mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73355 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			835 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			835 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation analyzes and transforms the induction variables (and
 | |
| // computations derived from them) into simpler forms suitable for subsequent
 | |
| // analysis and transformation.
 | |
| //
 | |
| // This transformation makes the following changes to each loop with an
 | |
| // identifiable induction variable:
 | |
| //   1. All loops are transformed to have a SINGLE canonical induction variable
 | |
| //      which starts at zero and steps by one.
 | |
| //   2. The canonical induction variable is guaranteed to be the first PHI node
 | |
| //      in the loop header block.
 | |
| //   3. The canonical induction variable is guaranteed to be in a wide enough
 | |
| //      type so that IV expressions need not be (directly) zero-extended or
 | |
| //      sign-extended.
 | |
| //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
 | |
| //
 | |
| // If the trip count of a loop is computable, this pass also makes the following
 | |
| // changes:
 | |
| //   1. The exit condition for the loop is canonicalized to compare the
 | |
| //      induction value against the exit value.  This turns loops like:
 | |
| //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | |
| //   2. Any use outside of the loop of an expression derived from the indvar
 | |
| //      is changed to compute the derived value outside of the loop, eliminating
 | |
| //      the dependence on the exit value of the induction variable.  If the only
 | |
| //      purpose of the loop is to compute the exit value of some derived
 | |
| //      expression, this transformation will make the loop dead.
 | |
| //
 | |
| // This transformation should be followed by strength reduction after all of the
 | |
| // desired loop transformations have been performed.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "indvars"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/IVUsers.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumRemoved , "Number of aux indvars removed");
 | |
| STATISTIC(NumInserted, "Number of canonical indvars added");
 | |
| STATISTIC(NumReplaced, "Number of exit values replaced");
 | |
| STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
 | |
| 
 | |
| namespace {
 | |
|   class VISIBILITY_HIDDEN IndVarSimplify : public LoopPass {
 | |
|     IVUsers         *IU;
 | |
|     LoopInfo        *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     bool Changed;
 | |
|   public:
 | |
| 
 | |
|    static char ID; // Pass identification, replacement for typeid
 | |
|    IndVarSimplify() : LoopPass(&ID) {}
 | |
| 
 | |
|    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|      AU.addRequired<DominatorTree>();
 | |
|      AU.addRequired<ScalarEvolution>();
 | |
|      AU.addRequiredID(LCSSAID);
 | |
|      AU.addRequiredID(LoopSimplifyID);
 | |
|      AU.addRequired<LoopInfo>();
 | |
|      AU.addRequired<IVUsers>();
 | |
|      AU.addPreserved<ScalarEvolution>();
 | |
|      AU.addPreservedID(LoopSimplifyID);
 | |
|      AU.addPreserved<IVUsers>();
 | |
|      AU.addPreservedID(LCSSAID);
 | |
|      AU.setPreservesCFG();
 | |
|    }
 | |
| 
 | |
|   private:
 | |
| 
 | |
|     void RewriteNonIntegerIVs(Loop *L);
 | |
| 
 | |
|     ICmpInst *LinearFunctionTestReplace(Loop *L, SCEVHandle BackedgeTakenCount,
 | |
|                                    Value *IndVar,
 | |
|                                    BasicBlock *ExitingBlock,
 | |
|                                    BranchInst *BI,
 | |
|                                    SCEVExpander &Rewriter);
 | |
|     void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount);
 | |
| 
 | |
|     void RewriteIVExpressions(Loop *L, const Type *LargestType,
 | |
|                               SCEVExpander &Rewriter);
 | |
| 
 | |
|     void SinkUnusedInvariants(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
|     void FixUsesBeforeDefs(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
|     void HandleFloatingPointIV(Loop *L, PHINode *PH);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char IndVarSimplify::ID = 0;
 | |
| static RegisterPass<IndVarSimplify>
 | |
| X("indvars", "Canonicalize Induction Variables");
 | |
| 
 | |
| Pass *llvm::createIndVarSimplifyPass() {
 | |
|   return new IndVarSimplify();
 | |
| }
 | |
| 
 | |
| /// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | |
| /// loop to be a canonical != comparison against the incremented loop induction
 | |
| /// variable.  This pass is able to rewrite the exit tests of any loop where the
 | |
| /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | |
| /// is actually a much broader range than just linear tests.
 | |
| ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
 | |
|                                    SCEVHandle BackedgeTakenCount,
 | |
|                                    Value *IndVar,
 | |
|                                    BasicBlock *ExitingBlock,
 | |
|                                    BranchInst *BI,
 | |
|                                    SCEVExpander &Rewriter) {
 | |
|   // If the exiting block is not the same as the backedge block, we must compare
 | |
|   // against the preincremented value, otherwise we prefer to compare against
 | |
|   // the post-incremented value.
 | |
|   Value *CmpIndVar;
 | |
|   SCEVHandle RHS = BackedgeTakenCount;
 | |
|   if (ExitingBlock == L->getLoopLatch()) {
 | |
|     // Add one to the "backedge-taken" count to get the trip count.
 | |
|     // If this addition may overflow, we have to be more pessimistic and
 | |
|     // cast the induction variable before doing the add.
 | |
|     SCEVHandle Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
 | |
|     SCEVHandle N =
 | |
|       SE->getAddExpr(BackedgeTakenCount,
 | |
|                      SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
 | |
|     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
 | |
|         SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
 | |
|       // No overflow. Cast the sum.
 | |
|       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
 | |
|     } else {
 | |
|       // Potential overflow. Cast before doing the add.
 | |
|       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | |
|                                         IndVar->getType());
 | |
|       RHS = SE->getAddExpr(RHS,
 | |
|                            SE->getIntegerSCEV(1, IndVar->getType()));
 | |
|     }
 | |
| 
 | |
|     // The BackedgeTaken expression contains the number of times that the
 | |
|     // backedge branches to the loop header.  This is one less than the
 | |
|     // number of times the loop executes, so use the incremented indvar.
 | |
|     CmpIndVar = L->getCanonicalInductionVariableIncrement();
 | |
|   } else {
 | |
|     // We have to use the preincremented value...
 | |
|     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
 | |
|                                       IndVar->getType());
 | |
|     CmpIndVar = IndVar;
 | |
|   }
 | |
| 
 | |
|   // Expand the code for the iteration count into the preheader of the loop.
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(),
 | |
|                                           Preheader->getTerminator());
 | |
| 
 | |
|   // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | |
|   ICmpInst::Predicate Opcode;
 | |
|   if (L->contains(BI->getSuccessor(0)))
 | |
|     Opcode = ICmpInst::ICMP_NE;
 | |
|   else
 | |
|     Opcode = ICmpInst::ICMP_EQ;
 | |
| 
 | |
|   DOUT << "INDVARS: Rewriting loop exit condition to:\n"
 | |
|        << "      LHS:" << *CmpIndVar // includes a newline
 | |
|        << "       op:\t"
 | |
|        << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
 | |
|        << "      RHS:\t" << *RHS << "\n";
 | |
| 
 | |
|   ICmpInst *Cond = new ICmpInst(Opcode, CmpIndVar, ExitCnt, "exitcond", BI);
 | |
| 
 | |
|   Instruction *OrigCond = cast<Instruction>(BI->getCondition());
 | |
|   // It's tempting to use replaceAllUsesWith here to fully replace the old
 | |
|   // comparison, but that's not immediately safe, since users of the old
 | |
|   // comparison may not be dominated by the new comparison. Instead, just
 | |
|   // update the branch to use the new comparison; in the common case this
 | |
|   // will make old comparison dead.
 | |
|   BI->setCondition(Cond);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
 | |
| 
 | |
|   ++NumLFTR;
 | |
|   Changed = true;
 | |
|   return Cond;
 | |
| }
 | |
| 
 | |
| /// RewriteLoopExitValues - Check to see if this loop has a computable
 | |
| /// loop-invariant execution count.  If so, this means that we can compute the
 | |
| /// final value of any expressions that are recurrent in the loop, and
 | |
| /// substitute the exit values from the loop into any instructions outside of
 | |
| /// the loop that use the final values of the current expressions.
 | |
| ///
 | |
| /// This is mostly redundant with the regular IndVarSimplify activities that
 | |
| /// happen later, except that it's more powerful in some cases, because it's
 | |
| /// able to brute-force evaluate arbitrary instructions as long as they have
 | |
| /// constant operands at the beginning of the loop.
 | |
| void IndVarSimplify::RewriteLoopExitValues(Loop *L,
 | |
|                                            const SCEV *BackedgeTakenCount) {
 | |
|   // Verify the input to the pass in already in LCSSA form.
 | |
|   assert(L->isLCSSAForm());
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
| 
 | |
|   // Scan all of the instructions in the loop, looking at those that have
 | |
|   // extra-loop users and which are recurrences.
 | |
|   SCEVExpander Rewriter(*SE);
 | |
| 
 | |
|   // We insert the code into the preheader of the loop if the loop contains
 | |
|   // multiple exit blocks, or in the exit block if there is exactly one.
 | |
|   BasicBlock *BlockToInsertInto;
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
|   if (ExitBlocks.size() == 1)
 | |
|     BlockToInsertInto = ExitBlocks[0];
 | |
|   else
 | |
|     BlockToInsertInto = Preheader;
 | |
|   BasicBlock::iterator InsertPt = BlockToInsertInto->getFirstNonPHI();
 | |
| 
 | |
|   std::map<Instruction*, Value*> ExitValues;
 | |
| 
 | |
|   // Find all values that are computed inside the loop, but used outside of it.
 | |
|   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | |
|   // the exit blocks of the loop to find them.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBB = ExitBlocks[i];
 | |
| 
 | |
|     // If there are no PHI nodes in this exit block, then no values defined
 | |
|     // inside the loop are used on this path, skip it.
 | |
|     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | |
|     if (!PN) continue;
 | |
| 
 | |
|     unsigned NumPreds = PN->getNumIncomingValues();
 | |
| 
 | |
|     // Iterate over all of the PHI nodes.
 | |
|     BasicBlock::iterator BBI = ExitBB->begin();
 | |
|     while ((PN = dyn_cast<PHINode>(BBI++))) {
 | |
|       if (PN->use_empty())
 | |
|         continue; // dead use, don't replace it
 | |
|       // Iterate over all of the values in all the PHI nodes.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         // If the value being merged in is not integer or is not defined
 | |
|         // in the loop, skip it.
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         if (!isa<Instruction>(InVal) ||
 | |
|             // SCEV only supports integer expressions for now.
 | |
|             (!isa<IntegerType>(InVal->getType()) &&
 | |
|              !isa<PointerType>(InVal->getType())))
 | |
|           continue;
 | |
| 
 | |
|         // If this pred is for a subloop, not L itself, skip it.
 | |
|         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | |
|           continue; // The Block is in a subloop, skip it.
 | |
| 
 | |
|         // Check that InVal is defined in the loop.
 | |
|         Instruction *Inst = cast<Instruction>(InVal);
 | |
|         if (!L->contains(Inst->getParent()))
 | |
|           continue;
 | |
| 
 | |
|         // Okay, this instruction has a user outside of the current loop
 | |
|         // and varies predictably *inside* the loop.  Evaluate the value it
 | |
|         // contains when the loop exits, if possible.
 | |
|         SCEVHandle ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | |
|         if (!ExitValue->isLoopInvariant(L))
 | |
|           continue;
 | |
| 
 | |
|         Changed = true;
 | |
|         ++NumReplaced;
 | |
| 
 | |
|         // See if we already computed the exit value for the instruction, if so,
 | |
|         // just reuse it.
 | |
|         Value *&ExitVal = ExitValues[Inst];
 | |
|         if (!ExitVal)
 | |
|           ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), InsertPt);
 | |
| 
 | |
|         DOUT << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
 | |
|              << "  LoopVal = " << *Inst << "\n";
 | |
| 
 | |
|         PN->setIncomingValue(i, ExitVal);
 | |
| 
 | |
|         // If this instruction is dead now, delete it.
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| 
 | |
|         // See if this is a single-entry LCSSA PHI node.  If so, we can (and
 | |
|         // have to) remove
 | |
|         // the PHI entirely.  This is safe, because the NewVal won't be variant
 | |
|         // in the loop, so we don't need an LCSSA phi node anymore.
 | |
|         if (NumPreds == 1) {
 | |
|           PN->replaceAllUsesWith(ExitVal);
 | |
|           RecursivelyDeleteTriviallyDeadInstructions(PN);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
 | |
|   // First step.  Check to see if there are any floating-point recurrences.
 | |
|   // If there are, change them into integer recurrences, permitting analysis by
 | |
|   // the SCEV routines.
 | |
|   //
 | |
|   BasicBlock *Header    = L->getHeader();
 | |
| 
 | |
|   SmallVector<WeakVH, 8> PHIs;
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PHIs.push_back(PN);
 | |
| 
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
 | |
|       HandleFloatingPointIV(L, PN);
 | |
| 
 | |
|   // If the loop previously had floating-point IV, ScalarEvolution
 | |
|   // may not have been able to compute a trip count. Now that we've done some
 | |
|   // re-writing, the trip count may be computable.
 | |
|   if (Changed)
 | |
|     SE->forgetLoopBackedgeTakenCount(L);
 | |
| }
 | |
| 
 | |
| bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   IU = &getAnalysis<IVUsers>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   Changed = false;
 | |
| 
 | |
|   // If there are any floating-point recurrences, attempt to
 | |
|   // transform them to use integer recurrences.
 | |
|   RewriteNonIntegerIVs(L);
 | |
| 
 | |
|   BasicBlock *Header       = L->getHeader();
 | |
|   BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
 | |
|   SCEVHandle BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
| 
 | |
|   // Check to see if this loop has a computable loop-invariant execution count.
 | |
|   // If so, this means that we can compute the final value of any expressions
 | |
|   // that are recurrent in the loop, and substitute the exit values from the
 | |
|   // loop into any instructions outside of the loop that use the final values of
 | |
|   // the current expressions.
 | |
|   //
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     RewriteLoopExitValues(L, BackedgeTakenCount);
 | |
| 
 | |
|   // Compute the type of the largest recurrence expression, and decide whether
 | |
|   // a canonical induction variable should be inserted.
 | |
|   const Type *LargestType = 0;
 | |
|   bool NeedCannIV = false;
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
 | |
|     LargestType = BackedgeTakenCount->getType();
 | |
|     LargestType = SE->getEffectiveSCEVType(LargestType);
 | |
|     // If we have a known trip count and a single exit block, we'll be
 | |
|     // rewriting the loop exit test condition below, which requires a
 | |
|     // canonical induction variable.
 | |
|     if (ExitingBlock)
 | |
|       NeedCannIV = true;
 | |
|   }
 | |
|   for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | |
|     SCEVHandle Stride = IU->StrideOrder[i];
 | |
|     const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
 | |
|     if (!LargestType ||
 | |
|         SE->getTypeSizeInBits(Ty) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|       LargestType = Ty;
 | |
| 
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|       IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | |
|     assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
| 
 | |
|     if (!SI->second->Users.empty())
 | |
|       NeedCannIV = true;
 | |
|   }
 | |
| 
 | |
|   // Create a rewriter object which we'll use to transform the code with.
 | |
|   SCEVExpander Rewriter(*SE);
 | |
| 
 | |
|   // Now that we know the largest of of the induction variable expressions
 | |
|   // in this loop, insert a canonical induction variable of the largest size.
 | |
|   Value *IndVar = 0;
 | |
|   if (NeedCannIV) {
 | |
|     // Check to see if the loop already has a canonical-looking induction
 | |
|     // variable. If one is present and it's wider than the planned canonical
 | |
|     // induction variable, temporarily remove it, so that the Rewriter
 | |
|     // doesn't attempt to reuse it.
 | |
|     PHINode *OldCannIV = L->getCanonicalInductionVariable();
 | |
|     if (OldCannIV) {
 | |
|       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|         OldCannIV->removeFromParent();
 | |
|       else
 | |
|         OldCannIV = 0;
 | |
|     }
 | |
| 
 | |
|     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
 | |
| 
 | |
|     ++NumInserted;
 | |
|     Changed = true;
 | |
|     DOUT << "INDVARS: New CanIV: " << *IndVar;
 | |
| 
 | |
|     // Now that the official induction variable is established, reinsert
 | |
|     // the old canonical-looking variable after it so that the IR remains
 | |
|     // consistent. It will be deleted as part of the dead-PHI deletion at
 | |
|     // the end of the pass.
 | |
|     if (OldCannIV)
 | |
|       OldCannIV->insertAfter(cast<Instruction>(IndVar));
 | |
|   }
 | |
| 
 | |
|   // If we have a trip count expression, rewrite the loop's exit condition
 | |
|   // using it.  We can currently only handle loops with a single exit.
 | |
|   ICmpInst *NewICmp = 0;
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
 | |
|     assert(NeedCannIV &&
 | |
|            "LinearFunctionTestReplace requires a canonical induction variable");
 | |
|     // Can't rewrite non-branch yet.
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
 | |
|       NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
 | |
|                                           ExitingBlock, BI, Rewriter);
 | |
|   }
 | |
| 
 | |
|   Rewriter.setInsertionPoint(Header->getFirstNonPHI());
 | |
| 
 | |
|   // Rewrite IV-derived expressions. Clears the rewriter cache.
 | |
|   RewriteIVExpressions(L, LargestType, Rewriter);
 | |
| 
 | |
|   // The Rewriter may only be used for isInsertedInstruction queries from this
 | |
|   // point on.
 | |
| 
 | |
|   // Loop-invariant instructions in the preheader that aren't used in the
 | |
|   // loop may be sunk below the loop to reduce register pressure.
 | |
|   SinkUnusedInvariants(L, Rewriter);
 | |
| 
 | |
|   // Reorder instructions to avoid use-before-def conditions.
 | |
|   FixUsesBeforeDefs(L, Rewriter);
 | |
| 
 | |
|   // For completeness, inform IVUsers of the IV use in the newly-created
 | |
|   // loop exit test instruction.
 | |
|   if (NewICmp)
 | |
|     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
 | |
| 
 | |
|   // Clean up dead instructions.
 | |
|   DeleteDeadPHIs(L->getHeader());
 | |
|   // Check a post-condition.
 | |
|   assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
 | |
|                                           SCEVExpander &Rewriter) {
 | |
|   SmallVector<WeakVH, 16> DeadInsts;
 | |
| 
 | |
|   // Rewrite all induction variable expressions in terms of the canonical
 | |
|   // induction variable.
 | |
|   //
 | |
|   // If there were induction variables of other sizes or offsets, manually
 | |
|   // add the offsets to the primary induction variable and cast, avoiding
 | |
|   // the need for the code evaluation methods to insert induction variables
 | |
|   // of different sizes.
 | |
|   for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
 | |
|     SCEVHandle Stride = IU->StrideOrder[i];
 | |
| 
 | |
|     std::map<SCEVHandle, IVUsersOfOneStride *>::iterator SI =
 | |
|       IU->IVUsesByStride.find(IU->StrideOrder[i]);
 | |
|     assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
 | |
|     ilist<IVStrideUse> &List = SI->second->Users;
 | |
|     for (ilist<IVStrideUse>::iterator UI = List.begin(),
 | |
|          E = List.end(); UI != E; ++UI) {
 | |
|       SCEVHandle Offset = UI->getOffset();
 | |
|       Value *Op = UI->getOperandValToReplace();
 | |
|       const Type *UseTy = Op->getType();
 | |
|       Instruction *User = UI->getUser();
 | |
| 
 | |
|       // Compute the final addrec to expand into code.
 | |
|       SCEVHandle AR = IU->getReplacementExpr(*UI);
 | |
| 
 | |
|       Value *NewVal = 0;
 | |
|       if (AR->isLoopInvariant(L)) {
 | |
|         BasicBlock::iterator I = Rewriter.getInsertionPoint();
 | |
|         // Expand loop-invariant values in the loop preheader. They will
 | |
|         // be sunk to the exit block later, if possible.
 | |
|         NewVal =
 | |
|           Rewriter.expandCodeFor(AR, UseTy,
 | |
|                                  L->getLoopPreheader()->getTerminator());
 | |
|         Rewriter.setInsertionPoint(I);
 | |
|         ++NumReplaced;
 | |
|       } else {
 | |
|         // FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
|         // complex than affine induction variables.  Doing so will put expensive
 | |
|         // polynomial evaluations inside of the loop, and the str reduction pass
 | |
|         // currently can only reduce affine polynomials.  For now just disable
 | |
|         // indvar subst on anything more complex than an affine addrec, unless
 | |
|         // it can be expanded to a trivial value.
 | |
|         if (!Stride->isLoopInvariant(L))
 | |
|           continue;
 | |
| 
 | |
|         // Now expand it into actual Instructions and patch it into place.
 | |
|         NewVal = Rewriter.expandCodeFor(AR, UseTy);
 | |
|       }
 | |
| 
 | |
|       // Patch the new value into place.
 | |
|       if (Op->hasName())
 | |
|         NewVal->takeName(Op);
 | |
|       User->replaceUsesOfWith(Op, NewVal);
 | |
|       UI->setOperandValToReplace(NewVal);
 | |
|       DOUT << "INDVARS: Rewrote IV '" << *AR << "' " << *Op
 | |
|            << "   into = " << *NewVal << "\n";
 | |
|       ++NumRemoved;
 | |
|       Changed = true;
 | |
| 
 | |
|       // The old value may be dead now.
 | |
|       DeadInsts.push_back(Op);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Clear the rewriter cache, because values that are in the rewriter's cache
 | |
|   // can be deleted in the loop below, causing the AssertingVH in the cache to
 | |
|   // trigger.
 | |
|   Rewriter.clear();
 | |
|   // Now that we're done iterating through lists, clean up any instructions
 | |
|   // which are now dead.
 | |
|   while (!DeadInsts.empty()) {
 | |
|     Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
 | |
|     if (Inst)
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If there's a single exit block, sink any loop-invariant values that
 | |
| /// were defined in the preheader but not used inside the loop into the
 | |
| /// exit block to reduce register pressure in the loop.
 | |
| void IndVarSimplify::SinkUnusedInvariants(Loop *L, SCEVExpander &Rewriter) {
 | |
|   BasicBlock *ExitBlock = L->getExitBlock();
 | |
|   if (!ExitBlock) return;
 | |
| 
 | |
|   Instruction *NonPHI = ExitBlock->getFirstNonPHI();
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   BasicBlock::iterator I = Preheader->getTerminator();
 | |
|   while (I != Preheader->begin()) {
 | |
|     --I;
 | |
|     // New instructions were inserted at the end of the preheader. Only
 | |
|     // consider those new instructions.
 | |
|     if (!Rewriter.isInsertedInstruction(I))
 | |
|       break;
 | |
|     // Determine if there is a use in or before the loop (direct or
 | |
|     // otherwise).
 | |
|     bool UsedInLoop = false;
 | |
|     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
 | |
|       if (PHINode *P = dyn_cast<PHINode>(UI)) {
 | |
|         unsigned i =
 | |
|           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
 | |
|         UseBB = P->getIncomingBlock(i);
 | |
|       }
 | |
|       if (UseBB == Preheader || L->contains(UseBB)) {
 | |
|         UsedInLoop = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // If there is, the def must remain in the preheader.
 | |
|     if (UsedInLoop)
 | |
|       continue;
 | |
|     // Otherwise, sink it to the exit block.
 | |
|     Instruction *ToMove = I;
 | |
|     bool Done = false;
 | |
|     if (I != Preheader->begin())
 | |
|       --I;
 | |
|     else
 | |
|       Done = true;
 | |
|     ToMove->moveBefore(NonPHI);
 | |
|     if (Done)
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Re-schedule the inserted instructions to put defs before uses. This
 | |
| /// fixes problems that arrise when SCEV expressions contain loop-variant
 | |
| /// values unrelated to the induction variable which are defined inside the
 | |
| /// loop. FIXME: It would be better to insert instructions in the right
 | |
| /// place so that this step isn't needed.
 | |
| void IndVarSimplify::FixUsesBeforeDefs(Loop *L, SCEVExpander &Rewriter) {
 | |
|   // Visit all the blocks in the loop in pre-order dom-tree dfs order.
 | |
|   DominatorTree *DT = &getAnalysis<DominatorTree>();
 | |
|   std::map<Instruction *, unsigned> NumPredsLeft;
 | |
|   SmallVector<DomTreeNode *, 16> Worklist;
 | |
|   Worklist.push_back(DT->getNode(L->getHeader()));
 | |
|   do {
 | |
|     DomTreeNode *Node = Worklist.pop_back_val();
 | |
|     for (DomTreeNode::iterator I = Node->begin(), E = Node->end(); I != E; ++I)
 | |
|       if (L->contains((*I)->getBlock()))
 | |
|         Worklist.push_back(*I);
 | |
|     BasicBlock *BB = Node->getBlock();
 | |
|     // Visit all the instructions in the block top down.
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       // Count the number of operands that aren't properly dominating.
 | |
|       unsigned NumPreds = 0;
 | |
|       if (Rewriter.isInsertedInstruction(I) && !isa<PHINode>(I))
 | |
|         for (User::op_iterator OI = I->op_begin(), OE = I->op_end();
 | |
|              OI != OE; ++OI)
 | |
|           if (Instruction *Inst = dyn_cast<Instruction>(OI))
 | |
|             if (L->contains(Inst->getParent()) && !NumPredsLeft.count(Inst))
 | |
|               ++NumPreds;
 | |
|       NumPredsLeft[I] = NumPreds;
 | |
|       // Notify uses of the position of this instruction, and move the
 | |
|       // users (and their dependents, recursively) into place after this
 | |
|       // instruction if it is their last outstanding operand.
 | |
|       for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | |
|            UI != UE; ++UI) {
 | |
|         Instruction *Inst = cast<Instruction>(UI);
 | |
|         std::map<Instruction *, unsigned>::iterator Z = NumPredsLeft.find(Inst);
 | |
|         if (Z != NumPredsLeft.end() && Z->second != 0 && --Z->second == 0) {
 | |
|           SmallVector<Instruction *, 4> UseWorkList;
 | |
|           UseWorkList.push_back(Inst);
 | |
|           BasicBlock::iterator InsertPt = I;
 | |
|           if (InvokeInst *II = dyn_cast<InvokeInst>(InsertPt))
 | |
|             InsertPt = II->getNormalDest()->begin();
 | |
|           else
 | |
|             ++InsertPt;
 | |
|           while (isa<PHINode>(InsertPt)) ++InsertPt;
 | |
|           do {
 | |
|             Instruction *Use = UseWorkList.pop_back_val();
 | |
|             Use->moveBefore(InsertPt);
 | |
|             NumPredsLeft.erase(Use);
 | |
|             for (Value::use_iterator IUI = Use->use_begin(),
 | |
|                  IUE = Use->use_end(); IUI != IUE; ++IUI) {
 | |
|               Instruction *IUIInst = cast<Instruction>(IUI);
 | |
|               if (L->contains(IUIInst->getParent()) &&
 | |
|                   Rewriter.isInsertedInstruction(IUIInst) &&
 | |
|                   !isa<PHINode>(IUIInst))
 | |
|                 UseWorkList.push_back(IUIInst);
 | |
|             }
 | |
|           } while (!UseWorkList.empty());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } while (!Worklist.empty());
 | |
| }
 | |
| 
 | |
| /// Return true if it is OK to use SIToFPInst for an inducation variable
 | |
| /// with given inital and exit values.
 | |
| static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
 | |
|                           uint64_t intIV, uint64_t intEV) {
 | |
| 
 | |
|   if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
 | |
|     return true;
 | |
| 
 | |
|   // If the iteration range can be handled by SIToFPInst then use it.
 | |
|   APInt Max = APInt::getSignedMaxValue(32);
 | |
|   if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// convertToInt - Convert APF to an integer, if possible.
 | |
| static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
 | |
| 
 | |
|   bool isExact = false;
 | |
|   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
|   if (APF.convertToInteger(intVal, 32, APF.isNegative(),
 | |
|                            APFloat::rmTowardZero, &isExact)
 | |
|       != APFloat::opOK)
 | |
|     return false;
 | |
|   if (!isExact)
 | |
|     return false;
 | |
|   return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| /// HandleFloatingPointIV - If the loop has floating induction variable
 | |
| /// then insert corresponding integer induction variable if possible.
 | |
| /// For example,
 | |
| /// for(double i = 0; i < 10000; ++i)
 | |
| ///   bar(i)
 | |
| /// is converted into
 | |
| /// for(int i = 0; i < 10000; ++i)
 | |
| ///   bar((double)i);
 | |
| ///
 | |
| void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
 | |
| 
 | |
|   unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
 | |
|   unsigned BackEdge     = IncomingEdge^1;
 | |
| 
 | |
|   // Check incoming value.
 | |
|   ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
 | |
|   if (!InitValue) return;
 | |
|   uint64_t newInitValue = Type::Int32Ty->getPrimitiveSizeInBits();
 | |
|   if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
 | |
|     return;
 | |
| 
 | |
|   // Check IV increment. Reject this PH if increement operation is not
 | |
|   // an add or increment value can not be represented by an integer.
 | |
|   BinaryOperator *Incr =
 | |
|     dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
 | |
|   if (!Incr) return;
 | |
|   if (Incr->getOpcode() != Instruction::FAdd) return;
 | |
|   ConstantFP *IncrValue = NULL;
 | |
|   unsigned IncrVIndex = 1;
 | |
|   if (Incr->getOperand(1) == PH)
 | |
|     IncrVIndex = 0;
 | |
|   IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
 | |
|   if (!IncrValue) return;
 | |
|   uint64_t newIncrValue = Type::Int32Ty->getPrimitiveSizeInBits();
 | |
|   if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
 | |
|     return;
 | |
| 
 | |
|   // Check Incr uses. One user is PH and the other users is exit condition used
 | |
|   // by the conditional terminator.
 | |
|   Value::use_iterator IncrUse = Incr->use_begin();
 | |
|   Instruction *U1 = cast<Instruction>(IncrUse++);
 | |
|   if (IncrUse == Incr->use_end()) return;
 | |
|   Instruction *U2 = cast<Instruction>(IncrUse++);
 | |
|   if (IncrUse != Incr->use_end()) return;
 | |
| 
 | |
|   // Find exit condition.
 | |
|   FCmpInst *EC = dyn_cast<FCmpInst>(U1);
 | |
|   if (!EC)
 | |
|     EC = dyn_cast<FCmpInst>(U2);
 | |
|   if (!EC) return;
 | |
| 
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
 | |
|     if (!BI->isConditional()) return;
 | |
|     if (BI->getCondition() != EC) return;
 | |
|   }
 | |
| 
 | |
|   // Find exit value. If exit value can not be represented as an interger then
 | |
|   // do not handle this floating point PH.
 | |
|   ConstantFP *EV = NULL;
 | |
|   unsigned EVIndex = 1;
 | |
|   if (EC->getOperand(1) == Incr)
 | |
|     EVIndex = 0;
 | |
|   EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
 | |
|   if (!EV) return;
 | |
|   uint64_t intEV = Type::Int32Ty->getPrimitiveSizeInBits();
 | |
|   if (!convertToInt(EV->getValueAPF(), &intEV))
 | |
|     return;
 | |
| 
 | |
|   // Find new predicate for integer comparison.
 | |
|   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   switch (EC->getPredicate()) {
 | |
|   case CmpInst::FCMP_OEQ:
 | |
|   case CmpInst::FCMP_UEQ:
 | |
|     NewPred = CmpInst::ICMP_EQ;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OGT:
 | |
|   case CmpInst::FCMP_UGT:
 | |
|     NewPred = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OGE:
 | |
|   case CmpInst::FCMP_UGE:
 | |
|     NewPred = CmpInst::ICMP_UGE;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OLT:
 | |
|   case CmpInst::FCMP_ULT:
 | |
|     NewPred = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case CmpInst::FCMP_OLE:
 | |
|   case CmpInst::FCMP_ULE:
 | |
|     NewPred = CmpInst::ICMP_ULE;
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
|   if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
 | |
| 
 | |
|   // Insert new integer induction variable.
 | |
|   PHINode *NewPHI = PHINode::Create(Type::Int32Ty,
 | |
|                                     PH->getName()+".int", PH);
 | |
|   NewPHI->addIncoming(ConstantInt::get(Type::Int32Ty, newInitValue),
 | |
|                       PH->getIncomingBlock(IncomingEdge));
 | |
| 
 | |
|   Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
 | |
|                                             ConstantInt::get(Type::Int32Ty,
 | |
|                                                              newIncrValue),
 | |
|                                             Incr->getName()+".int", Incr);
 | |
|   NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
 | |
| 
 | |
|   // The back edge is edge 1 of newPHI, whatever it may have been in the
 | |
|   // original PHI.
 | |
|   ConstantInt *NewEV = ConstantInt::get(Type::Int32Ty, intEV);
 | |
|   Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
 | |
|   Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
 | |
|   ICmpInst *NewEC = new ICmpInst(NewPred, LHS, RHS, EC->getNameStart(),
 | |
|                                  EC->getParent()->getTerminator());
 | |
| 
 | |
|   // In the following deltions, PH may become dead and may be deleted.
 | |
|   // Use a WeakVH to observe whether this happens.
 | |
|   WeakVH WeakPH = PH;
 | |
| 
 | |
|   // Delete old, floating point, exit comparision instruction.
 | |
|   NewEC->takeName(EC);
 | |
|   EC->replaceAllUsesWith(NewEC);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(EC);
 | |
| 
 | |
|   // Delete old, floating point, increment instruction.
 | |
|   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(Incr);
 | |
| 
 | |
|   // Replace floating induction variable, if it isn't already deleted.
 | |
|   // Give SIToFPInst preference over UIToFPInst because it is faster on
 | |
|   // platforms that are widely used.
 | |
|   if (WeakPH && !PH->use_empty()) {
 | |
|     if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
 | |
|       SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
 | |
|                                         PH->getParent()->getFirstNonPHI());
 | |
|       PH->replaceAllUsesWith(Conv);
 | |
|     } else {
 | |
|       UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
 | |
|                                         PH->getParent()->getFirstNonPHI());
 | |
|       PH->replaceAllUsesWith(Conv);
 | |
|     }
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(PH);
 | |
|   }
 | |
| 
 | |
|   // Add a new IVUsers entry for the newly-created integer PHI.
 | |
|   IU->AddUsersIfInteresting(NewPHI);
 | |
| }
 |