mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	definition below all of the header #include lines, lib/Transforms/... edition. This one is tricky for two reasons. We again have a couple of passes that define something else before the includes as well. I've sunk their name macros with the DEBUG_TYPE. Also, InstCombine contains headers that need DEBUG_TYPE, so now those headers #define and #undef DEBUG_TYPE around their code, leaving them well formed modular headers. Fixing these headers was a large motivation for all of these changes, as "leaky" macros of this form are hard on the modules implementation. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206844 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1287 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1287 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file contains logic for simplifying instructions based on information
 | 
						|
// about how they are used.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
 | 
						|
/// ShrinkDemandedConstant - Check to see if the specified operand of the
 | 
						|
/// specified instruction is a constant integer.  If so, check to see if there
 | 
						|
/// are any bits set in the constant that are not demanded.  If so, shrink the
 | 
						|
/// constant and return true.
 | 
						|
static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
 | 
						|
                                   APInt Demanded) {
 | 
						|
  assert(I && "No instruction?");
 | 
						|
  assert(OpNo < I->getNumOperands() && "Operand index too large");
 | 
						|
 | 
						|
  // If the operand is not a constant integer, nothing to do.
 | 
						|
  ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
 | 
						|
  if (!OpC) return false;
 | 
						|
 | 
						|
  // If there are no bits set that aren't demanded, nothing to do.
 | 
						|
  Demanded = Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
 | 
						|
  if ((~Demanded & OpC->getValue()) == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // This instruction is producing bits that are not demanded. Shrink the RHS.
 | 
						|
  Demanded &= OpC->getValue();
 | 
						|
  I->setOperand(OpNo, ConstantInt::get(OpC->getType(), Demanded));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// SimplifyDemandedInstructionBits - Inst is an integer instruction that
 | 
						|
/// SimplifyDemandedBits knows about.  See if the instruction has any
 | 
						|
/// properties that allow us to simplify its operands.
 | 
						|
bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
 | 
						|
  unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
 | 
						|
  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
  APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
 | 
						|
 | 
						|
  Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask,
 | 
						|
                                     KnownZero, KnownOne, 0);
 | 
						|
  if (V == 0) return false;
 | 
						|
  if (V == &Inst) return true;
 | 
						|
  ReplaceInstUsesWith(Inst, V);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyDemandedBits - This form of SimplifyDemandedBits simplifies the
 | 
						|
/// specified instruction operand if possible, updating it in place.  It returns
 | 
						|
/// true if it made any change and false otherwise.
 | 
						|
bool InstCombiner::SimplifyDemandedBits(Use &U, APInt DemandedMask,
 | 
						|
                                        APInt &KnownZero, APInt &KnownOne,
 | 
						|
                                        unsigned Depth) {
 | 
						|
  Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask,
 | 
						|
                                          KnownZero, KnownOne, Depth);
 | 
						|
  if (NewVal == 0) return false;
 | 
						|
  U = NewVal;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SimplifyDemandedUseBits - This function attempts to replace V with a simpler
 | 
						|
/// value based on the demanded bits.  When this function is called, it is known
 | 
						|
/// that only the bits set in DemandedMask of the result of V are ever used
 | 
						|
/// downstream. Consequently, depending on the mask and V, it may be possible
 | 
						|
/// to replace V with a constant or one of its operands. In such cases, this
 | 
						|
/// function does the replacement and returns true. In all other cases, it
 | 
						|
/// returns false after analyzing the expression and setting KnownOne and known
 | 
						|
/// to be one in the expression.  KnownZero contains all the bits that are known
 | 
						|
/// to be zero in the expression. These are provided to potentially allow the
 | 
						|
/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
 | 
						|
/// the expression. KnownOne and KnownZero always follow the invariant that
 | 
						|
/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
 | 
						|
/// the bits in KnownOne and KnownZero may only be accurate for those bits set
 | 
						|
/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
 | 
						|
/// and KnownOne must all be the same.
 | 
						|
///
 | 
						|
/// This returns null if it did not change anything and it permits no
 | 
						|
/// simplification.  This returns V itself if it did some simplification of V's
 | 
						|
/// operands based on the information about what bits are demanded. This returns
 | 
						|
/// some other non-null value if it found out that V is equal to another value
 | 
						|
/// in the context where the specified bits are demanded, but not for all users.
 | 
						|
Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
 | 
						|
                                             APInt &KnownZero, APInt &KnownOne,
 | 
						|
                                             unsigned Depth) {
 | 
						|
  assert(V != 0 && "Null pointer of Value???");
 | 
						|
  assert(Depth <= 6 && "Limit Search Depth");
 | 
						|
  uint32_t BitWidth = DemandedMask.getBitWidth();
 | 
						|
  Type *VTy = V->getType();
 | 
						|
  assert((DL || !VTy->isPointerTy()) &&
 | 
						|
         "SimplifyDemandedBits needs to know bit widths!");
 | 
						|
  assert((!DL || DL->getTypeSizeInBits(VTy->getScalarType()) == BitWidth) &&
 | 
						|
         (!VTy->isIntOrIntVectorTy() ||
 | 
						|
          VTy->getScalarSizeInBits() == BitWidth) &&
 | 
						|
         KnownZero.getBitWidth() == BitWidth &&
 | 
						|
         KnownOne.getBitWidth() == BitWidth &&
 | 
						|
         "Value *V, DemandedMask, KnownZero and KnownOne "
 | 
						|
         "must have same BitWidth");
 | 
						|
  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    // We know all of the bits for a constant!
 | 
						|
    KnownOne = CI->getValue() & DemandedMask;
 | 
						|
    KnownZero = ~KnownOne & DemandedMask;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  if (isa<ConstantPointerNull>(V)) {
 | 
						|
    // We know all of the bits for a constant!
 | 
						|
    KnownOne.clearAllBits();
 | 
						|
    KnownZero = DemandedMask;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  KnownZero.clearAllBits();
 | 
						|
  KnownOne.clearAllBits();
 | 
						|
  if (DemandedMask == 0) {   // Not demanding any bits from V.
 | 
						|
    if (isa<UndefValue>(V))
 | 
						|
      return 0;
 | 
						|
    return UndefValue::get(VTy);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Depth == 6)        // Limit search depth.
 | 
						|
    return 0;
 | 
						|
 | 
						|
  APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
 | 
						|
  APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) {
 | 
						|
    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
 | 
						|
    return 0;        // Only analyze instructions.
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are multiple uses of this value and we aren't at the root, then
 | 
						|
  // we can't do any simplifications of the operands, because DemandedMask
 | 
						|
  // only reflects the bits demanded by *one* of the users.
 | 
						|
  if (Depth != 0 && !I->hasOneUse()) {
 | 
						|
    // Despite the fact that we can't simplify this instruction in all User's
 | 
						|
    // context, we can at least compute the knownzero/knownone bits, and we can
 | 
						|
    // do simplifications that apply to *just* the one user if we know that
 | 
						|
    // this instruction has a simpler value in that context.
 | 
						|
    if (I->getOpcode() == Instruction::And) {
 | 
						|
      // If either the LHS or the RHS are Zero, the result is zero.
 | 
						|
      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
 | 
						|
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
 | 
						|
 | 
						|
      // If all of the demanded bits are known 1 on one side, return the other.
 | 
						|
      // These bits cannot contribute to the result of the 'and' in this
 | 
						|
      // context.
 | 
						|
      if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
 | 
						|
          (DemandedMask & ~LHSKnownZero))
 | 
						|
        return I->getOperand(0);
 | 
						|
      if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
 | 
						|
          (DemandedMask & ~RHSKnownZero))
 | 
						|
        return I->getOperand(1);
 | 
						|
 | 
						|
      // If all of the demanded bits in the inputs are known zeros, return zero.
 | 
						|
      if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
 | 
						|
        return Constant::getNullValue(VTy);
 | 
						|
 | 
						|
    } else if (I->getOpcode() == Instruction::Or) {
 | 
						|
      // We can simplify (X|Y) -> X or Y in the user's context if we know that
 | 
						|
      // only bits from X or Y are demanded.
 | 
						|
 | 
						|
      // If either the LHS or the RHS are One, the result is One.
 | 
						|
      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
 | 
						|
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
 | 
						|
 | 
						|
      // If all of the demanded bits are known zero on one side, return the
 | 
						|
      // other.  These bits cannot contribute to the result of the 'or' in this
 | 
						|
      // context.
 | 
						|
      if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
 | 
						|
          (DemandedMask & ~LHSKnownOne))
 | 
						|
        return I->getOperand(0);
 | 
						|
      if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
 | 
						|
          (DemandedMask & ~RHSKnownOne))
 | 
						|
        return I->getOperand(1);
 | 
						|
 | 
						|
      // If all of the potentially set bits on one side are known to be set on
 | 
						|
      // the other side, just use the 'other' side.
 | 
						|
      if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
 | 
						|
          (DemandedMask & (~RHSKnownZero)))
 | 
						|
        return I->getOperand(0);
 | 
						|
      if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
 | 
						|
          (DemandedMask & (~LHSKnownZero)))
 | 
						|
        return I->getOperand(1);
 | 
						|
    } else if (I->getOpcode() == Instruction::Xor) {
 | 
						|
      // We can simplify (X^Y) -> X or Y in the user's context if we know that
 | 
						|
      // only bits from X or Y are demanded.
 | 
						|
 | 
						|
      ComputeMaskedBits(I->getOperand(1), RHSKnownZero, RHSKnownOne, Depth+1);
 | 
						|
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
 | 
						|
 | 
						|
      // If all of the demanded bits are known zero on one side, return the
 | 
						|
      // other.
 | 
						|
      if ((DemandedMask & RHSKnownZero) == DemandedMask)
 | 
						|
        return I->getOperand(0);
 | 
						|
      if ((DemandedMask & LHSKnownZero) == DemandedMask)
 | 
						|
        return I->getOperand(1);
 | 
						|
    }
 | 
						|
 | 
						|
    // Compute the KnownZero/KnownOne bits to simplify things downstream.
 | 
						|
    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this is the root being simplified, allow it to have multiple uses,
 | 
						|
  // just set the DemandedMask to all bits so that we can try to simplify the
 | 
						|
  // operands.  This allows visitTruncInst (for example) to simplify the
 | 
						|
  // operand of a trunc without duplicating all the logic below.
 | 
						|
  if (Depth == 0 && !V->hasOneUse())
 | 
						|
    DemandedMask = APInt::getAllOnesValue(BitWidth);
 | 
						|
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default:
 | 
						|
    ComputeMaskedBits(I, KnownZero, KnownOne, Depth);
 | 
						|
    break;
 | 
						|
  case Instruction::And:
 | 
						|
    // If either the LHS or the RHS are Zero, the result is zero.
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
 | 
						|
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
 | 
						|
        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownZero,
 | 
						|
                             LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // If all of the demanded bits are known 1 on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'and'.
 | 
						|
    if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
 | 
						|
        (DemandedMask & ~LHSKnownZero))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
 | 
						|
        (DemandedMask & ~RHSKnownZero))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If all of the demanded bits in the inputs are known zeros, return zero.
 | 
						|
    if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
 | 
						|
      return Constant::getNullValue(VTy);
 | 
						|
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // Output known-1 bits are only known if set in both the LHS & RHS.
 | 
						|
    KnownOne = RHSKnownOne & LHSKnownOne;
 | 
						|
    // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | 
						|
    KnownZero = RHSKnownZero | LHSKnownZero;
 | 
						|
    break;
 | 
						|
  case Instruction::Or:
 | 
						|
    // If either the LHS or the RHS are One, the result is One.
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
 | 
						|
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
 | 
						|
        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask & ~RHSKnownOne,
 | 
						|
                             LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'or'.
 | 
						|
    if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
 | 
						|
        (DemandedMask & ~LHSKnownOne))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
 | 
						|
        (DemandedMask & ~RHSKnownOne))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If all of the potentially set bits on one side are known to be set on
 | 
						|
    // the other side, just use the 'other' side.
 | 
						|
    if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
 | 
						|
        (DemandedMask & (~RHSKnownZero)))
 | 
						|
      return I->getOperand(0);
 | 
						|
    if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
 | 
						|
        (DemandedMask & (~LHSKnownZero)))
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // Output known-0 bits are only known if clear in both the LHS & RHS.
 | 
						|
    KnownZero = RHSKnownZero & LHSKnownZero;
 | 
						|
    // Output known-1 are known to be set if set in either the LHS | RHS.
 | 
						|
    KnownOne = RHSKnownOne | LHSKnownOne;
 | 
						|
    break;
 | 
						|
  case Instruction::Xor: {
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
 | 
						|
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
 | 
						|
        SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
 | 
						|
                             LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // If all of the demanded bits are known zero on one side, return the other.
 | 
						|
    // These bits cannot contribute to the result of the 'xor'.
 | 
						|
    if ((DemandedMask & RHSKnownZero) == DemandedMask)
 | 
						|
      return I->getOperand(0);
 | 
						|
    if ((DemandedMask & LHSKnownZero) == DemandedMask)
 | 
						|
      return I->getOperand(1);
 | 
						|
 | 
						|
    // If all of the demanded bits are known to be zero on one side or the
 | 
						|
    // other, turn this into an *inclusive* or.
 | 
						|
    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
 | 
						|
    if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
 | 
						|
      Instruction *Or =
 | 
						|
        BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
 | 
						|
                                 I->getName());
 | 
						|
      return InsertNewInstWith(Or, *I);
 | 
						|
    }
 | 
						|
 | 
						|
    // If all of the demanded bits on one side are known, and all of the set
 | 
						|
    // bits on that side are also known to be set on the other side, turn this
 | 
						|
    // into an AND, as we know the bits will be cleared.
 | 
						|
    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
 | 
						|
    if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
 | 
						|
      // all known
 | 
						|
      if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
 | 
						|
        Constant *AndC = Constant::getIntegerValue(VTy,
 | 
						|
                                                   ~RHSKnownOne & DemandedMask);
 | 
						|
        Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
 | 
						|
        return InsertNewInstWith(And, *I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the RHS is a constant, see if we can simplify it.
 | 
						|
    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // If our LHS is an 'and' and if it has one use, and if any of the bits we
 | 
						|
    // are flipping are known to be set, then the xor is just resetting those
 | 
						|
    // bits to zero.  We can just knock out bits from the 'and' and the 'xor',
 | 
						|
    // simplifying both of them.
 | 
						|
    if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
 | 
						|
      if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
 | 
						|
          isa<ConstantInt>(I->getOperand(1)) &&
 | 
						|
          isa<ConstantInt>(LHSInst->getOperand(1)) &&
 | 
						|
          (LHSKnownOne & RHSKnownOne & DemandedMask) != 0) {
 | 
						|
        ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
 | 
						|
        ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
 | 
						|
        APInt NewMask = ~(LHSKnownOne & RHSKnownOne & DemandedMask);
 | 
						|
 | 
						|
        Constant *AndC =
 | 
						|
          ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
 | 
						|
        Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
 | 
						|
        InsertNewInstWith(NewAnd, *I);
 | 
						|
 | 
						|
        Constant *XorC =
 | 
						|
          ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
 | 
						|
        Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
 | 
						|
        return InsertNewInstWith(NewXor, *I);
 | 
						|
      }
 | 
						|
 | 
						|
    // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | 
						|
    KnownZero= (RHSKnownZero & LHSKnownZero) | (RHSKnownOne & LHSKnownOne);
 | 
						|
    // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | 
						|
    KnownOne = (RHSKnownZero & LHSKnownOne) | (RHSKnownOne & LHSKnownZero);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select:
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(2), DemandedMask,
 | 
						|
                             RHSKnownZero, RHSKnownOne, Depth+1) ||
 | 
						|
        SimplifyDemandedBits(I->getOperandUse(1), DemandedMask,
 | 
						|
                             LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    assert(!(RHSKnownZero & RHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
    assert(!(LHSKnownZero & LHSKnownOne) && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // If the operands are constants, see if we can simplify them.
 | 
						|
    if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
 | 
						|
        ShrinkDemandedConstant(I, 2, DemandedMask))
 | 
						|
      return I;
 | 
						|
 | 
						|
    // Only known if known in both the LHS and RHS.
 | 
						|
    KnownOne = RHSKnownOne & LHSKnownOne;
 | 
						|
    KnownZero = RHSKnownZero & LHSKnownZero;
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc: {
 | 
						|
    unsigned truncBf = I->getOperand(0)->getType()->getScalarSizeInBits();
 | 
						|
    DemandedMask = DemandedMask.zext(truncBf);
 | 
						|
    KnownZero = KnownZero.zext(truncBf);
 | 
						|
    KnownOne = KnownOne.zext(truncBf);
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    DemandedMask = DemandedMask.trunc(BitWidth);
 | 
						|
    KnownZero = KnownZero.trunc(BitWidth);
 | 
						|
    KnownOne = KnownOne.trunc(BitWidth);
 | 
						|
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::BitCast:
 | 
						|
    if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
 | 
						|
      return 0;  // vector->int or fp->int?
 | 
						|
 | 
						|
    if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
 | 
						|
      if (VectorType *SrcVTy =
 | 
						|
            dyn_cast<VectorType>(I->getOperand(0)->getType())) {
 | 
						|
        if (DstVTy->getNumElements() != SrcVTy->getNumElements())
 | 
						|
          // Don't touch a bitcast between vectors of different element counts.
 | 
						|
          return 0;
 | 
						|
      } else
 | 
						|
        // Don't touch a scalar-to-vector bitcast.
 | 
						|
        return 0;
 | 
						|
    } else if (I->getOperand(0)->getType()->isVectorTy())
 | 
						|
      // Don't touch a vector-to-scalar bitcast.
 | 
						|
      return 0;
 | 
						|
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
    break;
 | 
						|
  case Instruction::ZExt: {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    DemandedMask = DemandedMask.trunc(SrcBitWidth);
 | 
						|
    KnownZero = KnownZero.trunc(SrcBitWidth);
 | 
						|
    KnownOne = KnownOne.trunc(SrcBitWidth);
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMask,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    DemandedMask = DemandedMask.zext(BitWidth);
 | 
						|
    KnownZero = KnownZero.zext(BitWidth);
 | 
						|
    KnownOne = KnownOne.zext(BitWidth);
 | 
						|
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
    // The top bits are known to be zero.
 | 
						|
    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::SExt: {
 | 
						|
    // Compute the bits in the result that are not present in the input.
 | 
						|
    unsigned SrcBitWidth =I->getOperand(0)->getType()->getScalarSizeInBits();
 | 
						|
 | 
						|
    APInt InputDemandedBits = DemandedMask &
 | 
						|
                              APInt::getLowBitsSet(BitWidth, SrcBitWidth);
 | 
						|
 | 
						|
    APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
 | 
						|
    // If any of the sign extended bits are demanded, we know that the sign
 | 
						|
    // bit is demanded.
 | 
						|
    if ((NewBits & DemandedMask) != 0)
 | 
						|
      InputDemandedBits.setBit(SrcBitWidth-1);
 | 
						|
 | 
						|
    InputDemandedBits = InputDemandedBits.trunc(SrcBitWidth);
 | 
						|
    KnownZero = KnownZero.trunc(SrcBitWidth);
 | 
						|
    KnownOne = KnownOne.trunc(SrcBitWidth);
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(0), InputDemandedBits,
 | 
						|
                             KnownZero, KnownOne, Depth+1))
 | 
						|
      return I;
 | 
						|
    InputDemandedBits = InputDemandedBits.zext(BitWidth);
 | 
						|
    KnownZero = KnownZero.zext(BitWidth);
 | 
						|
    KnownOne = KnownOne.zext(BitWidth);
 | 
						|
    assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
 | 
						|
    // If the sign bit of the input is known set or clear, then we know the
 | 
						|
    // top bits of the result.
 | 
						|
 | 
						|
    // If the input sign bit is known zero, or if the NewBits are not demanded
 | 
						|
    // convert this into a zero extension.
 | 
						|
    if (KnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits) {
 | 
						|
      // Convert to ZExt cast
 | 
						|
      CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
 | 
						|
      return InsertNewInstWith(NewCast, *I);
 | 
						|
    } else if (KnownOne[SrcBitWidth-1]) {    // Input sign bit known set
 | 
						|
      KnownOne |= NewBits;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Add: {
 | 
						|
    // Figure out what the input bits are.  If the top bits of the and result
 | 
						|
    // are not demanded, then the add doesn't demand them from its input
 | 
						|
    // either.
 | 
						|
    unsigned NLZ = DemandedMask.countLeadingZeros();
 | 
						|
 | 
						|
    // If there is a constant on the RHS, there are a variety of xformations
 | 
						|
    // we can do.
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // If null, this should be simplified elsewhere.  Some of the xforms here
 | 
						|
      // won't work if the RHS is zero.
 | 
						|
      if (RHS->isZero())
 | 
						|
        break;
 | 
						|
 | 
						|
      // If the top bit of the output is demanded, demand everything from the
 | 
						|
      // input.  Otherwise, we demand all the input bits except NLZ top bits.
 | 
						|
      APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
 | 
						|
 | 
						|
      // Find information about known zero/one bits in the input.
 | 
						|
      if (SimplifyDemandedBits(I->getOperandUse(0), InDemandedBits,
 | 
						|
                               LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
        return I;
 | 
						|
 | 
						|
      // If the RHS of the add has bits set that can't affect the input, reduce
 | 
						|
      // the constant.
 | 
						|
      if (ShrinkDemandedConstant(I, 1, InDemandedBits))
 | 
						|
        return I;
 | 
						|
 | 
						|
      // Avoid excess work.
 | 
						|
      if (LHSKnownZero == 0 && LHSKnownOne == 0)
 | 
						|
        break;
 | 
						|
 | 
						|
      // Turn it into OR if input bits are zero.
 | 
						|
      if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
 | 
						|
        Instruction *Or =
 | 
						|
          BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
 | 
						|
                                   I->getName());
 | 
						|
        return InsertNewInstWith(Or, *I);
 | 
						|
      }
 | 
						|
 | 
						|
      // We can say something about the output known-zero and known-one bits,
 | 
						|
      // depending on potential carries from the input constant and the
 | 
						|
      // unknowns.  For example if the LHS is known to have at most the 0x0F0F0
 | 
						|
      // bits set and the RHS constant is 0x01001, then we know we have a known
 | 
						|
      // one mask of 0x00001 and a known zero mask of 0xE0F0E.
 | 
						|
 | 
						|
      // To compute this, we first compute the potential carry bits.  These are
 | 
						|
      // the bits which may be modified.  I'm not aware of a better way to do
 | 
						|
      // this scan.
 | 
						|
      const APInt &RHSVal = RHS->getValue();
 | 
						|
      APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
 | 
						|
 | 
						|
      // Now that we know which bits have carries, compute the known-1/0 sets.
 | 
						|
 | 
						|
      // Bits are known one if they are known zero in one operand and one in the
 | 
						|
      // other, and there is no input carry.
 | 
						|
      KnownOne = ((LHSKnownZero & RHSVal) |
 | 
						|
                  (LHSKnownOne & ~RHSVal)) & ~CarryBits;
 | 
						|
 | 
						|
      // Bits are known zero if they are known zero in both operands and there
 | 
						|
      // is no input carry.
 | 
						|
      KnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
 | 
						|
    } else {
 | 
						|
      // If the high-bits of this ADD are not demanded, then it does not demand
 | 
						|
      // the high bits of its LHS or RHS.
 | 
						|
      if (DemandedMask[BitWidth-1] == 0) {
 | 
						|
        // Right fill the mask of bits for this ADD to demand the most
 | 
						|
        // significant bit and all those below it.
 | 
						|
        APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
 | 
						|
        if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
 | 
						|
                                 LHSKnownZero, LHSKnownOne, Depth+1) ||
 | 
						|
            SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
 | 
						|
                                 LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
          return I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Sub:
 | 
						|
    // If the high-bits of this SUB are not demanded, then it does not demand
 | 
						|
    // the high bits of its LHS or RHS.
 | 
						|
    if (DemandedMask[BitWidth-1] == 0) {
 | 
						|
      // Right fill the mask of bits for this SUB to demand the most
 | 
						|
      // significant bit and all those below it.
 | 
						|
      uint32_t NLZ = DemandedMask.countLeadingZeros();
 | 
						|
      APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
 | 
						|
      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedFromOps,
 | 
						|
                               LHSKnownZero, LHSKnownOne, Depth+1) ||
 | 
						|
          SimplifyDemandedBits(I->getOperandUse(1), DemandedFromOps,
 | 
						|
                               LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
        return I;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise just hand the sub off to ComputeMaskedBits to fill in
 | 
						|
    // the known zeros and ones.
 | 
						|
    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
 | 
						|
 | 
						|
    // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
 | 
						|
    // zero.
 | 
						|
    if (ConstantInt *C0 = dyn_cast<ConstantInt>(I->getOperand(0))) {
 | 
						|
      APInt I0 = C0->getValue();
 | 
						|
      if ((I0 + 1).isPowerOf2() && (I0 | KnownZero).isAllOnesValue()) {
 | 
						|
        Instruction *Xor = BinaryOperator::CreateXor(I->getOperand(1), C0);
 | 
						|
        return InsertNewInstWith(Xor, *I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      {
 | 
						|
        Value *VarX; ConstantInt *C1;
 | 
						|
        if (match(I->getOperand(0), m_Shr(m_Value(VarX), m_ConstantInt(C1)))) {
 | 
						|
          Instruction *Shr = cast<Instruction>(I->getOperand(0));
 | 
						|
          Value *R = SimplifyShrShlDemandedBits(Shr, I, DemandedMask,
 | 
						|
                                                KnownZero, KnownOne);
 | 
						|
          if (R)
 | 
						|
            return R;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | 
						|
      APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
 | 
						|
 | 
						|
      // If the shift is NUW/NSW, then it does demand the high bits.
 | 
						|
      ShlOperator *IOp = cast<ShlOperator>(I);
 | 
						|
      if (IOp->hasNoSignedWrap())
 | 
						|
        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
 | 
						|
      else if (IOp->hasNoUnsignedWrap())
 | 
						|
        DemandedMaskIn |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
 | 
						|
 | 
						|
      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
 | 
						|
                               KnownZero, KnownOne, Depth+1))
 | 
						|
        return I;
 | 
						|
      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
      KnownZero <<= ShiftAmt;
 | 
						|
      KnownOne  <<= ShiftAmt;
 | 
						|
      // low bits known zero.
 | 
						|
      if (ShiftAmt)
 | 
						|
        KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::LShr:
 | 
						|
    // For a logical shift right
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | 
						|
 | 
						|
      // Unsigned shift right.
 | 
						|
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | 
						|
 | 
						|
      // If the shift is exact, then it does demand the low bits (and knows that
 | 
						|
      // they are zero).
 | 
						|
      if (cast<LShrOperator>(I)->isExact())
 | 
						|
        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
 | 
						|
      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
 | 
						|
                               KnownZero, KnownOne, Depth+1))
 | 
						|
        return I;
 | 
						|
      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
 | 
						|
      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
 | 
						|
      if (ShiftAmt) {
 | 
						|
        // Compute the new bits that are at the top now.
 | 
						|
        APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
 | 
						|
        KnownZero |= HighBits;  // high bits known zero.
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::AShr:
 | 
						|
    // If this is an arithmetic shift right and only the low-bit is set, we can
 | 
						|
    // always convert this into a logical shr, even if the shift amount is
 | 
						|
    // variable.  The low bit of the shift cannot be an input sign bit unless
 | 
						|
    // the shift amount is >= the size of the datatype, which is undefined.
 | 
						|
    if (DemandedMask == 1) {
 | 
						|
      // Perform the logical shift right.
 | 
						|
      Instruction *NewVal = BinaryOperator::CreateLShr(
 | 
						|
                        I->getOperand(0), I->getOperand(1), I->getName());
 | 
						|
      return InsertNewInstWith(NewVal, *I);
 | 
						|
    }
 | 
						|
 | 
						|
    // If the sign bit is the only bit demanded by this ashr, then there is no
 | 
						|
    // need to do it, the shift doesn't change the high bit.
 | 
						|
    if (DemandedMask.isSignBit())
 | 
						|
      return I->getOperand(0);
 | 
						|
 | 
						|
    if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
 | 
						|
 | 
						|
      // Signed shift right.
 | 
						|
      APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
 | 
						|
      // If any of the "high bits" are demanded, we should set the sign bit as
 | 
						|
      // demanded.
 | 
						|
      if (DemandedMask.countLeadingZeros() <= ShiftAmt)
 | 
						|
        DemandedMaskIn.setBit(BitWidth-1);
 | 
						|
 | 
						|
      // If the shift is exact, then it does demand the low bits (and knows that
 | 
						|
      // they are zero).
 | 
						|
      if (cast<AShrOperator>(I)->isExact())
 | 
						|
        DemandedMaskIn |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
 | 
						|
 | 
						|
      if (SimplifyDemandedBits(I->getOperandUse(0), DemandedMaskIn,
 | 
						|
                               KnownZero, KnownOne, Depth+1))
 | 
						|
        return I;
 | 
						|
      assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
      // Compute the new bits that are at the top now.
 | 
						|
      APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
 | 
						|
      KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
 | 
						|
      KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
 | 
						|
 | 
						|
      // Handle the sign bits.
 | 
						|
      APInt SignBit(APInt::getSignBit(BitWidth));
 | 
						|
      // Adjust to where it is now in the mask.
 | 
						|
      SignBit = APIntOps::lshr(SignBit, ShiftAmt);
 | 
						|
 | 
						|
      // If the input sign bit is known to be zero, or if none of the top bits
 | 
						|
      // are demanded, turn this into an unsigned shift right.
 | 
						|
      if (BitWidth <= ShiftAmt || KnownZero[BitWidth-ShiftAmt-1] ||
 | 
						|
          (HighBits & ~DemandedMask) == HighBits) {
 | 
						|
        // Perform the logical shift right.
 | 
						|
        BinaryOperator *NewVal = BinaryOperator::CreateLShr(I->getOperand(0),
 | 
						|
                                                            SA, I->getName());
 | 
						|
        NewVal->setIsExact(cast<BinaryOperator>(I)->isExact());
 | 
						|
        return InsertNewInstWith(NewVal, *I);
 | 
						|
      } else if ((KnownOne & SignBit) != 0) { // New bits are known one.
 | 
						|
        KnownOne |= HighBits;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::SRem:
 | 
						|
    if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
      // X % -1 demands all the bits because we don't want to introduce
 | 
						|
      // INT_MIN % -1 (== undef) by accident.
 | 
						|
      if (Rem->isAllOnesValue())
 | 
						|
        break;
 | 
						|
      APInt RA = Rem->getValue().abs();
 | 
						|
      if (RA.isPowerOf2()) {
 | 
						|
        if (DemandedMask.ult(RA))    // srem won't affect demanded bits
 | 
						|
          return I->getOperand(0);
 | 
						|
 | 
						|
        APInt LowBits = RA - 1;
 | 
						|
        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
 | 
						|
        if (SimplifyDemandedBits(I->getOperandUse(0), Mask2,
 | 
						|
                                 LHSKnownZero, LHSKnownOne, Depth+1))
 | 
						|
          return I;
 | 
						|
 | 
						|
        // The low bits of LHS are unchanged by the srem.
 | 
						|
        KnownZero = LHSKnownZero & LowBits;
 | 
						|
        KnownOne = LHSKnownOne & LowBits;
 | 
						|
 | 
						|
        // If LHS is non-negative or has all low bits zero, then the upper bits
 | 
						|
        // are all zero.
 | 
						|
        if (LHSKnownZero[BitWidth-1] || ((LHSKnownZero & LowBits) == LowBits))
 | 
						|
          KnownZero |= ~LowBits;
 | 
						|
 | 
						|
        // If LHS is negative and not all low bits are zero, then the upper bits
 | 
						|
        // are all one.
 | 
						|
        if (LHSKnownOne[BitWidth-1] && ((LHSKnownOne & LowBits) != 0))
 | 
						|
          KnownOne |= ~LowBits;
 | 
						|
 | 
						|
        assert(!(KnownZero & KnownOne) && "Bits known to be one AND zero?");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // The sign bit is the LHS's sign bit, except when the result of the
 | 
						|
    // remainder is zero.
 | 
						|
    if (DemandedMask.isNegative() && KnownZero.isNonNegative()) {
 | 
						|
      APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
 | 
						|
      ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth+1);
 | 
						|
      // If it's known zero, our sign bit is also zero.
 | 
						|
      if (LHSKnownZero.isNegative())
 | 
						|
        KnownZero.setBit(KnownZero.getBitWidth() - 1);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Instruction::URem: {
 | 
						|
    APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
 | 
						|
    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | 
						|
    if (SimplifyDemandedBits(I->getOperandUse(0), AllOnes,
 | 
						|
                             KnownZero2, KnownOne2, Depth+1) ||
 | 
						|
        SimplifyDemandedBits(I->getOperandUse(1), AllOnes,
 | 
						|
                             KnownZero2, KnownOne2, Depth+1))
 | 
						|
      return I;
 | 
						|
 | 
						|
    unsigned Leaders = KnownZero2.countLeadingOnes();
 | 
						|
    Leaders = std::max(Leaders,
 | 
						|
                       KnownZero2.countLeadingOnes());
 | 
						|
    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Call:
 | 
						|
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      default: break;
 | 
						|
      case Intrinsic::bswap: {
 | 
						|
        // If the only bits demanded come from one byte of the bswap result,
 | 
						|
        // just shift the input byte into position to eliminate the bswap.
 | 
						|
        unsigned NLZ = DemandedMask.countLeadingZeros();
 | 
						|
        unsigned NTZ = DemandedMask.countTrailingZeros();
 | 
						|
 | 
						|
        // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
 | 
						|
        // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
 | 
						|
        // have 14 leading zeros, round to 8.
 | 
						|
        NLZ &= ~7;
 | 
						|
        NTZ &= ~7;
 | 
						|
        // If we need exactly one byte, we can do this transformation.
 | 
						|
        if (BitWidth-NLZ-NTZ == 8) {
 | 
						|
          unsigned ResultBit = NTZ;
 | 
						|
          unsigned InputBit = BitWidth-NTZ-8;
 | 
						|
 | 
						|
          // Replace this with either a left or right shift to get the byte into
 | 
						|
          // the right place.
 | 
						|
          Instruction *NewVal;
 | 
						|
          if (InputBit > ResultBit)
 | 
						|
            NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
 | 
						|
                    ConstantInt::get(I->getType(), InputBit-ResultBit));
 | 
						|
          else
 | 
						|
            NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
 | 
						|
                    ConstantInt::get(I->getType(), ResultBit-InputBit));
 | 
						|
          NewVal->takeName(I);
 | 
						|
          return InsertNewInstWith(NewVal, *I);
 | 
						|
        }
 | 
						|
 | 
						|
        // TODO: Could compute known zero/one bits based on the input.
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Intrinsic::x86_sse42_crc32_64_64:
 | 
						|
        KnownZero = APInt::getHighBitsSet(64, 32);
 | 
						|
        return 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ComputeMaskedBits(V, KnownZero, KnownOne, Depth);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the client is only demanding bits that we know, return the known
 | 
						|
  // constant.
 | 
						|
  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
 | 
						|
    return Constant::getIntegerValue(VTy, KnownOne);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
 | 
						|
/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
 | 
						|
/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
 | 
						|
/// of "C2-C1".
 | 
						|
///
 | 
						|
/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
 | 
						|
/// ..., bn}, without considering the specific value X is holding.
 | 
						|
/// This transformation is legal iff one of following conditions is hold:
 | 
						|
///  1) All the bit in S are 0, in this case E1 == E2.
 | 
						|
///  2) We don't care those bits in S, per the input DemandedMask.
 | 
						|
///  3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
 | 
						|
///     rest bits.
 | 
						|
///
 | 
						|
/// Currently we only test condition 2).
 | 
						|
///
 | 
						|
/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
 | 
						|
/// not successful.
 | 
						|
Value *InstCombiner::SimplifyShrShlDemandedBits(Instruction *Shr,
 | 
						|
  Instruction *Shl, APInt DemandedMask, APInt &KnownZero, APInt &KnownOne) {
 | 
						|
 | 
						|
  const APInt &ShlOp1 = cast<ConstantInt>(Shl->getOperand(1))->getValue();
 | 
						|
  const APInt &ShrOp1 = cast<ConstantInt>(Shr->getOperand(1))->getValue();
 | 
						|
  if (!ShlOp1 || !ShrOp1)
 | 
						|
      return 0; // Noop.
 | 
						|
 | 
						|
  Value *VarX = Shr->getOperand(0);
 | 
						|
  Type *Ty = VarX->getType();
 | 
						|
  unsigned BitWidth = Ty->getIntegerBitWidth();
 | 
						|
  if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
 | 
						|
    return 0; // Undef.
 | 
						|
 | 
						|
  unsigned ShlAmt = ShlOp1.getZExtValue();
 | 
						|
  unsigned ShrAmt = ShrOp1.getZExtValue();
 | 
						|
 | 
						|
  KnownOne.clearAllBits();
 | 
						|
  KnownZero = APInt::getBitsSet(KnownZero.getBitWidth(), 0, ShlAmt-1);
 | 
						|
  KnownZero &= DemandedMask;
 | 
						|
 | 
						|
  APInt BitMask1(APInt::getAllOnesValue(BitWidth));
 | 
						|
  APInt BitMask2(APInt::getAllOnesValue(BitWidth));
 | 
						|
 | 
						|
  bool isLshr = (Shr->getOpcode() == Instruction::LShr);
 | 
						|
  BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
 | 
						|
                      (BitMask1.ashr(ShrAmt) << ShlAmt);
 | 
						|
 | 
						|
  if (ShrAmt <= ShlAmt) {
 | 
						|
    BitMask2 <<= (ShlAmt - ShrAmt);
 | 
						|
  } else {
 | 
						|
    BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
 | 
						|
                        BitMask2.ashr(ShrAmt - ShlAmt);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if condition-2 (see the comment to this function) is satified.
 | 
						|
  if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
 | 
						|
    if (ShrAmt == ShlAmt)
 | 
						|
      return VarX;
 | 
						|
 | 
						|
    if (!Shr->hasOneUse())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    BinaryOperator *New;
 | 
						|
    if (ShrAmt < ShlAmt) {
 | 
						|
      Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
 | 
						|
      New = BinaryOperator::CreateShl(VarX, Amt);
 | 
						|
      BinaryOperator *Orig = cast<BinaryOperator>(Shl);
 | 
						|
      New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
 | 
						|
      New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
 | 
						|
    } else {
 | 
						|
      Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
 | 
						|
      New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
 | 
						|
                     BinaryOperator::CreateAShr(VarX, Amt);
 | 
						|
      if (cast<BinaryOperator>(Shr)->isExact())
 | 
						|
        New->setIsExact(true);
 | 
						|
    }
 | 
						|
 | 
						|
    return InsertNewInstWith(New, *Shl);
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyDemandedVectorElts - The specified value produces a vector with
 | 
						|
/// any number of elements. DemandedElts contains the set of elements that are
 | 
						|
/// actually used by the caller.  This method analyzes which elements of the
 | 
						|
/// operand are undef and returns that information in UndefElts.
 | 
						|
///
 | 
						|
/// If the information about demanded elements can be used to simplify the
 | 
						|
/// operation, the operation is simplified, then the resultant value is
 | 
						|
/// returned.  This returns null if no change was made.
 | 
						|
Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
 | 
						|
                                                APInt &UndefElts,
 | 
						|
                                                unsigned Depth) {
 | 
						|
  unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
 | 
						|
  APInt EltMask(APInt::getAllOnesValue(VWidth));
 | 
						|
  assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
 | 
						|
 | 
						|
  if (isa<UndefValue>(V)) {
 | 
						|
    // If the entire vector is undefined, just return this info.
 | 
						|
    UndefElts = EltMask;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (DemandedElts == 0) { // If nothing is demanded, provide undef.
 | 
						|
    UndefElts = EltMask;
 | 
						|
    return UndefValue::get(V->getType());
 | 
						|
  }
 | 
						|
 | 
						|
  UndefElts = 0;
 | 
						|
 | 
						|
  // Handle ConstantAggregateZero, ConstantVector, ConstantDataSequential.
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    // Check if this is identity. If so, return 0 since we are not simplifying
 | 
						|
    // anything.
 | 
						|
    if (DemandedElts.isAllOnesValue())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    Type *EltTy = cast<VectorType>(V->getType())->getElementType();
 | 
						|
    Constant *Undef = UndefValue::get(EltTy);
 | 
						|
 | 
						|
    SmallVector<Constant*, 16> Elts;
 | 
						|
    for (unsigned i = 0; i != VWidth; ++i) {
 | 
						|
      if (!DemandedElts[i]) {   // If not demanded, set to undef.
 | 
						|
        Elts.push_back(Undef);
 | 
						|
        UndefElts.setBit(i);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Constant *Elt = C->getAggregateElement(i);
 | 
						|
      if (Elt == 0) return 0;
 | 
						|
 | 
						|
      if (isa<UndefValue>(Elt)) {   // Already undef.
 | 
						|
        Elts.push_back(Undef);
 | 
						|
        UndefElts.setBit(i);
 | 
						|
      } else {                               // Otherwise, defined.
 | 
						|
        Elts.push_back(Elt);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we changed the constant, return it.
 | 
						|
    Constant *NewCV = ConstantVector::get(Elts);
 | 
						|
    return NewCV != C ? NewCV : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Limit search depth.
 | 
						|
  if (Depth == 10)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // If multiple users are using the root value, proceed with
 | 
						|
  // simplification conservatively assuming that all elements
 | 
						|
  // are needed.
 | 
						|
  if (!V->hasOneUse()) {
 | 
						|
    // Quit if we find multiple users of a non-root value though.
 | 
						|
    // They'll be handled when it's their turn to be visited by
 | 
						|
    // the main instcombine process.
 | 
						|
    if (Depth != 0)
 | 
						|
      // TODO: Just compute the UndefElts information recursively.
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // Conservatively assume that all elements are needed.
 | 
						|
    DemandedElts = EltMask;
 | 
						|
  }
 | 
						|
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (!I) return 0;        // Only analyze instructions.
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  APInt UndefElts2(VWidth, 0);
 | 
						|
  Value *TmpV;
 | 
						|
  switch (I->getOpcode()) {
 | 
						|
  default: break;
 | 
						|
 | 
						|
  case Instruction::InsertElement: {
 | 
						|
    // If this is a variable index, we don't know which element it overwrites.
 | 
						|
    // demand exactly the same input as we produce.
 | 
						|
    ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
 | 
						|
    if (Idx == 0) {
 | 
						|
      // Note that we can't propagate undef elt info, because we don't know
 | 
						|
      // which elt is getting updated.
 | 
						|
      TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | 
						|
                                        UndefElts2, Depth+1);
 | 
						|
      if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is inserting an element that isn't demanded, remove this
 | 
						|
    // insertelement.
 | 
						|
    unsigned IdxNo = Idx->getZExtValue();
 | 
						|
    if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
 | 
						|
      Worklist.Add(I);
 | 
						|
      return I->getOperand(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, the element inserted overwrites whatever was there, so the
 | 
						|
    // input demanded set is simpler than the output set.
 | 
						|
    APInt DemandedElts2 = DemandedElts;
 | 
						|
    DemandedElts2.clearBit(IdxNo);
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts2,
 | 
						|
                                      UndefElts, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    // The inserted element is defined.
 | 
						|
    UndefElts.clearBit(IdxNo);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::ShuffleVector: {
 | 
						|
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
 | 
						|
    uint64_t LHSVWidth =
 | 
						|
      cast<VectorType>(Shuffle->getOperand(0)->getType())->getNumElements();
 | 
						|
    APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
 | 
						|
    for (unsigned i = 0; i < VWidth; i++) {
 | 
						|
      if (DemandedElts[i]) {
 | 
						|
        unsigned MaskVal = Shuffle->getMaskValue(i);
 | 
						|
        if (MaskVal != -1u) {
 | 
						|
          assert(MaskVal < LHSVWidth * 2 &&
 | 
						|
                 "shufflevector mask index out of range!");
 | 
						|
          if (MaskVal < LHSVWidth)
 | 
						|
            LeftDemanded.setBit(MaskVal);
 | 
						|
          else
 | 
						|
            RightDemanded.setBit(MaskVal - LHSVWidth);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    APInt UndefElts4(LHSVWidth, 0);
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), LeftDemanded,
 | 
						|
                                      UndefElts4, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    APInt UndefElts3(LHSVWidth, 0);
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), RightDemanded,
 | 
						|
                                      UndefElts3, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    bool NewUndefElts = false;
 | 
						|
    for (unsigned i = 0; i < VWidth; i++) {
 | 
						|
      unsigned MaskVal = Shuffle->getMaskValue(i);
 | 
						|
      if (MaskVal == -1u) {
 | 
						|
        UndefElts.setBit(i);
 | 
						|
      } else if (!DemandedElts[i]) {
 | 
						|
        NewUndefElts = true;
 | 
						|
        UndefElts.setBit(i);
 | 
						|
      } else if (MaskVal < LHSVWidth) {
 | 
						|
        if (UndefElts4[MaskVal]) {
 | 
						|
          NewUndefElts = true;
 | 
						|
          UndefElts.setBit(i);
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        if (UndefElts3[MaskVal - LHSVWidth]) {
 | 
						|
          NewUndefElts = true;
 | 
						|
          UndefElts.setBit(i);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NewUndefElts) {
 | 
						|
      // Add additional discovered undefs.
 | 
						|
      SmallVector<Constant*, 16> Elts;
 | 
						|
      for (unsigned i = 0; i < VWidth; ++i) {
 | 
						|
        if (UndefElts[i])
 | 
						|
          Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
 | 
						|
        else
 | 
						|
          Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
 | 
						|
                                          Shuffle->getMaskValue(i)));
 | 
						|
      }
 | 
						|
      I->setOperand(2, ConstantVector::get(Elts));
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::Select: {
 | 
						|
    APInt LeftDemanded(DemandedElts), RightDemanded(DemandedElts);
 | 
						|
    if (ConstantVector* CV = dyn_cast<ConstantVector>(I->getOperand(0))) {
 | 
						|
      for (unsigned i = 0; i < VWidth; i++) {
 | 
						|
        if (CV->getAggregateElement(i)->isNullValue())
 | 
						|
          LeftDemanded.clearBit(i);
 | 
						|
        else
 | 
						|
          RightDemanded.clearBit(i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), LeftDemanded,
 | 
						|
                                      UndefElts, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(2), RightDemanded,
 | 
						|
                                      UndefElts2, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(2, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    // Output elements are undefined if both are undefined.
 | 
						|
    UndefElts &= UndefElts2;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::BitCast: {
 | 
						|
    // Vector->vector casts only.
 | 
						|
    VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
 | 
						|
    if (!VTy) break;
 | 
						|
    unsigned InVWidth = VTy->getNumElements();
 | 
						|
    APInt InputDemandedElts(InVWidth, 0);
 | 
						|
    unsigned Ratio;
 | 
						|
 | 
						|
    if (VWidth == InVWidth) {
 | 
						|
      // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
 | 
						|
      // elements as are demanded of us.
 | 
						|
      Ratio = 1;
 | 
						|
      InputDemandedElts = DemandedElts;
 | 
						|
    } else if (VWidth > InVWidth) {
 | 
						|
      // Untested so far.
 | 
						|
      break;
 | 
						|
 | 
						|
      // If there are more elements in the result than there are in the source,
 | 
						|
      // then an input element is live if any of the corresponding output
 | 
						|
      // elements are live.
 | 
						|
      Ratio = VWidth/InVWidth;
 | 
						|
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
 | 
						|
        if (DemandedElts[OutIdx])
 | 
						|
          InputDemandedElts.setBit(OutIdx/Ratio);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Untested so far.
 | 
						|
      break;
 | 
						|
 | 
						|
      // If there are more elements in the source than there are in the result,
 | 
						|
      // then an input element is live if the corresponding output element is
 | 
						|
      // live.
 | 
						|
      Ratio = InVWidth/VWidth;
 | 
						|
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
 | 
						|
        if (DemandedElts[InIdx/Ratio])
 | 
						|
          InputDemandedElts.setBit(InIdx);
 | 
						|
    }
 | 
						|
 | 
						|
    // div/rem demand all inputs, because they don't want divide by zero.
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
 | 
						|
                                      UndefElts2, Depth+1);
 | 
						|
    if (TmpV) {
 | 
						|
      I->setOperand(0, TmpV);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
 | 
						|
    UndefElts = UndefElts2;
 | 
						|
    if (VWidth > InVWidth) {
 | 
						|
      llvm_unreachable("Unimp");
 | 
						|
      // If there are more elements in the result than there are in the source,
 | 
						|
      // then an output element is undef if the corresponding input element is
 | 
						|
      // undef.
 | 
						|
      for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
 | 
						|
        if (UndefElts2[OutIdx/Ratio])
 | 
						|
          UndefElts.setBit(OutIdx);
 | 
						|
    } else if (VWidth < InVWidth) {
 | 
						|
      llvm_unreachable("Unimp");
 | 
						|
      // If there are more elements in the source than there are in the result,
 | 
						|
      // then a result element is undef if all of the corresponding input
 | 
						|
      // elements are undef.
 | 
						|
      UndefElts = ~0ULL >> (64-VWidth);  // Start out all undef.
 | 
						|
      for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
 | 
						|
        if (!UndefElts2[InIdx])            // Not undef?
 | 
						|
          UndefElts.clearBit(InIdx/Ratio);    // Clear undef bit.
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
    // div/rem demand all inputs, because they don't want divide by zero.
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | 
						|
                                      UndefElts, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
 | 
						|
                                      UndefElts2, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
    // Output elements are undefined if both are undefined.  Consider things
 | 
						|
    // like undef&0.  The result is known zero, not undef.
 | 
						|
    UndefElts &= UndefElts2;
 | 
						|
    break;
 | 
						|
  case Instruction::FPTrunc:
 | 
						|
  case Instruction::FPExt:
 | 
						|
    TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
 | 
						|
                                      UndefElts, Depth+1);
 | 
						|
    if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Instruction::Call: {
 | 
						|
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
 | 
						|
    if (!II) break;
 | 
						|
    switch (II->getIntrinsicID()) {
 | 
						|
    default: break;
 | 
						|
 | 
						|
    // Binary vector operations that work column-wise.  A dest element is a
 | 
						|
    // function of the corresponding input elements from the two inputs.
 | 
						|
    case Intrinsic::x86_sse_sub_ss:
 | 
						|
    case Intrinsic::x86_sse_mul_ss:
 | 
						|
    case Intrinsic::x86_sse_min_ss:
 | 
						|
    case Intrinsic::x86_sse_max_ss:
 | 
						|
    case Intrinsic::x86_sse2_sub_sd:
 | 
						|
    case Intrinsic::x86_sse2_mul_sd:
 | 
						|
    case Intrinsic::x86_sse2_min_sd:
 | 
						|
    case Intrinsic::x86_sse2_max_sd:
 | 
						|
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0), DemandedElts,
 | 
						|
                                        UndefElts, Depth+1);
 | 
						|
      if (TmpV) { II->setArgOperand(0, TmpV); MadeChange = true; }
 | 
						|
      TmpV = SimplifyDemandedVectorElts(II->getArgOperand(1), DemandedElts,
 | 
						|
                                        UndefElts2, Depth+1);
 | 
						|
      if (TmpV) { II->setArgOperand(1, TmpV); MadeChange = true; }
 | 
						|
 | 
						|
      // If only the low elt is demanded and this is a scalarizable intrinsic,
 | 
						|
      // scalarize it now.
 | 
						|
      if (DemandedElts == 1) {
 | 
						|
        switch (II->getIntrinsicID()) {
 | 
						|
        default: break;
 | 
						|
        case Intrinsic::x86_sse_sub_ss:
 | 
						|
        case Intrinsic::x86_sse_mul_ss:
 | 
						|
        case Intrinsic::x86_sse2_sub_sd:
 | 
						|
        case Intrinsic::x86_sse2_mul_sd:
 | 
						|
          // TODO: Lower MIN/MAX/ABS/etc
 | 
						|
          Value *LHS = II->getArgOperand(0);
 | 
						|
          Value *RHS = II->getArgOperand(1);
 | 
						|
          // Extract the element as scalars.
 | 
						|
          LHS = InsertNewInstWith(ExtractElementInst::Create(LHS,
 | 
						|
            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
 | 
						|
          RHS = InsertNewInstWith(ExtractElementInst::Create(RHS,
 | 
						|
            ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U)), *II);
 | 
						|
 | 
						|
          switch (II->getIntrinsicID()) {
 | 
						|
          default: llvm_unreachable("Case stmts out of sync!");
 | 
						|
          case Intrinsic::x86_sse_sub_ss:
 | 
						|
          case Intrinsic::x86_sse2_sub_sd:
 | 
						|
            TmpV = InsertNewInstWith(BinaryOperator::CreateFSub(LHS, RHS,
 | 
						|
                                                        II->getName()), *II);
 | 
						|
            break;
 | 
						|
          case Intrinsic::x86_sse_mul_ss:
 | 
						|
          case Intrinsic::x86_sse2_mul_sd:
 | 
						|
            TmpV = InsertNewInstWith(BinaryOperator::CreateFMul(LHS, RHS,
 | 
						|
                                                         II->getName()), *II);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          Instruction *New =
 | 
						|
            InsertElementInst::Create(
 | 
						|
              UndefValue::get(II->getType()), TmpV,
 | 
						|
              ConstantInt::get(Type::getInt32Ty(I->getContext()), 0U, false),
 | 
						|
                                      II->getName());
 | 
						|
          InsertNewInstWith(New, *II);
 | 
						|
          return New;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Output elements are undefined if both are undefined.  Consider things
 | 
						|
      // like undef&0.  The result is known zero, not undef.
 | 
						|
      UndefElts &= UndefElts2;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
  return MadeChange ? I : 0;
 | 
						|
}
 |