mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
43b62beb4c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@114812 91177308-0d34-0410-b5e6-96231b3b80d8
1218 lines
42 KiB
C++
1218 lines
42 KiB
C++
//===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the ARM-specific support for the FastISel class. Some
|
|
// of the target-specific code is generated by tablegen in the file
|
|
// ARMGenFastISel.inc, which is #included here.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARM.h"
|
|
#include "ARMBaseInstrInfo.h"
|
|
#include "ARMCallingConv.h"
|
|
#include "ARMRegisterInfo.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
EnableARMFastISel("arm-fast-isel",
|
|
cl::desc("Turn on experimental ARM fast-isel support"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
class ARMFastISel : public FastISel {
|
|
|
|
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
|
|
/// make the right decision when generating code for different targets.
|
|
const ARMSubtarget *Subtarget;
|
|
const TargetMachine &TM;
|
|
const TargetInstrInfo &TII;
|
|
const TargetLowering &TLI;
|
|
const ARMFunctionInfo *AFI;
|
|
|
|
// Convenience variable to avoid checking all the time.
|
|
bool isThumb;
|
|
|
|
public:
|
|
explicit ARMFastISel(FunctionLoweringInfo &funcInfo)
|
|
: FastISel(funcInfo),
|
|
TM(funcInfo.MF->getTarget()),
|
|
TII(*TM.getInstrInfo()),
|
|
TLI(*TM.getTargetLowering()) {
|
|
Subtarget = &TM.getSubtarget<ARMSubtarget>();
|
|
AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
|
|
isThumb = AFI->isThumbFunction();
|
|
}
|
|
|
|
// Code from FastISel.cpp.
|
|
virtual unsigned FastEmitInst_(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC);
|
|
virtual unsigned FastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill);
|
|
virtual unsigned FastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill);
|
|
virtual unsigned FastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm);
|
|
virtual unsigned FastEmitInst_rf(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
const ConstantFP *FPImm);
|
|
virtual unsigned FastEmitInst_i(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
uint64_t Imm);
|
|
virtual unsigned FastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill,
|
|
uint64_t Imm);
|
|
virtual unsigned FastEmitInst_extractsubreg(MVT RetVT,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint32_t Idx);
|
|
|
|
// Backend specific FastISel code.
|
|
virtual bool TargetSelectInstruction(const Instruction *I);
|
|
virtual unsigned TargetMaterializeConstant(const Constant *C);
|
|
|
|
#include "ARMGenFastISel.inc"
|
|
|
|
// Instruction selection routines.
|
|
private:
|
|
virtual bool SelectLoad(const Instruction *I);
|
|
virtual bool SelectStore(const Instruction *I);
|
|
virtual bool SelectBranch(const Instruction *I);
|
|
virtual bool SelectCmp(const Instruction *I);
|
|
virtual bool SelectFPExt(const Instruction *I);
|
|
virtual bool SelectFPTrunc(const Instruction *I);
|
|
virtual bool SelectBinaryOp(const Instruction *I, unsigned ISDOpcode);
|
|
virtual bool SelectSIToFP(const Instruction *I);
|
|
virtual bool SelectFPToSI(const Instruction *I);
|
|
virtual bool SelectSDiv(const Instruction *I);
|
|
|
|
// Utility routines.
|
|
private:
|
|
bool isTypeLegal(const Type *Ty, EVT &VT);
|
|
bool isLoadTypeLegal(const Type *Ty, EVT &VT);
|
|
bool ARMEmitLoad(EVT VT, unsigned &ResultReg, unsigned Reg, int Offset);
|
|
bool ARMEmitStore(EVT VT, unsigned SrcReg, unsigned Reg, int Offset);
|
|
bool ARMLoadAlloca(const Instruction *I, EVT VT);
|
|
bool ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT);
|
|
bool ARMComputeRegOffset(const Value *Obj, unsigned &Reg, int &Offset);
|
|
unsigned ARMMaterializeFP(const ConstantFP *CFP, EVT VT);
|
|
unsigned ARMMaterializeInt(const Constant *C);
|
|
unsigned ARMMoveToFPReg(EVT VT, unsigned SrcReg);
|
|
unsigned ARMMoveToIntReg(EVT VT, unsigned SrcReg);
|
|
|
|
// Call handling routines.
|
|
private:
|
|
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool Return);
|
|
bool ARMEmitLibcall(const Instruction *I, Function *F);
|
|
|
|
// OptionalDef handling routines.
|
|
private:
|
|
bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
|
|
const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
#include "ARMGenCallingConv.inc"
|
|
|
|
// DefinesOptionalPredicate - This is different from DefinesPredicate in that
|
|
// we don't care about implicit defs here, just places we'll need to add a
|
|
// default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
|
|
bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
|
|
const TargetInstrDesc &TID = MI->getDesc();
|
|
if (!TID.hasOptionalDef())
|
|
return false;
|
|
|
|
// Look to see if our OptionalDef is defining CPSR or CCR.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef()) continue;
|
|
if (MO.getReg() == ARM::CPSR)
|
|
*CPSR = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// If the machine is predicable go ahead and add the predicate operands, if
|
|
// it needs default CC operands add those.
|
|
const MachineInstrBuilder &
|
|
ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
|
|
MachineInstr *MI = &*MIB;
|
|
|
|
// Do we use a predicate?
|
|
if (TII.isPredicable(MI))
|
|
AddDefaultPred(MIB);
|
|
|
|
// Do we optionally set a predicate? Preds is size > 0 iff the predicate
|
|
// defines CPSR. All other OptionalDefines in ARM are the CCR register.
|
|
bool CPSR = false;
|
|
if (DefinesOptionalPredicate(MI, &CPSR)) {
|
|
if (CPSR)
|
|
AddDefaultT1CC(MIB);
|
|
else
|
|
AddDefaultCC(MIB);
|
|
}
|
|
return MIB;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass* RC) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg));
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_r(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill));
|
|
else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_rr(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill));
|
|
else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_ri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_rf(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
const ConstantFP *FPImm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addFPImm(FPImm));
|
|
else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addFPImm(FPImm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_rri(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
unsigned Op0, bool Op0IsKill,
|
|
unsigned Op1, bool Op1IsKill,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
|
|
.addReg(Op0, Op0IsKill * RegState::Kill)
|
|
.addReg(Op1, Op1IsKill * RegState::Kill)
|
|
.addImm(Imm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_i(unsigned MachineInstOpcode,
|
|
const TargetRegisterClass *RC,
|
|
uint64_t Imm) {
|
|
unsigned ResultReg = createResultReg(RC);
|
|
const TargetInstrDesc &II = TII.get(MachineInstOpcode);
|
|
|
|
if (II.getNumDefs() >= 1)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II, ResultReg)
|
|
.addImm(Imm));
|
|
else {
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II)
|
|
.addImm(Imm));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(II.ImplicitDefs[0]));
|
|
}
|
|
return ResultReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::FastEmitInst_extractsubreg(MVT RetVT,
|
|
unsigned Op0, bool Op0IsKill,
|
|
uint32_t Idx) {
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT));
|
|
assert(TargetRegisterInfo::isVirtualRegister(Op0) &&
|
|
"Cannot yet extract from physregs");
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
|
|
DL, TII.get(TargetOpcode::COPY), ResultReg)
|
|
.addReg(Op0, getKillRegState(Op0IsKill), Idx));
|
|
return ResultReg;
|
|
}
|
|
|
|
// TODO: Don't worry about 64-bit now, but when this is fixed remove the
|
|
// checks from the various callers.
|
|
unsigned ARMFastISel::ARMMoveToFPReg(EVT VT, unsigned SrcReg) {
|
|
if (VT.getSimpleVT().SimpleTy == MVT::f64) return 0;
|
|
|
|
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::VMOVRS), MoveReg)
|
|
.addReg(SrcReg));
|
|
return MoveReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::ARMMoveToIntReg(EVT VT, unsigned SrcReg) {
|
|
if (VT.getSimpleVT().SimpleTy == MVT::i64) return 0;
|
|
|
|
unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::VMOVSR), MoveReg)
|
|
.addReg(SrcReg));
|
|
return MoveReg;
|
|
}
|
|
|
|
// For double width floating point we need to materialize two constants
|
|
// (the high and the low) into integer registers then use a move to get
|
|
// the combined constant into an FP reg.
|
|
unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, EVT VT) {
|
|
const APFloat Val = CFP->getValueAPF();
|
|
bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64;
|
|
|
|
// This checks to see if we can use VFP3 instructions to materialize
|
|
// a constant, otherwise we have to go through the constant pool.
|
|
if (TLI.isFPImmLegal(Val, VT)) {
|
|
unsigned Opc = is64bit ? ARM::FCONSTD : ARM::FCONSTS;
|
|
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
|
|
DestReg)
|
|
.addFPImm(CFP));
|
|
return DestReg;
|
|
}
|
|
|
|
// Require VFP2 for loading fp constants.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = TD.getPrefTypeAlignment(CFP->getType());
|
|
if (Align == 0) {
|
|
// TODO: Figure out if this is correct.
|
|
Align = TD.getTypeAllocSize(CFP->getType());
|
|
}
|
|
unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
|
|
unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
|
|
unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
|
|
|
|
// The extra reg is for addrmode5.
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc))
|
|
.addReg(DestReg).addConstantPoolIndex(Idx)
|
|
.addReg(0));
|
|
return DestReg;
|
|
}
|
|
|
|
// TODO: Verify 64-bit.
|
|
unsigned ARMFastISel::ARMMaterializeInt(const Constant *C) {
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = TD.getPrefTypeAlignment(C->getType());
|
|
if (Align == 0) {
|
|
// TODO: Figure out if this is correct.
|
|
Align = TD.getTypeAllocSize(C->getType());
|
|
}
|
|
unsigned Idx = MCP.getConstantPoolIndex(C, Align);
|
|
unsigned DestReg = createResultReg(TLI.getRegClassFor(MVT::i32));
|
|
|
|
if (isThumb)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::t2LDRpci))
|
|
.addReg(DestReg).addConstantPoolIndex(Idx));
|
|
else
|
|
// The extra reg and immediate are for addrmode2.
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::LDRcp))
|
|
.addReg(DestReg).addConstantPoolIndex(Idx)
|
|
.addReg(0).addImm(0));
|
|
|
|
return DestReg;
|
|
}
|
|
|
|
unsigned ARMFastISel::TargetMaterializeConstant(const Constant *C) {
|
|
EVT VT = TLI.getValueType(C->getType(), true);
|
|
|
|
// Only handle simple types.
|
|
if (!VT.isSimple()) return 0;
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
|
|
return ARMMaterializeFP(CFP, VT);
|
|
return ARMMaterializeInt(C);
|
|
}
|
|
|
|
bool ARMFastISel::isTypeLegal(const Type *Ty, EVT &VT) {
|
|
VT = TLI.getValueType(Ty, true);
|
|
|
|
// Only handle simple types.
|
|
if (VT == MVT::Other || !VT.isSimple()) return false;
|
|
|
|
// Handle all legal types, i.e. a register that will directly hold this
|
|
// value.
|
|
return TLI.isTypeLegal(VT);
|
|
}
|
|
|
|
bool ARMFastISel::isLoadTypeLegal(const Type *Ty, EVT &VT) {
|
|
if (isTypeLegal(Ty, VT)) return true;
|
|
|
|
// If this is a type than can be sign or zero-extended to a basic operation
|
|
// go ahead and accept it now.
|
|
if (VT == MVT::i8 || VT == MVT::i16)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Computes the Reg+Offset to get to an object.
|
|
bool ARMFastISel::ARMComputeRegOffset(const Value *Obj, unsigned &Reg,
|
|
int &Offset) {
|
|
// Some boilerplate from the X86 FastISel.
|
|
const User *U = NULL;
|
|
unsigned Opcode = Instruction::UserOp1;
|
|
if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
|
|
// Don't walk into other basic blocks; it's possible we haven't
|
|
// visited them yet, so the instructions may not yet be assigned
|
|
// virtual registers.
|
|
if (FuncInfo.MBBMap[I->getParent()] != FuncInfo.MBB)
|
|
return false;
|
|
Opcode = I->getOpcode();
|
|
U = I;
|
|
} else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
|
|
Opcode = C->getOpcode();
|
|
U = C;
|
|
}
|
|
|
|
if (const PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
|
|
if (Ty->getAddressSpace() > 255)
|
|
// Fast instruction selection doesn't support the special
|
|
// address spaces.
|
|
return false;
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::Alloca: {
|
|
assert(false && "Alloca should have been handled earlier!");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// FIXME: Handle global variables.
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(Obj)) {
|
|
(void)GV;
|
|
return false;
|
|
}
|
|
|
|
// Try to get this in a register if nothing else has worked.
|
|
Reg = getRegForValue(Obj);
|
|
if (Reg == 0) return false;
|
|
|
|
// Since the offset may be too large for the load instruction
|
|
// get the reg+offset into a register.
|
|
// TODO: Verify the additions work, otherwise we'll need to add the
|
|
// offset instead of 0 to the instructions and do all sorts of operand
|
|
// munging.
|
|
// TODO: Optimize this somewhat.
|
|
if (Offset != 0) {
|
|
ARMCC::CondCodes Pred = ARMCC::AL;
|
|
unsigned PredReg = 0;
|
|
|
|
if (!isThumb)
|
|
emitARMRegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
Reg, Reg, Offset, Pred, PredReg,
|
|
static_cast<const ARMBaseInstrInfo&>(TII));
|
|
else {
|
|
assert(AFI->isThumb2Function());
|
|
emitT2RegPlusImmediate(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
Reg, Reg, Offset, Pred, PredReg,
|
|
static_cast<const ARMBaseInstrInfo&>(TII));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::ARMLoadAlloca(const Instruction *I, EVT VT) {
|
|
Value *Op0 = I->getOperand(0);
|
|
|
|
// Verify it's an alloca.
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op0)) {
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
TargetRegisterClass* RC = TLI.getRegClassFor(VT);
|
|
unsigned ResultReg = createResultReg(RC);
|
|
TII.loadRegFromStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
|
|
ResultReg, SI->second, RC,
|
|
TM.getRegisterInfo());
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMFastISel::ARMEmitLoad(EVT VT, unsigned &ResultReg,
|
|
unsigned Reg, int Offset) {
|
|
|
|
assert(VT.isSimple() && "Non-simple types are invalid here!");
|
|
unsigned Opc;
|
|
bool isFloat = false;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
assert(false && "Trying to emit for an unhandled type!");
|
|
return false;
|
|
case MVT::i16:
|
|
Opc = isThumb ? ARM::tLDRH : ARM::LDRH;
|
|
VT = MVT::i32;
|
|
break;
|
|
case MVT::i8:
|
|
Opc = isThumb ? ARM::tLDRB : ARM::LDRB;
|
|
VT = MVT::i32;
|
|
break;
|
|
case MVT::i32:
|
|
Opc = isThumb ? ARM::tLDR : ARM::LDR;
|
|
break;
|
|
case MVT::f32:
|
|
Opc = ARM::VLDRS;
|
|
isFloat = true;
|
|
break;
|
|
case MVT::f64:
|
|
Opc = ARM::VLDRD;
|
|
isFloat = true;
|
|
break;
|
|
}
|
|
|
|
ResultReg = createResultReg(TLI.getRegClassFor(VT));
|
|
|
|
// TODO: Fix the Addressing modes so that these can share some code.
|
|
// Since this is a Thumb1 load this will work in Thumb1 or 2 mode.
|
|
// The thumb addressing mode has operands swapped from the arm addressing
|
|
// mode, the floating point one only has two operands.
|
|
if (isFloat)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(Reg).addImm(Offset));
|
|
else if (isThumb)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(Reg).addImm(Offset).addReg(0));
|
|
else
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(Reg).addReg(0).addImm(Offset));
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectLoad(const Instruction *I) {
|
|
// Verify we have a legal type before going any further.
|
|
EVT VT;
|
|
if (!isLoadTypeLegal(I->getType(), VT))
|
|
return false;
|
|
|
|
// If we're an alloca we know we have a frame index and can emit the load
|
|
// directly in short order.
|
|
if (ARMLoadAlloca(I, VT))
|
|
return true;
|
|
|
|
// Our register and offset with innocuous defaults.
|
|
unsigned Reg = 0;
|
|
int Offset = 0;
|
|
|
|
// See if we can handle this as Reg + Offset
|
|
if (!ARMComputeRegOffset(I->getOperand(0), Reg, Offset))
|
|
return false;
|
|
|
|
unsigned ResultReg;
|
|
if (!ARMEmitLoad(VT, ResultReg, Reg, Offset /* 0 */)) return false;
|
|
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::ARMStoreAlloca(const Instruction *I, unsigned SrcReg, EVT VT){
|
|
Value *Op1 = I->getOperand(1);
|
|
|
|
// Verify it's an alloca.
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
|
|
DenseMap<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
|
|
if (SI != FuncInfo.StaticAllocaMap.end()) {
|
|
TargetRegisterClass* RC = TLI.getRegClassFor(VT);
|
|
assert(SrcReg != 0 && "Nothing to store!");
|
|
TII.storeRegToStackSlot(*FuncInfo.MBB, *FuncInfo.InsertPt,
|
|
SrcReg, true /*isKill*/, SI->second, RC,
|
|
TM.getRegisterInfo());
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool ARMFastISel::ARMEmitStore(EVT VT, unsigned SrcReg,
|
|
unsigned DstReg, int Offset) {
|
|
unsigned StrOpc;
|
|
bool isFloat = false;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8: StrOpc = isThumb ? ARM::tSTRB : ARM::STRB; break;
|
|
case MVT::i16: StrOpc = isThumb ? ARM::tSTRH : ARM::STRH; break;
|
|
case MVT::i32: StrOpc = isThumb ? ARM::tSTR : ARM::STR; break;
|
|
case MVT::f32:
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
StrOpc = ARM::VSTRS;
|
|
isFloat = true;
|
|
break;
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
StrOpc = ARM::VSTRD;
|
|
isFloat = true;
|
|
break;
|
|
}
|
|
|
|
// The thumb addressing mode has operands swapped from the arm addressing
|
|
// mode, the floating point one only has two operands.
|
|
if (isFloat)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(StrOpc), SrcReg)
|
|
.addReg(DstReg).addImm(Offset));
|
|
else if (isThumb)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(StrOpc), SrcReg)
|
|
.addReg(DstReg).addImm(Offset).addReg(0));
|
|
|
|
else
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(StrOpc), SrcReg)
|
|
.addReg(DstReg).addReg(0).addImm(Offset));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectStore(const Instruction *I) {
|
|
Value *Op0 = I->getOperand(0);
|
|
unsigned SrcReg = 0;
|
|
|
|
// Yay type legalization
|
|
EVT VT;
|
|
if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
|
|
return false;
|
|
|
|
// Get the value to be stored into a register.
|
|
SrcReg = getRegForValue(Op0);
|
|
if (SrcReg == 0)
|
|
return false;
|
|
|
|
// If we're an alloca we know we have a frame index and can emit the store
|
|
// quickly.
|
|
if (ARMStoreAlloca(I, SrcReg, VT))
|
|
return true;
|
|
|
|
// Our register and offset with innocuous defaults.
|
|
unsigned Reg = 0;
|
|
int Offset = 0;
|
|
|
|
// See if we can handle this as Reg + Offset
|
|
if (!ARMComputeRegOffset(I->getOperand(1), Reg, Offset))
|
|
return false;
|
|
|
|
if (!ARMEmitStore(VT, SrcReg, Reg, Offset /* 0 */)) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
|
|
switch (Pred) {
|
|
// Needs two compares...
|
|
case CmpInst::FCMP_ONE:
|
|
case CmpInst::FCMP_UEQ:
|
|
default:
|
|
assert(false && "Unhandled CmpInst::Predicate!");
|
|
return ARMCC::AL;
|
|
case CmpInst::ICMP_EQ:
|
|
case CmpInst::FCMP_OEQ:
|
|
return ARMCC::EQ;
|
|
case CmpInst::ICMP_SGT:
|
|
case CmpInst::FCMP_OGT:
|
|
return ARMCC::GT;
|
|
case CmpInst::ICMP_SGE:
|
|
case CmpInst::FCMP_OGE:
|
|
return ARMCC::GE;
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::FCMP_UGT:
|
|
return ARMCC::HI;
|
|
case CmpInst::FCMP_OLT:
|
|
return ARMCC::MI;
|
|
case CmpInst::ICMP_ULE:
|
|
case CmpInst::FCMP_OLE:
|
|
return ARMCC::LS;
|
|
case CmpInst::FCMP_ORD:
|
|
return ARMCC::VC;
|
|
case CmpInst::FCMP_UNO:
|
|
return ARMCC::VS;
|
|
case CmpInst::FCMP_UGE:
|
|
return ARMCC::PL;
|
|
case CmpInst::ICMP_SLT:
|
|
case CmpInst::FCMP_ULT:
|
|
return ARMCC::LT;
|
|
case CmpInst::ICMP_SLE:
|
|
case CmpInst::FCMP_ULE:
|
|
return ARMCC::LE;
|
|
case CmpInst::FCMP_UNE:
|
|
case CmpInst::ICMP_NE:
|
|
return ARMCC::NE;
|
|
case CmpInst::ICMP_UGE:
|
|
return ARMCC::HS;
|
|
case CmpInst::ICMP_ULT:
|
|
return ARMCC::LO;
|
|
}
|
|
}
|
|
|
|
bool ARMFastISel::SelectBranch(const Instruction *I) {
|
|
const BranchInst *BI = cast<BranchInst>(I);
|
|
MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
|
|
MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
|
|
|
|
// Simple branch support.
|
|
// TODO: Hopefully we've already handled the condition since we won't
|
|
// have left an update in the value map. See the TODO below in SelectCMP.
|
|
Value *Cond = BI->getCondition();
|
|
unsigned CondReg = getRegForValue(Cond);
|
|
if (CondReg == 0) return false;
|
|
|
|
ARMCC::CondCodes ARMPred = ARMCC::NE;
|
|
CmpInst *CI = dyn_cast<CmpInst>(Cond);
|
|
if (!CI) return false;
|
|
|
|
// Get the compare predicate.
|
|
ARMPred = getComparePred(CI->getPredicate());
|
|
|
|
// We may not handle every CC for now.
|
|
if (ARMPred == ARMCC::AL) return false;
|
|
|
|
unsigned BrOpc = isThumb ? ARM::t2Bcc : ARM::Bcc;
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BrOpc))
|
|
.addMBB(TBB).addImm(ARMPred).addReg(CondReg);
|
|
FastEmitBranch(FBB, DL);
|
|
FuncInfo.MBB->addSuccessor(TBB);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectCmp(const Instruction *I) {
|
|
const CmpInst *CI = cast<CmpInst>(I);
|
|
|
|
EVT VT;
|
|
const Type *Ty = CI->getOperand(0)->getType();
|
|
if (!isTypeLegal(Ty, VT))
|
|
return false;
|
|
|
|
bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
|
|
if (isFloat && !Subtarget->hasVFP2())
|
|
return false;
|
|
|
|
unsigned CmpOpc;
|
|
unsigned DestReg;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
// TODO: Verify compares.
|
|
case MVT::f32:
|
|
CmpOpc = ARM::VCMPES;
|
|
DestReg = ARM::FPSCR;
|
|
break;
|
|
case MVT::f64:
|
|
CmpOpc = ARM::VCMPED;
|
|
DestReg = ARM::FPSCR;
|
|
break;
|
|
case MVT::i32:
|
|
CmpOpc = isThumb ? ARM::t2CMPrr : ARM::CMPrr;
|
|
DestReg = ARM::CPSR;
|
|
break;
|
|
}
|
|
|
|
unsigned Arg1 = getRegForValue(CI->getOperand(0));
|
|
if (Arg1 == 0) return false;
|
|
|
|
unsigned Arg2 = getRegForValue(CI->getOperand(1));
|
|
if (Arg2 == 0) return false;
|
|
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CmpOpc))
|
|
.addReg(Arg1).addReg(Arg2));
|
|
|
|
// For floating point we need to move the result to a comparison register
|
|
// that we can then use for branches.
|
|
if (isFloat)
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::FMSTAT)));
|
|
|
|
// Update the value to the implicit def reg.
|
|
UpdateValueMap(I, DestReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectFPExt(const Instruction *I) {
|
|
// Make sure we have VFP and that we're extending float to double.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
Value *V = I->getOperand(0);
|
|
if (!I->getType()->isDoubleTy() ||
|
|
!V->getType()->isFloatTy()) return false;
|
|
|
|
unsigned Op = getRegForValue(V);
|
|
if (Op == 0) return false;
|
|
|
|
unsigned Result = createResultReg(ARM::DPRRegisterClass);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::VCVTDS), Result)
|
|
.addReg(Op));
|
|
UpdateValueMap(I, Result);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
|
|
// Make sure we have VFP and that we're truncating double to float.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
Value *V = I->getOperand(0);
|
|
if (!I->getType()->isFloatTy() ||
|
|
!V->getType()->isDoubleTy()) return false;
|
|
|
|
unsigned Op = getRegForValue(V);
|
|
if (Op == 0) return false;
|
|
|
|
unsigned Result = createResultReg(ARM::SPRRegisterClass);
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(ARM::VCVTSD), Result)
|
|
.addReg(Op));
|
|
UpdateValueMap(I, Result);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectSIToFP(const Instruction *I) {
|
|
// Make sure we have VFP.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
EVT DstVT;
|
|
const Type *Ty = I->getType();
|
|
if (!isTypeLegal(Ty, DstVT))
|
|
return false;
|
|
|
|
unsigned Op = getRegForValue(I->getOperand(0));
|
|
if (Op == 0) return false;
|
|
|
|
// The conversion routine works on fp-reg to fp-reg and the operand above
|
|
// was an integer, move it to the fp registers if possible.
|
|
unsigned FP = ARMMoveToFPReg(DstVT, Op);
|
|
if (FP == 0) return false;
|
|
|
|
unsigned Opc;
|
|
if (Ty->isFloatTy()) Opc = ARM::VSITOS;
|
|
else if (Ty->isDoubleTy()) Opc = ARM::VSITOD;
|
|
else return 0;
|
|
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
|
|
ResultReg)
|
|
.addReg(FP));
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectFPToSI(const Instruction *I) {
|
|
// Make sure we have VFP.
|
|
if (!Subtarget->hasVFP2()) return false;
|
|
|
|
EVT DstVT;
|
|
const Type *RetTy = I->getType();
|
|
if (!isTypeLegal(RetTy, DstVT))
|
|
return false;
|
|
|
|
unsigned Op = getRegForValue(I->getOperand(0));
|
|
if (Op == 0) return false;
|
|
|
|
unsigned Opc;
|
|
const Type *OpTy = I->getOperand(0)->getType();
|
|
if (OpTy->isFloatTy()) Opc = ARM::VTOSIZS;
|
|
else if (OpTy->isDoubleTy()) Opc = ARM::VTOSIZD;
|
|
else return 0;
|
|
EVT OpVT = TLI.getValueType(OpTy, true);
|
|
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(OpVT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc),
|
|
ResultReg)
|
|
.addReg(Op));
|
|
|
|
// This result needs to be in an integer register, but the conversion only
|
|
// takes place in fp-regs.
|
|
unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
|
|
if (IntReg == 0) return false;
|
|
|
|
UpdateValueMap(I, IntReg);
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectBinaryOp(const Instruction *I, unsigned ISDOpcode) {
|
|
EVT VT = TLI.getValueType(I->getType(), true);
|
|
|
|
// We can get here in the case when we want to use NEON for our fp
|
|
// operations, but can't figure out how to. Just use the vfp instructions
|
|
// if we have them.
|
|
// FIXME: It'd be nice to use NEON instructions.
|
|
const Type *Ty = I->getType();
|
|
bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy());
|
|
if (isFloat && !Subtarget->hasVFP2())
|
|
return false;
|
|
|
|
unsigned Op1 = getRegForValue(I->getOperand(0));
|
|
if (Op1 == 0) return false;
|
|
|
|
unsigned Op2 = getRegForValue(I->getOperand(1));
|
|
if (Op2 == 0) return false;
|
|
|
|
unsigned Opc;
|
|
bool is64bit = VT.getSimpleVT().SimpleTy == MVT::f64 ||
|
|
VT.getSimpleVT().SimpleTy == MVT::i64;
|
|
switch (ISDOpcode) {
|
|
default: return false;
|
|
case ISD::FADD:
|
|
Opc = is64bit ? ARM::VADDD : ARM::VADDS;
|
|
break;
|
|
case ISD::FSUB:
|
|
Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
|
|
break;
|
|
case ISD::FMUL:
|
|
Opc = is64bit ? ARM::VMULD : ARM::VMULS;
|
|
break;
|
|
}
|
|
unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
|
|
AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
|
|
TII.get(Opc), ResultReg)
|
|
.addReg(Op1).addReg(Op2));
|
|
UpdateValueMap(I, ResultReg);
|
|
return true;
|
|
}
|
|
|
|
// Call Handling Code
|
|
|
|
// This is largely taken directly from CCAssignFnForNode - we don't support
|
|
// varargs in FastISel so that part has been removed.
|
|
// TODO: We may not support all of this.
|
|
CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, bool Return) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
// Use target triple & subtarget features to do actual dispatch.
|
|
if (Subtarget->isAAPCS_ABI()) {
|
|
if (Subtarget->hasVFP2() &&
|
|
FloatABIType == FloatABI::Hard)
|
|
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
|
|
else
|
|
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
|
|
} else
|
|
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
|
|
case CallingConv::ARM_AAPCS:
|
|
return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
|
|
case CallingConv::ARM_APCS:
|
|
return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
|
|
}
|
|
}
|
|
|
|
// A quick function that will emit a call for a named libcall in F with the
|
|
// vector of passed arguments for the Instruction in I. We can assume that we
|
|
// can emit a call for any libcall we can produce. This is an abridged version
|
|
// of the full call infrastructure since we won't need to worry about things
|
|
// like computed function pointers or strange arguments at call sites.
|
|
// TODO: Try to unify this and the normal call bits for ARM, then try to unify
|
|
// with X86.
|
|
bool ARMFastISel::ARMEmitLibcall(const Instruction *I, Function *F) {
|
|
CallingConv::ID CC = F->getCallingConv();
|
|
|
|
// Handle *simple* calls for now.
|
|
const Type *RetTy = F->getReturnType();
|
|
EVT RetVT;
|
|
if (RetTy->isVoidTy())
|
|
RetVT = MVT::isVoid;
|
|
else if (!isTypeLegal(RetTy, RetVT))
|
|
return false;
|
|
|
|
assert(!F->isVarArg() && "Vararg libcall?!");
|
|
|
|
// Abridged from the X86 FastISel call selection mechanism
|
|
SmallVector<Value*, 8> Args;
|
|
SmallVector<unsigned, 8> ArgRegs;
|
|
SmallVector<EVT, 8> ArgVTs;
|
|
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
|
|
Args.reserve(I->getNumOperands());
|
|
ArgRegs.reserve(I->getNumOperands());
|
|
ArgVTs.reserve(I->getNumOperands());
|
|
ArgFlags.reserve(I->getNumOperands());
|
|
for (unsigned i = 0; i < Args.size(); ++i) {
|
|
Value *Op = I->getOperand(i);
|
|
unsigned Arg = getRegForValue(Op);
|
|
if (Arg == 0) return false;
|
|
|
|
const Type *ArgTy = Op->getType();
|
|
EVT ArgVT;
|
|
if (!isTypeLegal(ArgTy, ArgVT)) return false;
|
|
|
|
ISD::ArgFlagsTy Flags;
|
|
unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
|
|
Flags.setOrigAlign(OriginalAlignment);
|
|
|
|
Args.push_back(Op);
|
|
ArgRegs.push_back(Arg);
|
|
ArgVTs.push_back(ArgVT);
|
|
ArgFlags.push_back(Flags);
|
|
}
|
|
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CC, false, TM, ArgLocs, F->getContext());
|
|
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC, false));
|
|
|
|
// Process the args.
|
|
SmallVector<unsigned, 4> RegArgs;
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
unsigned Arg = ArgRegs[VA.getValNo()];
|
|
EVT ArgVT = ArgVTs[VA.getValNo()];
|
|
|
|
// Should we ever have to promote?
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::Full: break;
|
|
default:
|
|
assert(false && "Handle arg promotion for libcalls?");
|
|
return false;
|
|
}
|
|
|
|
// Now copy/store arg to correct locations.
|
|
if (VA.isRegLoc()) {
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
|
|
VA.getLocReg()).addReg(Arg);
|
|
RegArgs.push_back(VA.getLocReg());
|
|
} else {
|
|
// Need to store
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Issue the call, BLr9 for darwin, BL otherwise.
|
|
MachineInstrBuilder MIB;
|
|
unsigned CallOpc;
|
|
if(isThumb)
|
|
CallOpc = Subtarget->isTargetDarwin() ? ARM::tBLr9 : ARM::tBL;
|
|
else
|
|
CallOpc = Subtarget->isTargetDarwin() ? ARM::BLr9 : ARM::BL;
|
|
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
|
|
.addGlobalAddress(F, 0, 0);
|
|
|
|
// Add implicit physical register uses to the call.
|
|
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
|
|
MIB.addReg(RegArgs[i]);
|
|
|
|
// Now the return value.
|
|
SmallVector<unsigned, 4> UsedRegs;
|
|
if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CC, false, TM, RVLocs, F->getContext());
|
|
CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true));
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
assert(RVLocs.size() == 1 && "Can't handle multi-value calls!");
|
|
EVT CopyVT = RVLocs[0].getValVT();
|
|
TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
|
|
|
|
unsigned ResultReg = createResultReg(DstRC);
|
|
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
|
|
ResultReg).addReg(RVLocs[0].getLocReg());
|
|
UsedRegs.push_back(RVLocs[0].getLocReg());
|
|
|
|
// Finally update the result.
|
|
UpdateValueMap(I, ResultReg);
|
|
}
|
|
|
|
// Set all unused physreg defs as dead.
|
|
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ARMFastISel::SelectSDiv(const Instruction *I) {
|
|
EVT VT;
|
|
const Type *Ty = I->getType();
|
|
if (!isTypeLegal(Ty, VT))
|
|
return false;
|
|
|
|
// If we have integer div support we should have gotten already, emit a
|
|
// libcall.
|
|
RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
|
|
if (VT == MVT::i16)
|
|
LC = RTLIB::SDIV_I16;
|
|
else if (VT == MVT::i32)
|
|
LC = RTLIB::SDIV_I32;
|
|
else if (VT == MVT::i64)
|
|
LC = RTLIB::SDIV_I64;
|
|
else if (VT == MVT::i128)
|
|
LC = RTLIB::SDIV_I128;
|
|
assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
|
|
|
|
// Binary operand with all the same type.
|
|
std::vector<const Type*> ArgTys;
|
|
ArgTys.push_back(Ty);
|
|
ArgTys.push_back(Ty);
|
|
const FunctionType *FTy = FunctionType::get(Ty, ArgTys, false);
|
|
Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
|
|
TLI.getLibcallName(LC));
|
|
if (Subtarget->isAAPCS_ABI())
|
|
F->setCallingConv(CallingConv::ARM_AAPCS);
|
|
else
|
|
F->setCallingConv(I->getParent()->getParent()->getCallingConv());
|
|
|
|
return ARMEmitLibcall(I, F);
|
|
}
|
|
|
|
// TODO: SoftFP support.
|
|
bool ARMFastISel::TargetSelectInstruction(const Instruction *I) {
|
|
// No Thumb-1 for now.
|
|
if (isThumb && !AFI->isThumb2Function()) return false;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Load:
|
|
return SelectLoad(I);
|
|
case Instruction::Store:
|
|
return SelectStore(I);
|
|
case Instruction::Br:
|
|
return SelectBranch(I);
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
return SelectCmp(I);
|
|
case Instruction::FPExt:
|
|
return SelectFPExt(I);
|
|
case Instruction::FPTrunc:
|
|
return SelectFPTrunc(I);
|
|
case Instruction::SIToFP:
|
|
return SelectSIToFP(I);
|
|
case Instruction::FPToSI:
|
|
return SelectFPToSI(I);
|
|
case Instruction::FAdd:
|
|
return SelectBinaryOp(I, ISD::FADD);
|
|
case Instruction::FSub:
|
|
return SelectBinaryOp(I, ISD::FSUB);
|
|
case Instruction::FMul:
|
|
return SelectBinaryOp(I, ISD::FMUL);
|
|
case Instruction::SDiv:
|
|
return SelectSDiv(I);
|
|
default: break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace llvm {
|
|
llvm::FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo) {
|
|
if (EnableARMFastISel) return new ARMFastISel(funcInfo);
|
|
return 0;
|
|
}
|
|
}
|