mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	getMaxRegionExit returns the exit of the maximal refined region starting at a specific basic block. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@109496 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			631 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			631 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Calculate a program structure tree built out of single entry single exit
 | |
| // regions.
 | |
| // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
 | |
| // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
 | |
| // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
 | |
| // Koehler - 2009".
 | |
| // The algorithm to calculate these data structures however is completely
 | |
| // different, as it takes advantage of existing information already available
 | |
| // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
 | |
| // and in practice hopefully better performing algorithm. The runtime of the
 | |
| // algorithms described in the papers above are both linear in graph size,
 | |
| // O(V+E), whereas this algorithm is not, as the dominance frontier information
 | |
| // itself is not, but in practice runtime seems to be in the order of magnitude
 | |
| // of dominance tree calculation.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ANALYSIS_REGION_INFO_H
 | |
| #define LLVM_ANALYSIS_REGION_INFO_H
 | |
| 
 | |
| #include "llvm/ADT/PointerIntPair.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class Region;
 | |
| class RegionInfo;
 | |
| class raw_ostream;
 | |
| class Loop;
 | |
| class LoopInfo;
 | |
| 
 | |
| /// @brief Marker class to iterate over the elements of a Region in flat mode.
 | |
| ///
 | |
| /// The class is used to either iterate in Flat mode or by not using it to not
 | |
| /// iterate in Flat mode.  During a Flat mode iteration all Regions are entered
 | |
| /// and the iteration returns every BasicBlock.  If the Flat mode is not
 | |
| /// selected for SubRegions just one RegionNode containing the subregion is
 | |
| /// returned.
 | |
| template <class GraphType>
 | |
| class FlatIt {};
 | |
| 
 | |
| /// @brief A RegionNode represents a subregion or a BasicBlock that is part of a
 | |
| /// Region.
 | |
| class RegionNode {
 | |
|   // DO NOT IMPLEMENT
 | |
|   RegionNode(const RegionNode &);
 | |
|   // DO NOT IMPLEMENT
 | |
|   const RegionNode &operator=(const RegionNode &);
 | |
| 
 | |
|   /// This is the entry basic block that starts this region node.  If this is a
 | |
|   /// BasicBlock RegionNode, then entry is just the basic block, that this
 | |
|   /// RegionNode represents.  Otherwise it is the entry of this (Sub)RegionNode.
 | |
|   ///
 | |
|   /// In the BBtoRegionNode map of the parent of this node, BB will always map
 | |
|   /// to this node no matter which kind of node this one is.
 | |
|   ///
 | |
|   /// The node can hold either a Region or a BasicBlock.
 | |
|   /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
 | |
|   /// RegionNode.
 | |
|   PointerIntPair<BasicBlock*, 1, bool> entry;
 | |
| 
 | |
| protected:
 | |
|   /// @brief The parent Region of this RegionNode.
 | |
|   /// @see getParent()
 | |
|   Region* parent;
 | |
| 
 | |
| public:
 | |
|   /// @brief Create a RegionNode.
 | |
|   ///
 | |
|   /// @param Parent      The parent of this RegionNode.
 | |
|   /// @param Entry       The entry BasicBlock of the RegionNode.  If this
 | |
|   ///                    RegionNode represents a BasicBlock, this is the
 | |
|   ///                    BasicBlock itself.  If it represents a subregion, this
 | |
|   ///                    is the entry BasicBlock of the subregion.
 | |
|   /// @param isSubRegion If this RegionNode represents a SubRegion.
 | |
|   inline RegionNode(Region* Parent, BasicBlock* Entry, bool isSubRegion = 0)
 | |
|     : entry(Entry, isSubRegion), parent(Parent) {}
 | |
| 
 | |
|   /// @brief Get the parent Region of this RegionNode.
 | |
|   ///
 | |
|   /// The parent Region is the Region this RegionNode belongs to. If for
 | |
|   /// example a BasicBlock is element of two Regions, there exist two
 | |
|   /// RegionNodes for this BasicBlock. Each with the getParent() function
 | |
|   /// pointing to the Region this RegionNode belongs to.
 | |
|   ///
 | |
|   /// @return Get the parent Region of this RegionNode.
 | |
|   inline Region* getParent() const { return parent; }
 | |
| 
 | |
|   /// @brief Get the entry BasicBlock of this RegionNode.
 | |
|   ///
 | |
|   /// If this RegionNode represents a BasicBlock this is just the BasicBlock
 | |
|   /// itself, otherwise we return the entry BasicBlock of the Subregion
 | |
|   ///
 | |
|   /// @return The entry BasicBlock of this RegionNode.
 | |
|   inline BasicBlock* getEntry() const { return entry.getPointer(); }
 | |
| 
 | |
|   /// @brief Get the content of this RegionNode.
 | |
|   ///
 | |
|   /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
 | |
|   /// check the type of the content with the isSubRegion() function call.
 | |
|   ///
 | |
|   /// @return The content of this RegionNode.
 | |
|   template<class T>
 | |
|   inline T* getNodeAs() const;
 | |
| 
 | |
|   /// @brief Is this RegionNode a subregion?
 | |
|   ///
 | |
|   /// @return True if it contains a subregion. False if it contains a
 | |
|   ///         BasicBlock.
 | |
|   inline bool isSubRegion() const {
 | |
|     return entry.getInt();
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Print a RegionNode.
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node);
 | |
| 
 | |
| template<>
 | |
| inline BasicBlock* RegionNode::getNodeAs<BasicBlock>() const {
 | |
|   assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
 | |
|   return getEntry();
 | |
| }
 | |
| 
 | |
| template<>
 | |
| inline Region* RegionNode::getNodeAs<Region>() const {
 | |
|   assert(isSubRegion() && "This is not a subregion RegionNode!");
 | |
|   return reinterpret_cast<Region*>(const_cast<RegionNode*>(this));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// @brief A single entry single exit Region.
 | |
| ///
 | |
| /// A Region is a connected subgraph of a control flow graph that has exactly
 | |
| /// two connections to the remaining graph. It can be used to analyze or
 | |
| /// optimize parts of the control flow graph.
 | |
| ///
 | |
| /// A <em> simple Region </em> is connected to the remaing graph by just two
 | |
| /// edges. One edge entering the Region and another one leaving the Region.
 | |
| ///
 | |
| /// An <em> extended Region </em> (or just Region) is a subgraph that can be
 | |
| /// transform into a simple Region. The transformation is done by adding
 | |
| /// BasicBlocks that merge several entry or exit edges so that after the merge
 | |
| /// just one entry and one exit edge exists.
 | |
| ///
 | |
| /// The \e Entry of a Region is the first BasicBlock that is passed after
 | |
| /// entering the Region. It is an element of the Region. The entry BasicBlock
 | |
| /// dominates all BasicBlocks in the Region.
 | |
| ///
 | |
| /// The \e Exit of a Region is the first BasicBlock that is passed after
 | |
| /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
 | |
| /// postdominates all BasicBlocks in the Region.
 | |
| ///
 | |
| /// A <em> canonical Region </em> cannot be constructed by combining smaller
 | |
| /// Regions.
 | |
| ///
 | |
| /// Region A is the \e parent of Region B, if B is completely contained in A.
 | |
| ///
 | |
| /// Two canonical Regions either do not intersect at all or one is
 | |
| /// the parent of the other.
 | |
| ///
 | |
| /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
 | |
| /// Regions in the control flow graph and E is the \e parent relation of these
 | |
| /// Regions.
 | |
| ///
 | |
| /// Example:
 | |
| ///
 | |
| /// \verbatim
 | |
| /// A simple control flow graph, that contains two regions.
 | |
| ///
 | |
| ///        1
 | |
| ///       / |
 | |
| ///      2   |
 | |
| ///     / \   3
 | |
| ///    4   5  |
 | |
| ///    |   |  |
 | |
| ///    6   7  8
 | |
| ///     \  | /
 | |
| ///      \ |/       Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
 | |
| ///        9        Region B: 2 -> 9 {2,4,5,6,7}
 | |
| /// \endverbatim
 | |
| ///
 | |
| /// You can obtain more examples by either calling
 | |
| ///
 | |
| /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
 | |
| /// or
 | |
| /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
 | |
| ///
 | |
| /// on any LLVM file you are interested in.
 | |
| ///
 | |
| /// The first call returns a textual representation of the program structure
 | |
| /// tree, the second one creates a graphical representation using graphviz.
 | |
| class Region : public RegionNode {
 | |
|   friend class RegionInfo;
 | |
|   // DO NOT IMPLEMENT
 | |
|   Region(const Region &);
 | |
|   // DO NOT IMPLEMENT
 | |
|   const Region &operator=(const Region &);
 | |
| 
 | |
|   // Information necessary to manage this Region.
 | |
|   RegionInfo* RI;
 | |
|   DominatorTree *DT;
 | |
| 
 | |
|   // The exit BasicBlock of this region.
 | |
|   // (The entry BasicBlock is part of RegionNode)
 | |
|   BasicBlock *exit;
 | |
| 
 | |
|   typedef std::vector<Region*> RegionSet;
 | |
| 
 | |
|   // The subregions of this region.
 | |
|   RegionSet children;
 | |
| 
 | |
|   typedef std::map<BasicBlock*, RegionNode*> BBNodeMapT;
 | |
| 
 | |
|   // Save the BasicBlock RegionNodes that are element of this Region.
 | |
|   mutable BBNodeMapT BBNodeMap;
 | |
| 
 | |
|   /// verifyBBInRegion - Check if a BB is in this Region. This check also works
 | |
|   /// if the region is incorrectly built. (EXPENSIVE!)
 | |
|   void verifyBBInRegion(BasicBlock* BB) const;
 | |
| 
 | |
|   /// verifyWalk - Walk over all the BBs of the region starting from BB and
 | |
|   /// verify that all reachable basic blocks are elements of the region.
 | |
|   /// (EXPENSIVE!)
 | |
|   void verifyWalk(BasicBlock* BB, std::set<BasicBlock*>* visitedBB) const;
 | |
| 
 | |
|   /// verifyRegionNest - Verify if the region and its children are valid
 | |
|   /// regions (EXPENSIVE!)
 | |
|   void verifyRegionNest() const;
 | |
| 
 | |
| public:
 | |
|   /// @brief Create a new region.
 | |
|   ///
 | |
|   /// @param Entry  The entry basic block of the region.
 | |
|   /// @param Exit   The exit basic block of the region.
 | |
|   /// @param RI     The region info object that is managing this region.
 | |
|   /// @param DT     The dominator tree of the current function.
 | |
|   /// @param Parent The surrounding region or NULL if this is a top level
 | |
|   ///               region.
 | |
|   Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo* RI,
 | |
|          DominatorTree *DT, Region *Parent = 0);
 | |
| 
 | |
|   /// Delete the Region and all its subregions.
 | |
|   ~Region();
 | |
| 
 | |
|   /// @brief Get the entry BasicBlock of the Region.
 | |
|   /// @return The entry BasicBlock of the region.
 | |
|   BasicBlock *getEntry() const { return RegionNode::getEntry(); }
 | |
| 
 | |
|   /// @brief Get the exit BasicBlock of the Region.
 | |
|   /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
 | |
|   ///         Region.
 | |
|   BasicBlock *getExit() const { return exit; }
 | |
| 
 | |
|   /// @brief Get the parent of the Region.
 | |
|   /// @return The parent of the Region or NULL if this is a top level
 | |
|   ///         Region.
 | |
|   Region *getParent() const { return RegionNode::getParent(); }
 | |
| 
 | |
|   /// @brief Get the RegionNode representing the current Region.
 | |
|   /// @return The RegionNode representing the current Region.
 | |
|   RegionNode* getNode() const {
 | |
|     return const_cast<RegionNode*>(reinterpret_cast<const RegionNode*>(this));
 | |
|   }
 | |
| 
 | |
|   /// @brief Get the nesting level of this Region.
 | |
|   ///
 | |
|   /// An toplevel Region has depth 0.
 | |
|   ///
 | |
|   /// @return The depth of the region.
 | |
|   unsigned getDepth() const;
 | |
| 
 | |
|   /// @brief Is this a simple region?
 | |
|   ///
 | |
|   /// A region is simple if it has exactly one exit and one entry edge.
 | |
|   ///
 | |
|   /// @return True if the Region is simple.
 | |
|   bool isSimple() const;
 | |
| 
 | |
|   /// @brief Returns the name of the Region.
 | |
|   /// @return The Name of the Region.
 | |
|   std::string getNameStr() const;
 | |
| 
 | |
|   /// @brief Return the RegionInfo object, that belongs to this Region.
 | |
|   RegionInfo *getRegionInfo() const {
 | |
|     return RI;
 | |
|   }
 | |
| 
 | |
|   /// @brief Print the region.
 | |
|   ///
 | |
|   /// @param OS The output stream the Region is printed to.
 | |
|   /// @param printTree Print also the tree of subregions.
 | |
|   /// @param level The indentation level used for printing.
 | |
|   void print(raw_ostream& OS, bool printTree = true, unsigned level = 0) const;
 | |
| 
 | |
|   /// @brief Print the region to stderr.
 | |
|   void dump() const;
 | |
| 
 | |
|   /// @brief Check if the region contains a BasicBlock.
 | |
|   ///
 | |
|   /// @param BB The BasicBlock that might be contained in this Region.
 | |
|   /// @return True if the block is contained in the region otherwise false.
 | |
|   bool contains(const BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief Check if the region contains another region.
 | |
|   ///
 | |
|   /// @param SubRegion The region that might be contained in this Region.
 | |
|   /// @return True if SubRegion is contained in the region otherwise false.
 | |
|   bool contains(const Region *SubRegion) const {
 | |
|     // Toplevel Region.
 | |
|     if (!getExit())
 | |
|       return true;
 | |
| 
 | |
|     return contains(SubRegion->getEntry())
 | |
|       && (contains(SubRegion->getExit()) || SubRegion->getExit() == getExit());
 | |
|   }
 | |
| 
 | |
|   /// @brief Check if the region contains an Instruction.
 | |
|   ///
 | |
|   /// @param Inst The Instruction that might be contained in this region.
 | |
|   /// @return True if the Instruction is contained in the region otherwise false.
 | |
|   bool contains(const Instruction *Inst) const {
 | |
|     return contains(Inst->getParent());
 | |
|   }
 | |
| 
 | |
|   /// @brief Check if the region contains a loop.
 | |
|   ///
 | |
|   /// @param L The loop that might be contained in this region.
 | |
|   /// @return True if the loop is contained in the region otherwise false.
 | |
|   ///         In case a NULL pointer is passed to this function the result
 | |
|   ///         is false, except for the region that describes the whole function.
 | |
|   ///         In that case true is returned.
 | |
|   bool contains(const Loop *L) const;
 | |
| 
 | |
|   /// @brief Get the outermost loop in the region that contains a loop.
 | |
|   ///
 | |
|   /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
 | |
|   /// and is itself contained in the region.
 | |
|   ///
 | |
|   /// @param L The loop the lookup is started.
 | |
|   /// @return The outermost loop in the region, NULL if such a loop does not
 | |
|   ///         exist or if the region describes the whole function.
 | |
|   Loop *outermostLoopInRegion(Loop *L) const;
 | |
| 
 | |
|   /// @brief Get the outermost loop in the region that contains a basic block.
 | |
|   ///
 | |
|   /// Find for a basic block BB the outermost loop L that contains BB and is
 | |
|   /// itself contained in the region.
 | |
|   ///
 | |
|   /// @param LI A pointer to a LoopInfo analysis.
 | |
|   /// @param BB The basic block surrounded by the loop.
 | |
|   /// @return The outermost loop in the region, NULL if such a loop does not
 | |
|   ///         exist or if the region describes the whole function.
 | |
|   Loop *outermostLoopInRegion(LoopInfo *LI, BasicBlock* BB) const;
 | |
| 
 | |
|   /// @brief Get the subregion that starts at a BasicBlock
 | |
|   ///
 | |
|   /// @param BB The BasicBlock the subregion should start.
 | |
|   /// @return The Subregion if available, otherwise NULL.
 | |
|   Region* getSubRegionNode(BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief Get the RegionNode for a BasicBlock
 | |
|   ///
 | |
|   /// @param BB The BasicBlock at which the RegionNode should start.
 | |
|   /// @return If available, the RegionNode that represents the subregion
 | |
|   ///         starting at BB. If no subregion starts at BB, the RegionNode
 | |
|   ///         representing BB.
 | |
|   RegionNode* getNode(BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief Get the BasicBlock RegionNode for a BasicBlock
 | |
|   ///
 | |
|   /// @param BB The BasicBlock for which the RegionNode is requested.
 | |
|   /// @return The RegionNode representing the BB.
 | |
|   RegionNode* getBBNode(BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief Add a new subregion to this Region.
 | |
|   ///
 | |
|   /// @param SubRegion The new subregion that will be added.
 | |
|   void addSubRegion(Region *SubRegion);
 | |
| 
 | |
|   /// @brief Remove a subregion from this Region.
 | |
|   ///
 | |
|   /// The subregion is not deleted, as it will probably be inserted into another
 | |
|   /// region.
 | |
|   /// @param SubRegion The SubRegion that will be removed.
 | |
|   Region *removeSubRegion(Region *SubRegion);
 | |
| 
 | |
|   /// @brief Move all direct child nodes of this Region to another Region.
 | |
|   ///
 | |
|   /// @param To The Region the child nodes will be transfered to.
 | |
|   void transferChildrenTo(Region *To);
 | |
| 
 | |
|   /// @brief Verify if the region is a correct region.
 | |
|   ///
 | |
|   /// Check if this is a correctly build Region. This is an expensive check, as
 | |
|   /// the complete CFG of the Region will be walked.
 | |
|   void verifyRegion() const;
 | |
| 
 | |
|   /// @brief Clear the cache for BB RegionNodes.
 | |
|   ///
 | |
|   /// After calling this function the BasicBlock RegionNodes will be stored at
 | |
|   /// different memory locations. RegionNodes obtained before this function is
 | |
|   /// called are therefore not comparable to RegionNodes abtained afterwords.
 | |
|   void clearNodeCache();
 | |
| 
 | |
|   /// @name Subregion Iterators
 | |
|   ///
 | |
|   /// These iterators iterator over all subregions of this Region.
 | |
|   //@{
 | |
|   typedef RegionSet::iterator iterator;
 | |
|   typedef RegionSet::const_iterator const_iterator;
 | |
| 
 | |
|   iterator begin() { return children.begin(); }
 | |
|   iterator end() { return children.end(); }
 | |
| 
 | |
|   const_iterator begin() const { return children.begin(); }
 | |
|   const_iterator end() const { return children.end(); }
 | |
|   //@}
 | |
| 
 | |
|   /// @name BasicBlock Iterators
 | |
|   ///
 | |
|   /// These iterators iterate over all BasicBlock RegionNodes that are
 | |
|   /// contained in this Region. The iterator also iterates over BasicBlocks
 | |
|   /// that are elements of a subregion of this Region. It is therefore called a
 | |
|   /// flat iterator.
 | |
|   //@{
 | |
|   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
 | |
|                       GraphTraits<FlatIt<RegionNode*> > > block_iterator;
 | |
| 
 | |
|   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
 | |
|                       false, GraphTraits<FlatIt<const RegionNode*> > >
 | |
|             const_block_iterator;
 | |
| 
 | |
|   block_iterator block_begin();
 | |
|   block_iterator block_end();
 | |
| 
 | |
|   const_block_iterator block_begin() const;
 | |
|   const_block_iterator block_end() const;
 | |
|   //@}
 | |
| 
 | |
|   /// @name Element Iterators
 | |
|   ///
 | |
|   /// These iterators iterate over all BasicBlock and subregion RegionNodes that
 | |
|   /// are direct children of this Region. It does not iterate over any
 | |
|   /// RegionNodes that are also element of a subregion of this Region.
 | |
|   //@{
 | |
|   typedef df_iterator<RegionNode*, SmallPtrSet<RegionNode*, 8>, false,
 | |
|                       GraphTraits<RegionNode*> > element_iterator;
 | |
| 
 | |
|   typedef df_iterator<const RegionNode*, SmallPtrSet<const RegionNode*, 8>,
 | |
|                       false, GraphTraits<const RegionNode*> >
 | |
|             const_element_iterator;
 | |
| 
 | |
|   element_iterator element_begin();
 | |
|   element_iterator element_end();
 | |
| 
 | |
|   const_element_iterator element_begin() const;
 | |
|   const_element_iterator element_end() const;
 | |
|   //@}
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// @brief Analysis that detects all canonical Regions.
 | |
| ///
 | |
| /// The RegionInfo pass detects all canonical regions in a function. The Regions
 | |
| /// are connected using the parent relation. This builds a Program Structure
 | |
| /// Tree.
 | |
| class RegionInfo : public FunctionPass {
 | |
|   typedef DenseMap<BasicBlock*,BasicBlock*> BBtoBBMap;
 | |
|   typedef DenseMap<BasicBlock*, Region*> BBtoRegionMap;
 | |
|   typedef SmallPtrSet<Region*, 4> RegionSet;
 | |
| 
 | |
|   // DO NOT IMPLEMENT
 | |
|   RegionInfo(const RegionInfo &);
 | |
|   // DO NOT IMPLEMENT
 | |
|   const RegionInfo &operator=(const RegionInfo &);
 | |
| 
 | |
|   DominatorTree *DT;
 | |
|   PostDominatorTree *PDT;
 | |
|   DominanceFrontier *DF;
 | |
| 
 | |
|   /// The top level region.
 | |
|   Region *TopLevelRegion;
 | |
| 
 | |
|   /// Map every BB to the smallest region, that contains BB.
 | |
|   BBtoRegionMap BBtoRegion;
 | |
| 
 | |
|   // isCommonDomFrontier - Returns true if BB is in the dominance frontier of
 | |
|   // entry, because it was inherited from exit. In the other case there is an
 | |
|   // edge going from entry to BB without passing exit.
 | |
|   bool isCommonDomFrontier(BasicBlock* BB, BasicBlock* entry,
 | |
|                            BasicBlock* exit) const;
 | |
| 
 | |
|   // isRegion - Check if entry and exit surround a valid region, based on
 | |
|   // dominance tree and dominance frontier.
 | |
|   bool isRegion(BasicBlock* entry, BasicBlock* exit) const;
 | |
| 
 | |
|   // insertShortCut - Saves a shortcut pointing from entry to exit.
 | |
|   // This function may extend this shortcut if possible.
 | |
|   void insertShortCut(BasicBlock* entry, BasicBlock* exit,
 | |
|                       BBtoBBMap* ShortCut) const;
 | |
| 
 | |
|   // getNextPostDom - Returns the next BB that postdominates N, while skipping
 | |
|   // all post dominators that cannot finish a canonical region.
 | |
|   DomTreeNode *getNextPostDom(DomTreeNode* N, BBtoBBMap *ShortCut) const;
 | |
| 
 | |
|   // isTrivialRegion - A region is trivial, if it contains only one BB.
 | |
|   bool isTrivialRegion(BasicBlock *entry, BasicBlock *exit) const;
 | |
| 
 | |
|   // createRegion - Creates a single entry single exit region.
 | |
|   Region *createRegion(BasicBlock *entry, BasicBlock *exit);
 | |
| 
 | |
|   // findRegionsWithEntry - Detect all regions starting with bb 'entry'.
 | |
|   void findRegionsWithEntry(BasicBlock *entry, BBtoBBMap *ShortCut);
 | |
| 
 | |
|   // scanForRegions - Detects regions in F.
 | |
|   void scanForRegions(Function &F, BBtoBBMap *ShortCut);
 | |
| 
 | |
|   // getTopMostParent - Get the top most parent with the same entry block.
 | |
|   Region *getTopMostParent(Region *region);
 | |
| 
 | |
|   // buildRegionsTree - build the region hierarchy after all region detected.
 | |
|   void buildRegionsTree(DomTreeNode *N, Region *region);
 | |
| 
 | |
|   // Calculate - detecte all regions in function and build the region tree.
 | |
|   void Calculate(Function& F);
 | |
| 
 | |
|   void releaseMemory();
 | |
| 
 | |
|   // updateStatistics - Update statistic about created regions.
 | |
|   void updateStatistics(Region *R);
 | |
| 
 | |
|   // isSimple - Check if a region is a simple region with exactly one entry
 | |
|   // edge and exactly one exit edge.
 | |
|   bool isSimple(Region* R) const;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
|   explicit RegionInfo();
 | |
| 
 | |
|   ~RegionInfo();
 | |
| 
 | |
|   /// @name FunctionPass interface
 | |
|   //@{
 | |
|   virtual bool runOnFunction(Function &F);
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
|   virtual void print(raw_ostream &OS, const Module *) const;
 | |
|   virtual void verifyAnalysis() const;
 | |
|   //@}
 | |
| 
 | |
|   /// @brief Get the smallest region that contains a BasicBlock.
 | |
|   ///
 | |
|   /// @param BB The basic block.
 | |
|   /// @return The smallest region, that contains BB or NULL, if there is no
 | |
|   /// region containing BB.
 | |
|   Region *getRegionFor(BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief A shortcut for getRegionFor().
 | |
|   ///
 | |
|   /// @param BB The basic block.
 | |
|   /// @return The smallest region, that contains BB or NULL, if there is no
 | |
|   /// region containing BB.
 | |
|   Region *operator[](BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief Return the exit of the maximal refined region, that starts at a
 | |
|   /// BasicBlock.
 | |
|   ///
 | |
|   /// @param BB The BasicBlock the refined region starts.
 | |
|   BasicBlock *getMaxRegionExit(BasicBlock *BB) const;
 | |
| 
 | |
|   /// @brief Find the smallest region that contains two regions.
 | |
|   ///
 | |
|   /// @param A The first region.
 | |
|   /// @param B The second region.
 | |
|   /// @return The smallest region containing A and B.
 | |
|   Region *getCommonRegion(Region* A, Region *B) const;
 | |
| 
 | |
|   /// @brief Find the smallest region that contains two basic blocks.
 | |
|   ///
 | |
|   /// @param A The first basic block.
 | |
|   /// @param B The second basic block.
 | |
|   /// @return The smallest region that contains A and B.
 | |
|   Region* getCommonRegion(BasicBlock* A, BasicBlock *B) const {
 | |
|     return getCommonRegion(getRegionFor(A), getRegionFor(B));
 | |
|   }
 | |
| 
 | |
|   /// @brief Find the smallest region that contains a set of regions.
 | |
|   ///
 | |
|   /// @param Regions A vector of regions.
 | |
|   /// @return The smallest region that contains all regions in Regions.
 | |
|   Region* getCommonRegion(SmallVectorImpl<Region*> &Regions) const;
 | |
| 
 | |
|   /// @brief Find the smallest region that contains a set of basic blocks.
 | |
|   ///
 | |
|   /// @param BBs A vector of basic blocks.
 | |
|   /// @return The smallest region that contains all basic blocks in BBS.
 | |
|   Region* getCommonRegion(SmallVectorImpl<BasicBlock*> &BBs) const;
 | |
| 
 | |
|   Region *getTopLevelRegion() const {
 | |
|     return TopLevelRegion;
 | |
|   }
 | |
| 
 | |
|   /// @brief Clear the Node Cache for all Regions.
 | |
|   ///
 | |
|   /// @see Region::clearNodeCache()
 | |
|   void clearNodeCache() {
 | |
|     if (TopLevelRegion)
 | |
|       TopLevelRegion->clearNodeCache();
 | |
|   }
 | |
| };
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const RegionNode &Node) {
 | |
|   if (Node.isSubRegion())
 | |
|     return OS << Node.getNodeAs<Region>()->getNameStr();
 | |
|   else
 | |
|     return OS << Node.getNodeAs<BasicBlock>()->getNameStr();
 | |
| }
 | |
| } // End llvm namespace
 | |
| #endif
 | |
| 
 |