF->getSubtarget().getFrameLowering()->getStackAlignment();
 | |
|           if (Align <= StackAlign)
 | |
|             Align = 0;
 | |
|           // Inform the Frame Information that we have variable-sized objects.
 | |
|           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Look for inline asm that clobbers the SP register.
 | |
|       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | |
|         ImmutableCallSite CS(I);
 | |
|         if (isa<InlineAsm>(CS.getCalledValue())) {
 | |
|           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
 | |
|           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
 | |
|           std::vector<TargetLowering::AsmOperandInfo> Ops =
 | |
|               TLI->ParseConstraints(TRI, CS);
 | |
|           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
 | |
|             TargetLowering::AsmOperandInfo &Op = Ops[I];
 | |
|             if (Op.Type == InlineAsm::isClobber) {
 | |
|               // Clobbers don't have SDValue operands, hence SDValue().
 | |
|               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
 | |
|               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
 | |
|                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
 | |
|                                                     Op.ConstraintVT);
 | |
|               if (PhysReg.first == SP)
 | |
|                 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Look for calls to the @llvm.va_start intrinsic. We can omit some
 | |
|       // prologue boilerplate for variadic functions that don't examine their
 | |
|       // arguments.
 | |
|       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|         if (II->getIntrinsicID() == Intrinsic::vastart)
 | |
|           MF->getFrameInfo()->setHasVAStart(true);
 | |
|       }
 | |
| 
 | |
|       // If we have a musttail call in a variadic funciton, we need to ensure we
 | |
|       // forward implicit register parameters.
 | |
|       if (const auto *CI = dyn_cast<CallInst>(I)) {
 | |
|         if (CI->isMustTailCall() && Fn->isVarArg())
 | |
|           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
 | |
|       }
 | |
| 
 | |
|       // Mark values used outside their block as exported, by allocating
 | |
|       // a virtual register for them.
 | |
|       if (isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|       // Collect llvm.dbg.declare information. This is done now instead of
 | |
|       // during the initial isel pass through the IR so that it is done
 | |
|       // in a predictable order.
 | |
|       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
 | |
|         assert(DI->getVariable() && "Missing variable");
 | |
|         assert(DI->getDebugLoc() && "Missing location");
 | |
|         if (MMI.hasDebugInfo()) {
 | |
|           // Don't handle byval struct arguments or VLAs, for example.
 | |
|           // Non-byval arguments are handled here (they refer to the stack
 | |
|           // temporary alloca at this point).
 | |
|           const Value *Address = DI->getAddress();
 | |
|           if (Address) {
 | |
|             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|               Address = BCI->getOperand(0);
 | |
|             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
 | |
|               DenseMap<const AllocaInst *, int>::iterator SI =
 | |
|                 StaticAllocaMap.find(AI);
 | |
|               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
 | |
|                 int FI = SI->second;
 | |
|                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
 | |
|                                        FI, DI->getDebugLoc());
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Decide the preferred extend type for a value.
 | |
|       PreferredExtendType[I] = getPreferredExtendForValue(I);
 | |
|     }
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn->begin(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF->push_back(MBB);
 | |
| 
 | |
|     // Transfer the address-taken flag. This is necessary because there could
 | |
|     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | |
|     // the first one should be marked.
 | |
|     if (BB->hasAddressTaken())
 | |
|       MBB->setHasAddressTaken();
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     for (BasicBlock::const_iterator I = BB->begin();
 | |
|          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Skip empty types
 | |
|       if (PN->getType()->isEmptyTy())
 | |
|         continue;
 | |
| 
 | |
|       DebugLoc DL = PN->getDebugLoc();
 | |
|       unsigned PHIReg = ValueMap[PN];
 | |
|       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
 | |
|         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
 | |
|         for (unsigned i = 0; i != NumRegisters; ++i)
 | |
|           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
 | |
|         PHIReg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Mark landing pad blocks.
 | |
|   SmallVector<const LandingPadInst *, 4> LPads;
 | |
|   for (BB = Fn->begin(); BB != EB; ++BB) {
 | |
|     if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
 | |
|       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
 | |
|     if (BB->isLandingPad())
 | |
|       LPads.push_back(BB->getLandingPadInst());
 | |
|   }
 | |
| 
 | |
|   // If this is an MSVC EH personality, we need to do a bit more work.
 | |
|   EHPersonality Personality = EHPersonality::Unknown;
 | |
|   if (!LPads.empty())
 | |
|     Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
 | |
|   if (!isMSVCEHPersonality(Personality))
 | |
|     return;
 | |
| 
 | |
|   WinEHFuncInfo *EHInfo = nullptr;
 | |
|   if (Personality == EHPersonality::MSVC_Win64SEH) {
 | |
|     addSEHHandlersForLPads(LPads);
 | |
|   } else if (Personality == EHPersonality::MSVC_CXX) {
 | |
|     const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
 | |
|     EHInfo = &MMI.getWinEHFuncInfo(WinEHParentFn);
 | |
|     if (EHInfo->LandingPadStateMap.empty()) {
 | |
|       WinEHNumbering Num(*EHInfo);
 | |
|       Num.findActionRootLPads(*WinEHParentFn);
 | |
|       // The VisitedHandlers list is used by both findActionRootLPads and
 | |
|       // calculateStateNumbers, but both functions need to visit all handlers.
 | |
|       Num.VisitedHandlers.clear();
 | |
|       Num.calculateStateNumbers(*WinEHParentFn);
 | |
|       // Pop everything on the handler stack.
 | |
|       // It may be necessary to call this more than once because a handler can
 | |
|       // be pushed on the stack as a result of clearing the stack.
 | |
|       while (!Num.HandlerStack.empty())
 | |
|         Num.processCallSite(None, ImmutableCallSite());
 | |
|     }
 | |
| 
 | |
|     // Copy the state numbers to LandingPadInfo for the current function, which
 | |
|     // could be a handler or the parent.
 | |
|     for (const LandingPadInst *LP : LPads) {
 | |
|       MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
 | |
|       MMI.addWinEHState(LPadMBB, EHInfo->LandingPadStateMap[LP]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void FunctionLoweringInfo::addSEHHandlersForLPads(
 | |
|     ArrayRef<const LandingPadInst *> LPads) {
 | |
|   MachineModuleInfo &MMI = MF->getMMI();
 | |
| 
 | |
|   // Iterate over all landing pads with llvm.eh.actions calls.
 | |
|   for (const LandingPadInst *LP : LPads) {
 | |
|     const IntrinsicInst *ActionsCall =
 | |
|         dyn_cast<IntrinsicInst>(LP->getNextNode());
 | |
|     if (!ActionsCall ||
 | |
|         ActionsCall->getIntrinsicID() != Intrinsic::eh_actions)
 | |
|       continue;
 | |
| 
 | |
|     // Parse the llvm.eh.actions call we found.
 | |
|     MachineBasicBlock *LPadMBB = MBBMap[LP->getParent()];
 | |
|     SmallVector<std::unique_ptr<ActionHandler>, 4> Actions;
 | |
|     parseEHActions(ActionsCall, Actions);
 | |
| 
 | |
|     // Iterate EH actions from most to least precedence, which means
 | |
|     // iterating in reverse.
 | |
|     for (auto I = Actions.rbegin(), E = Actions.rend(); I != E; ++I) {
 | |
|       ActionHandler *Action = I->get();
 | |
|       if (auto *CH = dyn_cast<CatchHandler>(Action)) {
 | |
|         const auto *Filter =
 | |
|             dyn_cast<Function>(CH->getSelector()->stripPointerCasts());
 | |
|         assert((Filter || CH->getSelector()->isNullValue()) &&
 | |
|                "expected function or catch-all");
 | |
|         const auto *RecoverBA =
 | |
|             cast<BlockAddress>(CH->getHandlerBlockOrFunc());
 | |
|         MMI.addSEHCatchHandler(LPadMBB, Filter, RecoverBA);
 | |
|       } else {
 | |
|         assert(isa<CleanupHandler>(Action));
 | |
|         const auto *Fini = cast<Function>(Action->getHandlerBlockOrFunc());
 | |
|         MMI.addSEHCleanupHandler(LPadMBB, Fini);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
 | |
|   WinEHUnwindMapEntry UME;
 | |
|   UME.ToState = ToState;
 | |
|   if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
 | |
|     UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
 | |
|   else
 | |
|     UME.Cleanup = nullptr;
 | |
|   FuncInfo.UnwindMap.push_back(UME);
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
 | |
|                                             ArrayRef<CatchHandler *> Handlers) {
 | |
|   // See if we already have an entry for this set of handlers.
 | |
|   // This is using iterators rather than a range-based for loop because
 | |
|   // if we find the entry we're looking for we'll need the iterator to erase it.
 | |
|   int NumHandlers = Handlers.size();
 | |
|   auto I = FuncInfo.TryBlockMap.begin();
 | |
|   auto E = FuncInfo.TryBlockMap.end();
 | |
|   for ( ; I != E; ++I) {
 | |
|     auto &Entry = *I;
 | |
|     if (Entry.HandlerArray.size() != (size_t)NumHandlers)
 | |
|       continue;
 | |
|     int N;
 | |
|     for (N = 0; N < NumHandlers; ++N) {
 | |
|       if (Entry.HandlerArray[N].Handler != Handlers[N]->getHandlerBlockOrFunc())
 | |
|         break; // breaks out of inner loop
 | |
|     }
 | |
|     // If all the handlers match, this is what we were looking for.
 | |
|     if (N == NumHandlers) {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we found an existing entry for this set of handlers, extend the range
 | |
|   // but move the entry to the end of the map vector.  The order of entries
 | |
|   // in the map is critical to the way that the runtime finds handlers.
 | |
|   // FIXME: Depending on what has happened with block ordering, this may
 | |
|   //        incorrectly combine entries that should remain separate.
 | |
|   if (I != E) {
 | |
|     // Copy the existing entry.
 | |
|     WinEHTryBlockMapEntry Entry = *I;
 | |
|     Entry.TryLow = std::min(TryLow, Entry.TryLow);
 | |
|     Entry.TryHigh = std::max(TryHigh, Entry.TryHigh);
 | |
|     assert(Entry.TryLow <= Entry.TryHigh);
 | |
|     // Erase the old entry and add this one to the back.
 | |
|     FuncInfo.TryBlockMap.erase(I);
 | |
|     FuncInfo.TryBlockMap.push_back(Entry);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find an entry, create a new one.
 | |
|   WinEHTryBlockMapEntry TBME;
 | |
|   TBME.TryLow = TryLow;
 | |
|   TBME.TryHigh = TryHigh;
 | |
|   assert(TBME.TryLow <= TBME.TryHigh);
 | |
|   for (CatchHandler *CH : Handlers) {
 | |
|     WinEHHandlerType HT;
 | |
|     if (CH->getSelector()->isNullValue()) {
 | |
|       HT.Adjectives = 0x40;
 | |
|       HT.TypeDescriptor = nullptr;
 | |
|     } else {
 | |
|       auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
 | |
|       // Selectors are always pointers to GlobalVariables with 'struct' type.
 | |
|       // The struct has two fields, adjectives and a type descriptor.
 | |
|       auto *CS = cast<ConstantStruct>(GV->getInitializer());
 | |
|       HT.Adjectives =
 | |
|           cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
 | |
|       HT.TypeDescriptor =
 | |
|           cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
 | |
|     }
 | |
|     HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
 | |
|     HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
 | |
|     TBME.HandlerArray.push_back(HT);
 | |
|   }
 | |
|   FuncInfo.TryBlockMap.push_back(TBME);
 | |
| }
 | |
| 
 | |
| static void print_name(const Value *V) {
 | |
| #ifndef NDEBUG
 | |
|   if (!V) {
 | |
|     DEBUG(dbgs() << "null");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (const auto *F = dyn_cast<Function>(V))
 | |
|     DEBUG(dbgs() << F->getName());
 | |
|   else
 | |
|     DEBUG(V->dump());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::processCallSite(
 | |
|     MutableArrayRef<std::unique_ptr<ActionHandler>> Actions,
 | |
|     ImmutableCallSite CS) {
 | |
|   DEBUG(dbgs() << "processCallSite (EH state = " << currentEHNumber()
 | |
|                << ") for: ");
 | |
|   print_name(CS ? CS.getCalledValue() : nullptr);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| 
 | |
|   DEBUG(dbgs() << "HandlerStack: \n");
 | |
|   for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
 | |
|     DEBUG(dbgs() << "  ");
 | |
|     print_name(HandlerStack[I]->getHandlerBlockOrFunc());
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   DEBUG(dbgs() << "Actions: \n");
 | |
|   for (int I = 0, E = Actions.size(); I < E; ++I) {
 | |
|     DEBUG(dbgs() << "  ");
 | |
|     print_name(Actions[I]->getHandlerBlockOrFunc());
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
|   int FirstMismatch = 0;
 | |
|   for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
 | |
|        ++FirstMismatch) {
 | |
|     if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
 | |
|         Actions[FirstMismatch]->getHandlerBlockOrFunc())
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   // Remove unmatched actions from the stack and process their EH states.
 | |
|   popUnmatchedActions(FirstMismatch);
 | |
| 
 | |
|   DEBUG(dbgs() << "Pushing actions for CallSite: ");
 | |
|   print_name(CS ? CS.getCalledValue() : nullptr);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| 
 | |
|   bool LastActionWasCatch = false;
 | |
|   const LandingPadInst *LastRootLPad = nullptr;
 | |
|   for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
 | |
|     // We can reuse eh states when pushing two catches for the same invoke.
 | |
|     bool CurrActionIsCatch = isa<CatchHandler>(Actions[I].get());
 | |
|     auto *Handler = cast<Function>(Actions[I]->getHandlerBlockOrFunc());
 | |
|     // Various conditions can lead to a handler being popped from the
 | |
|     // stack and re-pushed later.  That shouldn't create a new state.
 | |
|     // FIXME: Can code optimization lead to re-used handlers?
 | |
|     if (FuncInfo.HandlerEnclosedState.count(Handler)) {
 | |
|       // If we already assigned the state enclosed by this handler re-use it.
 | |
|       Actions[I]->setEHState(FuncInfo.HandlerEnclosedState[Handler]);
 | |
|       continue;
 | |
|     }
 | |
|     const LandingPadInst* RootLPad = FuncInfo.RootLPad[Handler];
 | |
|     if (CurrActionIsCatch && LastActionWasCatch && RootLPad == LastRootLPad) {
 | |
|       DEBUG(dbgs() << "setEHState for handler to " << currentEHNumber() << "\n");
 | |
|       Actions[I]->setEHState(currentEHNumber());
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() << ", ");
 | |
|       print_name(Actions[I]->getHandlerBlockOrFunc());
 | |
|       DEBUG(dbgs() << ") with EH state " << NextState << "\n");
 | |
|       createUnwindMapEntry(currentEHNumber(), Actions[I].get());
 | |
|       DEBUG(dbgs() << "setEHState for handler to " << NextState << "\n");
 | |
|       Actions[I]->setEHState(NextState);
 | |
|       NextState++;
 | |
|     }
 | |
|     HandlerStack.push_back(std::move(Actions[I]));
 | |
|     LastActionWasCatch = CurrActionIsCatch;
 | |
|     LastRootLPad = RootLPad;
 | |
|   }
 | |
| 
 | |
|   // This is used to defer numbering states for a handler until after the
 | |
|   // last time it appears in an invoke action list.
 | |
|   if (CS.isInvoke()) {
 | |
|     for (int I = 0, E = HandlerStack.size(); I < E; ++I) {
 | |
|       auto *Handler = cast<Function>(HandlerStack[I]->getHandlerBlockOrFunc());
 | |
|       if (FuncInfo.LastInvoke[Handler] != cast<InvokeInst>(CS.getInstruction()))
 | |
|         continue;
 | |
|       FuncInfo.LastInvokeVisited[Handler] = true;
 | |
|       DEBUG(dbgs() << "Last invoke of ");
 | |
|       print_name(Handler);
 | |
|       DEBUG(dbgs() << " has been visited.\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
 | |
|   print_name(CS ? CS.getCalledValue() : nullptr);
 | |
|   DEBUG(dbgs() << '\n');
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::popUnmatchedActions(int FirstMismatch) {
 | |
|   // Don't recurse while we are looping over the handler stack.  Instead, defer
 | |
|   // the numbering of the catch handlers until we are done popping.
 | |
|   SmallVector<CatchHandler *, 4> PoppedCatches;
 | |
|   for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
 | |
|     std::unique_ptr<ActionHandler> Handler = HandlerStack.pop_back_val();
 | |
|     if (isa<CatchHandler>(Handler.get()))
 | |
|       PoppedCatches.push_back(cast<CatchHandler>(Handler.release()));
 | |
|   }
 | |
| 
 | |
|   int TryHigh = NextState - 1;
 | |
|   int LastTryLowIdx = 0;
 | |
|   for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
 | |
|     CatchHandler *CH = PoppedCatches[I];
 | |
|     DEBUG(dbgs() << "Popped handler with state " << CH->getEHState() << "\n");
 | |
|     if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
 | |
|       int TryLow = CH->getEHState();
 | |
|       auto Handlers =
 | |
|           makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
 | |
|       DEBUG(dbgs() << "createTryBlockMapEntry(" << TryLow << ", " << TryHigh);
 | |
|       for (size_t J = 0; J < Handlers.size(); ++J) {
 | |
|         DEBUG(dbgs() << ", ");
 | |
|         print_name(Handlers[J]->getHandlerBlockOrFunc());
 | |
|       }
 | |
|       DEBUG(dbgs() << ")\n");
 | |
|       createTryBlockMapEntry(TryLow, TryHigh, Handlers);
 | |
|       LastTryLowIdx = I + 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (CatchHandler *CH : PoppedCatches) {
 | |
|     if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc())) {
 | |
|       if (FuncInfo.LastInvokeVisited[F]) {
 | |
|         DEBUG(dbgs() << "Assigning base state " << NextState << " to ");
 | |
|         print_name(F);
 | |
|         DEBUG(dbgs() << '\n');
 | |
|         FuncInfo.HandlerBaseState[F] = NextState;
 | |
|         DEBUG(dbgs() << "createUnwindMapEntry(" << currentEHNumber() 
 | |
|                      << ", null)\n");
 | |
|         createUnwindMapEntry(currentEHNumber(), nullptr);
 | |
|         ++NextState;
 | |
|         calculateStateNumbers(*F);
 | |
|       }
 | |
|       else {
 | |
|         DEBUG(dbgs() << "Deferring handling of ");
 | |
|         print_name(F);
 | |
|         DEBUG(dbgs() << " until last invoke visited.\n");
 | |
|       }
 | |
|     }
 | |
|     delete CH;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WinEHNumbering::calculateStateNumbers(const Function &F) {
 | |
|   auto I = VisitedHandlers.insert(&F);
 | |
|   if (!I.second)
 | |
|     return; // We've already visited this handler, don't renumber it.
 | |
| 
 | |
|   int OldBaseState = CurrentBaseState;
 | |
|   if (FuncInfo.HandlerBaseState.count(&F)) {
 | |
|     CurrentBaseState = FuncInfo.HandlerBaseState[&F];
 | |
|   }
 | |
| 
 | |
|   size_t SavedHandlerStackSize = HandlerStack.size();
 | |
| 
 | |
|   DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|   for (const BasicBlock &BB : F) {
 | |
|     for (const Instruction &I : BB) {
 | |
|       const auto *CI = dyn_cast<CallInst>(&I);
 | |
|       if (!CI || CI->doesNotThrow())
 | |
|         continue;
 | |
|       processCallSite(None, CI);
 | |
|     }
 | |
|     const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
 | |
|     if (!II)
 | |
|       continue;
 | |
|     const LandingPadInst *LPI = II->getLandingPadInst();
 | |
|     auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
 | |
|     if (!ActionsCall)
 | |
|       continue;
 | |
|     assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
 | |
|     parseEHActions(ActionsCall, ActionList);
 | |
|     if (ActionList.empty())
 | |
|       continue;
 | |
|     processCallSite(ActionList, II);
 | |
|     ActionList.clear();
 | |
|     FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
 | |
|     DEBUG(dbgs() << "Assigning state " << currentEHNumber()
 | |
|                   << " to landing pad at " << LPI->getParent()->getName()
 | |
|                   << '\n');
 | |
|   }
 | |
| 
 | |
|   // Pop any actions that were pushed on the stack for this function.
 | |
|   popUnmatchedActions(SavedHandlerStackSize);
 | |
| 
 | |
|   DEBUG(dbgs() << "Assigning max state " << NextState - 1
 | |
|                << " to " << F.getName() << '\n');
 | |
|   FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
 | |
| 
 | |
|   CurrentBaseState = OldBaseState;
 | |
| }
 | |
| 
 | |
| // This function follows the same basic traversal as calculateStateNumbers
 | |
| // but it is necessary to identify the root landing pad associated
 | |
| // with each action before we start assigning state numbers.
 | |
| void WinEHNumbering::findActionRootLPads(const Function &F) {
 | |
|   auto I = VisitedHandlers.insert(&F);
 | |
|   if (!I.second)
 | |
|     return; // We've already visited this handler, don't revisit it.
 | |
| 
 | |
|   SmallVector<std::unique_ptr<ActionHandler>, 4> ActionList;
 | |
|   for (const BasicBlock &BB : F) {
 | |
|     const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
 | |
|     if (!II)
 | |
|       continue;
 | |
|     const LandingPadInst *LPI = II->getLandingPadInst();
 | |
|     auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
 | |
|     if (!ActionsCall)
 | |
|       continue;
 | |
| 
 | |
|     assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
 | |
|     parseEHActions(ActionsCall, ActionList);
 | |
|     if (ActionList.empty())
 | |
|       continue;
 | |
|     for (int I = 0, E = ActionList.size(); I < E; ++I) {
 | |
|       if (auto *Handler
 | |
|               = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc())) {
 | |
|         FuncInfo.LastInvoke[Handler] = II;
 | |
|         // Don't replace the root landing pad if we previously saw this
 | |
|         // handler in a different function.
 | |
|         if (FuncInfo.RootLPad.count(Handler) &&
 | |
|             FuncInfo.RootLPad[Handler]->getParent()->getParent() != &F)
 | |
|           continue;
 | |
|         DEBUG(dbgs() << "Setting root lpad for ");
 | |
|         print_name(Handler);
 | |
|         DEBUG(dbgs() << " to " << LPI->getParent()->getName() << '\n');
 | |
|         FuncInfo.RootLPad[Handler] = LPI;
 | |
|       }
 | |
|     }
 | |
|     // Walk the actions again and look for nested handlers.  This has to
 | |
|     // happen after all of the actions have been processed in the current
 | |
|     // function.
 | |
|     for (int I = 0, E = ActionList.size(); I < E; ++I)
 | |
|       if (auto *Handler
 | |
|               = dyn_cast<Function>(ActionList[I]->getHandlerBlockOrFunc()))
 | |
|         findActionRootLPads(*Handler);
 | |
|     ActionList.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// clear - Clear out all the function-specific state. This returns this
 | |
| /// FunctionLoweringInfo to an empty state, ready to be used for a
 | |
| /// different function.
 | |
| void FunctionLoweringInfo::clear() {
 | |
|   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
 | |
|          "Not all catch info was assigned to a landing pad!");
 | |
| 
 | |
|   MBBMap.clear();
 | |
|   ValueMap.clear();
 | |
|   StaticAllocaMap.clear();
 | |
| #ifndef NDEBUG
 | |
|   CatchInfoLost.clear();
 | |
|   CatchInfoFound.clear();
 | |
| #endif
 | |
|   LiveOutRegInfo.clear();
 | |
|   VisitedBBs.clear();
 | |
|   ArgDbgValues.clear();
 | |
|   ByValArgFrameIndexMap.clear();
 | |
|   RegFixups.clear();
 | |
|   StatepointStackSlots.clear();
 | |
|   StatepointRelocatedValues.clear();
 | |
|   PreferredExtendType.clear();
 | |
| }
 | |
| 
 | |
| /// CreateReg - Allocate a single virtual register for the given type.
 | |
| unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
 | |
|   return RegInfo->createVirtualRegister(
 | |
|       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| /// CreateRegs - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| ///
 | |
| /// In the case that the given value has struct or array type, this function
 | |
| /// will assign registers for each member or element.
 | |
| ///
 | |
| unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
 | |
|   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(*TLI, Ty, ValueVTs);
 | |
| 
 | |
|   unsigned FirstReg = 0;
 | |
|   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
 | |
| 
 | |
|     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       unsigned R = CreateReg(RegisterVT);
 | |
|       if (!FirstReg) FirstReg = R;
 | |
|     }
 | |
|   }
 | |
|   return FirstReg;
 | |
| }
 | |
| 
 | |
| /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
 | |
| /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
 | |
| /// the register's LiveOutInfo is for a smaller bit width, it is extended to
 | |
| /// the larger bit width by zero extension. The bit width must be no smaller
 | |
| /// than the LiveOutInfo's existing bit width.
 | |
| const FunctionLoweringInfo::LiveOutInfo *
 | |
| FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
 | |
|   if (!LiveOutRegInfo.inBounds(Reg))
 | |
|     return nullptr;
 | |
| 
 | |
|   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
 | |
|   if (!LOI->IsValid)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (BitWidth > LOI->KnownZero.getBitWidth()) {
 | |
|     LOI->NumSignBits = 1;
 | |
|     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
 | |
|     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
 | |
|   }
 | |
| 
 | |
|   return LOI;
 | |
| }
 | |
| 
 | |
| /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
 | |
| /// register based on the LiveOutInfo of its operands.
 | |
| void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
 | |
|   Type *Ty = PN->getType();
 | |
|   if (!Ty->isIntegerTy() || Ty->isVectorTy())
 | |
|     return;
 | |
| 
 | |
|   SmallVector<EVT, 1> ValueVTs;
 | |
|   ComputeValueVTs(*TLI, Ty, ValueVTs);
 | |
|   assert(ValueVTs.size() == 1 &&
 | |
|          "PHIs with non-vector integer types should have a single VT.");
 | |
|   EVT IntVT = ValueVTs[0];
 | |
| 
 | |
|   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
 | |
|     return;
 | |
|   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
 | |
|   unsigned BitWidth = IntVT.getSizeInBits();
 | |
| 
 | |
|   unsigned DestReg = ValueMap[PN];
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | |
|     return;
 | |
|   LiveOutRegInfo.grow(DestReg);
 | |
|   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
 | |
| 
 | |
|   Value *V = PN->getIncomingValue(0);
 | |
|   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | |
|     DestLOI.NumSignBits = 1;
 | |
|     APInt Zero(BitWidth, 0);
 | |
|     DestLOI.KnownZero = Zero;
 | |
|     DestLOI.KnownOne = Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | |
|     DestLOI.NumSignBits = Val.getNumSignBits();
 | |
|     DestLOI.KnownZero = ~Val;
 | |
|     DestLOI.KnownOne = Val;
 | |
|   } else {
 | |
|     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
 | |
|                                 "CopyToReg node was created.");
 | |
|     unsigned SrcReg = ValueMap[V];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | |
|     if (!SrcLOI) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     DestLOI = *SrcLOI;
 | |
|   }
 | |
| 
 | |
|   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
 | |
|          DestLOI.KnownOne.getBitWidth() == BitWidth &&
 | |
|          "Masks should have the same bit width as the type.");
 | |
| 
 | |
|   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
|     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | |
|       DestLOI.NumSignBits = 1;
 | |
|       APInt Zero(BitWidth, 0);
 | |
|       DestLOI.KnownZero = Zero;
 | |
|       DestLOI.KnownOne = Zero;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | |
|       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
 | |
|       DestLOI.KnownZero &= ~Val;
 | |
|       DestLOI.KnownOne &= Val;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
 | |
|                                 "its CopyToReg node was created.");
 | |
|     unsigned SrcReg = ValueMap[V];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | |
|     if (!SrcLOI) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
 | |
|     DestLOI.KnownZero &= SrcLOI->KnownZero;
 | |
|     DestLOI.KnownOne &= SrcLOI->KnownOne;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// setArgumentFrameIndex - Record frame index for the byval
 | |
| /// argument. This overrides previous frame index entry for this argument,
 | |
| /// if any.
 | |
| void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
 | |
|                                                  int FI) {
 | |
|   ByValArgFrameIndexMap[A] = FI;
 | |
| }
 | |
| 
 | |
| /// getArgumentFrameIndex - Get frame index for the byval argument.
 | |
| /// If the argument does not have any assigned frame index then 0 is
 | |
| /// returned.
 | |
| int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
 | |
|   DenseMap<const Argument *, int>::iterator I =
 | |
|     ByValArgFrameIndexMap.find(A);
 | |
|   if (I != ByValArgFrameIndexMap.end())
 | |
|     return I->second;
 | |
|   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
 | |
| /// being passed to this variadic function, and set the MachineModuleInfo's
 | |
| /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
 | |
| /// reference to _fltused on Windows, which will link in MSVCRT's
 | |
| /// floating-point support.
 | |
| void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
 | |
|                                       MachineModuleInfo *MMI)
 | |
| {
 | |
|   FunctionType *FT = cast<FunctionType>(
 | |
|     I.getCalledValue()->getType()->getContainedType(0));
 | |
|   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
 | |
|     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
 | |
|       Type* T = I.getArgOperand(i)->getType();
 | |
|       for (auto i : post_order(T)) {
 | |
|         if (i->isFloatingPointTy()) {
 | |
|           MMI->setUsesVAFloatArgument(true);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddLandingPadInfo - Extract the exception handling information from the
 | |
| /// landingpad instruction and add them to the specified machine module info.
 | |
| void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
 | |
|                              MachineBasicBlock *MBB) {
 | |
|   MMI.addPersonality(MBB,
 | |
|                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
 | |
| 
 | |
|   if (I.isCleanup())
 | |
|     MMI.addCleanup(MBB);
 | |
| 
 | |
|   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
 | |
|   //        but we need to do it this way because of how the DWARF EH emitter
 | |
|   //        processes the clauses.
 | |
|   for (unsigned i = I.getNumClauses(); i != 0; --i) {
 | |
|     Value *Val = I.getClause(i - 1);
 | |
|     if (I.isCatch(i - 1)) {
 | |
|       MMI.addCatchTypeInfo(MBB,
 | |
|                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
 | |
|     } else {
 | |
|       // Add filters in a list.
 | |
|       Constant *CVal = cast<Constant>(Val);
 | |
|       SmallVector<const GlobalValue*, 4> FilterList;
 | |
|       for (User::op_iterator
 | |
|              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
 | |
|         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
 | |
| 
 | |
|       MMI.addFilterTypeInfo(MBB, FilterList);
 | |
|     }
 | |
|   }
 | |
| }
 |