mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	(if available) as we go so that we get simple constantexprs not insane ones. This fixes the failure of clang/test/CodeGenCXX/virtual-base-ctor.cpp that the previous iteration of this patch had. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@121111 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2667 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2667 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass transforms simple global variables that never have their address
 | |
| // taken.  If obviously true, it marks read/write globals as constant, deletes
 | |
| // variables only stored to, etc.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "globalopt"
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/MemoryBuiltins.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumMarked    , "Number of globals marked constant");
 | |
| STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
 | |
| STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
 | |
| STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
 | |
| STATISTIC(NumDeleted   , "Number of globals deleted");
 | |
| STATISTIC(NumFnDeleted , "Number of functions deleted");
 | |
| STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
 | |
| STATISTIC(NumLocalized , "Number of globals localized");
 | |
| STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
 | |
| STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
 | |
| STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
 | |
| STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
 | |
| STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
 | |
| STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
 | |
| 
 | |
| namespace {
 | |
|   struct GlobalOpt : public ModulePass {
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     }
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     GlobalOpt() : ModulePass(ID) {
 | |
|       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnModule(Module &M);
 | |
| 
 | |
|   private:
 | |
|     GlobalVariable *FindGlobalCtors(Module &M);
 | |
|     bool OptimizeFunctions(Module &M);
 | |
|     bool OptimizeGlobalVars(Module &M);
 | |
|     bool OptimizeGlobalAliases(Module &M);
 | |
|     bool OptimizeGlobalCtorsList(GlobalVariable *&GCL);
 | |
|     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char GlobalOpt::ID = 0;
 | |
| INITIALIZE_PASS(GlobalOpt, "globalopt",
 | |
|                 "Global Variable Optimizer", false, false)
 | |
| 
 | |
| ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// GlobalStatus - As we analyze each global, keep track of some information
 | |
| /// about it.  If we find out that the address of the global is taken, none of
 | |
| /// this info will be accurate.
 | |
| struct GlobalStatus {
 | |
|   /// isLoaded - True if the global is ever loaded.  If the global isn't ever
 | |
|   /// loaded it can be deleted.
 | |
|   bool isLoaded;
 | |
| 
 | |
|   /// StoredType - Keep track of what stores to the global look like.
 | |
|   ///
 | |
|   enum StoredType {
 | |
|     /// NotStored - There is no store to this global.  It can thus be marked
 | |
|     /// constant.
 | |
|     NotStored,
 | |
| 
 | |
|     /// isInitializerStored - This global is stored to, but the only thing
 | |
|     /// stored is the constant it was initialized with.  This is only tracked
 | |
|     /// for scalar globals.
 | |
|     isInitializerStored,
 | |
| 
 | |
|     /// isStoredOnce - This global is stored to, but only its initializer and
 | |
|     /// one other value is ever stored to it.  If this global isStoredOnce, we
 | |
|     /// track the value stored to it in StoredOnceValue below.  This is only
 | |
|     /// tracked for scalar globals.
 | |
|     isStoredOnce,
 | |
| 
 | |
|     /// isStored - This global is stored to by multiple values or something else
 | |
|     /// that we cannot track.
 | |
|     isStored
 | |
|   } StoredType;
 | |
| 
 | |
|   /// StoredOnceValue - If only one value (besides the initializer constant) is
 | |
|   /// ever stored to this global, keep track of what value it is.
 | |
|   Value *StoredOnceValue;
 | |
| 
 | |
|   /// AccessingFunction/HasMultipleAccessingFunctions - These start out
 | |
|   /// null/false.  When the first accessing function is noticed, it is recorded.
 | |
|   /// When a second different accessing function is noticed,
 | |
|   /// HasMultipleAccessingFunctions is set to true.
 | |
|   const Function *AccessingFunction;
 | |
|   bool HasMultipleAccessingFunctions;
 | |
| 
 | |
|   /// HasNonInstructionUser - Set to true if this global has a user that is not
 | |
|   /// an instruction (e.g. a constant expr or GV initializer).
 | |
|   bool HasNonInstructionUser;
 | |
| 
 | |
|   /// HasPHIUser - Set to true if this global has a user that is a PHI node.
 | |
|   bool HasPHIUser;
 | |
| 
 | |
|   GlobalStatus() : isLoaded(false), StoredType(NotStored), StoredOnceValue(0),
 | |
|                    AccessingFunction(0), HasMultipleAccessingFunctions(false),
 | |
|                    HasNonInstructionUser(false), HasPHIUser(false) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| // SafeToDestroyConstant - It is safe to destroy a constant iff it is only used
 | |
| // by constants itself.  Note that constants cannot be cyclic, so this test is
 | |
| // pretty easy to implement recursively.
 | |
| //
 | |
| static bool SafeToDestroyConstant(const Constant *C) {
 | |
|   if (isa<GlobalValue>(C)) return false;
 | |
| 
 | |
|   for (Value::const_use_iterator UI = C->use_begin(), E = C->use_end(); UI != E;
 | |
|        ++UI)
 | |
|     if (const Constant *CU = dyn_cast<Constant>(*UI)) {
 | |
|       if (!SafeToDestroyConstant(CU)) return false;
 | |
|     } else
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AnalyzeGlobal - Look at all uses of the global and fill in the GlobalStatus
 | |
| /// structure.  If the global has its address taken, return true to indicate we
 | |
| /// can't do anything with it.
 | |
| ///
 | |
| static bool AnalyzeGlobal(const Value *V, GlobalStatus &GS,
 | |
|                           SmallPtrSet<const PHINode*, 16> &PHIUsers) {
 | |
|   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
 | |
|        ++UI) {
 | |
|     const User *U = *UI;
 | |
|     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
 | |
|       GS.HasNonInstructionUser = true;
 | |
|       if (AnalyzeGlobal(CE, GS, PHIUsers)) return true;
 | |
|     } else if (const Instruction *I = dyn_cast<Instruction>(U)) {
 | |
|       if (!GS.HasMultipleAccessingFunctions) {
 | |
|         const Function *F = I->getParent()->getParent();
 | |
|         if (GS.AccessingFunction == 0)
 | |
|           GS.AccessingFunction = F;
 | |
|         else if (GS.AccessingFunction != F)
 | |
|           GS.HasMultipleAccessingFunctions = true;
 | |
|       }
 | |
|       if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|         GS.isLoaded = true;
 | |
|         if (LI->isVolatile()) return true;  // Don't hack on volatile loads.
 | |
|       } else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|         // Don't allow a store OF the address, only stores TO the address.
 | |
|         if (SI->getOperand(0) == V) return true;
 | |
| 
 | |
|         if (SI->isVolatile()) return true;  // Don't hack on volatile stores.
 | |
| 
 | |
|         // If this is a direct store to the global (i.e., the global is a scalar
 | |
|         // value, not an aggregate), keep more specific information about
 | |
|         // stores.
 | |
|         if (GS.StoredType != GlobalStatus::isStored) {
 | |
|           if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(
 | |
|                                                            SI->getOperand(1))) {
 | |
|             Value *StoredVal = SI->getOperand(0);
 | |
|             if (StoredVal == GV->getInitializer()) {
 | |
|               if (GS.StoredType < GlobalStatus::isInitializerStored)
 | |
|                 GS.StoredType = GlobalStatus::isInitializerStored;
 | |
|             } else if (isa<LoadInst>(StoredVal) &&
 | |
|                        cast<LoadInst>(StoredVal)->getOperand(0) == GV) {
 | |
|               if (GS.StoredType < GlobalStatus::isInitializerStored)
 | |
|                 GS.StoredType = GlobalStatus::isInitializerStored;
 | |
|             } else if (GS.StoredType < GlobalStatus::isStoredOnce) {
 | |
|               GS.StoredType = GlobalStatus::isStoredOnce;
 | |
|               GS.StoredOnceValue = StoredVal;
 | |
|             } else if (GS.StoredType == GlobalStatus::isStoredOnce &&
 | |
|                        GS.StoredOnceValue == StoredVal) {
 | |
|               // noop.
 | |
|             } else {
 | |
|               GS.StoredType = GlobalStatus::isStored;
 | |
|             }
 | |
|           } else {
 | |
|             GS.StoredType = GlobalStatus::isStored;
 | |
|           }
 | |
|         }
 | |
|       } else if (isa<GetElementPtrInst>(I)) {
 | |
|         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
 | |
|       } else if (isa<SelectInst>(I)) {
 | |
|         if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
 | |
|       } else if (const PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|         // PHI nodes we can check just like select or GEP instructions, but we
 | |
|         // have to be careful about infinite recursion.
 | |
|         if (PHIUsers.insert(PN))  // Not already visited.
 | |
|           if (AnalyzeGlobal(I, GS, PHIUsers)) return true;
 | |
|         GS.HasPHIUser = true;
 | |
|       } else if (isa<CmpInst>(I)) {
 | |
|         // Nothing to analyse.
 | |
|       } else if (isa<MemTransferInst>(I)) {
 | |
|         const MemTransferInst *MTI = cast<MemTransferInst>(I);
 | |
|         if (MTI->getArgOperand(0) == V)
 | |
|           GS.StoredType = GlobalStatus::isStored;
 | |
|         if (MTI->getArgOperand(1) == V)
 | |
|           GS.isLoaded = true;
 | |
|       } else if (isa<MemSetInst>(I)) {
 | |
|         assert(cast<MemSetInst>(I)->getArgOperand(0) == V &&
 | |
|                "Memset only takes one pointer!");
 | |
|         GS.StoredType = GlobalStatus::isStored;
 | |
|       } else {
 | |
|         return true;  // Any other non-load instruction might take address!
 | |
|       }
 | |
|     } else if (const Constant *C = dyn_cast<Constant>(U)) {
 | |
|       GS.HasNonInstructionUser = true;
 | |
|       // We might have a dead and dangling constant hanging off of here.
 | |
|       if (!SafeToDestroyConstant(C))
 | |
|         return true;
 | |
|     } else {
 | |
|       GS.HasNonInstructionUser = true;
 | |
|       // Otherwise must be some other user.
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static Constant *getAggregateConstantElement(Constant *Agg, Constant *Idx) {
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(Idx);
 | |
|   if (!CI) return 0;
 | |
|   unsigned IdxV = CI->getZExtValue();
 | |
| 
 | |
|   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Agg)) {
 | |
|     if (IdxV < CS->getNumOperands()) return CS->getOperand(IdxV);
 | |
|   } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Agg)) {
 | |
|     if (IdxV < CA->getNumOperands()) return CA->getOperand(IdxV);
 | |
|   } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Agg)) {
 | |
|     if (IdxV < CP->getNumOperands()) return CP->getOperand(IdxV);
 | |
|   } else if (isa<ConstantAggregateZero>(Agg)) {
 | |
|     if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
 | |
|       if (IdxV < STy->getNumElements())
 | |
|         return Constant::getNullValue(STy->getElementType(IdxV));
 | |
|     } else if (const SequentialType *STy =
 | |
|                dyn_cast<SequentialType>(Agg->getType())) {
 | |
|       return Constant::getNullValue(STy->getElementType());
 | |
|     }
 | |
|   } else if (isa<UndefValue>(Agg)) {
 | |
|     if (const StructType *STy = dyn_cast<StructType>(Agg->getType())) {
 | |
|       if (IdxV < STy->getNumElements())
 | |
|         return UndefValue::get(STy->getElementType(IdxV));
 | |
|     } else if (const SequentialType *STy =
 | |
|                dyn_cast<SequentialType>(Agg->getType())) {
 | |
|       return UndefValue::get(STy->getElementType());
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
 | |
| /// users of the global, cleaning up the obvious ones.  This is largely just a
 | |
| /// quick scan over the use list to clean up the easy and obvious cruft.  This
 | |
| /// returns true if it made a change.
 | |
| static bool CleanupConstantGlobalUsers(Value *V, Constant *Init) {
 | |
|   bool Changed = false;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;) {
 | |
|     User *U = *UI++;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       if (Init) {
 | |
|         // Replace the load with the initializer.
 | |
|         LI->replaceAllUsesWith(Init);
 | |
|         LI->eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       // Store must be unreachable or storing Init into the global.
 | |
|       SI->eraseFromParent();
 | |
|       Changed = true;
 | |
|     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
 | |
|       if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|         Constant *SubInit = 0;
 | |
|         if (Init)
 | |
|           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
 | |
|         Changed |= CleanupConstantGlobalUsers(CE, SubInit);
 | |
|       } else if (CE->getOpcode() == Instruction::BitCast &&
 | |
|                  CE->getType()->isPointerTy()) {
 | |
|         // Pointer cast, delete any stores and memsets to the global.
 | |
|         Changed |= CleanupConstantGlobalUsers(CE, 0);
 | |
|       }
 | |
| 
 | |
|       if (CE->use_empty()) {
 | |
|         CE->destroyConstant();
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
 | |
|       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
 | |
|       // and will invalidate our notion of what Init is.
 | |
|       Constant *SubInit = 0;
 | |
|       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
 | |
|         ConstantExpr *CE =
 | |
|           dyn_cast_or_null<ConstantExpr>(ConstantFoldInstruction(GEP));
 | |
|         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
 | |
|           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
 | |
|       }
 | |
|       Changed |= CleanupConstantGlobalUsers(GEP, SubInit);
 | |
| 
 | |
|       if (GEP->use_empty()) {
 | |
|         GEP->eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
 | |
|       if (MI->getRawDest() == V) {
 | |
|         MI->eraseFromParent();
 | |
|         Changed = true;
 | |
|       }
 | |
| 
 | |
|     } else if (Constant *C = dyn_cast<Constant>(U)) {
 | |
|       // If we have a chain of dead constantexprs or other things dangling from
 | |
|       // us, and if they are all dead, nuke them without remorse.
 | |
|       if (SafeToDestroyConstant(C)) {
 | |
|         C->destroyConstant();
 | |
|         // This could have invalidated UI, start over from scratch.
 | |
|         CleanupConstantGlobalUsers(V, Init);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// isSafeSROAElementUse - Return true if the specified instruction is a safe
 | |
| /// user of a derived expression from a global that we want to SROA.
 | |
| static bool isSafeSROAElementUse(Value *V) {
 | |
|   // We might have a dead and dangling constant hanging off of here.
 | |
|   if (Constant *C = dyn_cast<Constant>(V))
 | |
|     return SafeToDestroyConstant(C);
 | |
| 
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   // Loads are ok.
 | |
|   if (isa<LoadInst>(I)) return true;
 | |
| 
 | |
|   // Stores *to* the pointer are ok.
 | |
|   if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|     return SI->getOperand(0) != V;
 | |
| 
 | |
|   // Otherwise, it must be a GEP.
 | |
|   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
 | |
|   if (GEPI == 0) return false;
 | |
| 
 | |
|   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
 | |
|       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
 | |
|     return false;
 | |
| 
 | |
|   for (Value::use_iterator I = GEPI->use_begin(), E = GEPI->use_end();
 | |
|        I != E; ++I)
 | |
|     if (!isSafeSROAElementUse(*I))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
 | |
| /// Look at it and its uses and decide whether it is safe to SROA this global.
 | |
| ///
 | |
| static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
 | |
|   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
 | |
|   if (!isa<GetElementPtrInst>(U) &&
 | |
|       (!isa<ConstantExpr>(U) ||
 | |
|        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
 | |
|   // don't like < 3 operand CE's, and we don't like non-constant integer
 | |
|   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
 | |
|   // value of C.
 | |
|   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
 | |
|       !cast<Constant>(U->getOperand(1))->isNullValue() ||
 | |
|       !isa<ConstantInt>(U->getOperand(2)))
 | |
|     return false;
 | |
| 
 | |
|   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
 | |
|   ++GEPI;  // Skip over the pointer index.
 | |
| 
 | |
|   // If this is a use of an array allocation, do a bit more checking for sanity.
 | |
|   if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
 | |
|     uint64_t NumElements = AT->getNumElements();
 | |
|     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
 | |
| 
 | |
|     // Check to make sure that index falls within the array.  If not,
 | |
|     // something funny is going on, so we won't do the optimization.
 | |
|     //
 | |
|     if (Idx->getZExtValue() >= NumElements)
 | |
|       return false;
 | |
| 
 | |
|     // We cannot scalar repl this level of the array unless any array
 | |
|     // sub-indices are in-range constants.  In particular, consider:
 | |
|     // A[0][i].  We cannot know that the user isn't doing invalid things like
 | |
|     // allowing i to index an out-of-range subscript that accesses A[1].
 | |
|     //
 | |
|     // Scalar replacing *just* the outer index of the array is probably not
 | |
|     // going to be a win anyway, so just give up.
 | |
|     for (++GEPI; // Skip array index.
 | |
|          GEPI != E;
 | |
|          ++GEPI) {
 | |
|       uint64_t NumElements;
 | |
|       if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
 | |
|         NumElements = SubArrayTy->getNumElements();
 | |
|       else if (const VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
 | |
|         NumElements = SubVectorTy->getNumElements();
 | |
|       else {
 | |
|         assert((*GEPI)->isStructTy() &&
 | |
|                "Indexed GEP type is not array, vector, or struct!");
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
 | |
|       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (Value::use_iterator I = U->use_begin(), E = U->use_end(); I != E; ++I)
 | |
|     if (!isSafeSROAElementUse(*I))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
 | |
| /// is safe for us to perform this transformation.
 | |
| ///
 | |
| static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
 | |
|   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     if (!IsUserOfGlobalSafeForSRA(*UI, GV))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
 | |
| /// variable.  This opens the door for other optimizations by exposing the
 | |
| /// behavior of the program in a more fine-grained way.  We have determined that
 | |
| /// this transformation is safe already.  We return the first global variable we
 | |
| /// insert so that the caller can reprocess it.
 | |
| static GlobalVariable *SRAGlobal(GlobalVariable *GV, const TargetData &TD) {
 | |
|   // Make sure this global only has simple uses that we can SRA.
 | |
|   if (!GlobalUsersSafeToSRA(GV))
 | |
|     return 0;
 | |
| 
 | |
|   assert(GV->hasLocalLinkage() && !GV->isConstant());
 | |
|   Constant *Init = GV->getInitializer();
 | |
|   const Type *Ty = Init->getType();
 | |
| 
 | |
|   std::vector<GlobalVariable*> NewGlobals;
 | |
|   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
 | |
| 
 | |
|   // Get the alignment of the global, either explicit or target-specific.
 | |
|   unsigned StartAlignment = GV->getAlignment();
 | |
|   if (StartAlignment == 0)
 | |
|     StartAlignment = TD.getABITypeAlignment(GV->getType());
 | |
| 
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
|     NewGlobals.reserve(STy->getNumElements());
 | |
|     const StructLayout &Layout = *TD.getStructLayout(STy);
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       Constant *In = getAggregateConstantElement(Init,
 | |
|                     ConstantInt::get(Type::getInt32Ty(STy->getContext()), i));
 | |
|       assert(In && "Couldn't get element of initializer?");
 | |
|       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
 | |
|                                                GlobalVariable::InternalLinkage,
 | |
|                                                In, GV->getName()+"."+Twine(i),
 | |
|                                                GV->isThreadLocal(),
 | |
|                                               GV->getType()->getAddressSpace());
 | |
|       Globals.insert(GV, NGV);
 | |
|       NewGlobals.push_back(NGV);
 | |
| 
 | |
|       // Calculate the known alignment of the field.  If the original aggregate
 | |
|       // had 256 byte alignment for example, something might depend on that:
 | |
|       // propagate info to each field.
 | |
|       uint64_t FieldOffset = Layout.getElementOffset(i);
 | |
|       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
 | |
|       if (NewAlign > TD.getABITypeAlignment(STy->getElementType(i)))
 | |
|         NGV->setAlignment(NewAlign);
 | |
|     }
 | |
|   } else if (const SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
 | |
|     unsigned NumElements = 0;
 | |
|     if (const ArrayType *ATy = dyn_cast<ArrayType>(STy))
 | |
|       NumElements = ATy->getNumElements();
 | |
|     else
 | |
|       NumElements = cast<VectorType>(STy)->getNumElements();
 | |
| 
 | |
|     if (NumElements > 16 && GV->hasNUsesOrMore(16))
 | |
|       return 0; // It's not worth it.
 | |
|     NewGlobals.reserve(NumElements);
 | |
| 
 | |
|     uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
 | |
|     unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
 | |
|     for (unsigned i = 0, e = NumElements; i != e; ++i) {
 | |
|       Constant *In = getAggregateConstantElement(Init,
 | |
|                     ConstantInt::get(Type::getInt32Ty(Init->getContext()), i));
 | |
|       assert(In && "Couldn't get element of initializer?");
 | |
| 
 | |
|       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
 | |
|                                                GlobalVariable::InternalLinkage,
 | |
|                                                In, GV->getName()+"."+Twine(i),
 | |
|                                                GV->isThreadLocal(),
 | |
|                                               GV->getType()->getAddressSpace());
 | |
|       Globals.insert(GV, NGV);
 | |
|       NewGlobals.push_back(NGV);
 | |
| 
 | |
|       // Calculate the known alignment of the field.  If the original aggregate
 | |
|       // had 256 byte alignment for example, something might depend on that:
 | |
|       // propagate info to each field.
 | |
|       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
 | |
|       if (NewAlign > EltAlign)
 | |
|         NGV->setAlignment(NewAlign);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (NewGlobals.empty())
 | |
|     return 0;
 | |
| 
 | |
|   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
 | |
| 
 | |
|   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
 | |
| 
 | |
|   // Loop over all of the uses of the global, replacing the constantexpr geps,
 | |
|   // with smaller constantexpr geps or direct references.
 | |
|   while (!GV->use_empty()) {
 | |
|     User *GEP = GV->use_back();
 | |
|     assert(((isa<ConstantExpr>(GEP) &&
 | |
|              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
 | |
|             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
 | |
| 
 | |
|     // Ignore the 1th operand, which has to be zero or else the program is quite
 | |
|     // broken (undefined).  Get the 2nd operand, which is the structure or array
 | |
|     // index.
 | |
|     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
 | |
|     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
 | |
| 
 | |
|     Value *NewPtr = NewGlobals[Val];
 | |
| 
 | |
|     // Form a shorter GEP if needed.
 | |
|     if (GEP->getNumOperands() > 3) {
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
 | |
|         SmallVector<Constant*, 8> Idxs;
 | |
|         Idxs.push_back(NullInt);
 | |
|         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
 | |
|           Idxs.push_back(CE->getOperand(i));
 | |
|         NewPtr = ConstantExpr::getGetElementPtr(cast<Constant>(NewPtr),
 | |
|                                                 &Idxs[0], Idxs.size());
 | |
|       } else {
 | |
|         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
 | |
|         SmallVector<Value*, 8> Idxs;
 | |
|         Idxs.push_back(NullInt);
 | |
|         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
 | |
|           Idxs.push_back(GEPI->getOperand(i));
 | |
|         NewPtr = GetElementPtrInst::Create(NewPtr, Idxs.begin(), Idxs.end(),
 | |
|                                            GEPI->getName()+"."+Twine(Val),GEPI);
 | |
|       }
 | |
|     }
 | |
|     GEP->replaceAllUsesWith(NewPtr);
 | |
| 
 | |
|     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
 | |
|       GEPI->eraseFromParent();
 | |
|     else
 | |
|       cast<ConstantExpr>(GEP)->destroyConstant();
 | |
|   }
 | |
| 
 | |
|   // Delete the old global, now that it is dead.
 | |
|   Globals.erase(GV);
 | |
|   ++NumSRA;
 | |
| 
 | |
|   // Loop over the new globals array deleting any globals that are obviously
 | |
|   // dead.  This can arise due to scalarization of a structure or an array that
 | |
|   // has elements that are dead.
 | |
|   unsigned FirstGlobal = 0;
 | |
|   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
 | |
|     if (NewGlobals[i]->use_empty()) {
 | |
|       Globals.erase(NewGlobals[i]);
 | |
|       if (FirstGlobal == i) ++FirstGlobal;
 | |
|     }
 | |
| 
 | |
|   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : 0;
 | |
| }
 | |
| 
 | |
| /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
 | |
| /// value will trap if the value is dynamically null.  PHIs keeps track of any
 | |
| /// phi nodes we've seen to avoid reprocessing them.
 | |
| static bool AllUsesOfValueWillTrapIfNull(const Value *V,
 | |
|                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
 | |
|   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
 | |
|        ++UI) {
 | |
|     const User *U = *UI;
 | |
| 
 | |
|     if (isa<LoadInst>(U)) {
 | |
|       // Will trap.
 | |
|     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       if (SI->getOperand(0) == V) {
 | |
|         //cerr << "NONTRAPPING USE: " << *U;
 | |
|         return false;  // Storing the value.
 | |
|       }
 | |
|     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
 | |
|       if (CI->getCalledValue() != V) {
 | |
|         //cerr << "NONTRAPPING USE: " << *U;
 | |
|         return false;  // Not calling the ptr
 | |
|       }
 | |
|     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
 | |
|       if (II->getCalledValue() != V) {
 | |
|         //cerr << "NONTRAPPING USE: " << *U;
 | |
|         return false;  // Not calling the ptr
 | |
|       }
 | |
|     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
 | |
|       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
 | |
|     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
 | |
|     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
 | |
|       // If we've already seen this phi node, ignore it, it has already been
 | |
|       // checked.
 | |
|       if (PHIs.insert(PN) && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
 | |
|         return false;
 | |
|     } else if (isa<ICmpInst>(U) &&
 | |
|                isa<ConstantPointerNull>(UI->getOperand(1))) {
 | |
|       // Ignore icmp X, null
 | |
|     } else {
 | |
|       //cerr << "NONTRAPPING USE: " << *U;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
 | |
| /// from GV will trap if the loaded value is null.  Note that this also permits
 | |
| /// comparisons of the loaded value against null, as a special case.
 | |
| static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
 | |
|   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     const User *U = *UI;
 | |
| 
 | |
|     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       SmallPtrSet<const PHINode*, 8> PHIs;
 | |
|       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
 | |
|         return false;
 | |
|     } else if (isa<StoreInst>(U)) {
 | |
|       // Ignore stores to the global.
 | |
|     } else {
 | |
|       // We don't know or understand this user, bail out.
 | |
|       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
 | |
|   bool Changed = false;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ) {
 | |
|     Instruction *I = cast<Instruction>(*UI++);
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|       LI->setOperand(0, NewV);
 | |
|       Changed = true;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
 | |
|       if (SI->getOperand(1) == V) {
 | |
|         SI->setOperand(1, NewV);
 | |
|         Changed = true;
 | |
|       }
 | |
|     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
 | |
|       CallSite CS(I);
 | |
|       if (CS.getCalledValue() == V) {
 | |
|         // Calling through the pointer!  Turn into a direct call, but be careful
 | |
|         // that the pointer is not also being passed as an argument.
 | |
|         CS.setCalledFunction(NewV);
 | |
|         Changed = true;
 | |
|         bool PassedAsArg = false;
 | |
|         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | |
|           if (CS.getArgument(i) == V) {
 | |
|             PassedAsArg = true;
 | |
|             CS.setArgument(i, NewV);
 | |
|           }
 | |
| 
 | |
|         if (PassedAsArg) {
 | |
|           // Being passed as an argument also.  Be careful to not invalidate UI!
 | |
|           UI = V->use_begin();
 | |
|         }
 | |
|       }
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
 | |
|       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
 | |
|                                 ConstantExpr::getCast(CI->getOpcode(),
 | |
|                                                       NewV, CI->getType()));
 | |
|       if (CI->use_empty()) {
 | |
|         Changed = true;
 | |
|         CI->eraseFromParent();
 | |
|       }
 | |
|     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       // Should handle GEP here.
 | |
|       SmallVector<Constant*, 8> Idxs;
 | |
|       Idxs.reserve(GEPI->getNumOperands()-1);
 | |
|       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
 | |
|            i != e; ++i)
 | |
|         if (Constant *C = dyn_cast<Constant>(*i))
 | |
|           Idxs.push_back(C);
 | |
|         else
 | |
|           break;
 | |
|       if (Idxs.size() == GEPI->getNumOperands()-1)
 | |
|         Changed |= OptimizeAwayTrappingUsesOfValue(GEPI,
 | |
|                           ConstantExpr::getGetElementPtr(NewV, &Idxs[0],
 | |
|                                                         Idxs.size()));
 | |
|       if (GEPI->use_empty()) {
 | |
|         Changed = true;
 | |
|         GEPI->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
 | |
| /// value stored into it.  If there are uses of the loaded value that would trap
 | |
| /// if the loaded value is dynamically null, then we know that they cannot be
 | |
| /// reachable with a null optimize away the load.
 | |
| static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Keep track of whether we are able to remove all the uses of the global
 | |
|   // other than the store that defines it.
 | |
|   bool AllNonStoreUsesGone = true;
 | |
| 
 | |
|   // Replace all uses of loads with uses of uses of the stored value.
 | |
|   for (Value::use_iterator GUI = GV->use_begin(), E = GV->use_end(); GUI != E;){
 | |
|     User *GlobalUser = *GUI++;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
 | |
|       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
 | |
|       // If we were able to delete all uses of the loads
 | |
|       if (LI->use_empty()) {
 | |
|         LI->eraseFromParent();
 | |
|         Changed = true;
 | |
|       } else {
 | |
|         AllNonStoreUsesGone = false;
 | |
|       }
 | |
|     } else if (isa<StoreInst>(GlobalUser)) {
 | |
|       // Ignore the store that stores "LV" to the global.
 | |
|       assert(GlobalUser->getOperand(1) == GV &&
 | |
|              "Must be storing *to* the global");
 | |
|     } else {
 | |
|       AllNonStoreUsesGone = false;
 | |
| 
 | |
|       // If we get here we could have other crazy uses that are transitively
 | |
|       // loaded.
 | |
|       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
 | |
|               isa<ConstantExpr>(GlobalUser)) && "Only expect load and stores!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Changed) {
 | |
|     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
 | |
|     ++NumGlobUses;
 | |
|   }
 | |
| 
 | |
|   // If we nuked all of the loads, then none of the stores are needed either,
 | |
|   // nor is the global.
 | |
|   if (AllNonStoreUsesGone) {
 | |
|     DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
 | |
|     CleanupConstantGlobalUsers(GV, 0);
 | |
|     if (GV->use_empty()) {
 | |
|       GV->eraseFromParent();
 | |
|       ++NumDeleted;
 | |
|     }
 | |
|     Changed = true;
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
 | |
| /// instructions that are foldable.
 | |
| static void ConstantPropUsersOf(Value *V) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; )
 | |
|     if (Instruction *I = dyn_cast<Instruction>(*UI++))
 | |
|       if (Constant *NewC = ConstantFoldInstruction(I)) {
 | |
|         I->replaceAllUsesWith(NewC);
 | |
| 
 | |
|         // Advance UI to the next non-I use to avoid invalidating it!
 | |
|         // Instructions could multiply use V.
 | |
|         while (UI != E && *UI == I)
 | |
|           ++UI;
 | |
|         I->eraseFromParent();
 | |
|       }
 | |
| }
 | |
| 
 | |
| /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
 | |
| /// variable, and transforms the program as if it always contained the result of
 | |
| /// the specified malloc.  Because it is always the result of the specified
 | |
| /// malloc, there is no reason to actually DO the malloc.  Instead, turn the
 | |
| /// malloc into a global, and any loads of GV as uses of the new global.
 | |
| static GlobalVariable *OptimizeGlobalAddressOfMalloc(GlobalVariable *GV,
 | |
|                                                      CallInst *CI,
 | |
|                                                      const Type *AllocTy,
 | |
|                                                      ConstantInt *NElements,
 | |
|                                                      TargetData* TD) {
 | |
|   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
 | |
| 
 | |
|   const Type *GlobalType;
 | |
|   if (NElements->getZExtValue() == 1)
 | |
|     GlobalType = AllocTy;
 | |
|   else
 | |
|     // If we have an array allocation, the global variable is of an array.
 | |
|     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
 | |
| 
 | |
|   // Create the new global variable.  The contents of the malloc'd memory is
 | |
|   // undefined, so initialize with an undef value.
 | |
|   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
 | |
|                                              GlobalType, false,
 | |
|                                              GlobalValue::InternalLinkage,
 | |
|                                              UndefValue::get(GlobalType),
 | |
|                                              GV->getName()+".body",
 | |
|                                              GV,
 | |
|                                              GV->isThreadLocal());
 | |
| 
 | |
|   // If there are bitcast users of the malloc (which is typical, usually we have
 | |
|   // a malloc + bitcast) then replace them with uses of the new global.  Update
 | |
|   // other users to use the global as well.
 | |
|   BitCastInst *TheBC = 0;
 | |
|   while (!CI->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(CI->use_back());
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
 | |
|       if (BCI->getType() == NewGV->getType()) {
 | |
|         BCI->replaceAllUsesWith(NewGV);
 | |
|         BCI->eraseFromParent();
 | |
|       } else {
 | |
|         BCI->setOperand(0, NewGV);
 | |
|       }
 | |
|     } else {
 | |
|       if (TheBC == 0)
 | |
|         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
 | |
|       User->replaceUsesOfWith(CI, TheBC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Constant *RepValue = NewGV;
 | |
|   if (NewGV->getType() != GV->getType()->getElementType())
 | |
|     RepValue = ConstantExpr::getBitCast(RepValue,
 | |
|                                         GV->getType()->getElementType());
 | |
| 
 | |
|   // If there is a comparison against null, we will insert a global bool to
 | |
|   // keep track of whether the global was initialized yet or not.
 | |
|   GlobalVariable *InitBool =
 | |
|     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
 | |
|                        GlobalValue::InternalLinkage,
 | |
|                        ConstantInt::getFalse(GV->getContext()),
 | |
|                        GV->getName()+".init", GV->isThreadLocal());
 | |
|   bool InitBoolUsed = false;
 | |
| 
 | |
|   // Loop over all uses of GV, processing them in turn.
 | |
|   while (!GV->use_empty()) {
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(GV->use_back())) {
 | |
|       // The global is initialized when the store to it occurs.
 | |
|       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, SI);
 | |
|       SI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     LoadInst *LI = cast<LoadInst>(GV->use_back());
 | |
|     while (!LI->use_empty()) {
 | |
|       Use &LoadUse = LI->use_begin().getUse();
 | |
|       if (!isa<ICmpInst>(LoadUse.getUser())) {
 | |
|         LoadUse = RepValue;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ICmpInst *ICI = cast<ICmpInst>(LoadUse.getUser());
 | |
|       // Replace the cmp X, 0 with a use of the bool value.
 | |
|       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", ICI);
 | |
|       InitBoolUsed = true;
 | |
|       switch (ICI->getPredicate()) {
 | |
|       default: llvm_unreachable("Unknown ICmp Predicate!");
 | |
|       case ICmpInst::ICMP_ULT:
 | |
|       case ICmpInst::ICMP_SLT:   // X < null -> always false
 | |
|         LV = ConstantInt::getFalse(GV->getContext());
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|       case ICmpInst::ICMP_EQ:
 | |
|         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
 | |
|         break;
 | |
|       case ICmpInst::ICMP_NE:
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|       case ICmpInst::ICMP_UGT:
 | |
|       case ICmpInst::ICMP_SGT:
 | |
|         break;  // no change.
 | |
|       }
 | |
|       ICI->replaceAllUsesWith(LV);
 | |
|       ICI->eraseFromParent();
 | |
|     }
 | |
|     LI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // If the initialization boolean was used, insert it, otherwise delete it.
 | |
|   if (!InitBoolUsed) {
 | |
|     while (!InitBool->use_empty())  // Delete initializations
 | |
|       cast<StoreInst>(InitBool->use_back())->eraseFromParent();
 | |
|     delete InitBool;
 | |
|   } else
 | |
|     GV->getParent()->getGlobalList().insert(GV, InitBool);
 | |
| 
 | |
|   // Now the GV is dead, nuke it and the malloc..
 | |
|   GV->eraseFromParent();
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   // To further other optimizations, loop over all users of NewGV and try to
 | |
|   // constant prop them.  This will promote GEP instructions with constant
 | |
|   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
 | |
|   ConstantPropUsersOf(NewGV);
 | |
|   if (RepValue != NewGV)
 | |
|     ConstantPropUsersOf(RepValue);
 | |
| 
 | |
|   return NewGV;
 | |
| }
 | |
| 
 | |
| /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
 | |
| /// to make sure that there are no complex uses of V.  We permit simple things
 | |
| /// like dereferencing the pointer, but not storing through the address, unless
 | |
| /// it is to the specified global.
 | |
| static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
 | |
|                                                       const GlobalVariable *GV,
 | |
|                                          SmallPtrSet<const PHINode*, 8> &PHIs) {
 | |
|   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
 | |
|        UI != E; ++UI) {
 | |
|     const Instruction *Inst = cast<Instruction>(*UI);
 | |
| 
 | |
|     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
 | |
|       continue; // Fine, ignore.
 | |
|     }
 | |
| 
 | |
|     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
 | |
|         return false;  // Storing the pointer itself... bad.
 | |
|       continue; // Otherwise, storing through it, or storing into GV... fine.
 | |
|     }
 | |
| 
 | |
|     // Must index into the array and into the struct.
 | |
|     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
 | |
|       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
 | |
|       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
 | |
|       // cycles.
 | |
|       if (PHIs.insert(PN))
 | |
|         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
 | |
|           return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
 | |
|       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
 | |
| /// somewhere.  Transform all uses of the allocation into loads from the
 | |
| /// global and uses of the resultant pointer.  Further, delete the store into
 | |
| /// GV.  This assumes that these value pass the
 | |
| /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
 | |
| static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
 | |
|                                           GlobalVariable *GV) {
 | |
|   while (!Alloc->use_empty()) {
 | |
|     Instruction *U = cast<Instruction>(*Alloc->use_begin());
 | |
|     Instruction *InsertPt = U;
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       // If this is the store of the allocation into the global, remove it.
 | |
|       if (SI->getOperand(1) == GV) {
 | |
|         SI->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
 | |
|       // Insert the load in the corresponding predecessor, not right before the
 | |
|       // PHI.
 | |
|       InsertPt = PN->getIncomingBlock(Alloc->use_begin())->getTerminator();
 | |
|     } else if (isa<BitCastInst>(U)) {
 | |
|       // Must be bitcast between the malloc and store to initialize the global.
 | |
|       ReplaceUsesOfMallocWithGlobal(U, GV);
 | |
|       U->eraseFromParent();
 | |
|       continue;
 | |
|     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       // If this is a "GEP bitcast" and the user is a store to the global, then
 | |
|       // just process it as a bitcast.
 | |
|       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
 | |
|         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->use_back()))
 | |
|           if (SI->getOperand(1) == GV) {
 | |
|             // Must be bitcast GEP between the malloc and store to initialize
 | |
|             // the global.
 | |
|             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
 | |
|             GEPI->eraseFromParent();
 | |
|             continue;
 | |
|           }
 | |
|     }
 | |
| 
 | |
|     // Insert a load from the global, and use it instead of the malloc.
 | |
|     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
 | |
|     U->replaceUsesOfWith(Alloc, NL);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
 | |
| /// of a load) are simple enough to perform heap SRA on.  This permits GEP's
 | |
| /// that index through the array and struct field, icmps of null, and PHIs.
 | |
| static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
 | |
|                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIs,
 | |
|                         SmallPtrSet<const PHINode*, 32> &LoadUsingPHIsPerLoad) {
 | |
|   // We permit two users of the load: setcc comparing against the null
 | |
|   // pointer, and a getelementptr of a specific form.
 | |
|   for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;
 | |
|        ++UI) {
 | |
|     const Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Comparison against null is ok.
 | |
|     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(User)) {
 | |
|       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // getelementptr is also ok, but only a simple form.
 | |
|     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Must index into the array and into the struct.
 | |
|       if (GEPI->getNumOperands() < 3)
 | |
|         return false;
 | |
| 
 | |
|       // Otherwise the GEP is ok.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (const PHINode *PN = dyn_cast<PHINode>(User)) {
 | |
|       if (!LoadUsingPHIsPerLoad.insert(PN))
 | |
|         // This means some phi nodes are dependent on each other.
 | |
|         // Avoid infinite looping!
 | |
|         return false;
 | |
|       if (!LoadUsingPHIs.insert(PN))
 | |
|         // If we have already analyzed this PHI, then it is safe.
 | |
|         continue;
 | |
| 
 | |
|       // Make sure all uses of the PHI are simple enough to transform.
 | |
|       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
 | |
|                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
 | |
|         return false;
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we don't know what this is, not ok.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
 | |
| /// GV are simple enough to perform HeapSRA, return true.
 | |
| static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
 | |
|                                                     Instruction *StoredVal) {
 | |
|   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
 | |
|   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
 | |
|   for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end();
 | |
|        UI != E; ++UI)
 | |
|     if (const LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
 | |
|       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
 | |
|                                           LoadUsingPHIsPerLoad))
 | |
|         return false;
 | |
|       LoadUsingPHIsPerLoad.clear();
 | |
|     }
 | |
| 
 | |
|   // If we reach here, we know that all uses of the loads and transitive uses
 | |
|   // (through PHI nodes) are simple enough to transform.  However, we don't know
 | |
|   // that all inputs the to the PHI nodes are in the same equivalence sets.
 | |
|   // Check to verify that all operands of the PHIs are either PHIS that can be
 | |
|   // transformed, loads from GV, or MI itself.
 | |
|   for (SmallPtrSet<const PHINode*, 32>::const_iterator I = LoadUsingPHIs.begin()
 | |
|        , E = LoadUsingPHIs.end(); I != E; ++I) {
 | |
|     const PHINode *PN = *I;
 | |
|     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
 | |
|       Value *InVal = PN->getIncomingValue(op);
 | |
| 
 | |
|       // PHI of the stored value itself is ok.
 | |
|       if (InVal == StoredVal) continue;
 | |
| 
 | |
|       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
 | |
|         // One of the PHIs in our set is (optimistically) ok.
 | |
|         if (LoadUsingPHIs.count(InPN))
 | |
|           continue;
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Load from GV is ok.
 | |
|       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
 | |
|         if (LI->getOperand(0) == GV)
 | |
|           continue;
 | |
| 
 | |
|       // UNDEF? NULL?
 | |
| 
 | |
|       // Anything else is rejected.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
 | |
|                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
 | |
|                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
 | |
|   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
 | |
| 
 | |
|   if (FieldNo >= FieldVals.size())
 | |
|     FieldVals.resize(FieldNo+1);
 | |
| 
 | |
|   // If we already have this value, just reuse the previously scalarized
 | |
|   // version.
 | |
|   if (Value *FieldVal = FieldVals[FieldNo])
 | |
|     return FieldVal;
 | |
| 
 | |
|   // Depending on what instruction this is, we have several cases.
 | |
|   Value *Result;
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
 | |
|     // This is a scalarized version of the load from the global.  Just create
 | |
|     // a new Load of the scalarized global.
 | |
|     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
 | |
|                                            InsertedScalarizedValues,
 | |
|                                            PHIsToRewrite),
 | |
|                           LI->getName()+".f"+Twine(FieldNo), LI);
 | |
|   } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
 | |
|     // field.
 | |
|     const StructType *ST =
 | |
|       cast<StructType>(cast<PointerType>(PN->getType())->getElementType());
 | |
| 
 | |
|     Result =
 | |
|      PHINode::Create(PointerType::getUnqual(ST->getElementType(FieldNo)),
 | |
|                      PN->getName()+".f"+Twine(FieldNo), PN);
 | |
|     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown usable value");
 | |
|     Result = 0;
 | |
|   }
 | |
| 
 | |
|   return FieldVals[FieldNo] = Result;
 | |
| }
 | |
| 
 | |
| /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
 | |
| /// the load, rewrite the derived value to use the HeapSRoA'd load.
 | |
| static void RewriteHeapSROALoadUser(Instruction *LoadUser,
 | |
|              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
 | |
|                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
 | |
|   // If this is a comparison against null, handle it.
 | |
|   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
 | |
|     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
 | |
|     // If we have a setcc of the loaded pointer, we can use a setcc of any
 | |
|     // field.
 | |
|     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
 | |
|                                    InsertedScalarizedValues, PHIsToRewrite);
 | |
| 
 | |
|     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
 | |
|                               Constant::getNullValue(NPtr->getType()),
 | |
|                               SCI->getName());
 | |
|     SCI->replaceAllUsesWith(New);
 | |
|     SCI->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
 | |
|     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
 | |
|            && "Unexpected GEPI!");
 | |
| 
 | |
|     // Load the pointer for this field.
 | |
|     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
 | |
|     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
 | |
|                                      InsertedScalarizedValues, PHIsToRewrite);
 | |
| 
 | |
|     // Create the new GEP idx vector.
 | |
|     SmallVector<Value*, 8> GEPIdx;
 | |
|     GEPIdx.push_back(GEPI->getOperand(1));
 | |
|     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
 | |
| 
 | |
|     Value *NGEPI = GetElementPtrInst::Create(NewPtr,
 | |
|                                              GEPIdx.begin(), GEPIdx.end(),
 | |
|                                              GEPI->getName(), GEPI);
 | |
|     GEPI->replaceAllUsesWith(NGEPI);
 | |
|     GEPI->eraseFromParent();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Recursively transform the users of PHI nodes.  This will lazily create the
 | |
|   // PHIs that are needed for individual elements.  Keep track of what PHIs we
 | |
|   // see in InsertedScalarizedValues so that we don't get infinite loops (very
 | |
|   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
 | |
|   // already been seen first by another load, so its uses have already been
 | |
|   // processed.
 | |
|   PHINode *PN = cast<PHINode>(LoadUser);
 | |
|   bool Inserted;
 | |
|   DenseMap<Value*, std::vector<Value*> >::iterator InsertPos;
 | |
|   tie(InsertPos, Inserted) =
 | |
|     InsertedScalarizedValues.insert(std::make_pair(PN, std::vector<Value*>()));
 | |
|   if (!Inserted) return;
 | |
| 
 | |
|   // If this is the first time we've seen this PHI, recursively process all
 | |
|   // users.
 | |
|   for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
 | |
| /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
 | |
| /// use FieldGlobals instead.  All uses of loaded values satisfy
 | |
| /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
 | |
| static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
 | |
|                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
 | |
|                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
 | |
|   for (Value::use_iterator UI = Load->use_begin(), E = Load->use_end();
 | |
|        UI != E; ) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
|     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
 | |
|   }
 | |
| 
 | |
|   if (Load->use_empty()) {
 | |
|     Load->eraseFromParent();
 | |
|     InsertedScalarizedValues.erase(Load);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
 | |
| /// it up into multiple allocations of arrays of the fields.
 | |
| static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
 | |
|                                             Value* NElems, TargetData *TD) {
 | |
|   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
 | |
|   const Type* MAT = getMallocAllocatedType(CI);
 | |
|   const StructType *STy = cast<StructType>(MAT);
 | |
| 
 | |
|   // There is guaranteed to be at least one use of the malloc (storing
 | |
|   // it into GV).  If there are other uses, change them to be uses of
 | |
|   // the global to simplify later code.  This also deletes the store
 | |
|   // into GV.
 | |
|   ReplaceUsesOfMallocWithGlobal(CI, GV);
 | |
| 
 | |
|   // Okay, at this point, there are no users of the malloc.  Insert N
 | |
|   // new mallocs at the same place as CI, and N globals.
 | |
|   std::vector<Value*> FieldGlobals;
 | |
|   std::vector<Value*> FieldMallocs;
 | |
| 
 | |
|   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
 | |
|     const Type *FieldTy = STy->getElementType(FieldNo);
 | |
|     const PointerType *PFieldTy = PointerType::getUnqual(FieldTy);
 | |
| 
 | |
|     GlobalVariable *NGV =
 | |
|       new GlobalVariable(*GV->getParent(),
 | |
|                          PFieldTy, false, GlobalValue::InternalLinkage,
 | |
|                          Constant::getNullValue(PFieldTy),
 | |
|                          GV->getName() + ".f" + Twine(FieldNo), GV,
 | |
|                          GV->isThreadLocal());
 | |
|     FieldGlobals.push_back(NGV);
 | |
| 
 | |
|     unsigned TypeSize = TD->getTypeAllocSize(FieldTy);
 | |
|     if (const StructType *ST = dyn_cast<StructType>(FieldTy))
 | |
|       TypeSize = TD->getStructLayout(ST)->getSizeInBytes();
 | |
|     const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
 | |
|     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
 | |
|                                         ConstantInt::get(IntPtrTy, TypeSize),
 | |
|                                         NElems, 0,
 | |
|                                         CI->getName() + ".f" + Twine(FieldNo));
 | |
|     FieldMallocs.push_back(NMI);
 | |
|     new StoreInst(NMI, NGV, CI);
 | |
|   }
 | |
| 
 | |
|   // The tricky aspect of this transformation is handling the case when malloc
 | |
|   // fails.  In the original code, malloc failing would set the result pointer
 | |
|   // of malloc to null.  In this case, some mallocs could succeed and others
 | |
|   // could fail.  As such, we emit code that looks like this:
 | |
|   //    F0 = malloc(field0)
 | |
|   //    F1 = malloc(field1)
 | |
|   //    F2 = malloc(field2)
 | |
|   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
 | |
|   //      if (F0) { free(F0); F0 = 0; }
 | |
|   //      if (F1) { free(F1); F1 = 0; }
 | |
|   //      if (F2) { free(F2); F2 = 0; }
 | |
|   //    }
 | |
|   // The malloc can also fail if its argument is too large.
 | |
|   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
 | |
|   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
 | |
|                                   ConstantZero, "isneg");
 | |
|   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
 | |
|     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
 | |
|                              Constant::getNullValue(FieldMallocs[i]->getType()),
 | |
|                                "isnull");
 | |
|     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
 | |
|   }
 | |
| 
 | |
|   // Split the basic block at the old malloc.
 | |
|   BasicBlock *OrigBB = CI->getParent();
 | |
|   BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
 | |
| 
 | |
|   // Create the block to check the first condition.  Put all these blocks at the
 | |
|   // end of the function as they are unlikely to be executed.
 | |
|   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
 | |
|                                                 "malloc_ret_null",
 | |
|                                                 OrigBB->getParent());
 | |
| 
 | |
|   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
 | |
|   // branch on RunningOr.
 | |
|   OrigBB->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
 | |
| 
 | |
|   // Within the NullPtrBlock, we need to emit a comparison and branch for each
 | |
|   // pointer, because some may be null while others are not.
 | |
|   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
 | |
|     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
 | |
|     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
 | |
|                               Constant::getNullValue(GVVal->getType()),
 | |
|                               "tmp");
 | |
|     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
 | |
|                                                OrigBB->getParent());
 | |
|     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
 | |
|                                                OrigBB->getParent());
 | |
|     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
 | |
|                                          Cmp, NullPtrBlock);
 | |
| 
 | |
|     // Fill in FreeBlock.
 | |
|     CallInst::CreateFree(GVVal, BI);
 | |
|     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
 | |
|                   FreeBlock);
 | |
|     BranchInst::Create(NextBlock, FreeBlock);
 | |
| 
 | |
|     NullPtrBlock = NextBlock;
 | |
|   }
 | |
| 
 | |
|   BranchInst::Create(ContBB, NullPtrBlock);
 | |
| 
 | |
|   // CI is no longer needed, remove it.
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   /// InsertedScalarizedLoads - As we process loads, if we can't immediately
 | |
|   /// update all uses of the load, keep track of what scalarized loads are
 | |
|   /// inserted for a given load.
 | |
|   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
 | |
|   InsertedScalarizedValues[GV] = FieldGlobals;
 | |
| 
 | |
|   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
 | |
| 
 | |
|   // Okay, the malloc site is completely handled.  All of the uses of GV are now
 | |
|   // loads, and all uses of those loads are simple.  Rewrite them to use loads
 | |
|   // of the per-field globals instead.
 | |
|   for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end(); UI != E;) {
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Must be a store of null.
 | |
|     StoreInst *SI = cast<StoreInst>(User);
 | |
|     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
 | |
|            "Unexpected heap-sra user!");
 | |
| 
 | |
|     // Insert a store of null into each global.
 | |
|     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
 | |
|       const PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
 | |
|       Constant *Null = Constant::getNullValue(PT->getElementType());
 | |
|       new StoreInst(Null, FieldGlobals[i], SI);
 | |
|     }
 | |
|     // Erase the original store.
 | |
|     SI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // While we have PHIs that are interesting to rewrite, do it.
 | |
|   while (!PHIsToRewrite.empty()) {
 | |
|     PHINode *PN = PHIsToRewrite.back().first;
 | |
|     unsigned FieldNo = PHIsToRewrite.back().second;
 | |
|     PHIsToRewrite.pop_back();
 | |
|     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
 | |
|     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
 | |
| 
 | |
|     // Add all the incoming values.  This can materialize more phis.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       Value *InVal = PN->getIncomingValue(i);
 | |
|       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
 | |
|                                PHIsToRewrite);
 | |
|       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Drop all inter-phi links and any loads that made it this far.
 | |
|   for (DenseMap<Value*, std::vector<Value*> >::iterator
 | |
|        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
 | |
|        I != E; ++I) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I->first))
 | |
|       PN->dropAllReferences();
 | |
|     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
 | |
|       LI->dropAllReferences();
 | |
|   }
 | |
| 
 | |
|   // Delete all the phis and loads now that inter-references are dead.
 | |
|   for (DenseMap<Value*, std::vector<Value*> >::iterator
 | |
|        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
 | |
|        I != E; ++I) {
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(I->first))
 | |
|       PN->eraseFromParent();
 | |
|     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
 | |
|       LI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   // The old global is now dead, remove it.
 | |
|   GV->eraseFromParent();
 | |
| 
 | |
|   ++NumHeapSRA;
 | |
|   return cast<GlobalVariable>(FieldGlobals[0]);
 | |
| }
 | |
| 
 | |
| /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
 | |
| /// pointer global variable with a single value stored it that is a malloc or
 | |
| /// cast of malloc.
 | |
| static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV,
 | |
|                                                CallInst *CI,
 | |
|                                                const Type *AllocTy,
 | |
|                                                Module::global_iterator &GVI,
 | |
|                                                TargetData *TD) {
 | |
|   if (!TD)
 | |
|     return false;
 | |
| 
 | |
|   // If this is a malloc of an abstract type, don't touch it.
 | |
|   if (!AllocTy->isSized())
 | |
|     return false;
 | |
| 
 | |
|   // We can't optimize this global unless all uses of it are *known* to be
 | |
|   // of the malloc value, not of the null initializer value (consider a use
 | |
|   // that compares the global's value against zero to see if the malloc has
 | |
|   // been reached).  To do this, we check to see if all uses of the global
 | |
|   // would trap if the global were null: this proves that they must all
 | |
|   // happen after the malloc.
 | |
|   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
 | |
|     return false;
 | |
| 
 | |
|   // We can't optimize this if the malloc itself is used in a complex way,
 | |
|   // for example, being stored into multiple globals.  This allows the
 | |
|   // malloc to be stored into the specified global, loaded setcc'd, and
 | |
|   // GEP'd.  These are all things we could transform to using the global
 | |
|   // for.
 | |
|   SmallPtrSet<const PHINode*, 8> PHIs;
 | |
|   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
 | |
|     return false;
 | |
| 
 | |
|   // If we have a global that is only initialized with a fixed size malloc,
 | |
|   // transform the program to use global memory instead of malloc'd memory.
 | |
|   // This eliminates dynamic allocation, avoids an indirection accessing the
 | |
|   // data, and exposes the resultant global to further GlobalOpt.
 | |
|   // We cannot optimize the malloc if we cannot determine malloc array size.
 | |
|   Value *NElems = getMallocArraySize(CI, TD, true);
 | |
|   if (!NElems)
 | |
|     return false;
 | |
| 
 | |
|   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
 | |
|     // Restrict this transformation to only working on small allocations
 | |
|     // (2048 bytes currently), as we don't want to introduce a 16M global or
 | |
|     // something.
 | |
|     if (NElements->getZExtValue() * TD->getTypeAllocSize(AllocTy) < 2048) {
 | |
|       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, TD);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|   // If the allocation is an array of structures, consider transforming this
 | |
|   // into multiple malloc'd arrays, one for each field.  This is basically
 | |
|   // SRoA for malloc'd memory.
 | |
| 
 | |
|   // If this is an allocation of a fixed size array of structs, analyze as a
 | |
|   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
 | |
|   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
 | |
|       AllocTy = AT->getElementType();
 | |
| 
 | |
|   const StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
 | |
|   if (!AllocSTy)
 | |
|     return false;
 | |
| 
 | |
|   // This the structure has an unreasonable number of fields, leave it
 | |
|   // alone.
 | |
|   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
 | |
|       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
 | |
| 
 | |
|     // If this is a fixed size array, transform the Malloc to be an alloc of
 | |
|     // structs.  malloc [100 x struct],1 -> malloc struct, 100
 | |
|     if (const ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI))) {
 | |
|       const Type *IntPtrTy = TD->getIntPtrType(CI->getContext());
 | |
|       unsigned TypeSize = TD->getStructLayout(AllocSTy)->getSizeInBytes();
 | |
|       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
 | |
|       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
 | |
|       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
 | |
|                                                    AllocSize, NumElements,
 | |
|                                                    0, CI->getName());
 | |
|       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
 | |
|       CI->replaceAllUsesWith(Cast);
 | |
|       CI->eraseFromParent();
 | |
|       CI = dyn_cast<BitCastInst>(Malloc) ?
 | |
|         extractMallocCallFromBitCast(Malloc) : cast<CallInst>(Malloc);
 | |
|     }
 | |
| 
 | |
|     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, TD, true),TD);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
 | |
| // that only one value (besides its initializer) is ever stored to the global.
 | |
| static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
 | |
|                                      Module::global_iterator &GVI,
 | |
|                                      TargetData *TD) {
 | |
|   // Ignore no-op GEPs and bitcasts.
 | |
|   StoredOnceVal = StoredOnceVal->stripPointerCasts();
 | |
| 
 | |
|   // If we are dealing with a pointer global that is initialized to null and
 | |
|   // only has one (non-null) value stored into it, then we can optimize any
 | |
|   // users of the loaded value (often calls and loads) that would trap if the
 | |
|   // value was null.
 | |
|   if (GV->getInitializer()->getType()->isPointerTy() &&
 | |
|       GV->getInitializer()->isNullValue()) {
 | |
|     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
 | |
|       if (GV->getInitializer()->getType() != SOVC->getType())
 | |
|         SOVC =
 | |
|          ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
 | |
| 
 | |
|       // Optimize away any trapping uses of the loaded value.
 | |
|       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC))
 | |
|         return true;
 | |
|     } else if (CallInst *CI = extractMallocCall(StoredOnceVal)) {
 | |
|       const Type* MallocType = getMallocAllocatedType(CI);
 | |
|       if (MallocType && TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
 | |
|                                                            GVI, TD))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
 | |
| /// two values ever stored into GV are its initializer and OtherVal.  See if we
 | |
| /// can shrink the global into a boolean and select between the two values
 | |
| /// whenever it is used.  This exposes the values to other scalar optimizations.
 | |
| static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
 | |
|   const Type *GVElType = GV->getType()->getElementType();
 | |
| 
 | |
|   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
 | |
|   // an FP value, pointer or vector, don't do this optimization because a select
 | |
|   // between them is very expensive and unlikely to lead to later
 | |
|   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
 | |
|   // where v1 and v2 both require constant pool loads, a big loss.
 | |
|   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
 | |
|       GVElType->isFloatingPointTy() ||
 | |
|       GVElType->isPointerTy() || GVElType->isVectorTy())
 | |
|     return false;
 | |
| 
 | |
|   // Walk the use list of the global seeing if all the uses are load or store.
 | |
|   // If there is anything else, bail out.
 | |
|   for (Value::use_iterator I = GV->use_begin(), E = GV->use_end(); I != E; ++I){
 | |
|     User *U = *I;
 | |
|     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
 | |
| 
 | |
|   // Create the new global, initializing it to false.
 | |
|   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
 | |
|                                              false,
 | |
|                                              GlobalValue::InternalLinkage,
 | |
|                                         ConstantInt::getFalse(GV->getContext()),
 | |
|                                              GV->getName()+".b",
 | |
|                                              GV->isThreadLocal());
 | |
|   GV->getParent()->getGlobalList().insert(GV, NewGV);
 | |
| 
 | |
|   Constant *InitVal = GV->getInitializer();
 | |
|   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
 | |
|          "No reason to shrink to bool!");
 | |
| 
 | |
|   // If initialized to zero and storing one into the global, we can use a cast
 | |
|   // instead of a select to synthesize the desired value.
 | |
|   bool IsOneZero = false;
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
 | |
|     IsOneZero = InitVal->isNullValue() && CI->isOne();
 | |
| 
 | |
|   while (!GV->use_empty()) {
 | |
|     Instruction *UI = cast<Instruction>(GV->use_back());
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
 | |
|       // Change the store into a boolean store.
 | |
|       bool StoringOther = SI->getOperand(0) == OtherVal;
 | |
|       // Only do this if we weren't storing a loaded value.
 | |
|       Value *StoreVal;
 | |
|       if (StoringOther || SI->getOperand(0) == InitVal)
 | |
|         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
 | |
|                                     StoringOther);
 | |
|       else {
 | |
|         // Otherwise, we are storing a previously loaded copy.  To do this,
 | |
|         // change the copy from copying the original value to just copying the
 | |
|         // bool.
 | |
|         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
 | |
| 
 | |
|         // If we've already replaced the input, StoredVal will be a cast or
 | |
|         // select instruction.  If not, it will be a load of the original
 | |
|         // global.
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
 | |
|           assert(LI->getOperand(0) == GV && "Not a copy!");
 | |
|           // Insert a new load, to preserve the saved value.
 | |
|           StoreVal = new LoadInst(NewGV, LI->getName()+".b", LI);
 | |
|         } else {
 | |
|           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
 | |
|                  "This is not a form that we understand!");
 | |
|           StoreVal = StoredVal->getOperand(0);
 | |
|           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
 | |
|         }
 | |
|       }
 | |
|       new StoreInst(StoreVal, NewGV, SI);
 | |
|     } else {
 | |
|       // Change the load into a load of bool then a select.
 | |
|       LoadInst *LI = cast<LoadInst>(UI);
 | |
|       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", LI);
 | |
|       Value *NSI;
 | |
|       if (IsOneZero)
 | |
|         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
 | |
|       else
 | |
|         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
 | |
|       NSI->takeName(LI);
 | |
|       LI->replaceAllUsesWith(NSI);
 | |
|     }
 | |
|     UI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   GV->eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ProcessInternalGlobal - Analyze the specified global variable and optimize
 | |
| /// it if possible.  If we make a change, return true.
 | |
| bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
 | |
|                                       Module::global_iterator &GVI) {
 | |
|   SmallPtrSet<const PHINode*, 16> PHIUsers;
 | |
|   GlobalStatus GS;
 | |
|   GV->removeDeadConstantUsers();
 | |
| 
 | |
|   if (GV->use_empty()) {
 | |
|     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
 | |
|     GV->eraseFromParent();
 | |
|     ++NumDeleted;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!AnalyzeGlobal(GV, GS, PHIUsers)) {
 | |
| #if 0
 | |
|     DEBUG(dbgs() << "Global: " << *GV);
 | |
|     DEBUG(dbgs() << "  isLoaded = " << GS.isLoaded << "\n");
 | |
|     DEBUG(dbgs() << "  StoredType = ");
 | |
|     switch (GS.StoredType) {
 | |
|     case GlobalStatus::NotStored: DEBUG(dbgs() << "NEVER STORED\n"); break;
 | |
|     case GlobalStatus::isInitializerStored: DEBUG(dbgs() << "INIT STORED\n");
 | |
|                                             break;
 | |
|     case GlobalStatus::isStoredOnce: DEBUG(dbgs() << "STORED ONCE\n"); break;
 | |
|     case GlobalStatus::isStored: DEBUG(dbgs() << "stored\n"); break;
 | |
|     }
 | |
|     if (GS.StoredType == GlobalStatus::isStoredOnce && GS.StoredOnceValue)
 | |
|       DEBUG(dbgs() << "  StoredOnceValue = " << *GS.StoredOnceValue << "\n");
 | |
|     if (GS.AccessingFunction && !GS.HasMultipleAccessingFunctions)
 | |
|       DEBUG(dbgs() << "  AccessingFunction = "
 | |
|                    << GS.AccessingFunction->getName() << "\n");
 | |
|     DEBUG(dbgs() << "  HasMultipleAccessingFunctions =  "
 | |
|                  << GS.HasMultipleAccessingFunctions << "\n");
 | |
|     DEBUG(dbgs() << "  HasNonInstructionUser = "
 | |
|                  << GS.HasNonInstructionUser<<"\n");
 | |
|     DEBUG(dbgs() << "\n");
 | |
| #endif
 | |
| 
 | |
|     // If this is a first class global and has only one accessing function
 | |
|     // and this function is main (which we know is not recursive we can make
 | |
|     // this global a local variable) we replace the global with a local alloca
 | |
|     // in this function.
 | |
|     //
 | |
|     // NOTE: It doesn't make sense to promote non single-value types since we
 | |
|     // are just replacing static memory to stack memory.
 | |
|     //
 | |
|     // If the global is in different address space, don't bring it to stack.
 | |
|     if (!GS.HasMultipleAccessingFunctions &&
 | |
|         GS.AccessingFunction && !GS.HasNonInstructionUser &&
 | |
|         GV->getType()->getElementType()->isSingleValueType() &&
 | |
|         GS.AccessingFunction->getName() == "main" &&
 | |
|         GS.AccessingFunction->hasExternalLinkage() &&
 | |
|         GV->getType()->getAddressSpace() == 0) {
 | |
|       DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
 | |
|       Instruction& FirstI = const_cast<Instruction&>(*GS.AccessingFunction
 | |
|                                                      ->getEntryBlock().begin());
 | |
|       const Type* ElemTy = GV->getType()->getElementType();
 | |
|       // FIXME: Pass Global's alignment when globals have alignment
 | |
|       AllocaInst* Alloca = new AllocaInst(ElemTy, NULL, GV->getName(), &FirstI);
 | |
|       if (!isa<UndefValue>(GV->getInitializer()))
 | |
|         new StoreInst(GV->getInitializer(), Alloca, &FirstI);
 | |
| 
 | |
|       GV->replaceAllUsesWith(Alloca);
 | |
|       GV->eraseFromParent();
 | |
|       ++NumLocalized;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If the global is never loaded (but may be stored to), it is dead.
 | |
|     // Delete it now.
 | |
|     if (!GS.isLoaded) {
 | |
|       DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
 | |
| 
 | |
|       // Delete any stores we can find to the global.  We may not be able to
 | |
|       // make it completely dead though.
 | |
|       bool Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer());
 | |
| 
 | |
|       // If the global is dead now, delete it.
 | |
|       if (GV->use_empty()) {
 | |
|         GV->eraseFromParent();
 | |
|         ++NumDeleted;
 | |
|         Changed = true;
 | |
|       }
 | |
|       return Changed;
 | |
| 
 | |
|     } else if (GS.StoredType <= GlobalStatus::isInitializerStored) {
 | |
|       DEBUG(dbgs() << "MARKING CONSTANT: " << *GV);
 | |
|       GV->setConstant(true);
 | |
| 
 | |
|       // Clean up any obviously simplifiable users now.
 | |
|       CleanupConstantGlobalUsers(GV, GV->getInitializer());
 | |
| 
 | |
|       // If the global is dead now, just nuke it.
 | |
|       if (GV->use_empty()) {
 | |
|         DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
 | |
|                      << "all users and delete global!\n");
 | |
|         GV->eraseFromParent();
 | |
|         ++NumDeleted;
 | |
|       }
 | |
| 
 | |
|       ++NumMarked;
 | |
|       return true;
 | |
|     } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
 | |
|       if (TargetData *TD = getAnalysisIfAvailable<TargetData>())
 | |
|         if (GlobalVariable *FirstNewGV = SRAGlobal(GV, *TD)) {
 | |
|           GVI = FirstNewGV;  // Don't skip the newly produced globals!
 | |
|           return true;
 | |
|         }
 | |
|     } else if (GS.StoredType == GlobalStatus::isStoredOnce) {
 | |
|       // If the initial value for the global was an undef value, and if only
 | |
|       // one other value was stored into it, we can just change the
 | |
|       // initializer to be the stored value, then delete all stores to the
 | |
|       // global.  This allows us to mark it constant.
 | |
|       if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
 | |
|         if (isa<UndefValue>(GV->getInitializer())) {
 | |
|           // Change the initial value here.
 | |
|           GV->setInitializer(SOVConstant);
 | |
| 
 | |
|           // Clean up any obviously simplifiable users now.
 | |
|           CleanupConstantGlobalUsers(GV, GV->getInitializer());
 | |
| 
 | |
|           if (GV->use_empty()) {
 | |
|             DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
 | |
|                          << "simplify all users and delete global!\n");
 | |
|             GV->eraseFromParent();
 | |
|             ++NumDeleted;
 | |
|           } else {
 | |
|             GVI = GV;
 | |
|           }
 | |
|           ++NumSubstitute;
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|       // Try to optimize globals based on the knowledge that only one value
 | |
|       // (besides its initializer) is ever stored to the global.
 | |
|       if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GVI,
 | |
|                                    getAnalysisIfAvailable<TargetData>()))
 | |
|         return true;
 | |
| 
 | |
|       // Otherwise, if the global was not a boolean, we can shrink it to be a
 | |
|       // boolean.
 | |
|       if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
 | |
|         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
 | |
|           ++NumShrunkToBool;
 | |
|           return true;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
 | |
| /// function, changing them to FastCC.
 | |
| static void ChangeCalleesToFastCall(Function *F) {
 | |
|   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
 | |
|     CallSite User(cast<Instruction>(*UI));
 | |
|     User.setCallingConv(CallingConv::Fast);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static AttrListPtr StripNest(const AttrListPtr &Attrs) {
 | |
|   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
 | |
|     if ((Attrs.getSlot(i).Attrs & Attribute::Nest) == 0)
 | |
|       continue;
 | |
| 
 | |
|     // There can be only one.
 | |
|     return Attrs.removeAttr(Attrs.getSlot(i).Index, Attribute::Nest);
 | |
|   }
 | |
| 
 | |
|   return Attrs;
 | |
| }
 | |
| 
 | |
| static void RemoveNestAttribute(Function *F) {
 | |
|   F->setAttributes(StripNest(F->getAttributes()));
 | |
|   for (Value::use_iterator UI = F->use_begin(), E = F->use_end(); UI != E;++UI){
 | |
|     CallSite User(cast<Instruction>(*UI));
 | |
|     User.setAttributes(StripNest(User.getAttributes()));
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool GlobalOpt::OptimizeFunctions(Module &M) {
 | |
|   bool Changed = false;
 | |
|   // Optimize functions.
 | |
|   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
 | |
|     Function *F = FI++;
 | |
|     // Functions without names cannot be referenced outside this module.
 | |
|     if (!F->hasName() && !F->isDeclaration())
 | |
|       F->setLinkage(GlobalValue::InternalLinkage);
 | |
|     F->removeDeadConstantUsers();
 | |
|     if (F->use_empty() && (F->hasLocalLinkage() || F->hasLinkOnceLinkage())) {
 | |
|       F->eraseFromParent();
 | |
|       Changed = true;
 | |
|       ++NumFnDeleted;
 | |
|     } else if (F->hasLocalLinkage()) {
 | |
|       if (F->getCallingConv() == CallingConv::C && !F->isVarArg() &&
 | |
|           !F->hasAddressTaken()) {
 | |
|         // If this function has C calling conventions, is not a varargs
 | |
|         // function, and is only called directly, promote it to use the Fast
 | |
|         // calling convention.
 | |
|         F->setCallingConv(CallingConv::Fast);
 | |
|         ChangeCalleesToFastCall(F);
 | |
|         ++NumFastCallFns;
 | |
|         Changed = true;
 | |
|       }
 | |
| 
 | |
|       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
 | |
|           !F->hasAddressTaken()) {
 | |
|         // The function is not used by a trampoline intrinsic, so it is safe
 | |
|         // to remove the 'nest' attribute.
 | |
|         RemoveNestAttribute(F);
 | |
|         ++NumNestRemoved;
 | |
|         Changed = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool GlobalOpt::OptimizeGlobalVars(Module &M) {
 | |
|   bool Changed = false;
 | |
|   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
 | |
|        GVI != E; ) {
 | |
|     GlobalVariable *GV = GVI++;
 | |
|     // Global variables without names cannot be referenced outside this module.
 | |
|     if (!GV->hasName() && !GV->isDeclaration())
 | |
|       GV->setLinkage(GlobalValue::InternalLinkage);
 | |
|     // Simplify the initializer.
 | |
|     if (GV->hasInitializer())
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
 | |
|         TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | |
|         Constant *New = ConstantFoldConstantExpression(CE, TD);
 | |
|         if (New && New != CE)
 | |
|           GV->setInitializer(New);
 | |
|       }
 | |
|     // Do more involved optimizations if the global is internal.
 | |
|     if (!GV->isConstant() && GV->hasLocalLinkage() &&
 | |
|         GV->hasInitializer())
 | |
|       Changed |= ProcessInternalGlobal(GV, GVI);
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// FindGlobalCtors - Find the llvm.globalctors list, verifying that all
 | |
| /// initializers have an init priority of 65535.
 | |
| GlobalVariable *GlobalOpt::FindGlobalCtors(Module &M) {
 | |
|   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
 | |
|   if (GV == 0) return 0;
 | |
|   
 | |
|   // Found it, verify it's an array of { int, void()* }.
 | |
|   const ArrayType *ATy =dyn_cast<ArrayType>(GV->getType()->getElementType());
 | |
|   if (!ATy) return 0;
 | |
|   const StructType *STy = dyn_cast<StructType>(ATy->getElementType());
 | |
|   if (!STy || STy->getNumElements() != 2 ||
 | |
|       !STy->getElementType(0)->isIntegerTy(32)) return 0;
 | |
|   const PointerType *PFTy = dyn_cast<PointerType>(STy->getElementType(1));
 | |
|   if (!PFTy) return 0;
 | |
|   const FunctionType *FTy = dyn_cast<FunctionType>(PFTy->getElementType());
 | |
|   if (!FTy || !FTy->getReturnType()->isVoidTy() ||
 | |
|       FTy->isVarArg() || FTy->getNumParams() != 0)
 | |
|     return 0;
 | |
| 
 | |
|   // Verify that the initializer is simple enough for us to handle. We are
 | |
|   // only allowed to optimize the initializer if it is unique.
 | |
|   if (!GV->hasUniqueInitializer()) return 0;
 | |
|   
 | |
|   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
 | |
|   if (!CA) return 0;
 | |
|   
 | |
|   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
 | |
|     ConstantStruct *CS = dyn_cast<ConstantStruct>(*i);
 | |
|     if (CS == 0) return 0;
 | |
|     
 | |
|     if (isa<ConstantPointerNull>(CS->getOperand(1)))
 | |
|       continue;
 | |
| 
 | |
|     // Must have a function or null ptr.
 | |
|     if (!isa<Function>(CS->getOperand(1)))
 | |
|       return 0;
 | |
| 
 | |
|     // Init priority must be standard.
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(CS->getOperand(0));
 | |
|     if (!CI || CI->getZExtValue() != 65535)
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   return GV;
 | |
| }
 | |
| 
 | |
| /// ParseGlobalCtors - Given a llvm.global_ctors list that we can understand,
 | |
| /// return a list of the functions and null terminator as a vector.
 | |
| static std::vector<Function*> ParseGlobalCtors(GlobalVariable *GV) {
 | |
|   ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
 | |
|   std::vector<Function*> Result;
 | |
|   Result.reserve(CA->getNumOperands());
 | |
|   for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i) {
 | |
|     ConstantStruct *CS = cast<ConstantStruct>(*i);
 | |
|     Result.push_back(dyn_cast<Function>(CS->getOperand(1)));
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// InstallGlobalCtors - Given a specified llvm.global_ctors list, install the
 | |
| /// specified array, returning the new global to use.
 | |
| static GlobalVariable *InstallGlobalCtors(GlobalVariable *GCL,
 | |
|                                           const std::vector<Function*> &Ctors) {
 | |
|   // If we made a change, reassemble the initializer list.
 | |
|   std::vector<Constant*> CSVals;
 | |
|   CSVals.push_back(ConstantInt::get(Type::getInt32Ty(GCL->getContext()),65535));
 | |
|   CSVals.push_back(0);
 | |
| 
 | |
|   // Create the new init list.
 | |
|   std::vector<Constant*> CAList;
 | |
|   for (unsigned i = 0, e = Ctors.size(); i != e; ++i) {
 | |
|     if (Ctors[i]) {
 | |
|       CSVals[1] = Ctors[i];
 | |
|     } else {
 | |
|       const Type *FTy = FunctionType::get(Type::getVoidTy(GCL->getContext()),
 | |
|                                           false);
 | |
|       const PointerType *PFTy = PointerType::getUnqual(FTy);
 | |
|       CSVals[1] = Constant::getNullValue(PFTy);
 | |
|       CSVals[0] = ConstantInt::get(Type::getInt32Ty(GCL->getContext()),
 | |
|                                    2147483647);
 | |
|     }
 | |
|     CAList.push_back(ConstantStruct::get(GCL->getContext(), CSVals, false));
 | |
|   }
 | |
| 
 | |
|   // Create the array initializer.
 | |
|   const Type *StructTy =
 | |
|       cast<ArrayType>(GCL->getType()->getElementType())->getElementType();
 | |
|   Constant *CA = ConstantArray::get(ArrayType::get(StructTy,
 | |
|                                                    CAList.size()), CAList);
 | |
| 
 | |
|   // If we didn't change the number of elements, don't create a new GV.
 | |
|   if (CA->getType() == GCL->getInitializer()->getType()) {
 | |
|     GCL->setInitializer(CA);
 | |
|     return GCL;
 | |
|   }
 | |
| 
 | |
|   // Create the new global and insert it next to the existing list.
 | |
|   GlobalVariable *NGV = new GlobalVariable(CA->getType(), GCL->isConstant(),
 | |
|                                            GCL->getLinkage(), CA, "",
 | |
|                                            GCL->isThreadLocal());
 | |
|   GCL->getParent()->getGlobalList().insert(GCL, NGV);
 | |
|   NGV->takeName(GCL);
 | |
| 
 | |
|   // Nuke the old list, replacing any uses with the new one.
 | |
|   if (!GCL->use_empty()) {
 | |
|     Constant *V = NGV;
 | |
|     if (V->getType() != GCL->getType())
 | |
|       V = ConstantExpr::getBitCast(V, GCL->getType());
 | |
|     GCL->replaceAllUsesWith(V);
 | |
|   }
 | |
|   GCL->eraseFromParent();
 | |
| 
 | |
|   if (Ctors.size())
 | |
|     return NGV;
 | |
|   else
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Constant *getVal(DenseMap<Value*, Constant*> &ComputedValues, Value *V) {
 | |
|   if (Constant *CV = dyn_cast<Constant>(V)) return CV;
 | |
|   Constant *R = ComputedValues[V];
 | |
|   assert(R && "Reference to an uncomputed value!");
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| static inline bool 
 | |
| isSimpleEnoughValueToCommit(Constant *C,
 | |
|                             SmallPtrSet<Constant*, 8> &SimpleConstants);
 | |
| 
 | |
| 
 | |
| /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
 | |
| /// handled by the code generator.  We don't want to generate something like:
 | |
| ///   void *X = &X/42;
 | |
| /// because the code generator doesn't have a relocation that can handle that.
 | |
| ///
 | |
| /// This function should be called if C was not found (but just got inserted)
 | |
| /// in SimpleConstants to avoid having to rescan the same constants all the
 | |
| /// time.
 | |
| static bool isSimpleEnoughValueToCommitHelper(Constant *C,
 | |
|                                    SmallPtrSet<Constant*, 8> &SimpleConstants) {
 | |
|   // Simple integer, undef, constant aggregate zero, global addresses, etc are
 | |
|   // all supported.
 | |
|   if (C->getNumOperands() == 0 || isa<BlockAddress>(C) ||
 | |
|       isa<GlobalValue>(C))
 | |
|     return true;
 | |
|   
 | |
|   // Aggregate values are safe if all their elements are.
 | |
|   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
 | |
|       isa<ConstantVector>(C)) {
 | |
|     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
 | |
|       Constant *Op = cast<Constant>(C->getOperand(i));
 | |
|       if (!isSimpleEnoughValueToCommit(Op, SimpleConstants))
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // We don't know exactly what relocations are allowed in constant expressions,
 | |
|   // so we allow &global+constantoffset, which is safe and uniformly supported
 | |
|   // across targets.
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(C);
 | |
|   switch (CE->getOpcode()) {
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|     // These casts are always fine if the casted value is.
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
 | |
|       
 | |
|   // GEP is fine if it is simple + constant offset.
 | |
|   case Instruction::GetElementPtr:
 | |
|     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | |
|       if (!isa<ConstantInt>(CE->getOperand(i)))
 | |
|         return false;
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
 | |
|       
 | |
|   case Instruction::Add:
 | |
|     // We allow simple+cst.
 | |
|     if (!isa<ConstantInt>(CE->getOperand(1)))
 | |
|       return false;
 | |
|     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants);
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static inline bool 
 | |
| isSimpleEnoughValueToCommit(Constant *C,
 | |
|                             SmallPtrSet<Constant*, 8> &SimpleConstants) {
 | |
|   // If we already checked this constant, we win.
 | |
|   if (!SimpleConstants.insert(C)) return true;
 | |
|   // Check the constant.
 | |
|   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
 | |
| /// enough for us to understand.  In particular, if it is a cast of something,
 | |
| /// we punt.  We basically just support direct accesses to globals and GEP's of
 | |
| /// globals.  This should be kept up to date with CommitValueTo.
 | |
| static bool isSimpleEnoughPointerToCommit(Constant *C) {
 | |
|   // Conservatively, avoid aggregate types. This is because we don't
 | |
|   // want to worry about them partially overlapping other stores.
 | |
|   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
 | |
|     return false;
 | |
| 
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
 | |
|     // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
 | |
|     // external globals.
 | |
|     return GV->hasUniqueInitializer();
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
 | |
|     // Handle a constantexpr gep.
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|         isa<GlobalVariable>(CE->getOperand(0)) &&
 | |
|         cast<GEPOperator>(CE)->isInBounds()) {
 | |
|       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
 | |
|       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
 | |
|       // external globals.
 | |
|       if (!GV->hasUniqueInitializer())
 | |
|         return false;
 | |
| 
 | |
|       // The first index must be zero.
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(*llvm::next(CE->op_begin()));
 | |
|       if (!CI || !CI->isZero()) return false;
 | |
| 
 | |
|       // The remaining indices must be compile-time known integers within the
 | |
|       // notional bounds of the corresponding static array types.
 | |
|       if (!CE->isGEPWithNoNotionalOverIndexing())
 | |
|         return false;
 | |
| 
 | |
|       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
 | |
| /// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
 | |
| /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
 | |
| static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
 | |
|                                    ConstantExpr *Addr, unsigned OpNo) {
 | |
|   // Base case of the recursion.
 | |
|   if (OpNo == Addr->getNumOperands()) {
 | |
|     assert(Val->getType() == Init->getType() && "Type mismatch!");
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   std::vector<Constant*> Elts;
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
 | |
| 
 | |
|     // Break up the constant into its elements.
 | |
|     if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
 | |
|       for (User::op_iterator i = CS->op_begin(), e = CS->op_end(); i != e; ++i)
 | |
|         Elts.push_back(cast<Constant>(*i));
 | |
|     } else if (isa<ConstantAggregateZero>(Init)) {
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|         Elts.push_back(Constant::getNullValue(STy->getElementType(i)));
 | |
|     } else if (isa<UndefValue>(Init)) {
 | |
|       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|         Elts.push_back(UndefValue::get(STy->getElementType(i)));
 | |
|     } else {
 | |
|       llvm_unreachable("This code is out of sync with "
 | |
|              " ConstantFoldLoadThroughGEPConstantExpr");
 | |
|     }
 | |
| 
 | |
|     // Replace the element that we are supposed to.
 | |
|     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
 | |
|     unsigned Idx = CU->getZExtValue();
 | |
|     assert(Idx < STy->getNumElements() && "Struct index out of range!");
 | |
|     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
 | |
| 
 | |
|     // Return the modified struct.
 | |
|     return ConstantStruct::get(Init->getContext(), &Elts[0], Elts.size(),
 | |
|                                STy->isPacked());
 | |
|   } else {
 | |
|     ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
 | |
|     const SequentialType *InitTy = cast<SequentialType>(Init->getType());
 | |
| 
 | |
|     uint64_t NumElts;
 | |
|     if (const ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
 | |
|       NumElts = ATy->getNumElements();
 | |
|     else
 | |
|       NumElts = cast<VectorType>(InitTy)->getNumElements();
 | |
| 
 | |
| 
 | |
|     // Break up the array into elements.
 | |
|     if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
 | |
|       for (User::op_iterator i = CA->op_begin(), e = CA->op_end(); i != e; ++i)
 | |
|         Elts.push_back(cast<Constant>(*i));
 | |
|     } else if (ConstantVector *CV = dyn_cast<ConstantVector>(Init)) {
 | |
|       for (User::op_iterator i = CV->op_begin(), e = CV->op_end(); i != e; ++i)
 | |
|         Elts.push_back(cast<Constant>(*i));
 | |
|     } else if (isa<ConstantAggregateZero>(Init)) {
 | |
|       Elts.assign(NumElts, Constant::getNullValue(InitTy->getElementType()));
 | |
|     } else {
 | |
|       assert(isa<UndefValue>(Init) && "This code is out of sync with "
 | |
|              " ConstantFoldLoadThroughGEPConstantExpr");
 | |
|       Elts.assign(NumElts, UndefValue::get(InitTy->getElementType()));
 | |
|     }
 | |
| 
 | |
|     assert(CI->getZExtValue() < NumElts);
 | |
|     Elts[CI->getZExtValue()] =
 | |
|       EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
 | |
| 
 | |
|     if (Init->getType()->isArrayTy())
 | |
|       return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
 | |
|     else
 | |
|       return ConstantVector::get(&Elts[0], Elts.size());
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CommitValueTo - We have decided that Addr (which satisfies the predicate
 | |
| /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
 | |
| static void CommitValueTo(Constant *Val, Constant *Addr) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
 | |
|     assert(GV->hasInitializer());
 | |
|     GV->setInitializer(Val);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   ConstantExpr *CE = cast<ConstantExpr>(Addr);
 | |
|   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
 | |
|   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
 | |
| }
 | |
| 
 | |
| /// ComputeLoadResult - Return the value that would be computed by a load from
 | |
| /// P after the stores reflected by 'memory' have been performed.  If we can't
 | |
| /// decide, return null.
 | |
| static Constant *ComputeLoadResult(Constant *P,
 | |
|                                 const DenseMap<Constant*, Constant*> &Memory) {
 | |
|   // If this memory location has been recently stored, use the stored value: it
 | |
|   // is the most up-to-date.
 | |
|   DenseMap<Constant*, Constant*>::const_iterator I = Memory.find(P);
 | |
|   if (I != Memory.end()) return I->second;
 | |
| 
 | |
|   // Access it.
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
 | |
|     if (GV->hasDefinitiveInitializer())
 | |
|       return GV->getInitializer();
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Handle a constantexpr getelementptr.
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|         isa<GlobalVariable>(CE->getOperand(0))) {
 | |
|       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
 | |
|       if (GV->hasDefinitiveInitializer())
 | |
|         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
 | |
|     }
 | |
| 
 | |
|   return 0;  // don't know how to evaluate.
 | |
| }
 | |
| 
 | |
| /// EvaluateFunction - Evaluate a call to function F, returning true if
 | |
| /// successful, false if we can't evaluate it.  ActualArgs contains the formal
 | |
| /// arguments for the function.
 | |
| static bool EvaluateFunction(Function *F, Constant *&RetVal,
 | |
|                              const SmallVectorImpl<Constant*> &ActualArgs,
 | |
|                              std::vector<Function*> &CallStack,
 | |
|                              DenseMap<Constant*, Constant*> &MutatedMemory,
 | |
|                              std::vector<GlobalVariable*> &AllocaTmps,
 | |
|                              SmallPtrSet<Constant*, 8> &SimpleConstants,
 | |
|                              const TargetData *TD) {
 | |
|   // Check to see if this function is already executing (recursion).  If so,
 | |
|   // bail out.  TODO: we might want to accept limited recursion.
 | |
|   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
 | |
|     return false;
 | |
| 
 | |
|   CallStack.push_back(F);
 | |
| 
 | |
|   /// Values - As we compute SSA register values, we store their contents here.
 | |
|   DenseMap<Value*, Constant*> Values;
 | |
| 
 | |
|   // Initialize arguments to the incoming values specified.
 | |
|   unsigned ArgNo = 0;
 | |
|   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
 | |
|        ++AI, ++ArgNo)
 | |
|     Values[AI] = ActualArgs[ArgNo];
 | |
| 
 | |
|   /// ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
 | |
|   /// we can only evaluate any one basic block at most once.  This set keeps
 | |
|   /// track of what we have executed so we can detect recursive cases etc.
 | |
|   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
 | |
| 
 | |
|   // CurInst - The current instruction we're evaluating.
 | |
|   BasicBlock::iterator CurInst = F->begin()->begin();
 | |
| 
 | |
|   // This is the main evaluation loop.
 | |
|   while (1) {
 | |
|     Constant *InstResult = 0;
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
 | |
|       if (SI->isVolatile()) return false;  // no volatile accesses.
 | |
|       Constant *Ptr = getVal(Values, SI->getOperand(1));
 | |
|       if (!isSimpleEnoughPointerToCommit(Ptr))
 | |
|         // If this is too complex for us to commit, reject it.
 | |
|         return false;
 | |
|       
 | |
|       Constant *Val = getVal(Values, SI->getOperand(0));
 | |
| 
 | |
|       // If this might be too difficult for the backend to handle (e.g. the addr
 | |
|       // of one global variable divided by another) then we can't commit it.
 | |
|       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants))
 | |
|         return false;
 | |
|       MutatedMemory[Ptr] = Val;
 | |
|     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
 | |
|       InstResult = ConstantExpr::get(BO->getOpcode(),
 | |
|                                      getVal(Values, BO->getOperand(0)),
 | |
|                                      getVal(Values, BO->getOperand(1)));
 | |
|     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
 | |
|                                             getVal(Values, CI->getOperand(0)),
 | |
|                                             getVal(Values, CI->getOperand(1)));
 | |
|     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getCast(CI->getOpcode(),
 | |
|                                          getVal(Values, CI->getOperand(0)),
 | |
|                                          CI->getType());
 | |
|     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
 | |
|       InstResult = ConstantExpr::getSelect(getVal(Values, SI->getOperand(0)),
 | |
|                                            getVal(Values, SI->getOperand(1)),
 | |
|                                            getVal(Values, SI->getOperand(2)));
 | |
|     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
 | |
|       Constant *P = getVal(Values, GEP->getOperand(0));
 | |
|       SmallVector<Constant*, 8> GEPOps;
 | |
|       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
 | |
|            i != e; ++i)
 | |
|         GEPOps.push_back(getVal(Values, *i));
 | |
|       InstResult = cast<GEPOperator>(GEP)->isInBounds() ?
 | |
|           ConstantExpr::getInBoundsGetElementPtr(P, &GEPOps[0], GEPOps.size()) :
 | |
|           ConstantExpr::getGetElementPtr(P, &GEPOps[0], GEPOps.size());
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
 | |
|       if (LI->isVolatile()) return false;  // no volatile accesses.
 | |
|       InstResult = ComputeLoadResult(getVal(Values, LI->getOperand(0)),
 | |
|                                      MutatedMemory);
 | |
|       if (InstResult == 0) return false; // Could not evaluate load.
 | |
|     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
 | |
|       if (AI->isArrayAllocation()) return false;  // Cannot handle array allocs.
 | |
|       const Type *Ty = AI->getType()->getElementType();
 | |
|       AllocaTmps.push_back(new GlobalVariable(Ty, false,
 | |
|                                               GlobalValue::InternalLinkage,
 | |
|                                               UndefValue::get(Ty),
 | |
|                                               AI->getName()));
 | |
|       InstResult = AllocaTmps.back();
 | |
|     } else if (CallInst *CI = dyn_cast<CallInst>(CurInst)) {
 | |
| 
 | |
|       // Debug info can safely be ignored here.
 | |
|       if (isa<DbgInfoIntrinsic>(CI)) {
 | |
|         ++CurInst;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Cannot handle inline asm.
 | |
|       if (isa<InlineAsm>(CI->getCalledValue())) return false;
 | |
| 
 | |
|       // Resolve function pointers.
 | |
|       Function *Callee = dyn_cast<Function>(getVal(Values,
 | |
|                                                    CI->getCalledValue()));
 | |
|       if (!Callee) return false;  // Cannot resolve.
 | |
| 
 | |
|       SmallVector<Constant*, 8> Formals;
 | |
|       CallSite CS(CI);
 | |
|       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end();
 | |
|            i != e; ++i)
 | |
|         Formals.push_back(getVal(Values, *i));
 | |
| 
 | |
|       if (Callee->isDeclaration()) {
 | |
|         // If this is a function we can constant fold, do it.
 | |
|         if (Constant *C = ConstantFoldCall(Callee, Formals.data(),
 | |
|                                            Formals.size())) {
 | |
|           InstResult = C;
 | |
|         } else {
 | |
|           return false;
 | |
|         }
 | |
|       } else {
 | |
|         if (Callee->getFunctionType()->isVarArg())
 | |
|           return false;
 | |
| 
 | |
|         Constant *RetVal;
 | |
|         // Execute the call, if successful, use the return value.
 | |
|         if (!EvaluateFunction(Callee, RetVal, Formals, CallStack,
 | |
|                               MutatedMemory, AllocaTmps, SimpleConstants, TD))
 | |
|           return false;
 | |
|         InstResult = RetVal;
 | |
|       }
 | |
|     } else if (isa<TerminatorInst>(CurInst)) {
 | |
|       BasicBlock *NewBB = 0;
 | |
|       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
 | |
|         if (BI->isUnconditional()) {
 | |
|           NewBB = BI->getSuccessor(0);
 | |
|         } else {
 | |
|           ConstantInt *Cond =
 | |
|             dyn_cast<ConstantInt>(getVal(Values, BI->getCondition()));
 | |
|           if (!Cond) return false;  // Cannot determine.
 | |
| 
 | |
|           NewBB = BI->getSuccessor(!Cond->getZExtValue());
 | |
|         }
 | |
|       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
 | |
|         ConstantInt *Val =
 | |
|           dyn_cast<ConstantInt>(getVal(Values, SI->getCondition()));
 | |
|         if (!Val) return false;  // Cannot determine.
 | |
|         NewBB = SI->getSuccessor(SI->findCaseValue(Val));
 | |
|       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
 | |
|         Value *Val = getVal(Values, IBI->getAddress())->stripPointerCasts();
 | |
|         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
 | |
|           NewBB = BA->getBasicBlock();
 | |
|         else
 | |
|           return false;  // Cannot determine.
 | |
|       } else if (ReturnInst *RI = dyn_cast<ReturnInst>(CurInst)) {
 | |
|         if (RI->getNumOperands())
 | |
|           RetVal = getVal(Values, RI->getOperand(0));
 | |
| 
 | |
|         CallStack.pop_back();  // return from fn.
 | |
|         return true;  // We succeeded at evaluating this ctor!
 | |
|       } else {
 | |
|         // invoke, unwind, unreachable.
 | |
|         return false;  // Cannot handle this terminator.
 | |
|       }
 | |
| 
 | |
|       // Okay, we succeeded in evaluating this control flow.  See if we have
 | |
|       // executed the new block before.  If so, we have a looping function,
 | |
|       // which we cannot evaluate in reasonable time.
 | |
|       if (!ExecutedBlocks.insert(NewBB))
 | |
|         return false;  // looped!
 | |
| 
 | |
|       // Okay, we have never been in this block before.  Check to see if there
 | |
|       // are any PHI nodes.  If so, evaluate them with information about where
 | |
|       // we came from.
 | |
|       BasicBlock *OldBB = CurInst->getParent();
 | |
|       CurInst = NewBB->begin();
 | |
|       PHINode *PN;
 | |
|       for (; (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
 | |
|         Values[PN] = getVal(Values, PN->getIncomingValueForBlock(OldBB));
 | |
| 
 | |
|       // Do NOT increment CurInst.  We know that the terminator had no value.
 | |
|       continue;
 | |
|     } else {
 | |
|       // Did not know how to evaluate this!
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!CurInst->use_empty()) {
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
 | |
|         InstResult = ConstantFoldConstantExpression(CE, TD);
 | |
|       
 | |
|       Values[CurInst] = InstResult;
 | |
|     }
 | |
| 
 | |
|     // Advance program counter.
 | |
|     ++CurInst;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
 | |
| /// we can.  Return true if we can, false otherwise.
 | |
| static bool EvaluateStaticConstructor(Function *F, const TargetData *TD) {
 | |
|   /// MutatedMemory - For each store we execute, we update this map.  Loads
 | |
|   /// check this to get the most up-to-date value.  If evaluation is successful,
 | |
|   /// this state is committed to the process.
 | |
|   DenseMap<Constant*, Constant*> MutatedMemory;
 | |
| 
 | |
|   /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
 | |
|   /// to represent its body.  This vector is needed so we can delete the
 | |
|   /// temporary globals when we are done.
 | |
|   std::vector<GlobalVariable*> AllocaTmps;
 | |
| 
 | |
|   /// CallStack - This is used to detect recursion.  In pathological situations
 | |
|   /// we could hit exponential behavior, but at least there is nothing
 | |
|   /// unbounded.
 | |
|   std::vector<Function*> CallStack;
 | |
| 
 | |
|   /// SimpleConstants - These are constants we have checked and know to be
 | |
|   /// simple enough to live in a static initializer of a global.
 | |
|   SmallPtrSet<Constant*, 8> SimpleConstants;
 | |
|   
 | |
|   // Call the function.
 | |
|   Constant *RetValDummy;
 | |
|   bool EvalSuccess = EvaluateFunction(F, RetValDummy,
 | |
|                                       SmallVector<Constant*, 0>(), CallStack,
 | |
|                                       MutatedMemory, AllocaTmps,
 | |
|                                       SimpleConstants, TD);
 | |
|   
 | |
|   if (EvalSuccess) {
 | |
|     // We succeeded at evaluation: commit the result.
 | |
|     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
 | |
|           << F->getName() << "' to " << MutatedMemory.size()
 | |
|           << " stores.\n");
 | |
|     for (DenseMap<Constant*, Constant*>::iterator I = MutatedMemory.begin(),
 | |
|          E = MutatedMemory.end(); I != E; ++I)
 | |
|       CommitValueTo(I->second, I->first);
 | |
|   }
 | |
| 
 | |
|   // At this point, we are done interpreting.  If we created any 'alloca'
 | |
|   // temporaries, release them now.
 | |
|   while (!AllocaTmps.empty()) {
 | |
|     GlobalVariable *Tmp = AllocaTmps.back();
 | |
|     AllocaTmps.pop_back();
 | |
| 
 | |
|     // If there are still users of the alloca, the program is doing something
 | |
|     // silly, e.g. storing the address of the alloca somewhere and using it
 | |
|     // later.  Since this is undefined, we'll just make it be null.
 | |
|     if (!Tmp->use_empty())
 | |
|       Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
 | |
|     delete Tmp;
 | |
|   }
 | |
| 
 | |
|   return EvalSuccess;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// OptimizeGlobalCtorsList - Simplify and evaluation global ctors if possible.
 | |
| /// Return true if anything changed.
 | |
| bool GlobalOpt::OptimizeGlobalCtorsList(GlobalVariable *&GCL) {
 | |
|   std::vector<Function*> Ctors = ParseGlobalCtors(GCL);
 | |
|   bool MadeChange = false;
 | |
|   if (Ctors.empty()) return false;
 | |
| 
 | |
|   const TargetData *TD = getAnalysisIfAvailable<TargetData>();
 | |
|   // Loop over global ctors, optimizing them when we can.
 | |
|   for (unsigned i = 0; i != Ctors.size(); ++i) {
 | |
|     Function *F = Ctors[i];
 | |
|     // Found a null terminator in the middle of the list, prune off the rest of
 | |
|     // the list.
 | |
|     if (F == 0) {
 | |
|       if (i != Ctors.size()-1) {
 | |
|         Ctors.resize(i+1);
 | |
|         MadeChange = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We cannot simplify external ctor functions.
 | |
|     if (F->empty()) continue;
 | |
| 
 | |
|     // If we can evaluate the ctor at compile time, do.
 | |
|     if (EvaluateStaticConstructor(F, TD)) {
 | |
|       Ctors.erase(Ctors.begin()+i);
 | |
|       MadeChange = true;
 | |
|       --i;
 | |
|       ++NumCtorsEvaluated;
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MadeChange) return false;
 | |
| 
 | |
|   GCL = InstallGlobalCtors(GCL, Ctors);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
 | |
|        I != E;) {
 | |
|     Module::alias_iterator J = I++;
 | |
|     // Aliases without names cannot be referenced outside this module.
 | |
|     if (!J->hasName() && !J->isDeclaration())
 | |
|       J->setLinkage(GlobalValue::InternalLinkage);
 | |
|     // If the aliasee may change at link time, nothing can be done - bail out.
 | |
|     if (J->mayBeOverridden())
 | |
|       continue;
 | |
| 
 | |
|     Constant *Aliasee = J->getAliasee();
 | |
|     GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
 | |
|     Target->removeDeadConstantUsers();
 | |
|     bool hasOneUse = Target->hasOneUse() && Aliasee->hasOneUse();
 | |
| 
 | |
|     // Make all users of the alias use the aliasee instead.
 | |
|     if (!J->use_empty()) {
 | |
|       J->replaceAllUsesWith(Aliasee);
 | |
|       ++NumAliasesResolved;
 | |
|       Changed = true;
 | |
|     }
 | |
| 
 | |
|     // If the alias is externally visible, we may still be able to simplify it.
 | |
|     if (!J->hasLocalLinkage()) {
 | |
|       // If the aliasee has internal linkage, give it the name and linkage
 | |
|       // of the alias, and delete the alias.  This turns:
 | |
|       //   define internal ... @f(...)
 | |
|       //   @a = alias ... @f
 | |
|       // into:
 | |
|       //   define ... @a(...)
 | |
|       if (!Target->hasLocalLinkage())
 | |
|         continue;
 | |
| 
 | |
|       // Do not perform the transform if multiple aliases potentially target the
 | |
|       // aliasee. This check also ensures that it is safe to replace the section
 | |
|       // and other attributes of the aliasee with those of the alias.
 | |
|       if (!hasOneUse)
 | |
|         continue;
 | |
| 
 | |
|       // Give the aliasee the name, linkage and other attributes of the alias.
 | |
|       Target->takeName(J);
 | |
|       Target->setLinkage(J->getLinkage());
 | |
|       Target->GlobalValue::copyAttributesFrom(J);
 | |
|     }
 | |
| 
 | |
|     // Delete the alias.
 | |
|     M.getAliasList().erase(J);
 | |
|     ++NumAliasesRemoved;
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool GlobalOpt::runOnModule(Module &M) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Try to find the llvm.globalctors list.
 | |
|   GlobalVariable *GlobalCtors = FindGlobalCtors(M);
 | |
| 
 | |
|   bool LocalChange = true;
 | |
|   while (LocalChange) {
 | |
|     LocalChange = false;
 | |
| 
 | |
|     // Delete functions that are trivially dead, ccc -> fastcc
 | |
|     LocalChange |= OptimizeFunctions(M);
 | |
| 
 | |
|     // Optimize global_ctors list.
 | |
|     if (GlobalCtors)
 | |
|       LocalChange |= OptimizeGlobalCtorsList(GlobalCtors);
 | |
| 
 | |
|     // Optimize non-address-taken globals.
 | |
|     LocalChange |= OptimizeGlobalVars(M);
 | |
| 
 | |
|     // Resolve aliases, when possible.
 | |
|     LocalChange |= OptimizeGlobalAliases(M);
 | |
|     Changed |= LocalChange;
 | |
|   }
 | |
| 
 | |
|   // TODO: Move all global ctors functions to the end of the module for code
 | |
|   // layout.
 | |
| 
 | |
|   return Changed;
 | |
| }
 |