mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	The global-merge pass was crashing because it assumes that all ConstantExprs
(reached via the global variables that they use) have at least one user.
I haven't worked out a way to test this, as an unused ConstantExpr cannot be
represented by serialised IR, and global-merge can only be run in llc, which
does not run any passes which can make a ConstantExpr dead.
This (reduced to the point of silliness) C code triggers this bug when compiled
for arm-none-eabi at -O1:
  static a = 7;
  static volatile b[10] = {&a};
  c;
  main() {
    c = 0;
    for (; c < 10;)
      printf(b[c]);
  }
Differential Revision: http://reviews.llvm.org/D10314
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@239308 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			607 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			607 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- GlobalMerge.cpp - Internal globals merging  -----------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// This pass merges globals with internal linkage into one. This way all the
 | 
						|
// globals which were merged into a biggest one can be addressed using offsets
 | 
						|
// from the same base pointer (no need for separate base pointer for each of the
 | 
						|
// global). Such a transformation can significantly reduce the register pressure
 | 
						|
// when many globals are involved.
 | 
						|
//
 | 
						|
// For example, consider the code which touches several global variables at
 | 
						|
// once:
 | 
						|
//
 | 
						|
// static int foo[N], bar[N], baz[N];
 | 
						|
//
 | 
						|
// for (i = 0; i < N; ++i) {
 | 
						|
//    foo[i] = bar[i] * baz[i];
 | 
						|
// }
 | 
						|
//
 | 
						|
//  On ARM the addresses of 3 arrays should be kept in the registers, thus
 | 
						|
//  this code has quite large register pressure (loop body):
 | 
						|
//
 | 
						|
//  ldr     r1, [r5], #4
 | 
						|
//  ldr     r2, [r6], #4
 | 
						|
//  mul     r1, r2, r1
 | 
						|
//  str     r1, [r0], #4
 | 
						|
//
 | 
						|
//  Pass converts the code to something like:
 | 
						|
//
 | 
						|
//  static struct {
 | 
						|
//    int foo[N];
 | 
						|
//    int bar[N];
 | 
						|
//    int baz[N];
 | 
						|
//  } merged;
 | 
						|
//
 | 
						|
//  for (i = 0; i < N; ++i) {
 | 
						|
//    merged.foo[i] = merged.bar[i] * merged.baz[i];
 | 
						|
//  }
 | 
						|
//
 | 
						|
//  and in ARM code this becomes:
 | 
						|
//
 | 
						|
//  ldr     r0, [r5, #40]
 | 
						|
//  ldr     r1, [r5, #80]
 | 
						|
//  mul     r0, r1, r0
 | 
						|
//  str     r0, [r5], #4
 | 
						|
//
 | 
						|
//  note that we saved 2 registers here almostly "for free".
 | 
						|
//
 | 
						|
// However, merging globals can have tradeoffs:
 | 
						|
// - it confuses debuggers, tools, and users
 | 
						|
// - it makes linker optimizations less useful (order files, LOHs, ...)
 | 
						|
// - it forces usage of indexed addressing (which isn't necessarily "free")
 | 
						|
// - it can increase register pressure when the uses are disparate enough.
 | 
						|
// 
 | 
						|
// We use heuristics to discover the best global grouping we can (cf cl::opts).
 | 
						|
// ===---------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/SmallBitVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
#include "llvm/Target/TargetLoweringObjectFile.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "global-merge"
 | 
						|
 | 
						|
// FIXME: This is only useful as a last-resort way to disable the pass.
 | 
						|
static cl::opt<bool>
 | 
						|
EnableGlobalMerge("enable-global-merge", cl::Hidden,
 | 
						|
                  cl::desc("Enable the global merge pass"),
 | 
						|
                  cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> GlobalMergeGroupByUse(
 | 
						|
    "global-merge-group-by-use", cl::Hidden,
 | 
						|
    cl::desc("Improve global merge pass to look at uses"), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> GlobalMergeIgnoreSingleUse(
 | 
						|
    "global-merge-ignore-single-use", cl::Hidden,
 | 
						|
    cl::desc("Improve global merge pass to ignore globals only used alone"),
 | 
						|
    cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableGlobalMergeOnConst("global-merge-on-const", cl::Hidden,
 | 
						|
                         cl::desc("Enable global merge pass on constants"),
 | 
						|
                         cl::init(false));
 | 
						|
 | 
						|
// FIXME: this could be a transitional option, and we probably need to remove
 | 
						|
// it if only we are sure this optimization could always benefit all targets.
 | 
						|
static cl::opt<bool>
 | 
						|
EnableGlobalMergeOnExternal("global-merge-on-external", cl::Hidden,
 | 
						|
     cl::desc("Enable global merge pass on external linkage"),
 | 
						|
     cl::init(false));
 | 
						|
 | 
						|
STATISTIC(NumMerged, "Number of globals merged");
 | 
						|
namespace {
 | 
						|
  class GlobalMerge : public FunctionPass {
 | 
						|
    const TargetMachine *TM;
 | 
						|
    const DataLayout *DL;
 | 
						|
    // FIXME: Infer the maximum possible offset depending on the actual users
 | 
						|
    // (these max offsets are different for the users inside Thumb or ARM
 | 
						|
    // functions), see the code that passes in the offset in the ARM backend
 | 
						|
    // for more information.
 | 
						|
    unsigned MaxOffset;
 | 
						|
 | 
						|
    /// Whether we should try to optimize for size only.
 | 
						|
    /// Currently, this applies a dead simple heuristic: only consider globals
 | 
						|
    /// used in minsize functions for merging.
 | 
						|
    /// FIXME: This could learn about optsize, and be used in the cost model.
 | 
						|
    bool OnlyOptimizeForSize;
 | 
						|
 | 
						|
    bool doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
 | 
						|
                 Module &M, bool isConst, unsigned AddrSpace) const;
 | 
						|
    /// \brief Merge everything in \p Globals for which the corresponding bit
 | 
						|
    /// in \p GlobalSet is set.
 | 
						|
    bool doMerge(SmallVectorImpl<GlobalVariable *> &Globals,
 | 
						|
                 const BitVector &GlobalSet, Module &M, bool isConst,
 | 
						|
                 unsigned AddrSpace) const;
 | 
						|
 | 
						|
    /// \brief Check if the given variable has been identified as must keep
 | 
						|
    /// \pre setMustKeepGlobalVariables must have been called on the Module that
 | 
						|
    ///      contains GV
 | 
						|
    bool isMustKeepGlobalVariable(const GlobalVariable *GV) const {
 | 
						|
      return MustKeepGlobalVariables.count(GV);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Collect every variables marked as "used" or used in a landing pad
 | 
						|
    /// instruction for this Module.
 | 
						|
    void setMustKeepGlobalVariables(Module &M);
 | 
						|
 | 
						|
    /// Collect every variables marked as "used"
 | 
						|
    void collectUsedGlobalVariables(Module &M);
 | 
						|
 | 
						|
    /// Keep track of the GlobalVariable that must not be merged away
 | 
						|
    SmallPtrSet<const GlobalVariable *, 16> MustKeepGlobalVariables;
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;             // Pass identification, replacement for typeid.
 | 
						|
    explicit GlobalMerge(const TargetMachine *TM = nullptr,
 | 
						|
                         unsigned MaximalOffset = 0,
 | 
						|
                         bool OnlyOptimizeForSize = false)
 | 
						|
        : FunctionPass(ID), TM(TM), DL(TM->getDataLayout()),
 | 
						|
          MaxOffset(MaximalOffset), OnlyOptimizeForSize(OnlyOptimizeForSize) {
 | 
						|
      initializeGlobalMergePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool doInitialization(Module &M) override;
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
    bool doFinalization(Module &M) override;
 | 
						|
 | 
						|
    const char *getPassName() const override {
 | 
						|
      return "Merge internal globals";
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
      FunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
  };
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char GlobalMerge::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(GlobalMerge, "global-merge", "Merge global variables",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_END(GlobalMerge, "global-merge", "Merge global variables",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable*> &Globals,
 | 
						|
                          Module &M, bool isConst, unsigned AddrSpace) const {
 | 
						|
  // FIXME: Find better heuristics
 | 
						|
  std::stable_sort(Globals.begin(), Globals.end(),
 | 
						|
                   [this](const GlobalVariable *GV1, const GlobalVariable *GV2) {
 | 
						|
    Type *Ty1 = cast<PointerType>(GV1->getType())->getElementType();
 | 
						|
    Type *Ty2 = cast<PointerType>(GV2->getType())->getElementType();
 | 
						|
 | 
						|
    return (DL->getTypeAllocSize(Ty1) < DL->getTypeAllocSize(Ty2));
 | 
						|
  });
 | 
						|
 | 
						|
  // If we want to just blindly group all globals together, do so.
 | 
						|
  if (!GlobalMergeGroupByUse) {
 | 
						|
    BitVector AllGlobals(Globals.size());
 | 
						|
    AllGlobals.set();
 | 
						|
    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we want to be smarter, look at all uses of each global, to try to
 | 
						|
  // discover all sets of globals used together, and how many times each of
 | 
						|
  // these sets occured.
 | 
						|
  //
 | 
						|
  // Keep this reasonably efficient, by having an append-only list of all sets
 | 
						|
  // discovered so far (UsedGlobalSet), and mapping each "together-ness" unit of
 | 
						|
  // code (currently, a Function) to the set of globals seen so far that are
 | 
						|
  // used together in that unit (GlobalUsesByFunction).
 | 
						|
  //
 | 
						|
  // When we look at the Nth global, we now that any new set is either:
 | 
						|
  // - the singleton set {N}, containing this global only, or
 | 
						|
  // - the union of {N} and a previously-discovered set, containing some
 | 
						|
  //   combination of the previous N-1 globals.
 | 
						|
  // Using that knowledge, when looking at the Nth global, we can keep:
 | 
						|
  // - a reference to the singleton set {N} (CurGVOnlySetIdx)
 | 
						|
  // - a list mapping each previous set to its union with {N} (EncounteredUGS),
 | 
						|
  //   if it actually occurs.
 | 
						|
 | 
						|
  // We keep track of the sets of globals used together "close enough".
 | 
						|
  struct UsedGlobalSet {
 | 
						|
    UsedGlobalSet(size_t Size) : Globals(Size), UsageCount(1) {}
 | 
						|
    BitVector Globals;
 | 
						|
    unsigned UsageCount;
 | 
						|
  };
 | 
						|
 | 
						|
  // Each set is unique in UsedGlobalSets.
 | 
						|
  std::vector<UsedGlobalSet> UsedGlobalSets;
 | 
						|
 | 
						|
  // Avoid repeating the create-global-set pattern.
 | 
						|
  auto CreateGlobalSet = [&]() -> UsedGlobalSet & {
 | 
						|
    UsedGlobalSets.emplace_back(Globals.size());
 | 
						|
    return UsedGlobalSets.back();
 | 
						|
  };
 | 
						|
 | 
						|
  // The first set is the empty set.
 | 
						|
  CreateGlobalSet().UsageCount = 0;
 | 
						|
 | 
						|
  // We define "close enough" to be "in the same function".
 | 
						|
  // FIXME: Grouping uses by function is way too aggressive, so we should have
 | 
						|
  // a better metric for distance between uses.
 | 
						|
  // The obvious alternative would be to group by BasicBlock, but that's in
 | 
						|
  // turn too conservative..
 | 
						|
  // Anything in between wouldn't be trivial to compute, so just stick with
 | 
						|
  // per-function grouping.
 | 
						|
 | 
						|
  // The value type is an index into UsedGlobalSets.
 | 
						|
  // The default (0) conveniently points to the empty set.
 | 
						|
  DenseMap<Function *, size_t /*UsedGlobalSetIdx*/> GlobalUsesByFunction;
 | 
						|
 | 
						|
  // Now, look at each merge-eligible global in turn.
 | 
						|
 | 
						|
  // Keep track of the sets we already encountered to which we added the
 | 
						|
  // current global.
 | 
						|
  // Each element matches the same-index element in UsedGlobalSets.
 | 
						|
  // This lets us efficiently tell whether a set has already been expanded to
 | 
						|
  // include the current global.
 | 
						|
  std::vector<size_t> EncounteredUGS;
 | 
						|
 | 
						|
  for (size_t GI = 0, GE = Globals.size(); GI != GE; ++GI) {
 | 
						|
    GlobalVariable *GV = Globals[GI];
 | 
						|
 | 
						|
    // Reset the encountered sets for this global...
 | 
						|
    std::fill(EncounteredUGS.begin(), EncounteredUGS.end(), 0);
 | 
						|
    // ...and grow it in case we created new sets for the previous global.
 | 
						|
    EncounteredUGS.resize(UsedGlobalSets.size());
 | 
						|
 | 
						|
    // We might need to create a set that only consists of the current global.
 | 
						|
    // Keep track of its index into UsedGlobalSets.
 | 
						|
    size_t CurGVOnlySetIdx = 0;
 | 
						|
 | 
						|
    // For each global, look at all its Uses.
 | 
						|
    for (auto &U : GV->uses()) {
 | 
						|
      // This Use might be a ConstantExpr.  We're interested in Instruction
 | 
						|
      // users, so look through ConstantExpr...
 | 
						|
      Use *UI, *UE;
 | 
						|
      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
 | 
						|
        if (CE->use_empty())
 | 
						|
          continue;
 | 
						|
        UI = &*CE->use_begin();
 | 
						|
        UE = nullptr;
 | 
						|
      } else if (isa<Instruction>(U.getUser())) {
 | 
						|
        UI = &U;
 | 
						|
        UE = UI->getNext();
 | 
						|
      } else {
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // ...to iterate on all the instruction users of the global.
 | 
						|
      // Note that we iterate on Uses and not on Users to be able to getNext().
 | 
						|
      for (; UI != UE; UI = UI->getNext()) {
 | 
						|
        Instruction *I = dyn_cast<Instruction>(UI->getUser());
 | 
						|
        if (!I)
 | 
						|
          continue;
 | 
						|
 | 
						|
        Function *ParentFn = I->getParent()->getParent();
 | 
						|
 | 
						|
        // If we're only optimizing for size, ignore non-minsize functions.
 | 
						|
        if (OnlyOptimizeForSize &&
 | 
						|
            !ParentFn->hasFnAttribute(Attribute::MinSize))
 | 
						|
          continue;
 | 
						|
 | 
						|
        size_t UGSIdx = GlobalUsesByFunction[ParentFn];
 | 
						|
 | 
						|
        // If this is the first global the basic block uses, map it to the set
 | 
						|
        // consisting of this global only.
 | 
						|
        if (!UGSIdx) {
 | 
						|
          // If that set doesn't exist yet, create it.
 | 
						|
          if (!CurGVOnlySetIdx) {
 | 
						|
            CurGVOnlySetIdx = UsedGlobalSets.size();
 | 
						|
            CreateGlobalSet().Globals.set(GI);
 | 
						|
          } else {
 | 
						|
            ++UsedGlobalSets[CurGVOnlySetIdx].UsageCount;
 | 
						|
          }
 | 
						|
 | 
						|
          GlobalUsesByFunction[ParentFn] = CurGVOnlySetIdx;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If we already encountered this BB, just increment the counter.
 | 
						|
        if (UsedGlobalSets[UGSIdx].Globals.test(GI)) {
 | 
						|
          ++UsedGlobalSets[UGSIdx].UsageCount;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If not, the previous set wasn't actually used in this function.
 | 
						|
        --UsedGlobalSets[UGSIdx].UsageCount;
 | 
						|
 | 
						|
        // If we already expanded the previous set to include this global, just
 | 
						|
        // reuse that expanded set.
 | 
						|
        if (size_t ExpandedIdx = EncounteredUGS[UGSIdx]) {
 | 
						|
          ++UsedGlobalSets[ExpandedIdx].UsageCount;
 | 
						|
          GlobalUsesByFunction[ParentFn] = ExpandedIdx;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // If not, create a new set consisting of the union of the previous set
 | 
						|
        // and this global.  Mark it as encountered, so we can reuse it later.
 | 
						|
        GlobalUsesByFunction[ParentFn] = EncounteredUGS[UGSIdx] =
 | 
						|
            UsedGlobalSets.size();
 | 
						|
 | 
						|
        UsedGlobalSet &NewUGS = CreateGlobalSet();
 | 
						|
        NewUGS.Globals.set(GI);
 | 
						|
        NewUGS.Globals |= UsedGlobalSets[UGSIdx].Globals;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we found a bunch of sets of globals used together.  We accumulated
 | 
						|
  // the number of times we encountered the sets (i.e., the number of blocks
 | 
						|
  // that use that exact set of globals).
 | 
						|
  //
 | 
						|
  // Multiply that by the size of the set to give us a crude profitability
 | 
						|
  // metric.
 | 
						|
  std::sort(UsedGlobalSets.begin(), UsedGlobalSets.end(),
 | 
						|
            [](const UsedGlobalSet &UGS1, const UsedGlobalSet &UGS2) {
 | 
						|
              return UGS1.Globals.count() * UGS1.UsageCount <
 | 
						|
                     UGS2.Globals.count() * UGS2.UsageCount;
 | 
						|
            });
 | 
						|
 | 
						|
  // We can choose to merge all globals together, but ignore globals never used
 | 
						|
  // with another global.  This catches the obviously non-profitable cases of
 | 
						|
  // having a single global, but is aggressive enough for any other case.
 | 
						|
  if (GlobalMergeIgnoreSingleUse) {
 | 
						|
    BitVector AllGlobals(Globals.size());
 | 
						|
    for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
 | 
						|
      const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
 | 
						|
      if (UGS.UsageCount == 0)
 | 
						|
        continue;
 | 
						|
      if (UGS.Globals.count() > 1)
 | 
						|
        AllGlobals |= UGS.Globals;
 | 
						|
    }
 | 
						|
    return doMerge(Globals, AllGlobals, M, isConst, AddrSpace);
 | 
						|
  }
 | 
						|
 | 
						|
  // Starting from the sets with the best (=biggest) profitability, find a
 | 
						|
  // good combination.
 | 
						|
  // The ideal (and expensive) solution can only be found by trying all
 | 
						|
  // combinations, looking for the one with the best profitability.
 | 
						|
  // Don't be smart about it, and just pick the first compatible combination,
 | 
						|
  // starting with the sets with the best profitability.
 | 
						|
  BitVector PickedGlobals(Globals.size());
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  for (size_t i = 0, e = UsedGlobalSets.size(); i != e; ++i) {
 | 
						|
    const UsedGlobalSet &UGS = UsedGlobalSets[e - i - 1];
 | 
						|
    if (UGS.UsageCount == 0)
 | 
						|
      continue;
 | 
						|
    if (PickedGlobals.anyCommon(UGS.Globals))
 | 
						|
      continue;
 | 
						|
    PickedGlobals |= UGS.Globals;
 | 
						|
    // If the set only contains one global, there's no point in merging.
 | 
						|
    // Ignore the global for inclusion in other sets though, so keep it in
 | 
						|
    // PickedGlobals.
 | 
						|
    if (UGS.Globals.count() < 2)
 | 
						|
      continue;
 | 
						|
    Changed |= doMerge(Globals, UGS.Globals, M, isConst, AddrSpace);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool GlobalMerge::doMerge(SmallVectorImpl<GlobalVariable *> &Globals,
 | 
						|
                          const BitVector &GlobalSet, Module &M, bool isConst,
 | 
						|
                          unsigned AddrSpace) const {
 | 
						|
 | 
						|
  Type *Int32Ty = Type::getInt32Ty(M.getContext());
 | 
						|
 | 
						|
  assert(Globals.size() > 1);
 | 
						|
 | 
						|
  DEBUG(dbgs() << " Trying to merge set, starts with #"
 | 
						|
               << GlobalSet.find_first() << "\n");
 | 
						|
 | 
						|
  ssize_t i = GlobalSet.find_first();
 | 
						|
  while (i != -1) {
 | 
						|
    ssize_t j = 0;
 | 
						|
    uint64_t MergedSize = 0;
 | 
						|
    std::vector<Type*> Tys;
 | 
						|
    std::vector<Constant*> Inits;
 | 
						|
 | 
						|
    bool HasExternal = false;
 | 
						|
    GlobalVariable *TheFirstExternal = 0;
 | 
						|
    for (j = i; j != -1; j = GlobalSet.find_next(j)) {
 | 
						|
      Type *Ty = Globals[j]->getType()->getElementType();
 | 
						|
      MergedSize += DL->getTypeAllocSize(Ty);
 | 
						|
      if (MergedSize > MaxOffset) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      Tys.push_back(Ty);
 | 
						|
      Inits.push_back(Globals[j]->getInitializer());
 | 
						|
 | 
						|
      if (Globals[j]->hasExternalLinkage() && !HasExternal) {
 | 
						|
        HasExternal = true;
 | 
						|
        TheFirstExternal = Globals[j];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If merged variables doesn't have external linkage, we needn't to expose
 | 
						|
    // the symbol after merging.
 | 
						|
    GlobalValue::LinkageTypes Linkage = HasExternal
 | 
						|
                                            ? GlobalValue::ExternalLinkage
 | 
						|
                                            : GlobalValue::InternalLinkage;
 | 
						|
 | 
						|
    StructType *MergedTy = StructType::get(M.getContext(), Tys);
 | 
						|
    Constant *MergedInit = ConstantStruct::get(MergedTy, Inits);
 | 
						|
 | 
						|
    // If merged variables have external linkage, we use symbol name of the
 | 
						|
    // first variable merged as the suffix of global symbol name. This would
 | 
						|
    // be able to avoid the link-time naming conflict for globalm symbols.
 | 
						|
    GlobalVariable *MergedGV = new GlobalVariable(
 | 
						|
        M, MergedTy, isConst, Linkage, MergedInit,
 | 
						|
        HasExternal ? "_MergedGlobals_" + TheFirstExternal->getName()
 | 
						|
                    : "_MergedGlobals",
 | 
						|
        nullptr, GlobalVariable::NotThreadLocal, AddrSpace);
 | 
						|
 | 
						|
    for (ssize_t k = i, idx = 0; k != j; k = GlobalSet.find_next(k)) {
 | 
						|
      GlobalValue::LinkageTypes Linkage = Globals[k]->getLinkage();
 | 
						|
      std::string Name = Globals[k]->getName();
 | 
						|
 | 
						|
      Constant *Idx[2] = {
 | 
						|
        ConstantInt::get(Int32Ty, 0),
 | 
						|
        ConstantInt::get(Int32Ty, idx++)
 | 
						|
      };
 | 
						|
      Constant *GEP =
 | 
						|
          ConstantExpr::getInBoundsGetElementPtr(MergedTy, MergedGV, Idx);
 | 
						|
      Globals[k]->replaceAllUsesWith(GEP);
 | 
						|
      Globals[k]->eraseFromParent();
 | 
						|
 | 
						|
      if (Linkage != GlobalValue::InternalLinkage) {
 | 
						|
        // Generate a new alias...
 | 
						|
        auto *PTy = cast<PointerType>(GEP->getType());
 | 
						|
        GlobalAlias::create(PTy, Linkage, Name, GEP, &M);
 | 
						|
      }
 | 
						|
 | 
						|
      NumMerged++;
 | 
						|
    }
 | 
						|
    i = j;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void GlobalMerge::collectUsedGlobalVariables(Module &M) {
 | 
						|
  // Extract global variables from llvm.used array
 | 
						|
  const GlobalVariable *GV = M.getGlobalVariable("llvm.used");
 | 
						|
  if (!GV || !GV->hasInitializer()) return;
 | 
						|
 | 
						|
  // Should be an array of 'i8*'.
 | 
						|
  const ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
 | 
						|
    if (const GlobalVariable *G =
 | 
						|
        dyn_cast<GlobalVariable>(InitList->getOperand(i)->stripPointerCasts()))
 | 
						|
      MustKeepGlobalVariables.insert(G);
 | 
						|
}
 | 
						|
 | 
						|
void GlobalMerge::setMustKeepGlobalVariables(Module &M) {
 | 
						|
  collectUsedGlobalVariables(M);
 | 
						|
 | 
						|
  for (Module::iterator IFn = M.begin(), IEndFn = M.end(); IFn != IEndFn;
 | 
						|
       ++IFn) {
 | 
						|
    for (Function::iterator IBB = IFn->begin(), IEndBB = IFn->end();
 | 
						|
         IBB != IEndBB; ++IBB) {
 | 
						|
      // Follow the invoke link to find the landing pad instruction
 | 
						|
      const InvokeInst *II = dyn_cast<InvokeInst>(IBB->getTerminator());
 | 
						|
      if (!II) continue;
 | 
						|
 | 
						|
      const LandingPadInst *LPInst = II->getUnwindDest()->getLandingPadInst();
 | 
						|
      // Look for globals in the clauses of the landing pad instruction
 | 
						|
      for (unsigned Idx = 0, NumClauses = LPInst->getNumClauses();
 | 
						|
           Idx != NumClauses; ++Idx)
 | 
						|
        if (const GlobalVariable *GV =
 | 
						|
            dyn_cast<GlobalVariable>(LPInst->getClause(Idx)
 | 
						|
                                     ->stripPointerCasts()))
 | 
						|
          MustKeepGlobalVariables.insert(GV);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool GlobalMerge::doInitialization(Module &M) {
 | 
						|
  if (!EnableGlobalMerge)
 | 
						|
    return false;
 | 
						|
 | 
						|
  DenseMap<unsigned, SmallVector<GlobalVariable*, 16> > Globals, ConstGlobals,
 | 
						|
                                                        BSSGlobals;
 | 
						|
  bool Changed = false;
 | 
						|
  setMustKeepGlobalVariables(M);
 | 
						|
 | 
						|
  // Grab all non-const globals.
 | 
						|
  for (Module::global_iterator I = M.global_begin(),
 | 
						|
         E = M.global_end(); I != E; ++I) {
 | 
						|
    // Merge is safe for "normal" internal or external globals only
 | 
						|
    if (I->isDeclaration() || I->isThreadLocal() || I->hasSection())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!(EnableGlobalMergeOnExternal && I->hasExternalLinkage()) &&
 | 
						|
        !I->hasInternalLinkage())
 | 
						|
      continue;
 | 
						|
 | 
						|
    PointerType *PT = dyn_cast<PointerType>(I->getType());
 | 
						|
    assert(PT && "Global variable is not a pointer!");
 | 
						|
 | 
						|
    unsigned AddressSpace = PT->getAddressSpace();
 | 
						|
 | 
						|
    // Ignore fancy-aligned globals for now.
 | 
						|
    unsigned Alignment = DL->getPreferredAlignment(I);
 | 
						|
    Type *Ty = I->getType()->getElementType();
 | 
						|
    if (Alignment > DL->getABITypeAlignment(Ty))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Ignore all 'special' globals.
 | 
						|
    if (I->getName().startswith("llvm.") ||
 | 
						|
        I->getName().startswith(".llvm."))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Ignore all "required" globals:
 | 
						|
    if (isMustKeepGlobalVariable(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (DL->getTypeAllocSize(Ty) < MaxOffset) {
 | 
						|
      if (TargetLoweringObjectFile::getKindForGlobal(I, *TM).isBSSLocal())
 | 
						|
        BSSGlobals[AddressSpace].push_back(I);
 | 
						|
      else if (I->isConstant())
 | 
						|
        ConstGlobals[AddressSpace].push_back(I);
 | 
						|
      else
 | 
						|
        Globals[AddressSpace].push_back(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
 | 
						|
       I = Globals.begin(), E = Globals.end(); I != E; ++I)
 | 
						|
    if (I->second.size() > 1)
 | 
						|
      Changed |= doMerge(I->second, M, false, I->first);
 | 
						|
 | 
						|
  for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
 | 
						|
       I = BSSGlobals.begin(), E = BSSGlobals.end(); I != E; ++I)
 | 
						|
    if (I->second.size() > 1)
 | 
						|
      Changed |= doMerge(I->second, M, false, I->first);
 | 
						|
 | 
						|
  if (EnableGlobalMergeOnConst)
 | 
						|
    for (DenseMap<unsigned, SmallVector<GlobalVariable*, 16> >::iterator
 | 
						|
         I = ConstGlobals.begin(), E = ConstGlobals.end(); I != E; ++I)
 | 
						|
      if (I->second.size() > 1)
 | 
						|
        Changed |= doMerge(I->second, M, true, I->first);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool GlobalMerge::runOnFunction(Function &F) {
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool GlobalMerge::doFinalization(Module &M) {
 | 
						|
  MustKeepGlobalVariables.clear();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createGlobalMergePass(const TargetMachine *TM, unsigned Offset,
 | 
						|
                                  bool OnlyOptimizeForSize) {
 | 
						|
  return new GlobalMerge(TM, Offset, OnlyOptimizeForSize);
 | 
						|
}
 |