mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108142 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1562 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1562 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Jump Threading pass.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "jump-threading"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LazyValueInfo.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumThreads, "Number of jumps threaded");
 | |
| STATISTIC(NumFolds,   "Number of terminators folded");
 | |
| STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| Threshold("jump-threading-threshold", 
 | |
|           cl::desc("Max block size to duplicate for jump threading"),
 | |
|           cl::init(6), cl::Hidden);
 | |
| 
 | |
| // Turn on use of LazyValueInfo.
 | |
| static cl::opt<bool>
 | |
| EnableLVI("enable-jump-threading-lvi", cl::ReallyHidden);
 | |
| 
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   /// This pass performs 'jump threading', which looks at blocks that have
 | |
|   /// multiple predecessors and multiple successors.  If one or more of the
 | |
|   /// predecessors of the block can be proven to always jump to one of the
 | |
|   /// successors, we forward the edge from the predecessor to the successor by
 | |
|   /// duplicating the contents of this block.
 | |
|   ///
 | |
|   /// An example of when this can occur is code like this:
 | |
|   ///
 | |
|   ///   if () { ...
 | |
|   ///     X = 4;
 | |
|   ///   }
 | |
|   ///   if (X < 3) {
 | |
|   ///
 | |
|   /// In this case, the unconditional branch at the end of the first if can be
 | |
|   /// revectored to the false side of the second if.
 | |
|   ///
 | |
|   class JumpThreading : public FunctionPass {
 | |
|     TargetData *TD;
 | |
|     LazyValueInfo *LVI;
 | |
| #ifdef NDEBUG
 | |
|     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
 | |
| #else
 | |
|     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
 | |
| #endif
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
|     JumpThreading() : FunctionPass(&ID) {}
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
|     
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       if (EnableLVI)
 | |
|         AU.addRequired<LazyValueInfo>();
 | |
|     }
 | |
|     
 | |
|     void FindLoopHeaders(Function &F);
 | |
|     bool ProcessBlock(BasicBlock *BB);
 | |
|     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
 | |
|                     BasicBlock *SuccBB);
 | |
|     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
 | |
|                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
 | |
|     
 | |
|     typedef SmallVectorImpl<std::pair<ConstantInt*,
 | |
|                                       BasicBlock*> > PredValueInfo;
 | |
|     
 | |
|     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
 | |
|                                          PredValueInfo &Result);
 | |
|     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB);
 | |
|     
 | |
|     
 | |
|     bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 | |
|     bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
 | |
| 
 | |
|     bool ProcessBranchOnPHI(PHINode *PN);
 | |
|     bool ProcessBranchOnXOR(BinaryOperator *BO);
 | |
|     
 | |
|     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char JumpThreading::ID = 0;
 | |
| static RegisterPass<JumpThreading>
 | |
| X("jump-threading", "Jump Threading");
 | |
| 
 | |
| // Public interface to the Jump Threading pass
 | |
| FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
 | |
| 
 | |
| /// runOnFunction - Top level algorithm.
 | |
| ///
 | |
| bool JumpThreading::runOnFunction(Function &F) {
 | |
|   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   LVI = EnableLVI ? &getAnalysis<LazyValueInfo>() : 0;
 | |
|   
 | |
|   FindLoopHeaders(F);
 | |
|   
 | |
|   bool Changed, EverChanged = false;
 | |
|   do {
 | |
|     Changed = false;
 | |
|     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
 | |
|       BasicBlock *BB = I;
 | |
|       // Thread all of the branches we can over this block. 
 | |
|       while (ProcessBlock(BB))
 | |
|         Changed = true;
 | |
|       
 | |
|       ++I;
 | |
|       
 | |
|       // If the block is trivially dead, zap it.  This eliminates the successor
 | |
|       // edges which simplifies the CFG.
 | |
|       if (pred_begin(BB) == pred_end(BB) &&
 | |
|           BB != &BB->getParent()->getEntryBlock()) {
 | |
|         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
 | |
|               << "' with terminator: " << *BB->getTerminator() << '\n');
 | |
|         LoopHeaders.erase(BB);
 | |
|         DeleteDeadBlock(BB);
 | |
|         Changed = true;
 | |
|       } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|         // Can't thread an unconditional jump, but if the block is "almost
 | |
|         // empty", we can replace uses of it with uses of the successor and make
 | |
|         // this dead.
 | |
|         if (BI->isUnconditional() && 
 | |
|             BB != &BB->getParent()->getEntryBlock()) {
 | |
|           BasicBlock::iterator BBI = BB->getFirstNonPHI();
 | |
|           // Ignore dbg intrinsics.
 | |
|           while (isa<DbgInfoIntrinsic>(BBI))
 | |
|             ++BBI;
 | |
|           // If the terminator is the only non-phi instruction, try to nuke it.
 | |
|           if (BBI->isTerminator()) {
 | |
|             // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
 | |
|             // block, we have to make sure it isn't in the LoopHeaders set.  We
 | |
|             // reinsert afterward if needed.
 | |
|             bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
 | |
|             BasicBlock *Succ = BI->getSuccessor(0);
 | |
|             
 | |
|             if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
 | |
|               Changed = true;
 | |
|               // If we deleted BB and BB was the header of a loop, then the
 | |
|               // successor is now the header of the loop.
 | |
|               BB = Succ;
 | |
|             }
 | |
|             
 | |
|             if (ErasedFromLoopHeaders)
 | |
|               LoopHeaders.insert(BB);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     EverChanged |= Changed;
 | |
|   } while (Changed);
 | |
|   
 | |
|   LoopHeaders.clear();
 | |
|   return EverChanged;
 | |
| }
 | |
| 
 | |
| /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
 | |
| /// thread across it.
 | |
| static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
 | |
|   /// Ignore PHI nodes, these will be flattened when duplication happens.
 | |
|   BasicBlock::const_iterator I = BB->getFirstNonPHI();
 | |
|   
 | |
|   // FIXME: THREADING will delete values that are just used to compute the
 | |
|   // branch, so they shouldn't count against the duplication cost.
 | |
|   
 | |
|   
 | |
|   // Sum up the cost of each instruction until we get to the terminator.  Don't
 | |
|   // include the terminator because the copy won't include it.
 | |
|   unsigned Size = 0;
 | |
|   for (; !isa<TerminatorInst>(I); ++I) {
 | |
|     // Debugger intrinsics don't incur code size.
 | |
|     if (isa<DbgInfoIntrinsic>(I)) continue;
 | |
|     
 | |
|     // If this is a pointer->pointer bitcast, it is free.
 | |
|     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
 | |
|       continue;
 | |
|     
 | |
|     // All other instructions count for at least one unit.
 | |
|     ++Size;
 | |
|     
 | |
|     // Calls are more expensive.  If they are non-intrinsic calls, we model them
 | |
|     // as having cost of 4.  If they are a non-vector intrinsic, we model them
 | |
|     // as having cost of 2 total, and if they are a vector intrinsic, we model
 | |
|     // them as having cost 1.
 | |
|     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
 | |
|       if (!isa<IntrinsicInst>(CI))
 | |
|         Size += 3;
 | |
|       else if (!CI->getType()->isVectorTy())
 | |
|         Size += 1;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Threading through a switch statement is particularly profitable.  If this
 | |
|   // block ends in a switch, decrease its cost to make it more likely to happen.
 | |
|   if (isa<SwitchInst>(I))
 | |
|     Size = Size > 6 ? Size-6 : 0;
 | |
|   
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| /// FindLoopHeaders - We do not want jump threading to turn proper loop
 | |
| /// structures into irreducible loops.  Doing this breaks up the loop nesting
 | |
| /// hierarchy and pessimizes later transformations.  To prevent this from
 | |
| /// happening, we first have to find the loop headers.  Here we approximate this
 | |
| /// by finding targets of backedges in the CFG.
 | |
| ///
 | |
| /// Note that there definitely are cases when we want to allow threading of
 | |
| /// edges across a loop header.  For example, threading a jump from outside the
 | |
| /// loop (the preheader) to an exit block of the loop is definitely profitable.
 | |
| /// It is also almost always profitable to thread backedges from within the loop
 | |
| /// to exit blocks, and is often profitable to thread backedges to other blocks
 | |
| /// within the loop (forming a nested loop).  This simple analysis is not rich
 | |
| /// enough to track all of these properties and keep it up-to-date as the CFG
 | |
| /// mutates, so we don't allow any of these transformations.
 | |
| ///
 | |
| void JumpThreading::FindLoopHeaders(Function &F) {
 | |
|   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
 | |
|   FindFunctionBackedges(F, Edges);
 | |
|   
 | |
|   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
 | |
|     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
 | |
| }
 | |
| 
 | |
| /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
 | |
| /// if we can infer that the value is a known ConstantInt in any of our
 | |
| /// predecessors.  If so, return the known list of value and pred BB in the
 | |
| /// result vector.  If a value is known to be undef, it is returned as null.
 | |
| ///
 | |
| /// This returns true if there were any known values.
 | |
| ///
 | |
| bool JumpThreading::
 | |
| ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
 | |
|   // If V is a constantint, then it is known in all predecessors.
 | |
|   if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(V);
 | |
|     
 | |
|     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
 | |
|       Result.push_back(std::make_pair(CI, *PI));
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If V is a non-instruction value, or an instruction in a different block,
 | |
|   // then it can't be derived from a PHI.
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (I == 0 || I->getParent() != BB) {
 | |
|     
 | |
|     // Okay, if this is a live-in value, see if it has a known value at the end
 | |
|     // of any of our predecessors.
 | |
|     //
 | |
|     // FIXME: This should be an edge property, not a block end property.
 | |
|     /// TODO: Per PR2563, we could infer value range information about a
 | |
|     /// predecessor based on its terminator.
 | |
|     //
 | |
|     if (LVI) {
 | |
|       // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
 | |
|       // "I" is a non-local compare-with-a-constant instruction.  This would be
 | |
|       // able to handle value inequalities better, for example if the compare is
 | |
|       // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
 | |
|       // Perhaps getConstantOnEdge should be smart enough to do this?
 | |
|       
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         // If the value is known by LazyValueInfo to be a constant in a
 | |
|         // predecessor, use that information to try to thread this block.
 | |
|         Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
 | |
|         if (PredCst == 0 ||
 | |
|             (!isa<ConstantInt>(PredCst) && !isa<UndefValue>(PredCst)))
 | |
|           continue;
 | |
|         
 | |
|         Result.push_back(std::make_pair(dyn_cast<ConstantInt>(PredCst), P));
 | |
|       }
 | |
|       
 | |
|       return !Result.empty();
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   /// If I is a PHI node, then we know the incoming values for any constants.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *InVal = PN->getIncomingValue(i);
 | |
|       if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
 | |
|         ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
 | |
|         Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
 | |
|       }
 | |
|     }
 | |
|     return !Result.empty();
 | |
|   }
 | |
|   
 | |
|   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
 | |
| 
 | |
|   // Handle some boolean conditions.
 | |
|   if (I->getType()->getPrimitiveSizeInBits() == 1) { 
 | |
|     // X | true -> true
 | |
|     // X & false -> false
 | |
|     if (I->getOpcode() == Instruction::Or ||
 | |
|         I->getOpcode() == Instruction::And) {
 | |
|       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
 | |
|       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
 | |
|       
 | |
|       if (LHSVals.empty() && RHSVals.empty())
 | |
|         return false;
 | |
|       
 | |
|       ConstantInt *InterestingVal;
 | |
|       if (I->getOpcode() == Instruction::Or)
 | |
|         InterestingVal = ConstantInt::getTrue(I->getContext());
 | |
|       else
 | |
|         InterestingVal = ConstantInt::getFalse(I->getContext());
 | |
|       
 | |
|       // Scan for the sentinel.  If we find an undef, force it to the
 | |
|       // interesting value: x|undef -> true and x&undef -> false.
 | |
|       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
 | |
|         if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0) {
 | |
|           Result.push_back(LHSVals[i]);
 | |
|           Result.back().first = InterestingVal;
 | |
|         }
 | |
|       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
 | |
|         if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0) {
 | |
|           // If we already inferred a value for this block on the LHS, don't
 | |
|           // re-add it.
 | |
|           bool HasValue = false;
 | |
|           for (unsigned r = 0, e = Result.size(); r != e; ++r)
 | |
|             if (Result[r].second == RHSVals[i].second) {
 | |
|               HasValue = true;
 | |
|               break;
 | |
|             }
 | |
|           
 | |
|           if (!HasValue) {
 | |
|             Result.push_back(RHSVals[i]);
 | |
|             Result.back().first = InterestingVal;
 | |
|           }
 | |
|         }
 | |
|       return !Result.empty();
 | |
|     }
 | |
|     
 | |
|     // Handle the NOT form of XOR.
 | |
|     if (I->getOpcode() == Instruction::Xor &&
 | |
|         isa<ConstantInt>(I->getOperand(1)) &&
 | |
|         cast<ConstantInt>(I->getOperand(1))->isOne()) {
 | |
|       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
 | |
|       if (Result.empty())
 | |
|         return false;
 | |
| 
 | |
|       // Invert the known values.
 | |
|       for (unsigned i = 0, e = Result.size(); i != e; ++i)
 | |
|         if (Result[i].first)
 | |
|           Result[i].first =
 | |
|             cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Handle compare with phi operand, where the PHI is defined in this block.
 | |
|   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
 | |
|     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
 | |
|     if (PN && PN->getParent() == BB) {
 | |
|       // We can do this simplification if any comparisons fold to true or false.
 | |
|       // See if any do.
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|         BasicBlock *PredBB = PN->getIncomingBlock(i);
 | |
|         Value *LHS = PN->getIncomingValue(i);
 | |
|         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
 | |
|         
 | |
|         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
 | |
|         if (Res == 0) {
 | |
|           if (!LVI || !isa<Constant>(RHS))
 | |
|             continue;
 | |
|           
 | |
|           LazyValueInfo::Tristate 
 | |
|             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
 | |
|                                            cast<Constant>(RHS), PredBB, BB);
 | |
|           if (ResT == LazyValueInfo::Unknown)
 | |
|             continue;
 | |
|           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
 | |
|         }
 | |
|         
 | |
|         if (isa<UndefValue>(Res))
 | |
|           Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
 | |
|         else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
 | |
|           Result.push_back(std::make_pair(CI, PredBB));
 | |
|       }
 | |
|       
 | |
|       return !Result.empty();
 | |
|     }
 | |
|     
 | |
|     
 | |
|     // If comparing a live-in value against a constant, see if we know the
 | |
|     // live-in value on any predecessors.
 | |
|     if (LVI && isa<Constant>(Cmp->getOperand(1)) &&
 | |
|         Cmp->getType()->isIntegerTy() && // Not vector compare.
 | |
|         (!isa<Instruction>(Cmp->getOperand(0)) ||
 | |
|          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB)) {
 | |
|       Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
 | |
| 
 | |
|       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         // If the value is known by LazyValueInfo to be a constant in a
 | |
|         // predecessor, use that information to try to thread this block.
 | |
|         LazyValueInfo::Tristate
 | |
|           Res = LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
 | |
|                                         RHSCst, P, BB);
 | |
|         if (Res == LazyValueInfo::Unknown)
 | |
|           continue;
 | |
| 
 | |
|         Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
 | |
|         Result.push_back(std::make_pair(cast<ConstantInt>(ResC), P));
 | |
|       }
 | |
| 
 | |
|       return !Result.empty();
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
 | |
| /// in an undefined jump, decide which block is best to revector to.
 | |
| ///
 | |
| /// Since we can pick an arbitrary destination, we pick the successor with the
 | |
| /// fewest predecessors.  This should reduce the in-degree of the others.
 | |
| ///
 | |
| static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
 | |
|   TerminatorInst *BBTerm = BB->getTerminator();
 | |
|   unsigned MinSucc = 0;
 | |
|   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
 | |
|   // Compute the successor with the minimum number of predecessors.
 | |
|   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | |
|   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | |
|     TestBB = BBTerm->getSuccessor(i);
 | |
|     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
 | |
|     if (NumPreds < MinNumPreds)
 | |
|       MinSucc = i;
 | |
|   }
 | |
|   
 | |
|   return MinSucc;
 | |
| }
 | |
| 
 | |
| /// ProcessBlock - If there are any predecessors whose control can be threaded
 | |
| /// through to a successor, transform them now.
 | |
| bool JumpThreading::ProcessBlock(BasicBlock *BB) {
 | |
|   // If the block is trivially dead, just return and let the caller nuke it.
 | |
|   // This simplifies other transformations.
 | |
|   if (pred_begin(BB) == pred_end(BB) &&
 | |
|       BB != &BB->getParent()->getEntryBlock())
 | |
|     return false;
 | |
|   
 | |
|   // If this block has a single predecessor, and if that pred has a single
 | |
|   // successor, merge the blocks.  This encourages recursive jump threading
 | |
|   // because now the condition in this block can be threaded through
 | |
|   // predecessors of our predecessor block.
 | |
|   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
 | |
|     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
 | |
|         SinglePred != BB) {
 | |
|       // If SinglePred was a loop header, BB becomes one.
 | |
|       if (LoopHeaders.erase(SinglePred))
 | |
|         LoopHeaders.insert(BB);
 | |
|       
 | |
|       // Remember if SinglePred was the entry block of the function.  If so, we
 | |
|       // will need to move BB back to the entry position.
 | |
|       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
 | |
|       MergeBasicBlockIntoOnlyPred(BB);
 | |
|       
 | |
|       if (isEntry && BB != &BB->getParent()->getEntryBlock())
 | |
|         BB->moveBefore(&BB->getParent()->getEntryBlock());
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Look to see if the terminator is a branch of switch, if not we can't thread
 | |
|   // it.
 | |
|   Value *Condition;
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
 | |
|     // Can't thread an unconditional jump.
 | |
|     if (BI->isUnconditional()) return false;
 | |
|     Condition = BI->getCondition();
 | |
|   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
 | |
|     Condition = SI->getCondition();
 | |
|   else
 | |
|     return false; // Must be an invoke.
 | |
|   
 | |
|   // If the terminator of this block is branching on a constant, simplify the
 | |
|   // terminator to an unconditional branch.  This can occur due to threading in
 | |
|   // other blocks.
 | |
|   if (isa<ConstantInt>(Condition)) {
 | |
|     DEBUG(dbgs() << "  In block '" << BB->getName()
 | |
|           << "' folding terminator: " << *BB->getTerminator() << '\n');
 | |
|     ++NumFolds;
 | |
|     ConstantFoldTerminator(BB);
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // If the terminator is branching on an undef, we can pick any of the
 | |
|   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
 | |
|   if (isa<UndefValue>(Condition)) {
 | |
|     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
 | |
|     
 | |
|     // Fold the branch/switch.
 | |
|     TerminatorInst *BBTerm = BB->getTerminator();
 | |
|     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
 | |
|       if (i == BestSucc) continue;
 | |
|       RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
 | |
|     }
 | |
|     
 | |
|     DEBUG(dbgs() << "  In block '" << BB->getName()
 | |
|           << "' folding undef terminator: " << *BBTerm << '\n');
 | |
|     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
 | |
|     BBTerm->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   Instruction *CondInst = dyn_cast<Instruction>(Condition);
 | |
| 
 | |
|   // If the condition is an instruction defined in another block, see if a
 | |
|   // predecessor has the same condition:
 | |
|   //     br COND, BBX, BBY
 | |
|   //  BBX:
 | |
|   //     br COND, BBZ, BBW
 | |
|   if (!LVI &&
 | |
|       !Condition->hasOneUse() && // Multiple uses.
 | |
|       (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
 | |
|     pred_iterator PI = pred_begin(BB), E = pred_end(BB);
 | |
|     if (isa<BranchInst>(BB->getTerminator())) {
 | |
|       for (; PI != E; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
 | |
|           if (PBI->isConditional() && PBI->getCondition() == Condition &&
 | |
|               ProcessBranchOnDuplicateCond(P, BB))
 | |
|             return true;
 | |
|       }
 | |
|     } else {
 | |
|       assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
 | |
|       for (; PI != E; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         if (SwitchInst *PSI = dyn_cast<SwitchInst>(P->getTerminator()))
 | |
|           if (PSI->getCondition() == Condition &&
 | |
|               ProcessSwitchOnDuplicateCond(P, BB))
 | |
|             return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All the rest of our checks depend on the condition being an instruction.
 | |
|   if (CondInst == 0) {
 | |
|     // FIXME: Unify this with code below.
 | |
|     if (LVI && ProcessThreadableEdges(Condition, BB))
 | |
|       return true;
 | |
|     return false;
 | |
|   }  
 | |
|     
 | |
|   
 | |
|   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
 | |
|     if (!LVI &&
 | |
|         (!isa<PHINode>(CondCmp->getOperand(0)) ||
 | |
|          cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB)) {
 | |
|       // If we have a comparison, loop over the predecessors to see if there is
 | |
|       // a condition with a lexically identical value.
 | |
|       pred_iterator PI = pred_begin(BB), E = pred_end(BB);
 | |
|       for (; PI != E; ++PI) {
 | |
|         BasicBlock *P = *PI;
 | |
|         if (BranchInst *PBI = dyn_cast<BranchInst>(P->getTerminator()))
 | |
|           if (PBI->isConditional() && P != BB) {
 | |
|             if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
 | |
|               if (CI->getOperand(0) == CondCmp->getOperand(0) &&
 | |
|                   CI->getOperand(1) == CondCmp->getOperand(1) &&
 | |
|                   CI->getPredicate() == CondCmp->getPredicate()) {
 | |
|                 // TODO: Could handle things like (x != 4) --> (x == 17)
 | |
|                 if (ProcessBranchOnDuplicateCond(P, BB))
 | |
|                   return true;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for some cases that are worth simplifying.  Right now we want to look
 | |
|   // for loads that are used by a switch or by the condition for the branch.  If
 | |
|   // we see one, check to see if it's partially redundant.  If so, insert a PHI
 | |
|   // which can then be used to thread the values.
 | |
|   //
 | |
|   Value *SimplifyValue = CondInst;
 | |
|   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
 | |
|     if (isa<Constant>(CondCmp->getOperand(1)))
 | |
|       SimplifyValue = CondCmp->getOperand(0);
 | |
|   
 | |
|   // TODO: There are other places where load PRE would be profitable, such as
 | |
|   // more complex comparisons.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
 | |
|     if (SimplifyPartiallyRedundantLoad(LI))
 | |
|       return true;
 | |
|   
 | |
|   
 | |
|   // Handle a variety of cases where we are branching on something derived from
 | |
|   // a PHI node in the current block.  If we can prove that any predecessors
 | |
|   // compute a predictable value based on a PHI node, thread those predecessors.
 | |
|   //
 | |
|   if (ProcessThreadableEdges(CondInst, BB))
 | |
|     return true;
 | |
|   
 | |
|   // If this is an otherwise-unfoldable branch on a phi node in the current
 | |
|   // block, see if we can simplify.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
 | |
|     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | |
|       return ProcessBranchOnPHI(PN);
 | |
|   
 | |
|   
 | |
|   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
 | |
|   if (CondInst->getOpcode() == Instruction::Xor &&
 | |
|       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
 | |
|     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
 | |
|   
 | |
|   
 | |
|   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
 | |
|   // "(X == 4)", thread through this block.
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
 | |
| /// block that jump on exactly the same condition.  This means that we almost
 | |
| /// always know the direction of the edge in the DESTBB:
 | |
| ///  PREDBB:
 | |
| ///     br COND, DESTBB, BBY
 | |
| ///  DESTBB:
 | |
| ///     br COND, BBZ, BBW
 | |
| ///
 | |
| /// If DESTBB has multiple predecessors, we can't just constant fold the branch
 | |
| /// in DESTBB, we have to thread over it.
 | |
| bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
 | |
|                                                  BasicBlock *BB) {
 | |
|   BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
 | |
|   
 | |
|   // If both successors of PredBB go to DESTBB, we don't know anything.  We can
 | |
|   // fold the branch to an unconditional one, which allows other recursive
 | |
|   // simplifications.
 | |
|   bool BranchDir;
 | |
|   if (PredBI->getSuccessor(1) != BB)
 | |
|     BranchDir = true;
 | |
|   else if (PredBI->getSuccessor(0) != BB)
 | |
|     BranchDir = false;
 | |
|   else {
 | |
|     DEBUG(dbgs() << "  In block '" << PredBB->getName()
 | |
|           << "' folding terminator: " << *PredBB->getTerminator() << '\n');
 | |
|     ++NumFolds;
 | |
|     ConstantFoldTerminator(PredBB);
 | |
|     return true;
 | |
|   }
 | |
|    
 | |
|   BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
 | |
| 
 | |
|   // If the dest block has one predecessor, just fix the branch condition to a
 | |
|   // constant and fold it.
 | |
|   if (BB->getSinglePredecessor()) {
 | |
|     DEBUG(dbgs() << "  In block '" << BB->getName()
 | |
|           << "' folding condition to '" << BranchDir << "': "
 | |
|           << *BB->getTerminator() << '\n');
 | |
|     ++NumFolds;
 | |
|     Value *OldCond = DestBI->getCondition();
 | |
|     DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
 | |
|                                           BranchDir));
 | |
|     // Delete dead instructions before we fold the branch.  Folding the branch
 | |
|     // can eliminate edges from the CFG which can end up deleting OldCond.
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(OldCond);
 | |
|     ConstantFoldTerminator(BB);
 | |
|     return true;
 | |
|   }
 | |
|  
 | |
|   
 | |
|   // Next, figure out which successor we are threading to.
 | |
|   BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
 | |
|   
 | |
|   SmallVector<BasicBlock*, 2> Preds;
 | |
|   Preds.push_back(PredBB);
 | |
|   
 | |
|   // Ok, try to thread it!
 | |
|   return ThreadEdge(BB, Preds, SuccBB);
 | |
| }
 | |
| 
 | |
| /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
 | |
| /// block that switch on exactly the same condition.  This means that we almost
 | |
| /// always know the direction of the edge in the DESTBB:
 | |
| ///  PREDBB:
 | |
| ///     switch COND [... DESTBB, BBY ... ]
 | |
| ///  DESTBB:
 | |
| ///     switch COND [... BBZ, BBW ]
 | |
| ///
 | |
| /// Optimizing switches like this is very important, because simplifycfg builds
 | |
| /// switches out of repeated 'if' conditions.
 | |
| bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
 | |
|                                                  BasicBlock *DestBB) {
 | |
|   // Can't thread edge to self.
 | |
|   if (PredBB == DestBB)
 | |
|     return false;
 | |
|   
 | |
|   SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
 | |
|   SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
 | |
| 
 | |
|   // There are a variety of optimizations that we can potentially do on these
 | |
|   // blocks: we order them from most to least preferable.
 | |
|   
 | |
|   // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
 | |
|   // directly to their destination.  This does not introduce *any* code size
 | |
|   // growth.  Skip debug info first.
 | |
|   BasicBlock::iterator BBI = DestBB->begin();
 | |
|   while (isa<DbgInfoIntrinsic>(BBI))
 | |
|     BBI++;
 | |
|   
 | |
|   // FIXME: Thread if it just contains a PHI.
 | |
|   if (isa<SwitchInst>(BBI)) {
 | |
|     bool MadeChange = false;
 | |
|     // Ignore the default edge for now.
 | |
|     for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
 | |
|       ConstantInt *DestVal = DestSI->getCaseValue(i);
 | |
|       BasicBlock *DestSucc = DestSI->getSuccessor(i);
 | |
|       
 | |
|       // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
 | |
|       // PredSI has an explicit case for it.  If so, forward.  If it is covered
 | |
|       // by the default case, we can't update PredSI.
 | |
|       unsigned PredCase = PredSI->findCaseValue(DestVal);
 | |
|       if (PredCase == 0) continue;
 | |
|       
 | |
|       // If PredSI doesn't go to DestBB on this value, then it won't reach the
 | |
|       // case on this condition.
 | |
|       if (PredSI->getSuccessor(PredCase) != DestBB &&
 | |
|           DestSI->getSuccessor(i) != DestBB)
 | |
|         continue;
 | |
|       
 | |
|       // Do not forward this if it already goes to this destination, this would
 | |
|       // be an infinite loop.
 | |
|       if (PredSI->getSuccessor(PredCase) == DestSucc)
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, we're safe to make the change.  Make sure that the edge from
 | |
|       // DestSI to DestSucc is not critical and has no PHI nodes.
 | |
|       DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
 | |
|       DEBUG(dbgs() << "THROUGH: " << *DestSI);
 | |
| 
 | |
|       // If the destination has PHI nodes, just split the edge for updating
 | |
|       // simplicity.
 | |
|       if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
 | |
|         SplitCriticalEdge(DestSI, i, this);
 | |
|         DestSucc = DestSI->getSuccessor(i);
 | |
|       }
 | |
|       FoldSingleEntryPHINodes(DestSucc);
 | |
|       PredSI->setSuccessor(PredCase, DestSucc);
 | |
|       MadeChange = true;
 | |
|     }
 | |
|     
 | |
|     if (MadeChange)
 | |
|       return true;
 | |
|   }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 | |
| /// load instruction, eliminate it by replacing it with a PHI node.  This is an
 | |
| /// important optimization that encourages jump threading, and needs to be run
 | |
| /// interlaced with other jump threading tasks.
 | |
| bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 | |
|   // Don't hack volatile loads.
 | |
|   if (LI->isVolatile()) return false;
 | |
|   
 | |
|   // If the load is defined in a block with exactly one predecessor, it can't be
 | |
|   // partially redundant.
 | |
|   BasicBlock *LoadBB = LI->getParent();
 | |
|   if (LoadBB->getSinglePredecessor())
 | |
|     return false;
 | |
|   
 | |
|   Value *LoadedPtr = LI->getOperand(0);
 | |
| 
 | |
|   // If the loaded operand is defined in the LoadBB, it can't be available.
 | |
|   // TODO: Could do simple PHI translation, that would be fun :)
 | |
|   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
 | |
|     if (PtrOp->getParent() == LoadBB)
 | |
|       return false;
 | |
|   
 | |
|   // Scan a few instructions up from the load, to see if it is obviously live at
 | |
|   // the entry to its block.
 | |
|   BasicBlock::iterator BBIt = LI;
 | |
| 
 | |
|   if (Value *AvailableVal = 
 | |
|         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
 | |
|     // If the value if the load is locally available within the block, just use
 | |
|     // it.  This frequently occurs for reg2mem'd allocas.
 | |
|     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
 | |
|     
 | |
|     // If the returned value is the load itself, replace with an undef. This can
 | |
|     // only happen in dead loops.
 | |
|     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
 | |
|     LI->replaceAllUsesWith(AvailableVal);
 | |
|     LI->eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, if we scanned the whole block and got to the top of the block,
 | |
|   // we know the block is locally transparent to the load.  If not, something
 | |
|   // might clobber its value.
 | |
|   if (BBIt != LoadBB->begin())
 | |
|     return false;
 | |
|   
 | |
|   
 | |
|   SmallPtrSet<BasicBlock*, 8> PredsScanned;
 | |
|   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
 | |
|   AvailablePredsTy AvailablePreds;
 | |
|   BasicBlock *OneUnavailablePred = 0;
 | |
|   
 | |
|   // If we got here, the loaded value is transparent through to the start of the
 | |
|   // block.  Check to see if it is available in any of the predecessor blocks.
 | |
|   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | |
|        PI != PE; ++PI) {
 | |
|     BasicBlock *PredBB = *PI;
 | |
| 
 | |
|     // If we already scanned this predecessor, skip it.
 | |
|     if (!PredsScanned.insert(PredBB))
 | |
|       continue;
 | |
| 
 | |
|     // Scan the predecessor to see if the value is available in the pred.
 | |
|     BBIt = PredBB->end();
 | |
|     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
 | |
|     if (!PredAvailable) {
 | |
|       OneUnavailablePred = PredBB;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // If so, this load is partially redundant.  Remember this info so that we
 | |
|     // can create a PHI node.
 | |
|     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
 | |
|   }
 | |
|   
 | |
|   // If the loaded value isn't available in any predecessor, it isn't partially
 | |
|   // redundant.
 | |
|   if (AvailablePreds.empty()) return false;
 | |
|   
 | |
|   // Okay, the loaded value is available in at least one (and maybe all!)
 | |
|   // predecessors.  If the value is unavailable in more than one unique
 | |
|   // predecessor, we want to insert a merge block for those common predecessors.
 | |
|   // This ensures that we only have to insert one reload, thus not increasing
 | |
|   // code size.
 | |
|   BasicBlock *UnavailablePred = 0;
 | |
|   
 | |
|   // If there is exactly one predecessor where the value is unavailable, the
 | |
|   // already computed 'OneUnavailablePred' block is it.  If it ends in an
 | |
|   // unconditional branch, we know that it isn't a critical edge.
 | |
|   if (PredsScanned.size() == AvailablePreds.size()+1 &&
 | |
|       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
 | |
|     UnavailablePred = OneUnavailablePred;
 | |
|   } else if (PredsScanned.size() != AvailablePreds.size()) {
 | |
|     // Otherwise, we had multiple unavailable predecessors or we had a critical
 | |
|     // edge from the one.
 | |
|     SmallVector<BasicBlock*, 8> PredsToSplit;
 | |
|     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
 | |
| 
 | |
|     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
 | |
|       AvailablePredSet.insert(AvailablePreds[i].first);
 | |
| 
 | |
|     // Add all the unavailable predecessors to the PredsToSplit list.
 | |
|     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
 | |
|          PI != PE; ++PI) {
 | |
|       BasicBlock *P = *PI;
 | |
|       // If the predecessor is an indirect goto, we can't split the edge.
 | |
|       if (isa<IndirectBrInst>(P->getTerminator()))
 | |
|         return false;
 | |
|       
 | |
|       if (!AvailablePredSet.count(P))
 | |
|         PredsToSplit.push_back(P);
 | |
|     }
 | |
|     
 | |
|     // Split them out to their own block.
 | |
|     UnavailablePred =
 | |
|       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
 | |
|                              "thread-pre-split", this);
 | |
|   }
 | |
|   
 | |
|   // If the value isn't available in all predecessors, then there will be
 | |
|   // exactly one where it isn't available.  Insert a load on that edge and add
 | |
|   // it to the AvailablePreds list.
 | |
|   if (UnavailablePred) {
 | |
|     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
 | |
|            "Can't handle critical edge here!");
 | |
|     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
 | |
|                                  LI->getAlignment(),
 | |
|                                  UnavailablePred->getTerminator());
 | |
|     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
 | |
|   }
 | |
|   
 | |
|   // Now we know that each predecessor of this block has a value in
 | |
|   // AvailablePreds, sort them for efficient access as we're walking the preds.
 | |
|   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 | |
|   
 | |
|   // Create a PHI node at the start of the block for the PRE'd load value.
 | |
|   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
 | |
|   PN->takeName(LI);
 | |
|   
 | |
|   // Insert new entries into the PHI for each predecessor.  A single block may
 | |
|   // have multiple entries here.
 | |
|   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
 | |
|        ++PI) {
 | |
|     BasicBlock *P = *PI;
 | |
|     AvailablePredsTy::iterator I = 
 | |
|       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
 | |
|                        std::make_pair(P, (Value*)0));
 | |
|     
 | |
|     assert(I != AvailablePreds.end() && I->first == P &&
 | |
|            "Didn't find entry for predecessor!");
 | |
|     
 | |
|     PN->addIncoming(I->second, I->first);
 | |
|   }
 | |
|   
 | |
|   //cerr << "PRE: " << *LI << *PN << "\n";
 | |
|   
 | |
|   LI->replaceAllUsesWith(PN);
 | |
|   LI->eraseFromParent();
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindMostPopularDest - The specified list contains multiple possible
 | |
| /// threadable destinations.  Pick the one that occurs the most frequently in
 | |
| /// the list.
 | |
| static BasicBlock *
 | |
| FindMostPopularDest(BasicBlock *BB,
 | |
|                     const SmallVectorImpl<std::pair<BasicBlock*,
 | |
|                                   BasicBlock*> > &PredToDestList) {
 | |
|   assert(!PredToDestList.empty());
 | |
|   
 | |
|   // Determine popularity.  If there are multiple possible destinations, we
 | |
|   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
 | |
|   // blocks with known and real destinations to threading undef.  We'll handle
 | |
|   // them later if interesting.
 | |
|   DenseMap<BasicBlock*, unsigned> DestPopularity;
 | |
|   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
 | |
|     if (PredToDestList[i].second)
 | |
|       DestPopularity[PredToDestList[i].second]++;
 | |
|   
 | |
|   // Find the most popular dest.
 | |
|   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
 | |
|   BasicBlock *MostPopularDest = DPI->first;
 | |
|   unsigned Popularity = DPI->second;
 | |
|   SmallVector<BasicBlock*, 4> SamePopularity;
 | |
|   
 | |
|   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
 | |
|     // If the popularity of this entry isn't higher than the popularity we've
 | |
|     // seen so far, ignore it.
 | |
|     if (DPI->second < Popularity)
 | |
|       ; // ignore.
 | |
|     else if (DPI->second == Popularity) {
 | |
|       // If it is the same as what we've seen so far, keep track of it.
 | |
|       SamePopularity.push_back(DPI->first);
 | |
|     } else {
 | |
|       // If it is more popular, remember it.
 | |
|       SamePopularity.clear();
 | |
|       MostPopularDest = DPI->first;
 | |
|       Popularity = DPI->second;
 | |
|     }      
 | |
|   }
 | |
|   
 | |
|   // Okay, now we know the most popular destination.  If there is more than
 | |
|   // destination, we need to determine one.  This is arbitrary, but we need
 | |
|   // to make a deterministic decision.  Pick the first one that appears in the
 | |
|   // successor list.
 | |
|   if (!SamePopularity.empty()) {
 | |
|     SamePopularity.push_back(MostPopularDest);
 | |
|     TerminatorInst *TI = BB->getTerminator();
 | |
|     for (unsigned i = 0; ; ++i) {
 | |
|       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
 | |
|       
 | |
|       if (std::find(SamePopularity.begin(), SamePopularity.end(),
 | |
|                     TI->getSuccessor(i)) == SamePopularity.end())
 | |
|         continue;
 | |
|       
 | |
|       MostPopularDest = TI->getSuccessor(i);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Okay, we have finally picked the most popular destination.
 | |
|   return MostPopularDest;
 | |
| }
 | |
| 
 | |
| bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB) {
 | |
|   // If threading this would thread across a loop header, don't even try to
 | |
|   // thread the edge.
 | |
|   if (LoopHeaders.count(BB))
 | |
|     return false;
 | |
|   
 | |
|   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
 | |
|   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues))
 | |
|     return false;
 | |
|   assert(!PredValues.empty() &&
 | |
|          "ComputeValueKnownInPredecessors returned true with no values");
 | |
| 
 | |
|   DEBUG(dbgs() << "IN BB: " << *BB;
 | |
|         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
 | |
|           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = ";
 | |
|           if (PredValues[i].first)
 | |
|             dbgs() << *PredValues[i].first;
 | |
|           else
 | |
|             dbgs() << "UNDEF";
 | |
|           dbgs() << " for pred '" << PredValues[i].second->getName()
 | |
|           << "'.\n";
 | |
|         });
 | |
|   
 | |
|   // Decide what we want to thread through.  Convert our list of known values to
 | |
|   // a list of known destinations for each pred.  This also discards duplicate
 | |
|   // predecessors and keeps track of the undefined inputs (which are represented
 | |
|   // as a null dest in the PredToDestList).
 | |
|   SmallPtrSet<BasicBlock*, 16> SeenPreds;
 | |
|   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
 | |
|   
 | |
|   BasicBlock *OnlyDest = 0;
 | |
|   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
 | |
|   
 | |
|   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
 | |
|     BasicBlock *Pred = PredValues[i].second;
 | |
|     if (!SeenPreds.insert(Pred))
 | |
|       continue;  // Duplicate predecessor entry.
 | |
|     
 | |
|     // If the predecessor ends with an indirect goto, we can't change its
 | |
|     // destination.
 | |
|     if (isa<IndirectBrInst>(Pred->getTerminator()))
 | |
|       continue;
 | |
|     
 | |
|     ConstantInt *Val = PredValues[i].first;
 | |
|     
 | |
|     BasicBlock *DestBB;
 | |
|     if (Val == 0)      // Undef.
 | |
|       DestBB = 0;
 | |
|     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
 | |
|       DestBB = BI->getSuccessor(Val->isZero());
 | |
|     else {
 | |
|       SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
 | |
|       DestBB = SI->getSuccessor(SI->findCaseValue(Val));
 | |
|     }
 | |
| 
 | |
|     // If we have exactly one destination, remember it for efficiency below.
 | |
|     if (i == 0)
 | |
|       OnlyDest = DestBB;
 | |
|     else if (OnlyDest != DestBB)
 | |
|       OnlyDest = MultipleDestSentinel;
 | |
|     
 | |
|     PredToDestList.push_back(std::make_pair(Pred, DestBB));
 | |
|   }
 | |
|   
 | |
|   // If all edges were unthreadable, we fail.
 | |
|   if (PredToDestList.empty())
 | |
|     return false;
 | |
|   
 | |
|   // Determine which is the most common successor.  If we have many inputs and
 | |
|   // this block is a switch, we want to start by threading the batch that goes
 | |
|   // to the most popular destination first.  If we only know about one
 | |
|   // threadable destination (the common case) we can avoid this.
 | |
|   BasicBlock *MostPopularDest = OnlyDest;
 | |
|   
 | |
|   if (MostPopularDest == MultipleDestSentinel)
 | |
|     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
 | |
|   
 | |
|   // Now that we know what the most popular destination is, factor all
 | |
|   // predecessors that will jump to it into a single predecessor.
 | |
|   SmallVector<BasicBlock*, 16> PredsToFactor;
 | |
|   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
 | |
|     if (PredToDestList[i].second == MostPopularDest) {
 | |
|       BasicBlock *Pred = PredToDestList[i].first;
 | |
|       
 | |
|       // This predecessor may be a switch or something else that has multiple
 | |
|       // edges to the block.  Factor each of these edges by listing them
 | |
|       // according to # occurrences in PredsToFactor.
 | |
|       TerminatorInst *PredTI = Pred->getTerminator();
 | |
|       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
 | |
|         if (PredTI->getSuccessor(i) == BB)
 | |
|           PredsToFactor.push_back(Pred);
 | |
|     }
 | |
| 
 | |
|   // If the threadable edges are branching on an undefined value, we get to pick
 | |
|   // the destination that these predecessors should get to.
 | |
|   if (MostPopularDest == 0)
 | |
|     MostPopularDest = BB->getTerminator()->
 | |
|                             getSuccessor(GetBestDestForJumpOnUndef(BB));
 | |
|         
 | |
|   // Ok, try to thread it!
 | |
|   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
 | |
| }
 | |
| 
 | |
| /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
 | |
| /// a PHI node in the current block.  See if there are any simplifications we
 | |
| /// can do based on inputs to the phi node.
 | |
| /// 
 | |
| bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   
 | |
|   // TODO: We could make use of this to do it once for blocks with common PHI
 | |
|   // values.
 | |
|   SmallVector<BasicBlock*, 1> PredBBs;
 | |
|   PredBBs.resize(1);
 | |
|   
 | |
|   // If any of the predecessor blocks end in an unconditional branch, we can
 | |
|   // *duplicate* the conditional branch into that block in order to further
 | |
|   // encourage jump threading and to eliminate cases where we have branch on a
 | |
|   // phi of an icmp (branch on icmp is much better).
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *PredBB = PN->getIncomingBlock(i);
 | |
|     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
 | |
|       if (PredBr->isUnconditional()) {
 | |
|         PredBBs[0] = PredBB;
 | |
|         // Try to duplicate BB into PredBB.
 | |
|         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
 | |
|           return true;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
 | |
| /// a xor instruction in the current block.  See if there are any
 | |
| /// simplifications we can do based on inputs to the xor.
 | |
| /// 
 | |
| bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
 | |
|   BasicBlock *BB = BO->getParent();
 | |
|   
 | |
|   // If either the LHS or RHS of the xor is a constant, don't do this
 | |
|   // optimization.
 | |
|   if (isa<ConstantInt>(BO->getOperand(0)) ||
 | |
|       isa<ConstantInt>(BO->getOperand(1)))
 | |
|     return false;
 | |
|   
 | |
|   // If the first instruction in BB isn't a phi, we won't be able to infer
 | |
|   // anything special about any particular predecessor.
 | |
|   if (!isa<PHINode>(BB->front()))
 | |
|     return false;
 | |
|   
 | |
|   // If we have a xor as the branch input to this block, and we know that the
 | |
|   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
 | |
|   // the condition into the predecessor and fix that value to true, saving some
 | |
|   // logical ops on that path and encouraging other paths to simplify.
 | |
|   //
 | |
|   // This copies something like this:
 | |
|   //
 | |
|   //  BB:
 | |
|   //    %X = phi i1 [1],  [%X']
 | |
|   //    %Y = icmp eq i32 %A, %B
 | |
|   //    %Z = xor i1 %X, %Y
 | |
|   //    br i1 %Z, ...
 | |
|   //
 | |
|   // Into:
 | |
|   //  BB':
 | |
|   //    %Y = icmp ne i32 %A, %B
 | |
|   //    br i1 %Z, ...
 | |
| 
 | |
|   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> XorOpValues;
 | |
|   bool isLHS = true;
 | |
|   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues)) {
 | |
|     assert(XorOpValues.empty());
 | |
|     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues))
 | |
|       return false;
 | |
|     isLHS = false;
 | |
|   }
 | |
|   
 | |
|   assert(!XorOpValues.empty() &&
 | |
|          "ComputeValueKnownInPredecessors returned true with no values");
 | |
| 
 | |
|   // Scan the information to see which is most popular: true or false.  The
 | |
|   // predecessors can be of the set true, false, or undef.
 | |
|   unsigned NumTrue = 0, NumFalse = 0;
 | |
|   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
 | |
|     if (!XorOpValues[i].first) continue;  // Ignore undefs for the count.
 | |
|     if (XorOpValues[i].first->isZero())
 | |
|       ++NumFalse;
 | |
|     else
 | |
|       ++NumTrue;
 | |
|   }
 | |
|   
 | |
|   // Determine which value to split on, true, false, or undef if neither.
 | |
|   ConstantInt *SplitVal = 0;
 | |
|   if (NumTrue > NumFalse)
 | |
|     SplitVal = ConstantInt::getTrue(BB->getContext());
 | |
|   else if (NumTrue != 0 || NumFalse != 0)
 | |
|     SplitVal = ConstantInt::getFalse(BB->getContext());
 | |
|   
 | |
|   // Collect all of the blocks that this can be folded into so that we can
 | |
|   // factor this once and clone it once.
 | |
|   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
 | |
|   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
 | |
|     if (XorOpValues[i].first != SplitVal && XorOpValues[i].first != 0) continue;
 | |
| 
 | |
|     BlocksToFoldInto.push_back(XorOpValues[i].second);
 | |
|   }
 | |
|   
 | |
|   // If we inferred a value for all of the predecessors, then duplication won't
 | |
|   // help us.  However, we can just replace the LHS or RHS with the constant.
 | |
|   if (BlocksToFoldInto.size() ==
 | |
|       cast<PHINode>(BB->front()).getNumIncomingValues()) {
 | |
|     if (SplitVal == 0) {
 | |
|       // If all preds provide undef, just nuke the xor, because it is undef too.
 | |
|       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
 | |
|       BO->eraseFromParent();
 | |
|     } else if (SplitVal->isZero()) {
 | |
|       // If all preds provide 0, replace the xor with the other input.
 | |
|       BO->replaceAllUsesWith(BO->getOperand(isLHS));
 | |
|       BO->eraseFromParent();
 | |
|     } else {
 | |
|       // If all preds provide 1, set the computed value to 1.
 | |
|       BO->setOperand(!isLHS, SplitVal);
 | |
|     }
 | |
|     
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Try to duplicate BB into PredBB.
 | |
|   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
 | |
| /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
 | |
| /// NewPred using the entries from OldPred (suitably mapped).
 | |
| static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
 | |
|                                             BasicBlock *OldPred,
 | |
|                                             BasicBlock *NewPred,
 | |
|                                      DenseMap<Instruction*, Value*> &ValueMap) {
 | |
|   for (BasicBlock::iterator PNI = PHIBB->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
 | |
|     // Ok, we have a PHI node.  Figure out what the incoming value was for the
 | |
|     // DestBlock.
 | |
|     Value *IV = PN->getIncomingValueForBlock(OldPred);
 | |
|     
 | |
|     // Remap the value if necessary.
 | |
|     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
 | |
|       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
 | |
|       if (I != ValueMap.end())
 | |
|         IV = I->second;
 | |
|     }
 | |
|     
 | |
|     PN->addIncoming(IV, NewPred);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ThreadEdge - We have decided that it is safe and profitable to factor the
 | |
| /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
 | |
| /// across BB.  Transform the IR to reflect this change.
 | |
| bool JumpThreading::ThreadEdge(BasicBlock *BB, 
 | |
|                                const SmallVectorImpl<BasicBlock*> &PredBBs, 
 | |
|                                BasicBlock *SuccBB) {
 | |
|   // If threading to the same block as we come from, we would infinite loop.
 | |
|   if (SuccBB == BB) {
 | |
|     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
 | |
|           << "' - would thread to self!\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // If threading this would thread across a loop header, don't thread the edge.
 | |
|   // See the comments above FindLoopHeaders for justifications and caveats.
 | |
|   if (LoopHeaders.count(BB)) {
 | |
|     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
 | |
|           << "' to dest BB '" << SuccBB->getName()
 | |
|           << "' - it might create an irreducible loop!\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
 | |
|   if (JumpThreadCost > Threshold) {
 | |
|     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
 | |
|           << "' - Cost is too high: " << JumpThreadCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // And finally, do it!  Start by factoring the predecessors is needed.
 | |
|   BasicBlock *PredBB;
 | |
|   if (PredBBs.size() == 1)
 | |
|     PredBB = PredBBs[0];
 | |
|   else {
 | |
|     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
 | |
|           << " common predecessors.\n");
 | |
|     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
 | |
|                                     ".thr_comm", this);
 | |
|   }
 | |
|   
 | |
|   // And finally, do it!
 | |
|   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
 | |
|         << SuccBB->getName() << "' with cost: " << JumpThreadCost
 | |
|         << ", across block:\n    "
 | |
|         << *BB << "\n");
 | |
|   
 | |
|   // We are going to have to map operands from the original BB block to the new
 | |
|   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
 | |
|   // account for entry from PredBB.
 | |
|   DenseMap<Instruction*, Value*> ValueMapping;
 | |
|   
 | |
|   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 
 | |
|                                          BB->getName()+".thread", 
 | |
|                                          BB->getParent(), BB);
 | |
|   NewBB->moveAfter(PredBB);
 | |
|   
 | |
|   BasicBlock::iterator BI = BB->begin();
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
|   
 | |
|   // Clone the non-phi instructions of BB into NewBB, keeping track of the
 | |
|   // mapping and using it to remap operands in the cloned instructions.
 | |
|   for (; !isa<TerminatorInst>(BI); ++BI) {
 | |
|     Instruction *New = BI->clone();
 | |
|     New->setName(BI->getName());
 | |
|     NewBB->getInstList().push_back(New);
 | |
|     ValueMapping[BI] = New;
 | |
|    
 | |
|     // Remap operands to patch up intra-block references.
 | |
|     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | |
|       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | |
|         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | |
|         if (I != ValueMapping.end())
 | |
|           New->setOperand(i, I->second);
 | |
|       }
 | |
|   }
 | |
|   
 | |
|   // We didn't copy the terminator from BB over to NewBB, because there is now
 | |
|   // an unconditional jump to SuccBB.  Insert the unconditional jump.
 | |
|   BranchInst::Create(SuccBB, NewBB);
 | |
|   
 | |
|   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
 | |
|   // PHI nodes for NewBB now.
 | |
|   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
 | |
|   
 | |
|   // If there were values defined in BB that are used outside the block, then we
 | |
|   // now have to update all uses of the value to use either the original value,
 | |
|   // the cloned value, or some PHI derived value.  This can require arbitrary
 | |
|   // PHI insertion, of which we are prepared to do, clean these up now.
 | |
|   SSAUpdater SSAUpdate;
 | |
|   SmallVector<Use*, 16> UsesToRename;
 | |
|   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | |
|     // Scan all uses of this instruction to see if it is used outside of its
 | |
|     // block, and if so, record them in UsesToRename.
 | |
|     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|          ++UI) {
 | |
|       Instruction *User = cast<Instruction>(*UI);
 | |
|       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | |
|         if (UserPN->getIncomingBlock(UI) == BB)
 | |
|           continue;
 | |
|       } else if (User->getParent() == BB)
 | |
|         continue;
 | |
|       
 | |
|       UsesToRename.push_back(&UI.getUse());
 | |
|     }
 | |
|     
 | |
|     // If there are no uses outside the block, we're done with this instruction.
 | |
|     if (UsesToRename.empty())
 | |
|       continue;
 | |
|     
 | |
|     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
 | |
| 
 | |
|     // We found a use of I outside of BB.  Rename all uses of I that are outside
 | |
|     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | |
|     // with the two values we know.
 | |
|     SSAUpdate.Initialize(I);
 | |
|     SSAUpdate.AddAvailableValue(BB, I);
 | |
|     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
 | |
|     
 | |
|     while (!UsesToRename.empty())
 | |
|       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | |
|     DEBUG(dbgs() << "\n");
 | |
|   }
 | |
|   
 | |
|   
 | |
|   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
 | |
|   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
 | |
|   // us to simplify any PHI nodes in BB.
 | |
|   TerminatorInst *PredTerm = PredBB->getTerminator();
 | |
|   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
 | |
|     if (PredTerm->getSuccessor(i) == BB) {
 | |
|       RemovePredecessorAndSimplify(BB, PredBB, TD);
 | |
|       PredTerm->setSuccessor(i, NewBB);
 | |
|     }
 | |
|   
 | |
|   // At this point, the IR is fully up to date and consistent.  Do a quick scan
 | |
|   // over the new instructions and zap any that are constants or dead.  This
 | |
|   // frequently happens because of phi translation.
 | |
|   SimplifyInstructionsInBlock(NewBB, TD);
 | |
|   
 | |
|   // Threaded an edge!
 | |
|   ++NumThreads;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
 | |
| /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
 | |
| /// If we can duplicate the contents of BB up into PredBB do so now, this
 | |
| /// improves the odds that the branch will be on an analyzable instruction like
 | |
| /// a compare.
 | |
| bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
 | |
|                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
 | |
|   assert(!PredBBs.empty() && "Can't handle an empty set");
 | |
| 
 | |
|   // If BB is a loop header, then duplicating this block outside the loop would
 | |
|   // cause us to transform this into an irreducible loop, don't do this.
 | |
|   // See the comments above FindLoopHeaders for justifications and caveats.
 | |
|   if (LoopHeaders.count(BB)) {
 | |
|     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
 | |
|           << "' into predecessor block '" << PredBBs[0]->getName()
 | |
|           << "' - it might create an irreducible loop!\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
 | |
|   if (DuplicationCost > Threshold) {
 | |
|     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
 | |
|           << "' - Cost is too high: " << DuplicationCost << "\n");
 | |
|     return false;
 | |
|   }
 | |
|   
 | |
|   // And finally, do it!  Start by factoring the predecessors is needed.
 | |
|   BasicBlock *PredBB;
 | |
|   if (PredBBs.size() == 1)
 | |
|     PredBB = PredBBs[0];
 | |
|   else {
 | |
|     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
 | |
|           << " common predecessors.\n");
 | |
|     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
 | |
|                                     ".thr_comm", this);
 | |
|   }
 | |
|   
 | |
|   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
 | |
|   // of PredBB.
 | |
|   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
 | |
|         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
 | |
|         << DuplicationCost << " block is:" << *BB << "\n");
 | |
|   
 | |
|   // Unless PredBB ends with an unconditional branch, split the edge so that we
 | |
|   // can just clone the bits from BB into the end of the new PredBB.
 | |
|   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
 | |
|   
 | |
|   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
 | |
|     PredBB = SplitEdge(PredBB, BB, this);
 | |
|     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
 | |
|   }
 | |
|   
 | |
|   // We are going to have to map operands from the original BB block into the
 | |
|   // PredBB block.  Evaluate PHI nodes in BB.
 | |
|   DenseMap<Instruction*, Value*> ValueMapping;
 | |
|   
 | |
|   BasicBlock::iterator BI = BB->begin();
 | |
|   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
 | |
|     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
 | |
|   
 | |
|   // Clone the non-phi instructions of BB into PredBB, keeping track of the
 | |
|   // mapping and using it to remap operands in the cloned instructions.
 | |
|   for (; BI != BB->end(); ++BI) {
 | |
|     Instruction *New = BI->clone();
 | |
|     
 | |
|     // Remap operands to patch up intra-block references.
 | |
|     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
 | |
|       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
 | |
|         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
 | |
|         if (I != ValueMapping.end())
 | |
|           New->setOperand(i, I->second);
 | |
|       }
 | |
| 
 | |
|     // If this instruction can be simplified after the operands are updated,
 | |
|     // just use the simplified value instead.  This frequently happens due to
 | |
|     // phi translation.
 | |
|     if (Value *IV = SimplifyInstruction(New, TD)) {
 | |
|       delete New;
 | |
|       ValueMapping[BI] = IV;
 | |
|     } else {
 | |
|       // Otherwise, insert the new instruction into the block.
 | |
|       New->setName(BI->getName());
 | |
|       PredBB->getInstList().insert(OldPredBranch, New);
 | |
|       ValueMapping[BI] = New;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Check to see if the targets of the branch had PHI nodes. If so, we need to
 | |
|   // add entries to the PHI nodes for branch from PredBB now.
 | |
|   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
 | |
|   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
 | |
|                                   ValueMapping);
 | |
|   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
 | |
|                                   ValueMapping);
 | |
|   
 | |
|   // If there were values defined in BB that are used outside the block, then we
 | |
|   // now have to update all uses of the value to use either the original value,
 | |
|   // the cloned value, or some PHI derived value.  This can require arbitrary
 | |
|   // PHI insertion, of which we are prepared to do, clean these up now.
 | |
|   SSAUpdater SSAUpdate;
 | |
|   SmallVector<Use*, 16> UsesToRename;
 | |
|   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | |
|     // Scan all uses of this instruction to see if it is used outside of its
 | |
|     // block, and if so, record them in UsesToRename.
 | |
|     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
 | |
|          ++UI) {
 | |
|       Instruction *User = cast<Instruction>(*UI);
 | |
|       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | |
|         if (UserPN->getIncomingBlock(UI) == BB)
 | |
|           continue;
 | |
|       } else if (User->getParent() == BB)
 | |
|         continue;
 | |
|       
 | |
|       UsesToRename.push_back(&UI.getUse());
 | |
|     }
 | |
|     
 | |
|     // If there are no uses outside the block, we're done with this instruction.
 | |
|     if (UsesToRename.empty())
 | |
|       continue;
 | |
|     
 | |
|     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
 | |
|     
 | |
|     // We found a use of I outside of BB.  Rename all uses of I that are outside
 | |
|     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
 | |
|     // with the two values we know.
 | |
|     SSAUpdate.Initialize(I);
 | |
|     SSAUpdate.AddAvailableValue(BB, I);
 | |
|     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
 | |
|     
 | |
|     while (!UsesToRename.empty())
 | |
|       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
 | |
|     DEBUG(dbgs() << "\n");
 | |
|   }
 | |
|   
 | |
|   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
 | |
|   // that we nuked.
 | |
|   RemovePredecessorAndSimplify(BB, PredBB, TD);
 | |
|   
 | |
|   // Remove the unconditional branch at the end of the PredBB block.
 | |
|   OldPredBranch->eraseFromParent();
 | |
|   
 | |
|   ++NumDupes;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 |