mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Use -stats to see how many loops were analyzed for possible vectorization and how many of them were actually vectorized. Patch by Zinovy Nis Differential Revision: http://reviews.llvm.org/D3438 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206956 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5851 lines
		
	
	
		
			218 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5851 lines
		
	
	
		
			218 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
 | |
| // and generates target-independent LLVM-IR.
 | |
| // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
 | |
| // of instructions in order to estimate the profitability of vectorization.
 | |
| //
 | |
| // The loop vectorizer combines consecutive loop iterations into a single
 | |
| // 'wide' iteration. After this transformation the index is incremented
 | |
| // by the SIMD vector width, and not by one.
 | |
| //
 | |
| // This pass has three parts:
 | |
| // 1. The main loop pass that drives the different parts.
 | |
| // 2. LoopVectorizationLegality - A unit that checks for the legality
 | |
| //    of the vectorization.
 | |
| // 3. InnerLoopVectorizer - A unit that performs the actual
 | |
| //    widening of instructions.
 | |
| // 4. LoopVectorizationCostModel - A unit that checks for the profitability
 | |
| //    of vectorization. It decides on the optimal vector width, which
 | |
| //    can be one, if vectorization is not profitable.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The reduction-variable vectorization is based on the paper:
 | |
| //  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
 | |
| //
 | |
| // Variable uniformity checks are inspired by:
 | |
| //  Karrenberg, R. and Hack, S. Whole Function Vectorization.
 | |
| //
 | |
| // Other ideas/concepts are from:
 | |
| //  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
 | |
| //
 | |
| //  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
 | |
| //  Vectorizing Compilers.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/MapVector.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/BlockFrequencyInfo.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/BranchProbability.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/VectorUtils.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| #define LV_NAME "loop-vectorize"
 | |
| #define DEBUG_TYPE LV_NAME
 | |
| 
 | |
| STATISTIC(LoopsVectorized, "Number of loops vectorized");
 | |
| STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
 | |
|                     cl::desc("Sets the SIMD width. Zero is autoselect."));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
 | |
|                     cl::desc("Sets the vectorization unroll count. "
 | |
|                              "Zero is autoselect."));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
 | |
|                    cl::desc("Enable if-conversion during vectorization."));
 | |
| 
 | |
| /// We don't vectorize loops with a known constant trip count below this number.
 | |
| static cl::opt<unsigned>
 | |
| TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
 | |
|                              cl::Hidden,
 | |
|                              cl::desc("Don't vectorize loops with a constant "
 | |
|                                       "trip count that is smaller than this "
 | |
|                                       "value."));
 | |
| 
 | |
| /// This enables versioning on the strides of symbolically striding memory
 | |
| /// accesses in code like the following.
 | |
| ///   for (i = 0; i < N; ++i)
 | |
| ///     A[i * Stride1] += B[i * Stride2] ...
 | |
| ///
 | |
| /// Will be roughly translated to
 | |
| ///    if (Stride1 == 1 && Stride2 == 1) {
 | |
| ///      for (i = 0; i < N; i+=4)
 | |
| ///       A[i:i+3] += ...
 | |
| ///    } else
 | |
| ///      ...
 | |
| static cl::opt<bool> EnableMemAccessVersioning(
 | |
|     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Enable symblic stride memory access versioning"));
 | |
| 
 | |
| /// We don't unroll loops with a known constant trip count below this number.
 | |
| static const unsigned TinyTripCountUnrollThreshold = 128;
 | |
| 
 | |
| /// When performing memory disambiguation checks at runtime do not make more
 | |
| /// than this number of comparisons.
 | |
| static const unsigned RuntimeMemoryCheckThreshold = 8;
 | |
| 
 | |
| /// Maximum simd width.
 | |
| static const unsigned MaxVectorWidth = 64;
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetNumScalarRegs(
 | |
|     "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's number of scalar registers."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetNumVectorRegs(
 | |
|     "force-target-num-vector-regs", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's number of vector registers."));
 | |
| 
 | |
| /// Maximum vectorization unroll count.
 | |
| static const unsigned MaxUnrollFactor = 16;
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetMaxScalarUnrollFactor(
 | |
|     "force-target-max-scalar-unroll", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's max unroll factor for scalar "
 | |
|              "loops."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetMaxVectorUnrollFactor(
 | |
|     "force-target-max-vector-unroll", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's max unroll factor for "
 | |
|              "vectorized loops."));
 | |
| 
 | |
| static cl::opt<unsigned> ForceTargetInstructionCost(
 | |
|     "force-target-instruction-cost", cl::init(0), cl::Hidden,
 | |
|     cl::desc("A flag that overrides the target's expected cost for "
 | |
|              "an instruction to a single constant value. Mostly "
 | |
|              "useful for getting consistent testing."));
 | |
| 
 | |
| static cl::opt<unsigned> SmallLoopCost(
 | |
|     "small-loop-cost", cl::init(20), cl::Hidden,
 | |
|     cl::desc("The cost of a loop that is considered 'small' by the unroller."));
 | |
| 
 | |
| static cl::opt<bool> LoopVectorizeWithBlockFrequency(
 | |
|     "loop-vectorize-with-block-frequency", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Enable the use of the block frequency analysis to access PGO "
 | |
|              "heuristics minimizing code growth in cold regions and being more "
 | |
|              "aggressive in hot regions."));
 | |
| 
 | |
| // Runtime unroll loops for load/store throughput.
 | |
| static cl::opt<bool> EnableLoadStoreRuntimeUnroll(
 | |
|     "enable-loadstore-runtime-unroll", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Enable runtime unrolling until load/store ports are saturated"));
 | |
| 
 | |
| /// The number of stores in a loop that are allowed to need predication.
 | |
| static cl::opt<unsigned> NumberOfStoresToPredicate(
 | |
|     "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
 | |
|     cl::desc("Max number of stores to be predicated behind an if."));
 | |
| 
 | |
| static cl::opt<bool> EnableIndVarRegisterHeur(
 | |
|     "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
 | |
|     cl::desc("Count the induction variable only once when unrolling"));
 | |
| 
 | |
| static cl::opt<bool> EnableCondStoresVectorization(
 | |
|     "enable-cond-stores-vec", cl::init(false), cl::Hidden,
 | |
|     cl::desc("Enable if predication of stores during vectorization."));
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Forward declarations.
 | |
| class LoopVectorizationLegality;
 | |
| class LoopVectorizationCostModel;
 | |
| 
 | |
| /// InnerLoopVectorizer vectorizes loops which contain only one basic
 | |
| /// block to a specified vectorization factor (VF).
 | |
| /// This class performs the widening of scalars into vectors, or multiple
 | |
| /// scalars. This class also implements the following features:
 | |
| /// * It inserts an epilogue loop for handling loops that don't have iteration
 | |
| ///   counts that are known to be a multiple of the vectorization factor.
 | |
| /// * It handles the code generation for reduction variables.
 | |
| /// * Scalarization (implementation using scalars) of un-vectorizable
 | |
| ///   instructions.
 | |
| /// InnerLoopVectorizer does not perform any vectorization-legality
 | |
| /// checks, and relies on the caller to check for the different legality
 | |
| /// aspects. The InnerLoopVectorizer relies on the
 | |
| /// LoopVectorizationLegality class to provide information about the induction
 | |
| /// and reduction variables that were found to a given vectorization factor.
 | |
| class InnerLoopVectorizer {
 | |
| public:
 | |
|   InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
 | |
|                       DominatorTree *DT, const DataLayout *DL,
 | |
|                       const TargetLibraryInfo *TLI, unsigned VecWidth,
 | |
|                       unsigned UnrollFactor)
 | |
|       : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
 | |
|         VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
 | |
|         OldInduction(0), WidenMap(UnrollFactor), Legal(0) {}
 | |
| 
 | |
|   // Perform the actual loop widening (vectorization).
 | |
|   void vectorize(LoopVectorizationLegality *L) {
 | |
|     Legal = L;
 | |
|     // Create a new empty loop. Unlink the old loop and connect the new one.
 | |
|     createEmptyLoop();
 | |
|     // Widen each instruction in the old loop to a new one in the new loop.
 | |
|     // Use the Legality module to find the induction and reduction variables.
 | |
|     vectorizeLoop();
 | |
|     // Register the new loop and update the analysis passes.
 | |
|     updateAnalysis();
 | |
|   }
 | |
| 
 | |
|   virtual ~InnerLoopVectorizer() {}
 | |
| 
 | |
| protected:
 | |
|   /// A small list of PHINodes.
 | |
|   typedef SmallVector<PHINode*, 4> PhiVector;
 | |
|   /// When we unroll loops we have multiple vector values for each scalar.
 | |
|   /// This data structure holds the unrolled and vectorized values that
 | |
|   /// originated from one scalar instruction.
 | |
|   typedef SmallVector<Value*, 2> VectorParts;
 | |
| 
 | |
|   // When we if-convert we need create edge masks. We have to cache values so
 | |
|   // that we don't end up with exponential recursion/IR.
 | |
|   typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
 | |
|                    VectorParts> EdgeMaskCache;
 | |
| 
 | |
|   /// \brief Add code that checks at runtime if the accessed arrays overlap.
 | |
|   ///
 | |
|   /// Returns a pair of instructions where the first element is the first
 | |
|   /// instruction generated in possibly a sequence of instructions and the
 | |
|   /// second value is the final comparator value or NULL if no check is needed.
 | |
|   std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
 | |
| 
 | |
|   /// \brief Add checks for strides that where assumed to be 1.
 | |
|   ///
 | |
|   /// Returns the last check instruction and the first check instruction in the
 | |
|   /// pair as (first, last).
 | |
|   std::pair<Instruction *, Instruction *> addStrideCheck(Instruction *Loc);
 | |
| 
 | |
|   /// Create an empty loop, based on the loop ranges of the old loop.
 | |
|   void createEmptyLoop();
 | |
|   /// Copy and widen the instructions from the old loop.
 | |
|   virtual void vectorizeLoop();
 | |
| 
 | |
|   /// \brief The Loop exit block may have single value PHI nodes where the
 | |
|   /// incoming value is 'Undef'. While vectorizing we only handled real values
 | |
|   /// that were defined inside the loop. Here we fix the 'undef case'.
 | |
|   /// See PR14725.
 | |
|   void fixLCSSAPHIs();
 | |
| 
 | |
|   /// A helper function that computes the predicate of the block BB, assuming
 | |
|   /// that the header block of the loop is set to True. It returns the *entry*
 | |
|   /// mask for the block BB.
 | |
|   VectorParts createBlockInMask(BasicBlock *BB);
 | |
|   /// A helper function that computes the predicate of the edge between SRC
 | |
|   /// and DST.
 | |
|   VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
 | |
| 
 | |
|   /// A helper function to vectorize a single BB within the innermost loop.
 | |
|   void vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV);
 | |
| 
 | |
|   /// Vectorize a single PHINode in a block. This method handles the induction
 | |
|   /// variable canonicalization. It supports both VF = 1 for unrolled loops and
 | |
|   /// arbitrary length vectors.
 | |
|   void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
 | |
|                            unsigned UF, unsigned VF, PhiVector *PV);
 | |
| 
 | |
|   /// Insert the new loop to the loop hierarchy and pass manager
 | |
|   /// and update the analysis passes.
 | |
|   void updateAnalysis();
 | |
| 
 | |
|   /// This instruction is un-vectorizable. Implement it as a sequence
 | |
|   /// of scalars. If \p IfPredicateStore is true we need to 'hide' each
 | |
|   /// scalarized instruction behind an if block predicated on the control
 | |
|   /// dependence of the instruction.
 | |
|   virtual void scalarizeInstruction(Instruction *Instr,
 | |
|                                     bool IfPredicateStore=false);
 | |
| 
 | |
|   /// Vectorize Load and Store instructions,
 | |
|   virtual void vectorizeMemoryInstruction(Instruction *Instr);
 | |
| 
 | |
|   /// Create a broadcast instruction. This method generates a broadcast
 | |
|   /// instruction (shuffle) for loop invariant values and for the induction
 | |
|   /// value. If this is the induction variable then we extend it to N, N+1, ...
 | |
|   /// this is needed because each iteration in the loop corresponds to a SIMD
 | |
|   /// element.
 | |
|   virtual Value *getBroadcastInstrs(Value *V);
 | |
| 
 | |
|   /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
 | |
|   /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
 | |
|   /// The sequence starts at StartIndex.
 | |
|   virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
 | |
| 
 | |
|   /// When we go over instructions in the basic block we rely on previous
 | |
|   /// values within the current basic block or on loop invariant values.
 | |
|   /// When we widen (vectorize) values we place them in the map. If the values
 | |
|   /// are not within the map, they have to be loop invariant, so we simply
 | |
|   /// broadcast them into a vector.
 | |
|   VectorParts &getVectorValue(Value *V);
 | |
| 
 | |
|   /// Generate a shuffle sequence that will reverse the vector Vec.
 | |
|   virtual Value *reverseVector(Value *Vec);
 | |
| 
 | |
|   /// This is a helper class that holds the vectorizer state. It maps scalar
 | |
|   /// instructions to vector instructions. When the code is 'unrolled' then
 | |
|   /// then a single scalar value is mapped to multiple vector parts. The parts
 | |
|   /// are stored in the VectorPart type.
 | |
|   struct ValueMap {
 | |
|     /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
 | |
|     /// are mapped.
 | |
|     ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
 | |
| 
 | |
|     /// \return True if 'Key' is saved in the Value Map.
 | |
|     bool has(Value *Key) const { return MapStorage.count(Key); }
 | |
| 
 | |
|     /// Initializes a new entry in the map. Sets all of the vector parts to the
 | |
|     /// save value in 'Val'.
 | |
|     /// \return A reference to a vector with splat values.
 | |
|     VectorParts &splat(Value *Key, Value *Val) {
 | |
|       VectorParts &Entry = MapStorage[Key];
 | |
|       Entry.assign(UF, Val);
 | |
|       return Entry;
 | |
|     }
 | |
| 
 | |
|     ///\return A reference to the value that is stored at 'Key'.
 | |
|     VectorParts &get(Value *Key) {
 | |
|       VectorParts &Entry = MapStorage[Key];
 | |
|       if (Entry.empty())
 | |
|         Entry.resize(UF);
 | |
|       assert(Entry.size() == UF);
 | |
|       return Entry;
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     /// The unroll factor. Each entry in the map stores this number of vector
 | |
|     /// elements.
 | |
|     unsigned UF;
 | |
| 
 | |
|     /// Map storage. We use std::map and not DenseMap because insertions to a
 | |
|     /// dense map invalidates its iterators.
 | |
|     std::map<Value *, VectorParts> MapStorage;
 | |
|   };
 | |
| 
 | |
|   /// The original loop.
 | |
|   Loop *OrigLoop;
 | |
|   /// Scev analysis to use.
 | |
|   ScalarEvolution *SE;
 | |
|   /// Loop Info.
 | |
|   LoopInfo *LI;
 | |
|   /// Dominator Tree.
 | |
|   DominatorTree *DT;
 | |
|   /// Data Layout.
 | |
|   const DataLayout *DL;
 | |
|   /// Target Library Info.
 | |
|   const TargetLibraryInfo *TLI;
 | |
| 
 | |
|   /// The vectorization SIMD factor to use. Each vector will have this many
 | |
|   /// vector elements.
 | |
|   unsigned VF;
 | |
| 
 | |
| protected:
 | |
|   /// The vectorization unroll factor to use. Each scalar is vectorized to this
 | |
|   /// many different vector instructions.
 | |
|   unsigned UF;
 | |
| 
 | |
|   /// The builder that we use
 | |
|   IRBuilder<> Builder;
 | |
| 
 | |
|   // --- Vectorization state ---
 | |
| 
 | |
|   /// The vector-loop preheader.
 | |
|   BasicBlock *LoopVectorPreHeader;
 | |
|   /// The scalar-loop preheader.
 | |
|   BasicBlock *LoopScalarPreHeader;
 | |
|   /// Middle Block between the vector and the scalar.
 | |
|   BasicBlock *LoopMiddleBlock;
 | |
|   ///The ExitBlock of the scalar loop.
 | |
|   BasicBlock *LoopExitBlock;
 | |
|   ///The vector loop body.
 | |
|   SmallVector<BasicBlock *, 4> LoopVectorBody;
 | |
|   ///The scalar loop body.
 | |
|   BasicBlock *LoopScalarBody;
 | |
|   /// A list of all bypass blocks. The first block is the entry of the loop.
 | |
|   SmallVector<BasicBlock *, 4> LoopBypassBlocks;
 | |
| 
 | |
|   /// The new Induction variable which was added to the new block.
 | |
|   PHINode *Induction;
 | |
|   /// The induction variable of the old basic block.
 | |
|   PHINode *OldInduction;
 | |
|   /// Holds the extended (to the widest induction type) start index.
 | |
|   Value *ExtendedIdx;
 | |
|   /// Maps scalars to widened vectors.
 | |
|   ValueMap WidenMap;
 | |
|   EdgeMaskCache MaskCache;
 | |
| 
 | |
|   LoopVectorizationLegality *Legal;
 | |
| };
 | |
| 
 | |
| class InnerLoopUnroller : public InnerLoopVectorizer {
 | |
| public:
 | |
|   InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
 | |
|                     DominatorTree *DT, const DataLayout *DL,
 | |
|                     const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
 | |
|     InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
 | |
| 
 | |
| private:
 | |
|   void scalarizeInstruction(Instruction *Instr,
 | |
|                             bool IfPredicateStore = false) override;
 | |
|   void vectorizeMemoryInstruction(Instruction *Instr) override;
 | |
|   Value *getBroadcastInstrs(Value *V) override;
 | |
|   Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate) override;
 | |
|   Value *reverseVector(Value *Vec) override;
 | |
| };
 | |
| 
 | |
| /// \brief Look for a meaningful debug location on the instruction or it's
 | |
| /// operands.
 | |
| static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
 | |
|   if (!I)
 | |
|     return I;
 | |
| 
 | |
|   DebugLoc Empty;
 | |
|   if (I->getDebugLoc() != Empty)
 | |
|     return I;
 | |
| 
 | |
|   for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
 | |
|     if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
 | |
|       if (OpInst->getDebugLoc() != Empty)
 | |
|         return OpInst;
 | |
|   }
 | |
| 
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// \brief Set the debug location in the builder using the debug location in the
 | |
| /// instruction.
 | |
| static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
 | |
|   if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
 | |
|     B.SetCurrentDebugLocation(Inst->getDebugLoc());
 | |
|   else
 | |
|     B.SetCurrentDebugLocation(DebugLoc());
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| /// \return string containing a file name and a line # for the given
 | |
| /// instruction.
 | |
| static format_object3<const char *, const char *, unsigned>
 | |
| getDebugLocString(const Instruction *I) {
 | |
|   if (!I)
 | |
|     return format<const char *, const char *, unsigned>("", "", "", 0U);
 | |
|   MDNode *N = I->getMetadata("dbg");
 | |
|   if (!N) {
 | |
|     const StringRef ModuleName =
 | |
|         I->getParent()->getParent()->getParent()->getModuleIdentifier();
 | |
|     return format<const char *, const char *, unsigned>("%s", ModuleName.data(),
 | |
|                                                         "", 0U);
 | |
|   }
 | |
|   const DILocation Loc(N);
 | |
|   const unsigned LineNo = Loc.getLineNumber();
 | |
|   const char *DirName = Loc.getDirectory().data();
 | |
|   const char *FileName = Loc.getFilename().data();
 | |
|   return format("%s/%s:%u", DirName, FileName, LineNo);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
 | |
| /// to what vectorization factor.
 | |
| /// This class does not look at the profitability of vectorization, only the
 | |
| /// legality. This class has two main kinds of checks:
 | |
| /// * Memory checks - The code in canVectorizeMemory checks if vectorization
 | |
| ///   will change the order of memory accesses in a way that will change the
 | |
| ///   correctness of the program.
 | |
| /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
 | |
| /// checks for a number of different conditions, such as the availability of a
 | |
| /// single induction variable, that all types are supported and vectorize-able,
 | |
| /// etc. This code reflects the capabilities of InnerLoopVectorizer.
 | |
| /// This class is also used by InnerLoopVectorizer for identifying
 | |
| /// induction variable and the different reduction variables.
 | |
| class LoopVectorizationLegality {
 | |
| public:
 | |
|   unsigned NumLoads;
 | |
|   unsigned NumStores;
 | |
|   unsigned NumPredStores;
 | |
| 
 | |
|   LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
 | |
|                             DominatorTree *DT, TargetLibraryInfo *TLI)
 | |
|       : NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
 | |
|         DT(DT), TLI(TLI), Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
 | |
|         MaxSafeDepDistBytes(-1U) {}
 | |
| 
 | |
|   /// This enum represents the kinds of reductions that we support.
 | |
|   enum ReductionKind {
 | |
|     RK_NoReduction, ///< Not a reduction.
 | |
|     RK_IntegerAdd,  ///< Sum of integers.
 | |
|     RK_IntegerMult, ///< Product of integers.
 | |
|     RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
 | |
|     RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
 | |
|     RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
 | |
|     RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
 | |
|     RK_FloatAdd,    ///< Sum of floats.
 | |
|     RK_FloatMult,   ///< Product of floats.
 | |
|     RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
 | |
|   };
 | |
| 
 | |
|   /// This enum represents the kinds of inductions that we support.
 | |
|   enum InductionKind {
 | |
|     IK_NoInduction,         ///< Not an induction variable.
 | |
|     IK_IntInduction,        ///< Integer induction variable. Step = 1.
 | |
|     IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
 | |
|     IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
 | |
|     IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
 | |
|   };
 | |
| 
 | |
|   // This enum represents the kind of minmax reduction.
 | |
|   enum MinMaxReductionKind {
 | |
|     MRK_Invalid,
 | |
|     MRK_UIntMin,
 | |
|     MRK_UIntMax,
 | |
|     MRK_SIntMin,
 | |
|     MRK_SIntMax,
 | |
|     MRK_FloatMin,
 | |
|     MRK_FloatMax
 | |
|   };
 | |
| 
 | |
|   /// This struct holds information about reduction variables.
 | |
|   struct ReductionDescriptor {
 | |
|     ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
 | |
|       Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
 | |
| 
 | |
|     ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
 | |
|                         MinMaxReductionKind MK)
 | |
|         : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
 | |
| 
 | |
|     // The starting value of the reduction.
 | |
|     // It does not have to be zero!
 | |
|     TrackingVH<Value> StartValue;
 | |
|     // The instruction who's value is used outside the loop.
 | |
|     Instruction *LoopExitInstr;
 | |
|     // The kind of the reduction.
 | |
|     ReductionKind Kind;
 | |
|     // If this a min/max reduction the kind of reduction.
 | |
|     MinMaxReductionKind MinMaxKind;
 | |
|   };
 | |
| 
 | |
|   /// This POD struct holds information about a potential reduction operation.
 | |
|   struct ReductionInstDesc {
 | |
|     ReductionInstDesc(bool IsRedux, Instruction *I) :
 | |
|       IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
 | |
| 
 | |
|     ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
 | |
|       IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
 | |
| 
 | |
|     // Is this instruction a reduction candidate.
 | |
|     bool IsReduction;
 | |
|     // The last instruction in a min/max pattern (select of the select(icmp())
 | |
|     // pattern), or the current reduction instruction otherwise.
 | |
|     Instruction *PatternLastInst;
 | |
|     // If this is a min/max pattern the comparison predicate.
 | |
|     MinMaxReductionKind MinMaxKind;
 | |
|   };
 | |
| 
 | |
|   /// This struct holds information about the memory runtime legality
 | |
|   /// check that a group of pointers do not overlap.
 | |
|   struct RuntimePointerCheck {
 | |
|     RuntimePointerCheck() : Need(false) {}
 | |
| 
 | |
|     /// Reset the state of the pointer runtime information.
 | |
|     void reset() {
 | |
|       Need = false;
 | |
|       Pointers.clear();
 | |
|       Starts.clear();
 | |
|       Ends.clear();
 | |
|       IsWritePtr.clear();
 | |
|       DependencySetId.clear();
 | |
|     }
 | |
| 
 | |
|     /// Insert a pointer and calculate the start and end SCEVs.
 | |
|     void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
 | |
|                 unsigned DepSetId, ValueToValueMap &Strides);
 | |
| 
 | |
|     /// This flag indicates if we need to add the runtime check.
 | |
|     bool Need;
 | |
|     /// Holds the pointers that we need to check.
 | |
|     SmallVector<TrackingVH<Value>, 2> Pointers;
 | |
|     /// Holds the pointer value at the beginning of the loop.
 | |
|     SmallVector<const SCEV*, 2> Starts;
 | |
|     /// Holds the pointer value at the end of the loop.
 | |
|     SmallVector<const SCEV*, 2> Ends;
 | |
|     /// Holds the information if this pointer is used for writing to memory.
 | |
|     SmallVector<bool, 2> IsWritePtr;
 | |
|     /// Holds the id of the set of pointers that could be dependent because of a
 | |
|     /// shared underlying object.
 | |
|     SmallVector<unsigned, 2> DependencySetId;
 | |
|   };
 | |
| 
 | |
|   /// A struct for saving information about induction variables.
 | |
|   struct InductionInfo {
 | |
|     InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
 | |
|     InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
 | |
|     /// Start value.
 | |
|     TrackingVH<Value> StartValue;
 | |
|     /// Induction kind.
 | |
|     InductionKind IK;
 | |
|   };
 | |
| 
 | |
|   /// ReductionList contains the reduction descriptors for all
 | |
|   /// of the reductions that were found in the loop.
 | |
|   typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
 | |
| 
 | |
|   /// InductionList saves induction variables and maps them to the
 | |
|   /// induction descriptor.
 | |
|   typedef MapVector<PHINode*, InductionInfo> InductionList;
 | |
| 
 | |
|   /// Returns true if it is legal to vectorize this loop.
 | |
|   /// This does not mean that it is profitable to vectorize this
 | |
|   /// loop, only that it is legal to do so.
 | |
|   bool canVectorize();
 | |
| 
 | |
|   /// Returns the Induction variable.
 | |
|   PHINode *getInduction() { return Induction; }
 | |
| 
 | |
|   /// Returns the reduction variables found in the loop.
 | |
|   ReductionList *getReductionVars() { return &Reductions; }
 | |
| 
 | |
|   /// Returns the induction variables found in the loop.
 | |
|   InductionList *getInductionVars() { return &Inductions; }
 | |
| 
 | |
|   /// Returns the widest induction type.
 | |
|   Type *getWidestInductionType() { return WidestIndTy; }
 | |
| 
 | |
|   /// Returns True if V is an induction variable in this loop.
 | |
|   bool isInductionVariable(const Value *V);
 | |
| 
 | |
|   /// Return true if the block BB needs to be predicated in order for the loop
 | |
|   /// to be vectorized.
 | |
|   bool blockNeedsPredication(BasicBlock *BB);
 | |
| 
 | |
|   /// Check if this  pointer is consecutive when vectorizing. This happens
 | |
|   /// when the last index of the GEP is the induction variable, or that the
 | |
|   /// pointer itself is an induction variable.
 | |
|   /// This check allows us to vectorize A[idx] into a wide load/store.
 | |
|   /// Returns:
 | |
|   /// 0 - Stride is unknown or non-consecutive.
 | |
|   /// 1 - Address is consecutive.
 | |
|   /// -1 - Address is consecutive, and decreasing.
 | |
|   int isConsecutivePtr(Value *Ptr);
 | |
| 
 | |
|   /// Returns true if the value V is uniform within the loop.
 | |
|   bool isUniform(Value *V);
 | |
| 
 | |
|   /// Returns true if this instruction will remain scalar after vectorization.
 | |
|   bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
 | |
| 
 | |
|   /// Returns the information that we collected about runtime memory check.
 | |
|   RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
 | |
| 
 | |
|   /// This function returns the identity element (or neutral element) for
 | |
|   /// the operation K.
 | |
|   static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
 | |
| 
 | |
|   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
 | |
| 
 | |
|   bool hasStride(Value *V) { return StrideSet.count(V); }
 | |
|   bool mustCheckStrides() { return !StrideSet.empty(); }
 | |
|   SmallPtrSet<Value *, 8>::iterator strides_begin() {
 | |
|     return StrideSet.begin();
 | |
|   }
 | |
|   SmallPtrSet<Value *, 8>::iterator strides_end() { return StrideSet.end(); }
 | |
| 
 | |
| private:
 | |
|   /// Check if a single basic block loop is vectorizable.
 | |
|   /// At this point we know that this is a loop with a constant trip count
 | |
|   /// and we only need to check individual instructions.
 | |
|   bool canVectorizeInstrs();
 | |
| 
 | |
|   /// When we vectorize loops we may change the order in which
 | |
|   /// we read and write from memory. This method checks if it is
 | |
|   /// legal to vectorize the code, considering only memory constrains.
 | |
|   /// Returns true if the loop is vectorizable
 | |
|   bool canVectorizeMemory();
 | |
| 
 | |
|   /// Return true if we can vectorize this loop using the IF-conversion
 | |
|   /// transformation.
 | |
|   bool canVectorizeWithIfConvert();
 | |
| 
 | |
|   /// Collect the variables that need to stay uniform after vectorization.
 | |
|   void collectLoopUniforms();
 | |
| 
 | |
|   /// Return true if all of the instructions in the block can be speculatively
 | |
|   /// executed. \p SafePtrs is a list of addresses that are known to be legal
 | |
|   /// and we know that we can read from them without segfault.
 | |
|   bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
 | |
| 
 | |
|   /// Returns True, if 'Phi' is the kind of reduction variable for type
 | |
|   /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
 | |
|   bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
 | |
|   /// Returns a struct describing if the instruction 'I' can be a reduction
 | |
|   /// variable of type 'Kind'. If the reduction is a min/max pattern of
 | |
|   /// select(icmp()) this function advances the instruction pointer 'I' from the
 | |
|   /// compare instruction to the select instruction and stores this pointer in
 | |
|   /// 'PatternLastInst' member of the returned struct.
 | |
|   ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
 | |
|                                      ReductionInstDesc &Desc);
 | |
|   /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | |
|   /// pattern corresponding to a min(X, Y) or max(X, Y).
 | |
|   static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
 | |
|                                                     ReductionInstDesc &Prev);
 | |
|   /// Returns the induction kind of Phi. This function may return NoInduction
 | |
|   /// if the PHI is not an induction variable.
 | |
|   InductionKind isInductionVariable(PHINode *Phi);
 | |
| 
 | |
|   /// \brief Collect memory access with loop invariant strides.
 | |
|   ///
 | |
|   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
 | |
|   /// invariant.
 | |
|   void collectStridedAcccess(Value *LoadOrStoreInst);
 | |
| 
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   /// DataLayout analysis.
 | |
|   const DataLayout *DL;
 | |
|   /// Dominators.
 | |
|   DominatorTree *DT;
 | |
|   /// Target Library Info.
 | |
|   TargetLibraryInfo *TLI;
 | |
| 
 | |
|   //  ---  vectorization state --- //
 | |
| 
 | |
|   /// Holds the integer induction variable. This is the counter of the
 | |
|   /// loop.
 | |
|   PHINode *Induction;
 | |
|   /// Holds the reduction variables.
 | |
|   ReductionList Reductions;
 | |
|   /// Holds all of the induction variables that we found in the loop.
 | |
|   /// Notice that inductions don't need to start at zero and that induction
 | |
|   /// variables can be pointers.
 | |
|   InductionList Inductions;
 | |
|   /// Holds the widest induction type encountered.
 | |
|   Type *WidestIndTy;
 | |
| 
 | |
|   /// Allowed outside users. This holds the reduction
 | |
|   /// vars which can be accessed from outside the loop.
 | |
|   SmallPtrSet<Value*, 4> AllowedExit;
 | |
|   /// This set holds the variables which are known to be uniform after
 | |
|   /// vectorization.
 | |
|   SmallPtrSet<Instruction*, 4> Uniforms;
 | |
|   /// We need to check that all of the pointers in this list are disjoint
 | |
|   /// at runtime.
 | |
|   RuntimePointerCheck PtrRtCheck;
 | |
|   /// Can we assume the absence of NaNs.
 | |
|   bool HasFunNoNaNAttr;
 | |
| 
 | |
|   unsigned MaxSafeDepDistBytes;
 | |
| 
 | |
|   ValueToValueMap Strides;
 | |
|   SmallPtrSet<Value *, 8> StrideSet;
 | |
| };
 | |
| 
 | |
| /// LoopVectorizationCostModel - estimates the expected speedups due to
 | |
| /// vectorization.
 | |
| /// In many cases vectorization is not profitable. This can happen because of
 | |
| /// a number of reasons. In this class we mainly attempt to predict the
 | |
| /// expected speedup/slowdowns due to the supported instruction set. We use the
 | |
| /// TargetTransformInfo to query the different backends for the cost of
 | |
| /// different operations.
 | |
| class LoopVectorizationCostModel {
 | |
| public:
 | |
|   LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
 | |
|                              LoopVectorizationLegality *Legal,
 | |
|                              const TargetTransformInfo &TTI,
 | |
|                              const DataLayout *DL, const TargetLibraryInfo *TLI)
 | |
|       : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
 | |
| 
 | |
|   /// Information about vectorization costs
 | |
|   struct VectorizationFactor {
 | |
|     unsigned Width; // Vector width with best cost
 | |
|     unsigned Cost; // Cost of the loop with that width
 | |
|   };
 | |
|   /// \return The most profitable vectorization factor and the cost of that VF.
 | |
|   /// This method checks every power of two up to VF. If UserVF is not ZERO
 | |
|   /// then this vectorization factor will be selected if vectorization is
 | |
|   /// possible.
 | |
|   VectorizationFactor selectVectorizationFactor(bool OptForSize,
 | |
|                                                 unsigned UserVF);
 | |
| 
 | |
|   /// \return The size (in bits) of the widest type in the code that
 | |
|   /// needs to be vectorized. We ignore values that remain scalar such as
 | |
|   /// 64 bit loop indices.
 | |
|   unsigned getWidestType();
 | |
| 
 | |
|   /// \return The most profitable unroll factor.
 | |
|   /// If UserUF is non-zero then this method finds the best unroll-factor
 | |
|   /// based on register pressure and other parameters.
 | |
|   /// VF and LoopCost are the selected vectorization factor and the cost of the
 | |
|   /// selected VF.
 | |
|   unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
 | |
|                               unsigned LoopCost);
 | |
| 
 | |
|   /// \brief A struct that represents some properties of the register usage
 | |
|   /// of a loop.
 | |
|   struct RegisterUsage {
 | |
|     /// Holds the number of loop invariant values that are used in the loop.
 | |
|     unsigned LoopInvariantRegs;
 | |
|     /// Holds the maximum number of concurrent live intervals in the loop.
 | |
|     unsigned MaxLocalUsers;
 | |
|     /// Holds the number of instructions in the loop.
 | |
|     unsigned NumInstructions;
 | |
|   };
 | |
| 
 | |
|   /// \return  information about the register usage of the loop.
 | |
|   RegisterUsage calculateRegisterUsage();
 | |
| 
 | |
| private:
 | |
|   /// Returns the expected execution cost. The unit of the cost does
 | |
|   /// not matter because we use the 'cost' units to compare different
 | |
|   /// vector widths. The cost that is returned is *not* normalized by
 | |
|   /// the factor width.
 | |
|   unsigned expectedCost(unsigned VF);
 | |
| 
 | |
|   /// Returns the execution time cost of an instruction for a given vector
 | |
|   /// width. Vector width of one means scalar.
 | |
|   unsigned getInstructionCost(Instruction *I, unsigned VF);
 | |
| 
 | |
|   /// A helper function for converting Scalar types to vector types.
 | |
|   /// If the incoming type is void, we return void. If the VF is 1, we return
 | |
|   /// the scalar type.
 | |
|   static Type* ToVectorTy(Type *Scalar, unsigned VF);
 | |
| 
 | |
|   /// Returns whether the instruction is a load or store and will be a emitted
 | |
|   /// as a vector operation.
 | |
|   bool isConsecutiveLoadOrStore(Instruction *I);
 | |
| 
 | |
|   /// The loop that we evaluate.
 | |
|   Loop *TheLoop;
 | |
|   /// Scev analysis.
 | |
|   ScalarEvolution *SE;
 | |
|   /// Loop Info analysis.
 | |
|   LoopInfo *LI;
 | |
|   /// Vectorization legality.
 | |
|   LoopVectorizationLegality *Legal;
 | |
|   /// Vector target information.
 | |
|   const TargetTransformInfo &TTI;
 | |
|   /// Target data layout information.
 | |
|   const DataLayout *DL;
 | |
|   /// Target Library Info.
 | |
|   const TargetLibraryInfo *TLI;
 | |
| };
 | |
| 
 | |
| /// Utility class for getting and setting loop vectorizer hints in the form
 | |
| /// of loop metadata.
 | |
| struct LoopVectorizeHints {
 | |
|   /// Vectorization width.
 | |
|   unsigned Width;
 | |
|   /// Vectorization unroll factor.
 | |
|   unsigned Unroll;
 | |
|   /// Vectorization forced (-1 not selected, 0 force disabled, 1 force enabled)
 | |
|   int Force;
 | |
| 
 | |
|   LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
 | |
|   : Width(VectorizationFactor)
 | |
|   , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
 | |
|   , Force(-1)
 | |
|   , LoopID(L->getLoopID()) {
 | |
|     getHints(L);
 | |
|     // The command line options override any loop metadata except for when
 | |
|     // width == 1 which is used to indicate the loop is already vectorized.
 | |
|     if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
 | |
|       Width = VectorizationFactor;
 | |
|     if (VectorizationUnroll.getNumOccurrences() > 0)
 | |
|       Unroll = VectorizationUnroll;
 | |
| 
 | |
|     DEBUG(if (DisableUnrolling && Unroll == 1)
 | |
|             dbgs() << "LV: Unrolling disabled by the pass manager\n");
 | |
|   }
 | |
| 
 | |
|   /// Return the loop vectorizer metadata prefix.
 | |
|   static StringRef Prefix() { return "llvm.vectorizer."; }
 | |
| 
 | |
|   MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
 | |
|     SmallVector<Value*, 2> Vals;
 | |
|     Vals.push_back(MDString::get(Context, Name));
 | |
|     Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
 | |
|     return MDNode::get(Context, Vals);
 | |
|   }
 | |
| 
 | |
|   /// Mark the loop L as already vectorized by setting the width to 1.
 | |
|   void setAlreadyVectorized(Loop *L) {
 | |
|     LLVMContext &Context = L->getHeader()->getContext();
 | |
| 
 | |
|     Width = 1;
 | |
| 
 | |
|     // Create a new loop id with one more operand for the already_vectorized
 | |
|     // hint. If the loop already has a loop id then copy the existing operands.
 | |
|     SmallVector<Value*, 4> Vals(1);
 | |
|     if (LoopID)
 | |
|       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
 | |
|         Vals.push_back(LoopID->getOperand(i));
 | |
| 
 | |
|     Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
 | |
|     Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
 | |
| 
 | |
|     MDNode *NewLoopID = MDNode::get(Context, Vals);
 | |
|     // Set operand 0 to refer to the loop id itself.
 | |
|     NewLoopID->replaceOperandWith(0, NewLoopID);
 | |
| 
 | |
|     L->setLoopID(NewLoopID);
 | |
|     if (LoopID)
 | |
|       LoopID->replaceAllUsesWith(NewLoopID);
 | |
| 
 | |
|     LoopID = NewLoopID;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   MDNode *LoopID;
 | |
| 
 | |
|   /// Find hints specified in the loop metadata.
 | |
|   void getHints(const Loop *L) {
 | |
|     if (!LoopID)
 | |
|       return;
 | |
| 
 | |
|     // First operand should refer to the loop id itself.
 | |
|     assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
 | |
|     assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
 | |
| 
 | |
|     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
 | |
|       const MDString *S = 0;
 | |
|       SmallVector<Value*, 4> Args;
 | |
| 
 | |
|       // The expected hint is either a MDString or a MDNode with the first
 | |
|       // operand a MDString.
 | |
|       if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
 | |
|         if (!MD || MD->getNumOperands() == 0)
 | |
|           continue;
 | |
|         S = dyn_cast<MDString>(MD->getOperand(0));
 | |
|         for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
 | |
|           Args.push_back(MD->getOperand(i));
 | |
|       } else {
 | |
|         S = dyn_cast<MDString>(LoopID->getOperand(i));
 | |
|         assert(Args.size() == 0 && "too many arguments for MDString");
 | |
|       }
 | |
| 
 | |
|       if (!S)
 | |
|         continue;
 | |
| 
 | |
|       // Check if the hint starts with the vectorizer prefix.
 | |
|       StringRef Hint = S->getString();
 | |
|       if (!Hint.startswith(Prefix()))
 | |
|         continue;
 | |
|       // Remove the prefix.
 | |
|       Hint = Hint.substr(Prefix().size(), StringRef::npos);
 | |
| 
 | |
|       if (Args.size() == 1)
 | |
|         getHint(Hint, Args[0]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check string hint with one operand.
 | |
|   void getHint(StringRef Hint, Value *Arg) {
 | |
|     const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
 | |
|     if (!C) return;
 | |
|     unsigned Val = C->getZExtValue();
 | |
| 
 | |
|     if (Hint == "width") {
 | |
|       if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
 | |
|         Width = Val;
 | |
|       else
 | |
|         DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
 | |
|     } else if (Hint == "unroll") {
 | |
|       if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
 | |
|         Unroll = Val;
 | |
|       else
 | |
|         DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
 | |
|     } else if (Hint == "enable") {
 | |
|       if (C->getBitWidth() == 1)
 | |
|         Force = Val;
 | |
|       else
 | |
|         DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
 | |
|   if (L.empty())
 | |
|     return V.push_back(&L);
 | |
| 
 | |
|   for (Loop *InnerL : L)
 | |
|     addInnerLoop(*InnerL, V);
 | |
| }
 | |
| 
 | |
| /// The LoopVectorize Pass.
 | |
| struct LoopVectorize : public FunctionPass {
 | |
|   /// Pass identification, replacement for typeid
 | |
|   static char ID;
 | |
| 
 | |
|   explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
 | |
|     : FunctionPass(ID),
 | |
|       DisableUnrolling(NoUnrolling),
 | |
|       AlwaysVectorize(AlwaysVectorize) {
 | |
|     initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   ScalarEvolution *SE;
 | |
|   const DataLayout *DL;
 | |
|   LoopInfo *LI;
 | |
|   TargetTransformInfo *TTI;
 | |
|   DominatorTree *DT;
 | |
|   BlockFrequencyInfo *BFI;
 | |
|   TargetLibraryInfo *TLI;
 | |
|   bool DisableUnrolling;
 | |
|   bool AlwaysVectorize;
 | |
| 
 | |
|   BlockFrequency ColdEntryFreq;
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     SE = &getAnalysis<ScalarEvolution>();
 | |
|     DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
 | |
|     DL = DLP ? &DLP->getDataLayout() : 0;
 | |
|     LI = &getAnalysis<LoopInfo>();
 | |
|     TTI = &getAnalysis<TargetTransformInfo>();
 | |
|     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|     BFI = &getAnalysis<BlockFrequencyInfo>();
 | |
|     TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
 | |
| 
 | |
|     // Compute some weights outside of the loop over the loops. Compute this
 | |
|     // using a BranchProbability to re-use its scaling math.
 | |
|     const BranchProbability ColdProb(1, 5); // 20%
 | |
|     ColdEntryFreq = BlockFrequency(BFI->getEntryFreq()) * ColdProb;
 | |
| 
 | |
|     // If the target claims to have no vector registers don't attempt
 | |
|     // vectorization.
 | |
|     if (!TTI->getNumberOfRegisters(true))
 | |
|       return false;
 | |
| 
 | |
|     if (DL == NULL) {
 | |
|       DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
 | |
|                    << ": Missing data layout\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Build up a worklist of inner-loops to vectorize. This is necessary as
 | |
|     // the act of vectorizing or partially unrolling a loop creates new loops
 | |
|     // and can invalidate iterators across the loops.
 | |
|     SmallVector<Loop *, 8> Worklist;
 | |
| 
 | |
|     for (Loop *L : *LI)
 | |
|       addInnerLoop(*L, Worklist);
 | |
| 
 | |
|     LoopsAnalyzed += Worklist.size();
 | |
| 
 | |
|     // Now walk the identified inner loops.
 | |
|     bool Changed = false;
 | |
|     while (!Worklist.empty())
 | |
|       Changed |= processLoop(Worklist.pop_back_val());
 | |
| 
 | |
|     // Process each loop nest in the function.
 | |
|     return Changed;
 | |
|   }
 | |
| 
 | |
|   bool processLoop(Loop *L) {
 | |
|     assert(L->empty() && "Only process inner loops.");
 | |
|     DEBUG(dbgs() << "\nLV: Checking a loop in \""
 | |
|                  << L->getHeader()->getParent()->getName() << "\" from "
 | |
|                  << getDebugLocString(L->getHeader()->getFirstNonPHIOrDbg())
 | |
|                  << "\n");
 | |
| 
 | |
|     LoopVectorizeHints Hints(L, DisableUnrolling);
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Loop hints:"
 | |
|                  << " force=" << (Hints.Force == 0
 | |
|                                       ? "disabled"
 | |
|                                       : (Hints.Force == 1 ? "enabled" : "?"))
 | |
|                  << " width=" << Hints.Width << " unroll=" << Hints.Unroll
 | |
|                  << "\n");
 | |
| 
 | |
|     if (Hints.Force == 0) {
 | |
|       DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!AlwaysVectorize && Hints.Force != 1) {
 | |
|       DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (Hints.Width == 1 && Hints.Unroll == 1) {
 | |
|       DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Check if it is legal to vectorize the loop.
 | |
|     LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
 | |
|     if (!LVL.canVectorize()) {
 | |
|       DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Use the cost model.
 | |
|     LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
 | |
| 
 | |
|     // Check the function attributes to find out if this function should be
 | |
|     // optimized for size.
 | |
|     Function *F = L->getHeader()->getParent();
 | |
|     bool OptForSize =
 | |
|         Hints.Force != 1 && F->hasFnAttribute(Attribute::OptimizeForSize);
 | |
| 
 | |
|     // Compute the weighted frequency of this loop being executed and see if it
 | |
|     // is less than 20% of the function entry baseline frequency. Note that we
 | |
|     // always have a canonical loop here because we think we *can* vectoriez.
 | |
|     // FIXME: This is hidden behind a flag due to pervasive problems with
 | |
|     // exactly what block frequency models.
 | |
|     if (LoopVectorizeWithBlockFrequency) {
 | |
|       BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
 | |
|       if (Hints.Force != 1 && LoopEntryFreq < ColdEntryFreq)
 | |
|         OptForSize = true;
 | |
|     }
 | |
| 
 | |
|     // Check the function attributes to see if implicit floats are allowed.a
 | |
|     // FIXME: This check doesn't seem possibly correct -- what if the loop is
 | |
|     // an integer loop and the vector instructions selected are purely integer
 | |
|     // vector instructions?
 | |
|     if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
 | |
|       DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
 | |
|             "attribute is used.\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Select the optimal vectorization factor.
 | |
|     const LoopVectorizationCostModel::VectorizationFactor VF =
 | |
|                           CM.selectVectorizationFactor(OptForSize, Hints.Width);
 | |
|     // Select the unroll factor.
 | |
|     const unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
 | |
|                                         VF.Cost);
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Found a vectorizable loop ("
 | |
|                  << VF.Width << ") in "
 | |
|                  << getDebugLocString(L->getHeader()->getFirstNonPHIOrDbg())
 | |
|                  << '\n');
 | |
|     DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
 | |
| 
 | |
|     if (VF.Width == 1) {
 | |
|       DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
 | |
|       if (UF == 1)
 | |
|         return false;
 | |
|       DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
 | |
|       // We decided not to vectorize, but we may want to unroll.
 | |
|       InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
 | |
|       Unroller.vectorize(&LVL);
 | |
|     } else {
 | |
|       // If we decided that it is *legal* to vectorize the loop then do it.
 | |
|       InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
 | |
|       LB.vectorize(&LVL);
 | |
|       ++LoopsVectorized;
 | |
|     }
 | |
| 
 | |
|     // Mark the loop as already vectorized to avoid vectorizing again.
 | |
|     Hints.setAlreadyVectorized(L);
 | |
| 
 | |
|     DEBUG(verifyFunction(*L->getHeader()->getParent()));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequiredID(LoopSimplifyID);
 | |
|     AU.addRequiredID(LCSSAID);
 | |
|     AU.addRequired<BlockFrequencyInfo>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfo>();
 | |
|     AU.addRequired<ScalarEvolution>();
 | |
|     AU.addRequired<TargetTransformInfo>();
 | |
|     AU.addPreserved<LoopInfo>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
 | |
| // LoopVectorizationCostModel.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Value *stripIntegerCast(Value *V) {
 | |
|   if (CastInst *CI = dyn_cast<CastInst>(V))
 | |
|     if (CI->getOperand(0)->getType()->isIntegerTy())
 | |
|       return CI->getOperand(0);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| ///\brief Replaces the symbolic stride in a pointer SCEV expression by one.
 | |
| ///
 | |
| /// If \p OrigPtr is not null, use it to look up the stride value instead of
 | |
| /// \p Ptr.
 | |
| static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
 | |
|                                              ValueToValueMap &PtrToStride,
 | |
|                                              Value *Ptr, Value *OrigPtr = 0) {
 | |
| 
 | |
|   const SCEV *OrigSCEV = SE->getSCEV(Ptr);
 | |
| 
 | |
|   // If there is an entry in the map return the SCEV of the pointer with the
 | |
|   // symbolic stride replaced by one.
 | |
|   ValueToValueMap::iterator SI = PtrToStride.find(OrigPtr ? OrigPtr : Ptr);
 | |
|   if (SI != PtrToStride.end()) {
 | |
|     Value *StrideVal = SI->second;
 | |
| 
 | |
|     // Strip casts.
 | |
|     StrideVal = stripIntegerCast(StrideVal);
 | |
| 
 | |
|     // Replace symbolic stride by one.
 | |
|     Value *One = ConstantInt::get(StrideVal->getType(), 1);
 | |
|     ValueToValueMap RewriteMap;
 | |
|     RewriteMap[StrideVal] = One;
 | |
| 
 | |
|     const SCEV *ByOne =
 | |
|         SCEVParameterRewriter::rewrite(OrigSCEV, *SE, RewriteMap, true);
 | |
|     DEBUG(dbgs() << "LV: Replacing SCEV: " << *OrigSCEV << " by: " << *ByOne
 | |
|                  << "\n");
 | |
|     return ByOne;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, just return the SCEV of the original pointer.
 | |
|   return SE->getSCEV(Ptr);
 | |
| }
 | |
| 
 | |
| void LoopVectorizationLegality::RuntimePointerCheck::insert(
 | |
|     ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
 | |
|     ValueToValueMap &Strides) {
 | |
|   // Get the stride replaced scev.
 | |
|   const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
 | |
|   assert(AR && "Invalid addrec expression");
 | |
|   const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
 | |
|   const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
 | |
|   Pointers.push_back(Ptr);
 | |
|   Starts.push_back(AR->getStart());
 | |
|   Ends.push_back(ScEnd);
 | |
|   IsWritePtr.push_back(WritePtr);
 | |
|   DependencySetId.push_back(DepSetId);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
 | |
|   // We need to place the broadcast of invariant variables outside the loop.
 | |
|   Instruction *Instr = dyn_cast<Instruction>(V);
 | |
|   bool NewInstr =
 | |
|       (Instr && std::find(LoopVectorBody.begin(), LoopVectorBody.end(),
 | |
|                           Instr->getParent()) != LoopVectorBody.end());
 | |
|   bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
 | |
| 
 | |
|   // Place the code for broadcasting invariant variables in the new preheader.
 | |
|   IRBuilder<>::InsertPointGuard Guard(Builder);
 | |
|   if (Invariant)
 | |
|     Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
 | |
| 
 | |
|   // Broadcast the scalar into all locations in the vector.
 | |
|   Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
 | |
| 
 | |
|   return Shuf;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
 | |
|                                                  bool Negate) {
 | |
|   assert(Val->getType()->isVectorTy() && "Must be a vector");
 | |
|   assert(Val->getType()->getScalarType()->isIntegerTy() &&
 | |
|          "Elem must be an integer");
 | |
|   // Create the types.
 | |
|   Type *ITy = Val->getType()->getScalarType();
 | |
|   VectorType *Ty = cast<VectorType>(Val->getType());
 | |
|   int VLen = Ty->getNumElements();
 | |
|   SmallVector<Constant*, 8> Indices;
 | |
| 
 | |
|   // Create a vector of consecutive numbers from zero to VF.
 | |
|   for (int i = 0; i < VLen; ++i) {
 | |
|     int64_t Idx = Negate ? (-i) : i;
 | |
|     Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
 | |
|   }
 | |
| 
 | |
|   // Add the consecutive indices to the vector value.
 | |
|   Constant *Cv = ConstantVector::get(Indices);
 | |
|   assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
 | |
|   return Builder.CreateAdd(Val, Cv, "induction");
 | |
| }
 | |
| 
 | |
| /// \brief Find the operand of the GEP that should be checked for consecutive
 | |
| /// stores. This ignores trailing indices that have no effect on the final
 | |
| /// pointer.
 | |
| static unsigned getGEPInductionOperand(const DataLayout *DL,
 | |
|                                        const GetElementPtrInst *Gep) {
 | |
|   unsigned LastOperand = Gep->getNumOperands() - 1;
 | |
|   unsigned GEPAllocSize = DL->getTypeAllocSize(
 | |
|       cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
 | |
| 
 | |
|   // Walk backwards and try to peel off zeros.
 | |
|   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
 | |
|     // Find the type we're currently indexing into.
 | |
|     gep_type_iterator GEPTI = gep_type_begin(Gep);
 | |
|     std::advance(GEPTI, LastOperand - 1);
 | |
| 
 | |
|     // If it's a type with the same allocation size as the result of the GEP we
 | |
|     // can peel off the zero index.
 | |
|     if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
 | |
|       break;
 | |
|     --LastOperand;
 | |
|   }
 | |
| 
 | |
|   return LastOperand;
 | |
| }
 | |
| 
 | |
| int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
 | |
|   assert(Ptr->getType()->isPointerTy() && "Unexpected non-ptr");
 | |
|   // Make sure that the pointer does not point to structs.
 | |
|   if (Ptr->getType()->getPointerElementType()->isAggregateType())
 | |
|     return 0;
 | |
| 
 | |
|   // If this value is a pointer induction variable we know it is consecutive.
 | |
|   PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
 | |
|   if (Phi && Inductions.count(Phi)) {
 | |
|     InductionInfo II = Inductions[Phi];
 | |
|     if (IK_PtrInduction == II.IK)
 | |
|       return 1;
 | |
|     else if (IK_ReversePtrInduction == II.IK)
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
 | |
|   if (!Gep)
 | |
|     return 0;
 | |
| 
 | |
|   unsigned NumOperands = Gep->getNumOperands();
 | |
|   Value *GpPtr = Gep->getPointerOperand();
 | |
|   // If this GEP value is a consecutive pointer induction variable and all of
 | |
|   // the indices are constant then we know it is consecutive. We can
 | |
|   Phi = dyn_cast<PHINode>(GpPtr);
 | |
|   if (Phi && Inductions.count(Phi)) {
 | |
| 
 | |
|     // Make sure that the pointer does not point to structs.
 | |
|     PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
 | |
|     if (GepPtrType->getElementType()->isAggregateType())
 | |
|       return 0;
 | |
| 
 | |
|     // Make sure that all of the index operands are loop invariant.
 | |
|     for (unsigned i = 1; i < NumOperands; ++i)
 | |
|       if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
 | |
|         return 0;
 | |
| 
 | |
|     InductionInfo II = Inductions[Phi];
 | |
|     if (IK_PtrInduction == II.IK)
 | |
|       return 1;
 | |
|     else if (IK_ReversePtrInduction == II.IK)
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
 | |
| 
 | |
|   // Check that all of the gep indices are uniform except for our induction
 | |
|   // operand.
 | |
|   for (unsigned i = 0; i != NumOperands; ++i)
 | |
|     if (i != InductionOperand &&
 | |
|         !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
 | |
|       return 0;
 | |
| 
 | |
|   // We can emit wide load/stores only if the last non-zero index is the
 | |
|   // induction variable.
 | |
|   const SCEV *Last = 0;
 | |
|   if (!Strides.count(Gep))
 | |
|     Last = SE->getSCEV(Gep->getOperand(InductionOperand));
 | |
|   else {
 | |
|     // Because of the multiplication by a stride we can have a s/zext cast.
 | |
|     // We are going to replace this stride by 1 so the cast is safe to ignore.
 | |
|     //
 | |
|     //  %indvars.iv = phi i64 [ 0, %entry ], [ %indvars.iv.next, %for.body ]
 | |
|     //  %0 = trunc i64 %indvars.iv to i32
 | |
|     //  %mul = mul i32 %0, %Stride1
 | |
|     //  %idxprom = zext i32 %mul to i64  << Safe cast.
 | |
|     //  %arrayidx = getelementptr inbounds i32* %B, i64 %idxprom
 | |
|     //
 | |
|     Last = replaceSymbolicStrideSCEV(SE, Strides,
 | |
|                                      Gep->getOperand(InductionOperand), Gep);
 | |
|     if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(Last))
 | |
|       Last =
 | |
|           (C->getSCEVType() == scSignExtend || C->getSCEVType() == scZeroExtend)
 | |
|               ? C->getOperand()
 | |
|               : Last;
 | |
|   }
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
 | |
|     const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|     // The memory is consecutive because the last index is consecutive
 | |
|     // and all other indices are loop invariant.
 | |
|     if (Step->isOne())
 | |
|       return 1;
 | |
|     if (Step->isAllOnesValue())
 | |
|       return -1;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isUniform(Value *V) {
 | |
|   return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
 | |
| }
 | |
| 
 | |
| InnerLoopVectorizer::VectorParts&
 | |
| InnerLoopVectorizer::getVectorValue(Value *V) {
 | |
|   assert(V != Induction && "The new induction variable should not be used.");
 | |
|   assert(!V->getType()->isVectorTy() && "Can't widen a vector");
 | |
| 
 | |
|   // If we have a stride that is replaced by one, do it here.
 | |
|   if (Legal->hasStride(V))
 | |
|     V = ConstantInt::get(V->getType(), 1);
 | |
| 
 | |
|   // If we have this scalar in the map, return it.
 | |
|   if (WidenMap.has(V))
 | |
|     return WidenMap.get(V);
 | |
| 
 | |
|   // If this scalar is unknown, assume that it is a constant or that it is
 | |
|   // loop invariant. Broadcast V and save the value for future uses.
 | |
|   Value *B = getBroadcastInstrs(V);
 | |
|   return WidenMap.splat(V, B);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
 | |
|   assert(Vec->getType()->isVectorTy() && "Invalid type");
 | |
|   SmallVector<Constant*, 8> ShuffleMask;
 | |
|   for (unsigned i = 0; i < VF; ++i)
 | |
|     ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
 | |
| 
 | |
|   return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
 | |
|                                      ConstantVector::get(ShuffleMask),
 | |
|                                      "reverse");
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr) {
 | |
|   // Attempt to issue a wide load.
 | |
|   LoadInst *LI = dyn_cast<LoadInst>(Instr);
 | |
|   StoreInst *SI = dyn_cast<StoreInst>(Instr);
 | |
| 
 | |
|   assert((LI || SI) && "Invalid Load/Store instruction");
 | |
| 
 | |
|   Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
 | |
|   Type *DataTy = VectorType::get(ScalarDataTy, VF);
 | |
|   Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
 | |
|   unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
 | |
|   // An alignment of 0 means target abi alignment. We need to use the scalar's
 | |
|   // target abi alignment in such a case.
 | |
|   if (!Alignment)
 | |
|     Alignment = DL->getABITypeAlignment(ScalarDataTy);
 | |
|   unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
 | |
|   unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
 | |
|   unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
 | |
| 
 | |
|   if (SI && Legal->blockNeedsPredication(SI->getParent()))
 | |
|     return scalarizeInstruction(Instr, true);
 | |
| 
 | |
|   if (ScalarAllocatedSize != VectorElementSize)
 | |
|     return scalarizeInstruction(Instr);
 | |
| 
 | |
|   // If the pointer is loop invariant or if it is non-consecutive,
 | |
|   // scalarize the load.
 | |
|   int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
 | |
|   bool Reverse = ConsecutiveStride < 0;
 | |
|   bool UniformLoad = LI && Legal->isUniform(Ptr);
 | |
|   if (!ConsecutiveStride || UniformLoad)
 | |
|     return scalarizeInstruction(Instr);
 | |
| 
 | |
|   Constant *Zero = Builder.getInt32(0);
 | |
|   VectorParts &Entry = WidenMap.get(Instr);
 | |
| 
 | |
|   // Handle consecutive loads/stores.
 | |
|   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
 | |
|     setDebugLocFromInst(Builder, Gep);
 | |
|     Value *PtrOperand = Gep->getPointerOperand();
 | |
|     Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
 | |
|     FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
 | |
| 
 | |
|     // Create the new GEP with the new induction variable.
 | |
|     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 | |
|     Gep2->setOperand(0, FirstBasePtr);
 | |
|     Gep2->setName("gep.indvar.base");
 | |
|     Ptr = Builder.Insert(Gep2);
 | |
|   } else if (Gep) {
 | |
|     setDebugLocFromInst(Builder, Gep);
 | |
|     assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
 | |
|                                OrigLoop) && "Base ptr must be invariant");
 | |
| 
 | |
|     // The last index does not have to be the induction. It can be
 | |
|     // consecutive and be a function of the index. For example A[I+1];
 | |
|     unsigned NumOperands = Gep->getNumOperands();
 | |
|     unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
 | |
|     // Create the new GEP with the new induction variable.
 | |
|     GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
 | |
| 
 | |
|     for (unsigned i = 0; i < NumOperands; ++i) {
 | |
|       Value *GepOperand = Gep->getOperand(i);
 | |
|       Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
 | |
| 
 | |
|       // Update last index or loop invariant instruction anchored in loop.
 | |
|       if (i == InductionOperand ||
 | |
|           (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
 | |
|         assert((i == InductionOperand ||
 | |
|                SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
 | |
|                "Must be last index or loop invariant");
 | |
| 
 | |
|         VectorParts &GEPParts = getVectorValue(GepOperand);
 | |
|         Value *Index = GEPParts[0];
 | |
|         Index = Builder.CreateExtractElement(Index, Zero);
 | |
|         Gep2->setOperand(i, Index);
 | |
|         Gep2->setName("gep.indvar.idx");
 | |
|       }
 | |
|     }
 | |
|     Ptr = Builder.Insert(Gep2);
 | |
|   } else {
 | |
|     // Use the induction element ptr.
 | |
|     assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
 | |
|     setDebugLocFromInst(Builder, Ptr);
 | |
|     VectorParts &PtrVal = getVectorValue(Ptr);
 | |
|     Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
 | |
|   }
 | |
| 
 | |
|   // Handle Stores:
 | |
|   if (SI) {
 | |
|     assert(!Legal->isUniform(SI->getPointerOperand()) &&
 | |
|            "We do not allow storing to uniform addresses");
 | |
|     setDebugLocFromInst(Builder, SI);
 | |
|     // We don't want to update the value in the map as it might be used in
 | |
|     // another expression. So don't use a reference type for "StoredVal".
 | |
|     VectorParts StoredVal = getVectorValue(SI->getValueOperand());
 | |
| 
 | |
|     for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|       // Calculate the pointer for the specific unroll-part.
 | |
|       Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
 | |
| 
 | |
|       if (Reverse) {
 | |
|         // If we store to reverse consecutive memory locations then we need
 | |
|         // to reverse the order of elements in the stored value.
 | |
|         StoredVal[Part] = reverseVector(StoredVal[Part]);
 | |
|         // If the address is consecutive but reversed, then the
 | |
|         // wide store needs to start at the last vector element.
 | |
|         PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
 | |
|         PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
 | |
|       }
 | |
| 
 | |
|       Value *VecPtr = Builder.CreateBitCast(PartPtr,
 | |
|                                             DataTy->getPointerTo(AddressSpace));
 | |
|       Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle loads.
 | |
|   assert(LI && "Must have a load instruction");
 | |
|   setDebugLocFromInst(Builder, LI);
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     // Calculate the pointer for the specific unroll-part.
 | |
|     Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
 | |
| 
 | |
|     if (Reverse) {
 | |
|       // If the address is consecutive but reversed, then the
 | |
|       // wide store needs to start at the last vector element.
 | |
|       PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
 | |
|       PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
 | |
|     }
 | |
| 
 | |
|     Value *VecPtr = Builder.CreateBitCast(PartPtr,
 | |
|                                           DataTy->getPointerTo(AddressSpace));
 | |
|     Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
 | |
|     cast<LoadInst>(LI)->setAlignment(Alignment);
 | |
|     Entry[Part] = Reverse ? reverseVector(LI) :  LI;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredicateStore) {
 | |
|   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
 | |
|   // Holds vector parameters or scalars, in case of uniform vals.
 | |
|   SmallVector<VectorParts, 4> Params;
 | |
| 
 | |
|   setDebugLocFromInst(Builder, Instr);
 | |
| 
 | |
|   // Find all of the vectorized parameters.
 | |
|   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|     Value *SrcOp = Instr->getOperand(op);
 | |
| 
 | |
|     // If we are accessing the old induction variable, use the new one.
 | |
|     if (SrcOp == OldInduction) {
 | |
|       Params.push_back(getVectorValue(SrcOp));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try using previously calculated values.
 | |
|     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
 | |
| 
 | |
|     // If the src is an instruction that appeared earlier in the basic block
 | |
|     // then it should already be vectorized.
 | |
|     if (SrcInst && OrigLoop->contains(SrcInst)) {
 | |
|       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
 | |
|       // The parameter is a vector value from earlier.
 | |
|       Params.push_back(WidenMap.get(SrcInst));
 | |
|     } else {
 | |
|       // The parameter is a scalar from outside the loop. Maybe even a constant.
 | |
|       VectorParts Scalars;
 | |
|       Scalars.append(UF, SrcOp);
 | |
|       Params.push_back(Scalars);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Params.size() == Instr->getNumOperands() &&
 | |
|          "Invalid number of operands");
 | |
| 
 | |
|   // Does this instruction return a value ?
 | |
|   bool IsVoidRetTy = Instr->getType()->isVoidTy();
 | |
| 
 | |
|   Value *UndefVec = IsVoidRetTy ? 0 :
 | |
|     UndefValue::get(VectorType::get(Instr->getType(), VF));
 | |
|   // Create a new entry in the WidenMap and initialize it to Undef or Null.
 | |
|   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
 | |
| 
 | |
|   Instruction *InsertPt = Builder.GetInsertPoint();
 | |
|   BasicBlock *IfBlock = Builder.GetInsertBlock();
 | |
|   BasicBlock *CondBlock = 0;
 | |
| 
 | |
|   VectorParts Cond;
 | |
|   Loop *VectorLp = 0;
 | |
|   if (IfPredicateStore) {
 | |
|     assert(Instr->getParent()->getSinglePredecessor() &&
 | |
|            "Only support single predecessor blocks");
 | |
|     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
 | |
|                           Instr->getParent());
 | |
|     VectorLp = LI->getLoopFor(IfBlock);
 | |
|     assert(VectorLp && "Must have a loop for this block");
 | |
|   }
 | |
| 
 | |
|   // For each vector unroll 'part':
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     // For each scalar that we create:
 | |
|     for (unsigned Width = 0; Width < VF; ++Width) {
 | |
| 
 | |
|       // Start if-block.
 | |
|       Value *Cmp = 0;
 | |
|       if (IfPredicateStore) {
 | |
|         Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
 | |
|         Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
 | |
|         CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
 | |
|         LoopVectorBody.push_back(CondBlock);
 | |
|         VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
 | |
|         // Update Builder with newly created basic block.
 | |
|         Builder.SetInsertPoint(InsertPt);
 | |
|       }
 | |
| 
 | |
|       Instruction *Cloned = Instr->clone();
 | |
|       if (!IsVoidRetTy)
 | |
|         Cloned->setName(Instr->getName() + ".cloned");
 | |
|       // Replace the operands of the cloned instructions with extracted scalars.
 | |
|       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|         Value *Op = Params[op][Part];
 | |
|         // Param is a vector. Need to extract the right lane.
 | |
|         if (Op->getType()->isVectorTy())
 | |
|           Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
 | |
|         Cloned->setOperand(op, Op);
 | |
|       }
 | |
| 
 | |
|       // Place the cloned scalar in the new loop.
 | |
|       Builder.Insert(Cloned);
 | |
| 
 | |
|       // If the original scalar returns a value we need to place it in a vector
 | |
|       // so that future users will be able to use it.
 | |
|       if (!IsVoidRetTy)
 | |
|         VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
 | |
|                                                        Builder.getInt32(Width));
 | |
|       // End if-block.
 | |
|       if (IfPredicateStore) {
 | |
|          BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
 | |
|          LoopVectorBody.push_back(NewIfBlock);
 | |
|          VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
 | |
|          Builder.SetInsertPoint(InsertPt);
 | |
|          Instruction *OldBr = IfBlock->getTerminator();
 | |
|          BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
 | |
|          OldBr->eraseFromParent();
 | |
|          IfBlock = NewIfBlock;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
 | |
|                                  Instruction *Loc) {
 | |
|   if (FirstInst)
 | |
|     return FirstInst;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     return I->getParent() == Loc->getParent() ? I : 0;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| std::pair<Instruction *, Instruction *>
 | |
| InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
 | |
|   Instruction *tnullptr = 0;
 | |
|   if (!Legal->mustCheckStrides())
 | |
|     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
 | |
| 
 | |
|   IRBuilder<> ChkBuilder(Loc);
 | |
| 
 | |
|   // Emit checks.
 | |
|   Value *Check = 0;
 | |
|   Instruction *FirstInst = 0;
 | |
|   for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
 | |
|                                          SE = Legal->strides_end();
 | |
|        SI != SE; ++SI) {
 | |
|     Value *Ptr = stripIntegerCast(*SI);
 | |
|     Value *C = ChkBuilder.CreateICmpNE(Ptr, ConstantInt::get(Ptr->getType(), 1),
 | |
|                                        "stride.chk");
 | |
|     // Store the first instruction we create.
 | |
|     FirstInst = getFirstInst(FirstInst, C, Loc);
 | |
|     if (Check)
 | |
|       Check = ChkBuilder.CreateOr(Check, C);
 | |
|     else
 | |
|       Check = C;
 | |
|   }
 | |
| 
 | |
|   // We have to do this trickery because the IRBuilder might fold the check to a
 | |
|   // constant expression in which case there is no Instruction anchored in a
 | |
|   // the block.
 | |
|   LLVMContext &Ctx = Loc->getContext();
 | |
|   Instruction *TheCheck =
 | |
|       BinaryOperator::CreateAnd(Check, ConstantInt::getTrue(Ctx));
 | |
|   ChkBuilder.Insert(TheCheck, "stride.not.one");
 | |
|   FirstInst = getFirstInst(FirstInst, TheCheck, Loc);
 | |
| 
 | |
|   return std::make_pair(FirstInst, TheCheck);
 | |
| }
 | |
| 
 | |
| std::pair<Instruction *, Instruction *>
 | |
| InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
 | |
|   LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
 | |
|   Legal->getRuntimePointerCheck();
 | |
| 
 | |
|   Instruction *tnullptr = 0;
 | |
|   if (!PtrRtCheck->Need)
 | |
|     return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
 | |
| 
 | |
|   unsigned NumPointers = PtrRtCheck->Pointers.size();
 | |
|   SmallVector<TrackingVH<Value> , 2> Starts;
 | |
|   SmallVector<TrackingVH<Value> , 2> Ends;
 | |
| 
 | |
|   LLVMContext &Ctx = Loc->getContext();
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
|   Instruction *FirstInst = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     Value *Ptr = PtrRtCheck->Pointers[i];
 | |
|     const SCEV *Sc = SE->getSCEV(Ptr);
 | |
| 
 | |
|     if (SE->isLoopInvariant(Sc, OrigLoop)) {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
 | |
|             *Ptr <<"\n");
 | |
|       Starts.push_back(Ptr);
 | |
|       Ends.push_back(Ptr);
 | |
|     } else {
 | |
|       DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
 | |
|       unsigned AS = Ptr->getType()->getPointerAddressSpace();
 | |
| 
 | |
|       // Use this type for pointer arithmetic.
 | |
|       Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
 | |
| 
 | |
|       Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
 | |
|       Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
 | |
|       Starts.push_back(Start);
 | |
|       Ends.push_back(End);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   IRBuilder<> ChkBuilder(Loc);
 | |
|   // Our instructions might fold to a constant.
 | |
|   Value *MemoryRuntimeCheck = 0;
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     for (unsigned j = i+1; j < NumPointers; ++j) {
 | |
|       // No need to check if two readonly pointers intersect.
 | |
|       if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
 | |
|         continue;
 | |
| 
 | |
|       // Only need to check pointers between two different dependency sets.
 | |
|       if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
 | |
|        continue;
 | |
| 
 | |
|       unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
 | |
|       unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
 | |
| 
 | |
|       assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
 | |
|              (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
 | |
|              "Trying to bounds check pointers with different address spaces");
 | |
| 
 | |
|       Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
 | |
|       Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
 | |
| 
 | |
|       Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
 | |
|       Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
 | |
|       Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
 | |
|       Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
 | |
| 
 | |
|       Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
 | |
|       FirstInst = getFirstInst(FirstInst, Cmp0, Loc);
 | |
|       Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
 | |
|       FirstInst = getFirstInst(FirstInst, Cmp1, Loc);
 | |
|       Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
 | |
|       FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
 | |
|       if (MemoryRuntimeCheck) {
 | |
|         IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
 | |
|                                          "conflict.rdx");
 | |
|         FirstInst = getFirstInst(FirstInst, IsConflict, Loc);
 | |
|       }
 | |
|       MemoryRuntimeCheck = IsConflict;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We have to do this trickery because the IRBuilder might fold the check to a
 | |
|   // constant expression in which case there is no Instruction anchored in a
 | |
|   // the block.
 | |
|   Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
 | |
|                                                  ConstantInt::getTrue(Ctx));
 | |
|   ChkBuilder.Insert(Check, "memcheck.conflict");
 | |
|   FirstInst = getFirstInst(FirstInst, Check, Loc);
 | |
|   return std::make_pair(FirstInst, Check);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::createEmptyLoop() {
 | |
|   /*
 | |
|    In this function we generate a new loop. The new loop will contain
 | |
|    the vectorized instructions while the old loop will continue to run the
 | |
|    scalar remainder.
 | |
| 
 | |
|        [ ] <-- vector loop bypass (may consist of multiple blocks).
 | |
|      /  |
 | |
|     /   v
 | |
|    |   [ ]     <-- vector pre header.
 | |
|    |    |
 | |
|    |    v
 | |
|    |   [  ] \
 | |
|    |   [  ]_|   <-- vector loop.
 | |
|    |    |
 | |
|     \   v
 | |
|       >[ ]   <--- middle-block.
 | |
|      /  |
 | |
|     /   v
 | |
|    |   [ ]     <--- new preheader.
 | |
|    |    |
 | |
|    |    v
 | |
|    |   [ ] \
 | |
|    |   [ ]_|   <-- old scalar loop to handle remainder.
 | |
|     \   |
 | |
|      \  v
 | |
|       >[ ]     <-- exit block.
 | |
|    ...
 | |
|    */
 | |
| 
 | |
|   BasicBlock *OldBasicBlock = OrigLoop->getHeader();
 | |
|   BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
 | |
|   BasicBlock *ExitBlock = OrigLoop->getExitBlock();
 | |
|   assert(ExitBlock && "Must have an exit block");
 | |
| 
 | |
|   // Some loops have a single integer induction variable, while other loops
 | |
|   // don't. One example is c++ iterators that often have multiple pointer
 | |
|   // induction variables. In the code below we also support a case where we
 | |
|   // don't have a single induction variable.
 | |
|   OldInduction = Legal->getInduction();
 | |
|   Type *IdxTy = Legal->getWidestInductionType();
 | |
| 
 | |
|   // Find the loop boundaries.
 | |
|   const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
 | |
|   assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
 | |
| 
 | |
|   // The exit count might have the type of i64 while the phi is i32. This can
 | |
|   // happen if we have an induction variable that is sign extended before the
 | |
|   // compare. The only way that we get a backedge taken count is that the
 | |
|   // induction variable was signed and as such will not overflow. In such a case
 | |
|   // truncation is legal.
 | |
|   if (ExitCount->getType()->getPrimitiveSizeInBits() >
 | |
|       IdxTy->getPrimitiveSizeInBits())
 | |
|     ExitCount = SE->getTruncateOrNoop(ExitCount, IdxTy);
 | |
| 
 | |
|   ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
 | |
|   // Get the total trip count from the count by adding 1.
 | |
|   ExitCount = SE->getAddExpr(ExitCount,
 | |
|                              SE->getConstant(ExitCount->getType(), 1));
 | |
| 
 | |
|   // Expand the trip count and place the new instructions in the preheader.
 | |
|   // Notice that the pre-header does not change, only the loop body.
 | |
|   SCEVExpander Exp(*SE, "induction");
 | |
| 
 | |
|   // Count holds the overall loop count (N).
 | |
|   Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
 | |
|                                    BypassBlock->getTerminator());
 | |
| 
 | |
|   // The loop index does not have to start at Zero. Find the original start
 | |
|   // value from the induction PHI node. If we don't have an induction variable
 | |
|   // then we know that it starts at zero.
 | |
|   Builder.SetInsertPoint(BypassBlock->getTerminator());
 | |
|   Value *StartIdx = ExtendedIdx = OldInduction ?
 | |
|     Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
 | |
|                        IdxTy):
 | |
|     ConstantInt::get(IdxTy, 0);
 | |
| 
 | |
|   assert(BypassBlock && "Invalid loop structure");
 | |
|   LoopBypassBlocks.push_back(BypassBlock);
 | |
| 
 | |
|   // Split the single block loop into the two loop structure described above.
 | |
|   BasicBlock *VectorPH =
 | |
|   BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
 | |
|   BasicBlock *VecBody =
 | |
|   VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
 | |
|   BasicBlock *MiddleBlock =
 | |
|   VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
 | |
|   BasicBlock *ScalarPH =
 | |
|   MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
 | |
| 
 | |
|   // Create and register the new vector loop.
 | |
|   Loop* Lp = new Loop();
 | |
|   Loop *ParentLoop = OrigLoop->getParentLoop();
 | |
| 
 | |
|   // Insert the new loop into the loop nest and register the new basic blocks
 | |
|   // before calling any utilities such as SCEV that require valid LoopInfo.
 | |
|   if (ParentLoop) {
 | |
|     ParentLoop->addChildLoop(Lp);
 | |
|     ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
 | |
|     ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
 | |
|   } else {
 | |
|     LI->addTopLevelLoop(Lp);
 | |
|   }
 | |
|   Lp->addBasicBlockToLoop(VecBody, LI->getBase());
 | |
| 
 | |
|   // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
 | |
|   // inside the loop.
 | |
|   Builder.SetInsertPoint(VecBody->getFirstNonPHI());
 | |
| 
 | |
|   // Generate the induction variable.
 | |
|   setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
 | |
|   Induction = Builder.CreatePHI(IdxTy, 2, "index");
 | |
|   // The loop step is equal to the vectorization factor (num of SIMD elements)
 | |
|   // times the unroll factor (num of SIMD instructions).
 | |
|   Constant *Step = ConstantInt::get(IdxTy, VF * UF);
 | |
| 
 | |
|   // This is the IR builder that we use to add all of the logic for bypassing
 | |
|   // the new vector loop.
 | |
|   IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
 | |
|   setDebugLocFromInst(BypassBuilder,
 | |
|                       getDebugLocFromInstOrOperands(OldInduction));
 | |
| 
 | |
|   // We may need to extend the index in case there is a type mismatch.
 | |
|   // We know that the count starts at zero and does not overflow.
 | |
|   if (Count->getType() != IdxTy) {
 | |
|     // The exit count can be of pointer type. Convert it to the correct
 | |
|     // integer type.
 | |
|     if (ExitCount->getType()->isPointerTy())
 | |
|       Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
 | |
|     else
 | |
|       Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
 | |
|   }
 | |
| 
 | |
|   // Add the start index to the loop count to get the new end index.
 | |
|   Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
 | |
| 
 | |
|   // Now we need to generate the expression for N - (N % VF), which is
 | |
|   // the part that the vectorized body will execute.
 | |
|   Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
 | |
|   Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
 | |
|   Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
 | |
|                                                      "end.idx.rnd.down");
 | |
| 
 | |
|   // Now, compare the new count to zero. If it is zero skip the vector loop and
 | |
|   // jump to the scalar loop.
 | |
|   Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
 | |
|                                           "cmp.zero");
 | |
| 
 | |
|   BasicBlock *LastBypassBlock = BypassBlock;
 | |
| 
 | |
|   // Generate the code to check that the strides we assumed to be one are really
 | |
|   // one. We want the new basic block to start at the first instruction in a
 | |
|   // sequence of instructions that form a check.
 | |
|   Instruction *StrideCheck;
 | |
|   Instruction *FirstCheckInst;
 | |
|   std::tie(FirstCheckInst, StrideCheck) =
 | |
|       addStrideCheck(BypassBlock->getTerminator());
 | |
|   if (StrideCheck) {
 | |
|     // Create a new block containing the stride check.
 | |
|     BasicBlock *CheckBlock =
 | |
|         BypassBlock->splitBasicBlock(FirstCheckInst, "vector.stridecheck");
 | |
|     if (ParentLoop)
 | |
|       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
 | |
|     LoopBypassBlocks.push_back(CheckBlock);
 | |
| 
 | |
|     // Replace the branch into the memory check block with a conditional branch
 | |
|     // for the "few elements case".
 | |
|     Instruction *OldTerm = BypassBlock->getTerminator();
 | |
|     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
 | |
|     OldTerm->eraseFromParent();
 | |
| 
 | |
|     Cmp = StrideCheck;
 | |
|     LastBypassBlock = CheckBlock;
 | |
|   }
 | |
| 
 | |
|   // Generate the code that checks in runtime if arrays overlap. We put the
 | |
|   // checks into a separate block to make the more common case of few elements
 | |
|   // faster.
 | |
|   Instruction *MemRuntimeCheck;
 | |
|   std::tie(FirstCheckInst, MemRuntimeCheck) =
 | |
|       addRuntimeCheck(LastBypassBlock->getTerminator());
 | |
|   if (MemRuntimeCheck) {
 | |
|     // Create a new block containing the memory check.
 | |
|     BasicBlock *CheckBlock =
 | |
|         LastBypassBlock->splitBasicBlock(MemRuntimeCheck, "vector.memcheck");
 | |
|     if (ParentLoop)
 | |
|       ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
 | |
|     LoopBypassBlocks.push_back(CheckBlock);
 | |
| 
 | |
|     // Replace the branch into the memory check block with a conditional branch
 | |
|     // for the "few elements case".
 | |
|     Instruction *OldTerm = LastBypassBlock->getTerminator();
 | |
|     BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
 | |
|     OldTerm->eraseFromParent();
 | |
| 
 | |
|     Cmp = MemRuntimeCheck;
 | |
|     LastBypassBlock = CheckBlock;
 | |
|   }
 | |
| 
 | |
|   LastBypassBlock->getTerminator()->eraseFromParent();
 | |
|   BranchInst::Create(MiddleBlock, VectorPH, Cmp,
 | |
|                      LastBypassBlock);
 | |
| 
 | |
|   // We are going to resume the execution of the scalar loop.
 | |
|   // Go over all of the induction variables that we found and fix the
 | |
|   // PHIs that are left in the scalar version of the loop.
 | |
|   // The starting values of PHI nodes depend on the counter of the last
 | |
|   // iteration in the vectorized loop.
 | |
|   // If we come from a bypass edge then we need to start from the original
 | |
|   // start value.
 | |
| 
 | |
|   // This variable saves the new starting index for the scalar loop.
 | |
|   PHINode *ResumeIndex = 0;
 | |
|   LoopVectorizationLegality::InductionList::iterator I, E;
 | |
|   LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
 | |
|   // Set builder to point to last bypass block.
 | |
|   BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
 | |
|   for (I = List->begin(), E = List->end(); I != E; ++I) {
 | |
|     PHINode *OrigPhi = I->first;
 | |
|     LoopVectorizationLegality::InductionInfo II = I->second;
 | |
| 
 | |
|     Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
 | |
|     PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
 | |
|                                          MiddleBlock->getTerminator());
 | |
|     // We might have extended the type of the induction variable but we need a
 | |
|     // truncated version for the scalar loop.
 | |
|     PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
 | |
|       PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
 | |
|                       MiddleBlock->getTerminator()) : 0;
 | |
| 
 | |
|     Value *EndValue = 0;
 | |
|     switch (II.IK) {
 | |
|     case LoopVectorizationLegality::IK_NoInduction:
 | |
|       llvm_unreachable("Unknown induction");
 | |
|     case LoopVectorizationLegality::IK_IntInduction: {
 | |
|       // Handle the integer induction counter.
 | |
|       assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
 | |
| 
 | |
|       // We have the canonical induction variable.
 | |
|       if (OrigPhi == OldInduction) {
 | |
|         // Create a truncated version of the resume value for the scalar loop,
 | |
|         // we might have promoted the type to a larger width.
 | |
|         EndValue =
 | |
|           BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
 | |
|         // The new PHI merges the original incoming value, in case of a bypass,
 | |
|         // or the value at the end of the vectorized loop.
 | |
|         for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|           TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
 | |
|         TruncResumeVal->addIncoming(EndValue, VecBody);
 | |
| 
 | |
|         // We know what the end value is.
 | |
|         EndValue = IdxEndRoundDown;
 | |
|         // We also know which PHI node holds it.
 | |
|         ResumeIndex = ResumeVal;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Not the canonical induction variable - add the vector loop count to the
 | |
|       // start value.
 | |
|       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
 | |
|                                                    II.StartValue->getType(),
 | |
|                                                    "cast.crd");
 | |
|       EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
 | |
|       break;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_ReverseIntInduction: {
 | |
|       // Convert the CountRoundDown variable to the PHI size.
 | |
|       Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
 | |
|                                                    II.StartValue->getType(),
 | |
|                                                    "cast.crd");
 | |
|       // Handle reverse integer induction counter.
 | |
|       EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
 | |
|       break;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_PtrInduction: {
 | |
|       // For pointer induction variables, calculate the offset using
 | |
|       // the end index.
 | |
|       EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
 | |
|                                          "ptr.ind.end");
 | |
|       break;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_ReversePtrInduction: {
 | |
|       // The value at the end of the loop for the reverse pointer is calculated
 | |
|       // by creating a GEP with a negative index starting from the start value.
 | |
|       Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
 | |
|       Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
 | |
|                                               "rev.ind.end");
 | |
|       EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
 | |
|                                          "rev.ptr.ind.end");
 | |
|       break;
 | |
|     }
 | |
|     }// end of case
 | |
| 
 | |
|     // The new PHI merges the original incoming value, in case of a bypass,
 | |
|     // or the value at the end of the vectorized loop.
 | |
|     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
 | |
|       if (OrigPhi == OldInduction)
 | |
|         ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
 | |
|       else
 | |
|         ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
 | |
|     }
 | |
|     ResumeVal->addIncoming(EndValue, VecBody);
 | |
| 
 | |
|     // Fix the scalar body counter (PHI node).
 | |
|     unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
 | |
|     // The old inductions phi node in the scalar body needs the truncated value.
 | |
|     if (OrigPhi == OldInduction)
 | |
|       OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
 | |
|     else
 | |
|       OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
 | |
|   }
 | |
| 
 | |
|   // If we are generating a new induction variable then we also need to
 | |
|   // generate the code that calculates the exit value. This value is not
 | |
|   // simply the end of the counter because we may skip the vectorized body
 | |
|   // in case of a runtime check.
 | |
|   if (!OldInduction){
 | |
|     assert(!ResumeIndex && "Unexpected resume value found");
 | |
|     ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
 | |
|                                   MiddleBlock->getTerminator());
 | |
|     for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|       ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
 | |
|     ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
 | |
|   }
 | |
| 
 | |
|   // Make sure that we found the index where scalar loop needs to continue.
 | |
|   assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
 | |
|          "Invalid resume Index");
 | |
| 
 | |
|   // Add a check in the middle block to see if we have completed
 | |
|   // all of the iterations in the first vector loop.
 | |
|   // If (N - N%VF) == N, then we *don't* need to run the remainder.
 | |
|   Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
 | |
|                                 ResumeIndex, "cmp.n",
 | |
|                                 MiddleBlock->getTerminator());
 | |
| 
 | |
|   BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
 | |
|   // Remove the old terminator.
 | |
|   MiddleBlock->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Create i+1 and fill the PHINode.
 | |
|   Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
 | |
|   Induction->addIncoming(StartIdx, VectorPH);
 | |
|   Induction->addIncoming(NextIdx, VecBody);
 | |
|   // Create the compare.
 | |
|   Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
 | |
|   Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
 | |
| 
 | |
|   // Now we have two terminators. Remove the old one from the block.
 | |
|   VecBody->getTerminator()->eraseFromParent();
 | |
| 
 | |
|   // Get ready to start creating new instructions into the vectorized body.
 | |
|   Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
 | |
| 
 | |
|   // Save the state.
 | |
|   LoopVectorPreHeader = VectorPH;
 | |
|   LoopScalarPreHeader = ScalarPH;
 | |
|   LoopMiddleBlock = MiddleBlock;
 | |
|   LoopExitBlock = ExitBlock;
 | |
|   LoopVectorBody.push_back(VecBody);
 | |
|   LoopScalarBody = OldBasicBlock;
 | |
| 
 | |
|   LoopVectorizeHints Hints(Lp, true);
 | |
|   Hints.setAlreadyVectorized(Lp);
 | |
| }
 | |
| 
 | |
| /// This function returns the identity element (or neutral element) for
 | |
| /// the operation K.
 | |
| Constant*
 | |
| LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
 | |
|   switch (K) {
 | |
|   case RK_IntegerXor:
 | |
|   case RK_IntegerAdd:
 | |
|   case RK_IntegerOr:
 | |
|     // Adding, Xoring, Oring zero to a number does not change it.
 | |
|     return ConstantInt::get(Tp, 0);
 | |
|   case RK_IntegerMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantInt::get(Tp, 1);
 | |
|   case RK_IntegerAnd:
 | |
|     // AND-ing a number with an all-1 value does not change it.
 | |
|     return ConstantInt::get(Tp, -1, true);
 | |
|   case  RK_FloatMult:
 | |
|     // Multiplying a number by 1 does not change it.
 | |
|     return ConstantFP::get(Tp, 1.0L);
 | |
|   case  RK_FloatAdd:
 | |
|     // Adding zero to a number does not change it.
 | |
|     return ConstantFP::get(Tp, 0.0L);
 | |
|   default:
 | |
|     llvm_unreachable("Unknown reduction kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
 | |
|                                               Intrinsic::ID ValidIntrinsicID) {
 | |
|   if (I.getNumArgOperands() != 1 ||
 | |
|       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | |
|       I.getType() != I.getArgOperand(0)->getType() ||
 | |
|       !I.onlyReadsMemory())
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   return ValidIntrinsicID;
 | |
| }
 | |
| 
 | |
| static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
 | |
|                                                Intrinsic::ID ValidIntrinsicID) {
 | |
|   if (I.getNumArgOperands() != 2 ||
 | |
|       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
 | |
|       !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
 | |
|       I.getType() != I.getArgOperand(0)->getType() ||
 | |
|       I.getType() != I.getArgOperand(1)->getType() ||
 | |
|       !I.onlyReadsMemory())
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   return ValidIntrinsicID;
 | |
| }
 | |
| 
 | |
| 
 | |
| static Intrinsic::ID
 | |
| getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
 | |
|   // If we have an intrinsic call, check if it is trivially vectorizable.
 | |
|   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
 | |
|     Intrinsic::ID ID = II->getIntrinsicID();
 | |
|     if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
 | |
|         ID == Intrinsic::lifetime_end)
 | |
|       return ID;
 | |
|     else
 | |
|       return Intrinsic::not_intrinsic;
 | |
|   }
 | |
| 
 | |
|   if (!TLI)
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   LibFunc::Func Func;
 | |
|   Function *F = CI->getCalledFunction();
 | |
|   // We're going to make assumptions on the semantics of the functions, check
 | |
|   // that the target knows that it's available in this environment and it does
 | |
|   // not have local linkage.
 | |
|   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
 | |
|     return Intrinsic::not_intrinsic;
 | |
| 
 | |
|   // Otherwise check if we have a call to a function that can be turned into a
 | |
|   // vector intrinsic.
 | |
|   switch (Func) {
 | |
|   default:
 | |
|     break;
 | |
|   case LibFunc::sin:
 | |
|   case LibFunc::sinf:
 | |
|   case LibFunc::sinl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::sin);
 | |
|   case LibFunc::cos:
 | |
|   case LibFunc::cosf:
 | |
|   case LibFunc::cosl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::cos);
 | |
|   case LibFunc::exp:
 | |
|   case LibFunc::expf:
 | |
|   case LibFunc::expl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::exp);
 | |
|   case LibFunc::exp2:
 | |
|   case LibFunc::exp2f:
 | |
|   case LibFunc::exp2l:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
 | |
|   case LibFunc::log:
 | |
|   case LibFunc::logf:
 | |
|   case LibFunc::logl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::log);
 | |
|   case LibFunc::log10:
 | |
|   case LibFunc::log10f:
 | |
|   case LibFunc::log10l:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::log10);
 | |
|   case LibFunc::log2:
 | |
|   case LibFunc::log2f:
 | |
|   case LibFunc::log2l:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::log2);
 | |
|   case LibFunc::fabs:
 | |
|   case LibFunc::fabsf:
 | |
|   case LibFunc::fabsl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
 | |
|   case LibFunc::copysign:
 | |
|   case LibFunc::copysignf:
 | |
|   case LibFunc::copysignl:
 | |
|     return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
 | |
|   case LibFunc::floor:
 | |
|   case LibFunc::floorf:
 | |
|   case LibFunc::floorl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::floor);
 | |
|   case LibFunc::ceil:
 | |
|   case LibFunc::ceilf:
 | |
|   case LibFunc::ceill:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
 | |
|   case LibFunc::trunc:
 | |
|   case LibFunc::truncf:
 | |
|   case LibFunc::truncl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
 | |
|   case LibFunc::rint:
 | |
|   case LibFunc::rintf:
 | |
|   case LibFunc::rintl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::rint);
 | |
|   case LibFunc::nearbyint:
 | |
|   case LibFunc::nearbyintf:
 | |
|   case LibFunc::nearbyintl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
 | |
|   case LibFunc::round:
 | |
|   case LibFunc::roundf:
 | |
|   case LibFunc::roundl:
 | |
|     return checkUnaryFloatSignature(*CI, Intrinsic::round);
 | |
|   case LibFunc::pow:
 | |
|   case LibFunc::powf:
 | |
|   case LibFunc::powl:
 | |
|     return checkBinaryFloatSignature(*CI, Intrinsic::pow);
 | |
|   }
 | |
| 
 | |
|   return Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| /// This function translates the reduction kind to an LLVM binary operator.
 | |
| static unsigned
 | |
| getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
 | |
|   switch (Kind) {
 | |
|     case LoopVectorizationLegality::RK_IntegerAdd:
 | |
|       return Instruction::Add;
 | |
|     case LoopVectorizationLegality::RK_IntegerMult:
 | |
|       return Instruction::Mul;
 | |
|     case LoopVectorizationLegality::RK_IntegerOr:
 | |
|       return Instruction::Or;
 | |
|     case LoopVectorizationLegality::RK_IntegerAnd:
 | |
|       return Instruction::And;
 | |
|     case LoopVectorizationLegality::RK_IntegerXor:
 | |
|       return Instruction::Xor;
 | |
|     case LoopVectorizationLegality::RK_FloatMult:
 | |
|       return Instruction::FMul;
 | |
|     case LoopVectorizationLegality::RK_FloatAdd:
 | |
|       return Instruction::FAdd;
 | |
|     case LoopVectorizationLegality::RK_IntegerMinMax:
 | |
|       return Instruction::ICmp;
 | |
|     case LoopVectorizationLegality::RK_FloatMinMax:
 | |
|       return Instruction::FCmp;
 | |
|     default:
 | |
|       llvm_unreachable("Unknown reduction operation");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *createMinMaxOp(IRBuilder<> &Builder,
 | |
|                       LoopVectorizationLegality::MinMaxReductionKind RK,
 | |
|                       Value *Left,
 | |
|                       Value *Right) {
 | |
|   CmpInst::Predicate P = CmpInst::ICMP_NE;
 | |
|   switch (RK) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown min/max reduction kind");
 | |
|   case LoopVectorizationLegality::MRK_UIntMin:
 | |
|     P = CmpInst::ICMP_ULT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_UIntMax:
 | |
|     P = CmpInst::ICMP_UGT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_SIntMin:
 | |
|     P = CmpInst::ICMP_SLT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_SIntMax:
 | |
|     P = CmpInst::ICMP_SGT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_FloatMin:
 | |
|     P = CmpInst::FCMP_OLT;
 | |
|     break;
 | |
|   case LoopVectorizationLegality::MRK_FloatMax:
 | |
|     P = CmpInst::FCMP_OGT;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   Value *Cmp;
 | |
|   if (RK == LoopVectorizationLegality::MRK_FloatMin ||
 | |
|       RK == LoopVectorizationLegality::MRK_FloatMax)
 | |
|     Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
 | |
|   else
 | |
|     Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
 | |
| 
 | |
|   Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
 | |
|   return Select;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct CSEDenseMapInfo {
 | |
|   static bool canHandle(Instruction *I) {
 | |
|     return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
 | |
|            isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
 | |
|   }
 | |
|   static inline Instruction *getEmptyKey() {
 | |
|     return DenseMapInfo<Instruction *>::getEmptyKey();
 | |
|   }
 | |
|   static inline Instruction *getTombstoneKey() {
 | |
|     return DenseMapInfo<Instruction *>::getTombstoneKey();
 | |
|   }
 | |
|   static unsigned getHashValue(Instruction *I) {
 | |
|     assert(canHandle(I) && "Unknown instruction!");
 | |
|     return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
 | |
|                                                            I->value_op_end()));
 | |
|   }
 | |
|   static bool isEqual(Instruction *LHS, Instruction *RHS) {
 | |
|     if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
 | |
|         LHS == getTombstoneKey() || RHS == getTombstoneKey())
 | |
|       return LHS == RHS;
 | |
|     return LHS->isIdenticalTo(RHS);
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| /// \brief Check whether this block is a predicated block.
 | |
| /// Due to if predication of stores we might create a sequence of "if(pred) a[i]
 | |
| /// = ...;  " blocks. We start with one vectorized basic block. For every
 | |
| /// conditional block we split this vectorized block. Therefore, every second
 | |
| /// block will be a predicated one.
 | |
| static bool isPredicatedBlock(unsigned BlockNum) {
 | |
|   return BlockNum % 2;
 | |
| }
 | |
| 
 | |
| ///\brief Perform cse of induction variable instructions.
 | |
| static void cse(SmallVector<BasicBlock *, 4> &BBs) {
 | |
|   // Perform simple cse.
 | |
|   SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
 | |
|   for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
 | |
|     BasicBlock *BB = BBs[i];
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
 | |
|       Instruction *In = I++;
 | |
| 
 | |
|       if (!CSEDenseMapInfo::canHandle(In))
 | |
|         continue;
 | |
| 
 | |
|       // Check if we can replace this instruction with any of the
 | |
|       // visited instructions.
 | |
|       if (Instruction *V = CSEMap.lookup(In)) {
 | |
|         In->replaceAllUsesWith(V);
 | |
|         In->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|       // Ignore instructions in conditional blocks. We create "if (pred) a[i] =
 | |
|       // ...;" blocks for predicated stores. Every second block is a predicated
 | |
|       // block.
 | |
|       if (isPredicatedBlock(i))
 | |
|         continue;
 | |
| 
 | |
|       CSEMap[In] = In;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Adds a 'fast' flag to floating point operations.
 | |
| static Value *addFastMathFlag(Value *V) {
 | |
|   if (isa<FPMathOperator>(V)){
 | |
|     FastMathFlags Flags;
 | |
|     Flags.setUnsafeAlgebra();
 | |
|     cast<Instruction>(V)->setFastMathFlags(Flags);
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::vectorizeLoop() {
 | |
|   //===------------------------------------------------===//
 | |
|   //
 | |
|   // Notice: any optimization or new instruction that go
 | |
|   // into the code below should be also be implemented in
 | |
|   // the cost-model.
 | |
|   //
 | |
|   //===------------------------------------------------===//
 | |
|   Constant *Zero = Builder.getInt32(0);
 | |
| 
 | |
|   // In order to support reduction variables we need to be able to vectorize
 | |
|   // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
 | |
|   // stages. First, we create a new vector PHI node with no incoming edges.
 | |
|   // We use this value when we vectorize all of the instructions that use the
 | |
|   // PHI. Next, after all of the instructions in the block are complete we
 | |
|   // add the new incoming edges to the PHI. At this point all of the
 | |
|   // instructions in the basic block are vectorized, so we can use them to
 | |
|   // construct the PHI.
 | |
|   PhiVector RdxPHIsToFix;
 | |
| 
 | |
|   // Scan the loop in a topological order to ensure that defs are vectorized
 | |
|   // before users.
 | |
|   LoopBlocksDFS DFS(OrigLoop);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   // Vectorize all of the blocks in the original loop.
 | |
|   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
 | |
|        be = DFS.endRPO(); bb != be; ++bb)
 | |
|     vectorizeBlockInLoop(*bb, &RdxPHIsToFix);
 | |
| 
 | |
|   // At this point every instruction in the original loop is widened to
 | |
|   // a vector form. We are almost done. Now, we need to fix the PHI nodes
 | |
|   // that we vectorized. The PHI nodes are currently empty because we did
 | |
|   // not want to introduce cycles. Notice that the remaining PHI nodes
 | |
|   // that we need to fix are reduction variables.
 | |
| 
 | |
|   // Create the 'reduced' values for each of the induction vars.
 | |
|   // The reduced values are the vector values that we scalarize and combine
 | |
|   // after the loop is finished.
 | |
|   for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
 | |
|        it != e; ++it) {
 | |
|     PHINode *RdxPhi = *it;
 | |
|     assert(RdxPhi && "Unable to recover vectorized PHI");
 | |
| 
 | |
|     // Find the reduction variable descriptor.
 | |
|     assert(Legal->getReductionVars()->count(RdxPhi) &&
 | |
|            "Unable to find the reduction variable");
 | |
|     LoopVectorizationLegality::ReductionDescriptor RdxDesc =
 | |
|     (*Legal->getReductionVars())[RdxPhi];
 | |
| 
 | |
|     setDebugLocFromInst(Builder, RdxDesc.StartValue);
 | |
| 
 | |
|     // We need to generate a reduction vector from the incoming scalar.
 | |
|     // To do so, we need to generate the 'identity' vector and override
 | |
|     // one of the elements with the incoming scalar reduction. We need
 | |
|     // to do it in the vector-loop preheader.
 | |
|     Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
 | |
| 
 | |
|     // This is the vector-clone of the value that leaves the loop.
 | |
|     VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
 | |
|     Type *VecTy = VectorExit[0]->getType();
 | |
| 
 | |
|     // Find the reduction identity variable. Zero for addition, or, xor,
 | |
|     // one for multiplication, -1 for And.
 | |
|     Value *Identity;
 | |
|     Value *VectorStart;
 | |
|     if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
 | |
|         RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
 | |
|       // MinMax reduction have the start value as their identify.
 | |
|       if (VF == 1) {
 | |
|         VectorStart = Identity = RdxDesc.StartValue;
 | |
|       } else {
 | |
|         VectorStart = Identity = Builder.CreateVectorSplat(VF,
 | |
|                                                            RdxDesc.StartValue,
 | |
|                                                            "minmax.ident");
 | |
|       }
 | |
|     } else {
 | |
|       // Handle other reduction kinds:
 | |
|       Constant *Iden =
 | |
|       LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
 | |
|                                                       VecTy->getScalarType());
 | |
|       if (VF == 1) {
 | |
|         Identity = Iden;
 | |
|         // This vector is the Identity vector where the first element is the
 | |
|         // incoming scalar reduction.
 | |
|         VectorStart = RdxDesc.StartValue;
 | |
|       } else {
 | |
|         Identity = ConstantVector::getSplat(VF, Iden);
 | |
| 
 | |
|         // This vector is the Identity vector where the first element is the
 | |
|         // incoming scalar reduction.
 | |
|         VectorStart = Builder.CreateInsertElement(Identity,
 | |
|                                                   RdxDesc.StartValue, Zero);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Fix the vector-loop phi.
 | |
|     // We created the induction variable so we know that the
 | |
|     // preheader is the first entry.
 | |
|     BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
 | |
| 
 | |
|     // Reductions do not have to start at zero. They can start with
 | |
|     // any loop invariant values.
 | |
|     VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
 | |
|     BasicBlock *Latch = OrigLoop->getLoopLatch();
 | |
|     Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
 | |
|     VectorParts &Val = getVectorValue(LoopVal);
 | |
|     for (unsigned part = 0; part < UF; ++part) {
 | |
|       // Make sure to add the reduction stat value only to the
 | |
|       // first unroll part.
 | |
|       Value *StartVal = (part == 0) ? VectorStart : Identity;
 | |
|       cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
 | |
|       cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part],
 | |
|                                                   LoopVectorBody.back());
 | |
|     }
 | |
| 
 | |
|     // Before each round, move the insertion point right between
 | |
|     // the PHIs and the values we are going to write.
 | |
|     // This allows us to write both PHINodes and the extractelement
 | |
|     // instructions.
 | |
|     Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
 | |
| 
 | |
|     VectorParts RdxParts;
 | |
|     setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
 | |
|     for (unsigned part = 0; part < UF; ++part) {
 | |
|       // This PHINode contains the vectorized reduction variable, or
 | |
|       // the initial value vector, if we bypass the vector loop.
 | |
|       VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
 | |
|       PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
 | |
|       Value *StartVal = (part == 0) ? VectorStart : Identity;
 | |
|       for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|         NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
 | |
|       NewPhi->addIncoming(RdxExitVal[part],
 | |
|                           LoopVectorBody.back());
 | |
|       RdxParts.push_back(NewPhi);
 | |
|     }
 | |
| 
 | |
|     // Reduce all of the unrolled parts into a single vector.
 | |
|     Value *ReducedPartRdx = RdxParts[0];
 | |
|     unsigned Op = getReductionBinOp(RdxDesc.Kind);
 | |
|     setDebugLocFromInst(Builder, ReducedPartRdx);
 | |
|     for (unsigned part = 1; part < UF; ++part) {
 | |
|       if (Op != Instruction::ICmp && Op != Instruction::FCmp)
 | |
|         // Floating point operations had to be 'fast' to enable the reduction.
 | |
|         ReducedPartRdx = addFastMathFlag(
 | |
|             Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
 | |
|                                 ReducedPartRdx, "bin.rdx"));
 | |
|       else
 | |
|         ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
 | |
|                                         ReducedPartRdx, RdxParts[part]);
 | |
|     }
 | |
| 
 | |
|     if (VF > 1) {
 | |
|       // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
 | |
|       // and vector ops, reducing the set of values being computed by half each
 | |
|       // round.
 | |
|       assert(isPowerOf2_32(VF) &&
 | |
|              "Reduction emission only supported for pow2 vectors!");
 | |
|       Value *TmpVec = ReducedPartRdx;
 | |
|       SmallVector<Constant*, 32> ShuffleMask(VF, 0);
 | |
|       for (unsigned i = VF; i != 1; i >>= 1) {
 | |
|         // Move the upper half of the vector to the lower half.
 | |
|         for (unsigned j = 0; j != i/2; ++j)
 | |
|           ShuffleMask[j] = Builder.getInt32(i/2 + j);
 | |
| 
 | |
|         // Fill the rest of the mask with undef.
 | |
|         std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
 | |
|                   UndefValue::get(Builder.getInt32Ty()));
 | |
| 
 | |
|         Value *Shuf =
 | |
|         Builder.CreateShuffleVector(TmpVec,
 | |
|                                     UndefValue::get(TmpVec->getType()),
 | |
|                                     ConstantVector::get(ShuffleMask),
 | |
|                                     "rdx.shuf");
 | |
| 
 | |
|         if (Op != Instruction::ICmp && Op != Instruction::FCmp)
 | |
|           // Floating point operations had to be 'fast' to enable the reduction.
 | |
|           TmpVec = addFastMathFlag(Builder.CreateBinOp(
 | |
|               (Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
 | |
|         else
 | |
|           TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
 | |
|       }
 | |
| 
 | |
|       // The result is in the first element of the vector.
 | |
|       ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
 | |
|                                                     Builder.getInt32(0));
 | |
|     }
 | |
| 
 | |
|     // Now, we need to fix the users of the reduction variable
 | |
|     // inside and outside of the scalar remainder loop.
 | |
|     // We know that the loop is in LCSSA form. We need to update the
 | |
|     // PHI nodes in the exit blocks.
 | |
|     for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
 | |
|          LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
 | |
|       PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
 | |
|       if (!LCSSAPhi) break;
 | |
| 
 | |
|       // All PHINodes need to have a single entry edge, or two if
 | |
|       // we already fixed them.
 | |
|       assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
 | |
| 
 | |
|       // We found our reduction value exit-PHI. Update it with the
 | |
|       // incoming bypass edge.
 | |
|       if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
 | |
|         // Add an edge coming from the bypass.
 | |
|         LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
 | |
|         break;
 | |
|       }
 | |
|     }// end of the LCSSA phi scan.
 | |
| 
 | |
|     // Fix the scalar loop reduction variable with the incoming reduction sum
 | |
|     // from the vector body and from the backedge value.
 | |
|     int IncomingEdgeBlockIdx =
 | |
|     (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
 | |
|     assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
 | |
|     // Pick the other block.
 | |
|     int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
 | |
|     (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
 | |
|     (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
 | |
|   }// end of for each redux variable.
 | |
| 
 | |
|   fixLCSSAPHIs();
 | |
| 
 | |
|   // Remove redundant induction instructions.
 | |
|   cse(LoopVectorBody);
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::fixLCSSAPHIs() {
 | |
|   for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
 | |
|        LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
 | |
|     PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
 | |
|     if (!LCSSAPhi) break;
 | |
|     if (LCSSAPhi->getNumIncomingValues() == 1)
 | |
|       LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
 | |
|                             LoopMiddleBlock);
 | |
|   }
 | |
| } 
 | |
| 
 | |
| InnerLoopVectorizer::VectorParts
 | |
| InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
 | |
|   assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
 | |
|          "Invalid edge");
 | |
| 
 | |
|   // Look for cached value.
 | |
|   std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
 | |
|   EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
 | |
|   if (ECEntryIt != MaskCache.end())
 | |
|     return ECEntryIt->second;
 | |
| 
 | |
|   VectorParts SrcMask = createBlockInMask(Src);
 | |
| 
 | |
|   // The terminator has to be a branch inst!
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
 | |
|   assert(BI && "Unexpected terminator found");
 | |
| 
 | |
|   if (BI->isConditional()) {
 | |
|     VectorParts EdgeMask = getVectorValue(BI->getCondition());
 | |
| 
 | |
|     if (BI->getSuccessor(0) != Dst)
 | |
|       for (unsigned part = 0; part < UF; ++part)
 | |
|         EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
 | |
| 
 | |
|     for (unsigned part = 0; part < UF; ++part)
 | |
|       EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
 | |
| 
 | |
|     MaskCache[Edge] = EdgeMask;
 | |
|     return EdgeMask;
 | |
|   }
 | |
| 
 | |
|   MaskCache[Edge] = SrcMask;
 | |
|   return SrcMask;
 | |
| }
 | |
| 
 | |
| InnerLoopVectorizer::VectorParts
 | |
| InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
 | |
|   assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
 | |
| 
 | |
|   // Loop incoming mask is all-one.
 | |
|   if (OrigLoop->getHeader() == BB) {
 | |
|     Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
 | |
|     return getVectorValue(C);
 | |
|   }
 | |
| 
 | |
|   // This is the block mask. We OR all incoming edges, and with zero.
 | |
|   Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
 | |
|   VectorParts BlockMask = getVectorValue(Zero);
 | |
| 
 | |
|   // For each pred:
 | |
|   for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
 | |
|     VectorParts EM = createEdgeMask(*it, BB);
 | |
|     for (unsigned part = 0; part < UF; ++part)
 | |
|       BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
 | |
|   }
 | |
| 
 | |
|   return BlockMask;
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
 | |
|                                               InnerLoopVectorizer::VectorParts &Entry,
 | |
|                                               unsigned UF, unsigned VF, PhiVector *PV) {
 | |
|   PHINode* P = cast<PHINode>(PN);
 | |
|   // Handle reduction variables:
 | |
|   if (Legal->getReductionVars()->count(P)) {
 | |
|     for (unsigned part = 0; part < UF; ++part) {
 | |
|       // This is phase one of vectorizing PHIs.
 | |
|       Type *VecTy = (VF == 1) ? PN->getType() :
 | |
|       VectorType::get(PN->getType(), VF);
 | |
|       Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
 | |
|                                     LoopVectorBody.back()-> getFirstInsertionPt());
 | |
|     }
 | |
|     PV->push_back(P);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   setDebugLocFromInst(Builder, P);
 | |
|   // Check for PHI nodes that are lowered to vector selects.
 | |
|   if (P->getParent() != OrigLoop->getHeader()) {
 | |
|     // We know that all PHIs in non-header blocks are converted into
 | |
|     // selects, so we don't have to worry about the insertion order and we
 | |
|     // can just use the builder.
 | |
|     // At this point we generate the predication tree. There may be
 | |
|     // duplications since this is a simple recursive scan, but future
 | |
|     // optimizations will clean it up.
 | |
| 
 | |
|     unsigned NumIncoming = P->getNumIncomingValues();
 | |
| 
 | |
|     // Generate a sequence of selects of the form:
 | |
|     // SELECT(Mask3, In3,
 | |
|     //      SELECT(Mask2, In2,
 | |
|     //                   ( ...)))
 | |
|     for (unsigned In = 0; In < NumIncoming; In++) {
 | |
|       VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
 | |
|                                         P->getParent());
 | |
|       VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
 | |
| 
 | |
|       for (unsigned part = 0; part < UF; ++part) {
 | |
|         // We might have single edge PHIs (blocks) - use an identity
 | |
|         // 'select' for the first PHI operand.
 | |
|         if (In == 0)
 | |
|           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
 | |
|                                              In0[part]);
 | |
|         else
 | |
|           // Select between the current value and the previous incoming edge
 | |
|           // based on the incoming mask.
 | |
|           Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
 | |
|                                              Entry[part], "predphi");
 | |
|       }
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // This PHINode must be an induction variable.
 | |
|   // Make sure that we know about it.
 | |
|   assert(Legal->getInductionVars()->count(P) &&
 | |
|          "Not an induction variable");
 | |
| 
 | |
|   LoopVectorizationLegality::InductionInfo II =
 | |
|   Legal->getInductionVars()->lookup(P);
 | |
| 
 | |
|   switch (II.IK) {
 | |
|     case LoopVectorizationLegality::IK_NoInduction:
 | |
|       llvm_unreachable("Unknown induction");
 | |
|     case LoopVectorizationLegality::IK_IntInduction: {
 | |
|       assert(P->getType() == II.StartValue->getType() && "Types must match");
 | |
|       Type *PhiTy = P->getType();
 | |
|       Value *Broadcasted;
 | |
|       if (P == OldInduction) {
 | |
|         // Handle the canonical induction variable. We might have had to
 | |
|         // extend the type.
 | |
|         Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
 | |
|       } else {
 | |
|         // Handle other induction variables that are now based on the
 | |
|         // canonical one.
 | |
|         Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
 | |
|                                                  "normalized.idx");
 | |
|         NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
 | |
|         Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
 | |
|                                         "offset.idx");
 | |
|       }
 | |
|       Broadcasted = getBroadcastInstrs(Broadcasted);
 | |
|       // After broadcasting the induction variable we need to make the vector
 | |
|       // consecutive by adding 0, 1, 2, etc.
 | |
|       for (unsigned part = 0; part < UF; ++part)
 | |
|         Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
 | |
|       return;
 | |
|     }
 | |
|     case LoopVectorizationLegality::IK_ReverseIntInduction:
 | |
|     case LoopVectorizationLegality::IK_PtrInduction:
 | |
|     case LoopVectorizationLegality::IK_ReversePtrInduction:
 | |
|       // Handle reverse integer and pointer inductions.
 | |
|       Value *StartIdx = ExtendedIdx;
 | |
|       // This is the normalized GEP that starts counting at zero.
 | |
|       Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
 | |
|                                                "normalized.idx");
 | |
| 
 | |
|       // Handle the reverse integer induction variable case.
 | |
|       if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
 | |
|         IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
 | |
|         Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
 | |
|                                                "resize.norm.idx");
 | |
|         Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
 | |
|                                                "reverse.idx");
 | |
| 
 | |
|         // This is a new value so do not hoist it out.
 | |
|         Value *Broadcasted = getBroadcastInstrs(ReverseInd);
 | |
|         // After broadcasting the induction variable we need to make the
 | |
|         // vector consecutive by adding  ... -3, -2, -1, 0.
 | |
|         for (unsigned part = 0; part < UF; ++part)
 | |
|           Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
 | |
|                                              true);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       // Handle the pointer induction variable case.
 | |
|       assert(P->getType()->isPointerTy() && "Unexpected type.");
 | |
| 
 | |
|       // Is this a reverse induction ptr or a consecutive induction ptr.
 | |
|       bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
 | |
|                       II.IK);
 | |
| 
 | |
|       // This is the vector of results. Notice that we don't generate
 | |
|       // vector geps because scalar geps result in better code.
 | |
|       for (unsigned part = 0; part < UF; ++part) {
 | |
|         if (VF == 1) {
 | |
|           int EltIndex = (part) * (Reverse ? -1 : 1);
 | |
|           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
 | |
|           Value *GlobalIdx;
 | |
|           if (Reverse)
 | |
|             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
 | |
|           else
 | |
|             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
 | |
| 
 | |
|           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
 | |
|                                              "next.gep");
 | |
|           Entry[part] = SclrGep;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
 | |
|         for (unsigned int i = 0; i < VF; ++i) {
 | |
|           int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
 | |
|           Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
 | |
|           Value *GlobalIdx;
 | |
|           if (!Reverse)
 | |
|             GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
 | |
|           else
 | |
|             GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
 | |
| 
 | |
|           Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
 | |
|                                              "next.gep");
 | |
|           VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
 | |
|                                                Builder.getInt32(i),
 | |
|                                                "insert.gep");
 | |
|         }
 | |
|         Entry[part] = VecVal;
 | |
|       }
 | |
|       return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
 | |
|   // For each instruction in the old loop.
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     VectorParts &Entry = WidenMap.get(it);
 | |
|     switch (it->getOpcode()) {
 | |
|     case Instruction::Br:
 | |
|       // Nothing to do for PHIs and BR, since we already took care of the
 | |
|       // loop control flow instructions.
 | |
|       continue;
 | |
|     case Instruction::PHI:{
 | |
|       // Vectorize PHINodes.
 | |
|       widenPHIInstruction(it, Entry, UF, VF, PV);
 | |
|       continue;
 | |
|     }// End of PHI.
 | |
| 
 | |
|     case Instruction::Add:
 | |
|     case Instruction::FAdd:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::FSub:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::FMul:
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::FDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|     case Instruction::FRem:
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::LShr:
 | |
|     case Instruction::AShr:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor: {
 | |
|       // Just widen binops.
 | |
|       BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
 | |
|       setDebugLocFromInst(Builder, BinOp);
 | |
|       VectorParts &A = getVectorValue(it->getOperand(0));
 | |
|       VectorParts &B = getVectorValue(it->getOperand(1));
 | |
| 
 | |
|       // Use this vector value for all users of the original instruction.
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
 | |
| 
 | |
|         // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
 | |
|         BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
 | |
|         if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
 | |
|           VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
 | |
|           VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
 | |
|         }
 | |
|         if (VecOp && isa<PossiblyExactOperator>(VecOp))
 | |
|           VecOp->setIsExact(BinOp->isExact());
 | |
| 
 | |
|         // Copy the fast-math flags.
 | |
|         if (VecOp && isa<FPMathOperator>(V))
 | |
|           VecOp->setFastMathFlags(it->getFastMathFlags());
 | |
| 
 | |
|         Entry[Part] = V;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case Instruction::Select: {
 | |
|       // Widen selects.
 | |
|       // If the selector is loop invariant we can create a select
 | |
|       // instruction with a scalar condition. Otherwise, use vector-select.
 | |
|       bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
 | |
|                                                OrigLoop);
 | |
|       setDebugLocFromInst(Builder, it);
 | |
| 
 | |
|       // The condition can be loop invariant  but still defined inside the
 | |
|       // loop. This means that we can't just use the original 'cond' value.
 | |
|       // We have to take the 'vectorized' value and pick the first lane.
 | |
|       // Instcombine will make this a no-op.
 | |
|       VectorParts &Cond = getVectorValue(it->getOperand(0));
 | |
|       VectorParts &Op0  = getVectorValue(it->getOperand(1));
 | |
|       VectorParts &Op1  = getVectorValue(it->getOperand(2));
 | |
| 
 | |
|       Value *ScalarCond = (VF == 1) ? Cond[0] :
 | |
|         Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
 | |
| 
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Entry[Part] = Builder.CreateSelect(
 | |
|           InvariantCond ? ScalarCond : Cond[Part],
 | |
|           Op0[Part],
 | |
|           Op1[Part]);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::ICmp:
 | |
|     case Instruction::FCmp: {
 | |
|       // Widen compares. Generate vector compares.
 | |
|       bool FCmp = (it->getOpcode() == Instruction::FCmp);
 | |
|       CmpInst *Cmp = dyn_cast<CmpInst>(it);
 | |
|       setDebugLocFromInst(Builder, it);
 | |
|       VectorParts &A = getVectorValue(it->getOperand(0));
 | |
|       VectorParts &B = getVectorValue(it->getOperand(1));
 | |
|       for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|         Value *C = 0;
 | |
|         if (FCmp)
 | |
|           C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
 | |
|         else
 | |
|           C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
 | |
|         Entry[Part] = C;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Store:
 | |
|     case Instruction::Load:
 | |
|       vectorizeMemoryInstruction(it);
 | |
|         break;
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::PtrToInt:
 | |
|     case Instruction::IntToPtr:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::BitCast: {
 | |
|       CastInst *CI = dyn_cast<CastInst>(it);
 | |
|       setDebugLocFromInst(Builder, it);
 | |
|       /// Optimize the special case where the source is the induction
 | |
|       /// variable. Notice that we can only optimize the 'trunc' case
 | |
|       /// because: a. FP conversions lose precision, b. sext/zext may wrap,
 | |
|       /// c. other casts depend on pointer size.
 | |
|       if (CI->getOperand(0) == OldInduction &&
 | |
|           it->getOpcode() == Instruction::Trunc) {
 | |
|         Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
 | |
|                                                CI->getType());
 | |
|         Value *Broadcasted = getBroadcastInstrs(ScalarCast);
 | |
|         for (unsigned Part = 0; Part < UF; ++Part)
 | |
|           Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
 | |
|         break;
 | |
|       }
 | |
|       /// Vectorize casts.
 | |
|       Type *DestTy = (VF == 1) ? CI->getType() :
 | |
|                                  VectorType::get(CI->getType(), VF);
 | |
| 
 | |
|       VectorParts &A = getVectorValue(it->getOperand(0));
 | |
|       for (unsigned Part = 0; Part < UF; ++Part)
 | |
|         Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case Instruction::Call: {
 | |
|       // Ignore dbg intrinsics.
 | |
|       if (isa<DbgInfoIntrinsic>(it))
 | |
|         break;
 | |
|       setDebugLocFromInst(Builder, it);
 | |
| 
 | |
|       Module *M = BB->getParent()->getParent();
 | |
|       CallInst *CI = cast<CallInst>(it);
 | |
|       Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|       assert(ID && "Not an intrinsic call!");
 | |
|       switch (ID) {
 | |
|       case Intrinsic::lifetime_end:
 | |
|       case Intrinsic::lifetime_start:
 | |
|         scalarizeInstruction(it);
 | |
|         break;
 | |
|       default:
 | |
|         for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|           SmallVector<Value *, 4> Args;
 | |
|           for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
 | |
|             VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
 | |
|             Args.push_back(Arg[Part]);
 | |
|           }
 | |
|           Type *Tys[] = {CI->getType()};
 | |
|           if (VF > 1)
 | |
|             Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
 | |
| 
 | |
|           Function *F = Intrinsic::getDeclaration(M, ID, Tys);
 | |
|           Entry[Part] = Builder.CreateCall(F, Args);
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     default:
 | |
|       // All other instructions are unsupported. Scalarize them.
 | |
|       scalarizeInstruction(it);
 | |
|       break;
 | |
|     }// end of switch.
 | |
|   }// end of for_each instr.
 | |
| }
 | |
| 
 | |
| void InnerLoopVectorizer::updateAnalysis() {
 | |
|   // Forget the original basic block.
 | |
|   SE->forgetLoop(OrigLoop);
 | |
| 
 | |
|   // Update the dominator tree information.
 | |
|   assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
 | |
|          "Entry does not dominate exit.");
 | |
| 
 | |
|   for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
 | |
|     DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
 | |
|   DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
 | |
| 
 | |
|   // Due to if predication of stores we might create a sequence of "if(pred)
 | |
|   // a[i] = ...;  " blocks.
 | |
|   for (unsigned i = 0, e = LoopVectorBody.size(); i != e; ++i) {
 | |
|     if (i == 0)
 | |
|       DT->addNewBlock(LoopVectorBody[0], LoopVectorPreHeader);
 | |
|     else if (isPredicatedBlock(i)) {
 | |
|       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-1]);
 | |
|     } else {
 | |
|       DT->addNewBlock(LoopVectorBody[i], LoopVectorBody[i-2]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
 | |
|   DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
 | |
|   DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
 | |
|   DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
 | |
| 
 | |
|   DEBUG(DT->verifyDomTree());
 | |
| }
 | |
| 
 | |
| /// \brief Check whether it is safe to if-convert this phi node.
 | |
| ///
 | |
| /// Phi nodes with constant expressions that can trap are not safe to if
 | |
| /// convert.
 | |
| static bool canIfConvertPHINodes(BasicBlock *BB) {
 | |
|   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|     PHINode *Phi = dyn_cast<PHINode>(I);
 | |
|     if (!Phi)
 | |
|       return true;
 | |
|     for (unsigned p = 0, e = Phi->getNumIncomingValues(); p != e; ++p)
 | |
|       if (Constant *C = dyn_cast<Constant>(Phi->getIncomingValue(p)))
 | |
|         if (C->canTrap())
 | |
|           return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
 | |
|   if (!EnableIfConversion)
 | |
|     return false;
 | |
| 
 | |
|   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
 | |
| 
 | |
|   // A list of pointers that we can safely read and write to.
 | |
|   SmallPtrSet<Value *, 8> SafePointes;
 | |
| 
 | |
|   // Collect safe addresses.
 | |
|   for (Loop::block_iterator BI = TheLoop->block_begin(),
 | |
|          BE = TheLoop->block_end(); BI != BE; ++BI) {
 | |
|     BasicBlock *BB = *BI;
 | |
| 
 | |
|     if (blockNeedsPredication(BB))
 | |
|       continue;
 | |
| 
 | |
|     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | |
|       if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|         SafePointes.insert(LI->getPointerOperand());
 | |
|       else if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|         SafePointes.insert(SI->getPointerOperand());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect the blocks that need predication.
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
|   for (Loop::block_iterator BI = TheLoop->block_begin(),
 | |
|          BE = TheLoop->block_end(); BI != BE; ++BI) {
 | |
|     BasicBlock *BB = *BI;
 | |
| 
 | |
|     // We don't support switch statements inside loops.
 | |
|     if (!isa<BranchInst>(BB->getTerminator()))
 | |
|       return false;
 | |
| 
 | |
|     // We must be able to predicate all blocks that need to be predicated.
 | |
|     if (blockNeedsPredication(BB)) {
 | |
|       if (!blockCanBePredicated(BB, SafePointes))
 | |
|         return false;
 | |
|     } else if (BB != Header && !canIfConvertPHINodes(BB))
 | |
|       return false;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // We can if-convert this loop.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorize() {
 | |
|   // We must have a loop in canonical form. Loops with indirectbr in them cannot
 | |
|   // be canonicalized.
 | |
|   if (!TheLoop->getLoopPreheader())
 | |
|     return false;
 | |
| 
 | |
|   // We can only vectorize innermost loops.
 | |
|   if (TheLoop->getSubLoopsVector().size())
 | |
|     return false;
 | |
| 
 | |
|   // We must have a single backedge.
 | |
|   if (TheLoop->getNumBackEdges() != 1)
 | |
|     return false;
 | |
| 
 | |
|   // We must have a single exiting block.
 | |
|   if (!TheLoop->getExitingBlock())
 | |
|     return false;
 | |
| 
 | |
|   // We need to have a loop header.
 | |
|   DEBUG(dbgs() << "LV: Found a loop: " <<
 | |
|         TheLoop->getHeader()->getName() << '\n');
 | |
| 
 | |
|   // Check if we can if-convert non-single-bb loops.
 | |
|   unsigned NumBlocks = TheLoop->getNumBlocks();
 | |
|   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
 | |
|     DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // ScalarEvolution needs to be able to find the exit count.
 | |
|   const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
 | |
|   if (ExitCount == SE->getCouldNotCompute()) {
 | |
|     DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Do not loop-vectorize loops with a tiny trip count.
 | |
|   BasicBlock *Latch = TheLoop->getLoopLatch();
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
 | |
|   if (TC > 0u && TC < TinyTripCountVectorThreshold) {
 | |
|     DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
 | |
|           "This loop is not worth vectorizing.\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check if we can vectorize the instructions and CFG in this loop.
 | |
|   if (!canVectorizeInstrs()) {
 | |
|     DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Go over each instruction and look at memory deps.
 | |
|   if (!canVectorizeMemory()) {
 | |
|     DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Collect all of the variables that remain uniform after vectorization.
 | |
|   collectLoopUniforms();
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We can vectorize this loop" <<
 | |
|         (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
 | |
|         <<"!\n");
 | |
| 
 | |
|   // Okay! We can vectorize. At this point we don't have any other mem analysis
 | |
|   // which may limit our maximum vectorization factor, so just return true with
 | |
|   // no restrictions.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
 | |
|   if (Ty->isPointerTy())
 | |
|     return DL.getIntPtrType(Ty);
 | |
| 
 | |
|   // It is possible that char's or short's overflow when we ask for the loop's
 | |
|   // trip count, work around this by changing the type size.
 | |
|   if (Ty->getScalarSizeInBits() < 32)
 | |
|     return Type::getInt32Ty(Ty->getContext());
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| static Type* getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
 | |
|   Ty0 = convertPointerToIntegerType(DL, Ty0);
 | |
|   Ty1 = convertPointerToIntegerType(DL, Ty1);
 | |
|   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
 | |
|     return Ty0;
 | |
|   return Ty1;
 | |
| }
 | |
| 
 | |
| /// \brief Check that the instruction has outside loop users and is not an
 | |
| /// identified reduction variable.
 | |
| static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
 | |
|                                SmallPtrSet<Value *, 4> &Reductions) {
 | |
|   // Reduction instructions are allowed to have exit users. All other
 | |
|   // instructions must not have external users.
 | |
|   if (!Reductions.count(Inst))
 | |
|     //Check that all of the users of the loop are inside the BB.
 | |
|     for (User *U : Inst->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
|       // This user may be a reduction exit value.
 | |
|       if (!TheLoop->contains(UI)) {
 | |
|         DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeInstrs() {
 | |
|   BasicBlock *PreHeader = TheLoop->getLoopPreheader();
 | |
|   BasicBlock *Header = TheLoop->getHeader();
 | |
| 
 | |
|   // Look for the attribute signaling the absence of NaNs.
 | |
|   Function &F = *Header->getParent();
 | |
|   if (F.hasFnAttribute("no-nans-fp-math"))
 | |
|     HasFunNoNaNAttr = F.getAttributes().getAttribute(
 | |
|       AttributeSet::FunctionIndex,
 | |
|       "no-nans-fp-math").getValueAsString() == "true";
 | |
| 
 | |
|   // For each block in the loop.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
| 
 | |
|     // Scan the instructions in the block and look for hazards.
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
| 
 | |
|       if (PHINode *Phi = dyn_cast<PHINode>(it)) {
 | |
|         Type *PhiTy = Phi->getType();
 | |
|         // Check that this PHI type is allowed.
 | |
|         if (!PhiTy->isIntegerTy() &&
 | |
|             !PhiTy->isFloatingPointTy() &&
 | |
|             !PhiTy->isPointerTy()) {
 | |
|           DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // If this PHINode is not in the header block, then we know that we
 | |
|         // can convert it to select during if-conversion. No need to check if
 | |
|         // the PHIs in this block are induction or reduction variables.
 | |
|         if (*bb != Header) {
 | |
|           // Check that this instruction has no outside users or is an
 | |
|           // identified reduction value with an outside user.
 | |
|           if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
 | |
|             continue;
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // We only allow if-converted PHIs with more than two incoming values.
 | |
|         if (Phi->getNumIncomingValues() != 2) {
 | |
|           DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         // This is the value coming from the preheader.
 | |
|         Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
 | |
|         // Check if this is an induction variable.
 | |
|         InductionKind IK = isInductionVariable(Phi);
 | |
| 
 | |
|         if (IK_NoInduction != IK) {
 | |
|           // Get the widest type.
 | |
|           if (!WidestIndTy)
 | |
|             WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
 | |
|           else
 | |
|             WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
 | |
| 
 | |
|           // Int inductions are special because we only allow one IV.
 | |
|           if (IK == IK_IntInduction) {
 | |
|             // Use the phi node with the widest type as induction. Use the last
 | |
|             // one if there are multiple (no good reason for doing this other
 | |
|             // than it is expedient).
 | |
|             if (!Induction || PhiTy == WidestIndTy)
 | |
|               Induction = Phi;
 | |
|           }
 | |
| 
 | |
|           DEBUG(dbgs() << "LV: Found an induction variable.\n");
 | |
|           Inductions[Phi] = InductionInfo(StartValue, IK);
 | |
| 
 | |
|           // Until we explicitly handle the case of an induction variable with
 | |
|           // an outside loop user we have to give up vectorizing this loop.
 | |
|           if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
 | |
|             return false;
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (AddReductionVar(Phi, RK_IntegerAdd)) {
 | |
|           DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerMult)) {
 | |
|           DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerOr)) {
 | |
|           DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerAnd)) {
 | |
|           DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerXor)) {
 | |
|           DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_IntegerMinMax)) {
 | |
|           DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_FloatMult)) {
 | |
|           DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_FloatAdd)) {
 | |
|           DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
 | |
|           continue;
 | |
|         }
 | |
|         if (AddReductionVar(Phi, RK_FloatMinMax)) {
 | |
|           DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
 | |
|                 "\n");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
 | |
|         return false;
 | |
|       }// end of PHI handling
 | |
| 
 | |
|       // We still don't handle functions. However, we can ignore dbg intrinsic
 | |
|       // calls and we do handle certain intrinsic and libm functions.
 | |
|       CallInst *CI = dyn_cast<CallInst>(it);
 | |
|       if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
 | |
|         DEBUG(dbgs() << "LV: Found a call site.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Check that the instruction return type is vectorizable.
 | |
|       // Also, we can't vectorize extractelement instructions.
 | |
|       if ((!VectorType::isValidElementType(it->getType()) &&
 | |
|            !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
 | |
|         DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // Check that the stored type is vectorizable.
 | |
|       if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
 | |
|         Type *T = ST->getValueOperand()->getType();
 | |
|         if (!VectorType::isValidElementType(T))
 | |
|           return false;
 | |
|         if (EnableMemAccessVersioning)
 | |
|           collectStridedAcccess(ST);
 | |
|       }
 | |
| 
 | |
|       if (EnableMemAccessVersioning)
 | |
|         if (LoadInst *LI = dyn_cast<LoadInst>(it))
 | |
|           collectStridedAcccess(LI);
 | |
| 
 | |
|       // Reduction instructions are allowed to have exit users.
 | |
|       // All other instructions must not have external users.
 | |
|       if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
 | |
|         return false;
 | |
| 
 | |
|     } // next instr.
 | |
| 
 | |
|   }
 | |
| 
 | |
|   if (!Induction) {
 | |
|     DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
 | |
|     if (Inductions.empty())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| ///\brief Remove GEPs whose indices but the last one are loop invariant and
 | |
| /// return the induction operand of the gep pointer.
 | |
| static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
 | |
|                                  const DataLayout *DL, Loop *Lp) {
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!GEP)
 | |
|     return Ptr;
 | |
| 
 | |
|   unsigned InductionOperand = getGEPInductionOperand(DL, GEP);
 | |
| 
 | |
|   // Check that all of the gep indices are uniform except for our induction
 | |
|   // operand.
 | |
|   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (i != InductionOperand &&
 | |
|         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
 | |
|       return Ptr;
 | |
|   return GEP->getOperand(InductionOperand);
 | |
| }
 | |
| 
 | |
| ///\brief Look for a cast use of the passed value.
 | |
| static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
 | |
|   Value *UniqueCast = 0;
 | |
|   for (User *U : Ptr->users()) {
 | |
|     CastInst *CI = dyn_cast<CastInst>(U);
 | |
|     if (CI && CI->getType() == Ty) {
 | |
|       if (!UniqueCast)
 | |
|         UniqueCast = CI;
 | |
|       else
 | |
|         return 0;
 | |
|     }
 | |
|   }
 | |
|   return UniqueCast;
 | |
| }
 | |
| 
 | |
| ///\brief Get the stride of a pointer access in a loop.
 | |
| /// Looks for symbolic strides "a[i*stride]". Returns the symbolic stride as a
 | |
| /// pointer to the Value, or null otherwise.
 | |
| static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
 | |
|                                    const DataLayout *DL, Loop *Lp) {
 | |
|   const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | |
|   if (!PtrTy || PtrTy->isAggregateType())
 | |
|     return 0;
 | |
| 
 | |
|   // Try to remove a gep instruction to make the pointer (actually index at this
 | |
|   // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
 | |
|   // pointer, otherwise, we are analyzing the index.
 | |
|   Value *OrigPtr = Ptr;
 | |
| 
 | |
|   // The size of the pointer access.
 | |
|   int64_t PtrAccessSize = 1;
 | |
| 
 | |
|   Ptr = stripGetElementPtr(Ptr, SE, DL, Lp);
 | |
|   const SCEV *V = SE->getSCEV(Ptr);
 | |
| 
 | |
|   if (Ptr != OrigPtr)
 | |
|     // Strip off casts.
 | |
|     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
 | |
|       V = C->getOperand();
 | |
| 
 | |
|   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
 | |
|   if (!S)
 | |
|     return 0;
 | |
| 
 | |
|   V = S->getStepRecurrence(*SE);
 | |
|   if (!V)
 | |
|     return 0;
 | |
| 
 | |
|   // Strip off the size of access multiplication if we are still analyzing the
 | |
|   // pointer.
 | |
|   if (OrigPtr == Ptr) {
 | |
|     DL->getTypeAllocSize(PtrTy->getElementType());
 | |
|     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
 | |
|       if (M->getOperand(0)->getSCEVType() != scConstant)
 | |
|         return 0;
 | |
| 
 | |
|       const APInt &APStepVal =
 | |
|           cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
 | |
| 
 | |
|       // Huge step value - give up.
 | |
|       if (APStepVal.getBitWidth() > 64)
 | |
|         return 0;
 | |
| 
 | |
|       int64_t StepVal = APStepVal.getSExtValue();
 | |
|       if (PtrAccessSize != StepVal)
 | |
|         return 0;
 | |
|       V = M->getOperand(1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Strip off casts.
 | |
|   Type *StripedOffRecurrenceCast = 0;
 | |
|   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
 | |
|     StripedOffRecurrenceCast = C->getType();
 | |
|     V = C->getOperand();
 | |
|   }
 | |
| 
 | |
|   // Look for the loop invariant symbolic value.
 | |
|   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
 | |
|   if (!U)
 | |
|     return 0;
 | |
| 
 | |
|   Value *Stride = U->getValue();
 | |
|   if (!Lp->isLoopInvariant(Stride))
 | |
|     return 0;
 | |
| 
 | |
|   // If we have stripped off the recurrence cast we have to make sure that we
 | |
|   // return the value that is used in this loop so that we can replace it later.
 | |
|   if (StripedOffRecurrenceCast)
 | |
|     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
 | |
| 
 | |
|   return Stride;
 | |
| }
 | |
| 
 | |
| void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
 | |
|   Value *Ptr = 0;
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
 | |
|     Ptr = LI->getPointerOperand();
 | |
|   else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
 | |
|     Ptr = SI->getPointerOperand();
 | |
|   else
 | |
|     return;
 | |
| 
 | |
|   Value *Stride = getStrideFromPointer(Ptr, SE, DL, TheLoop);
 | |
|   if (!Stride)
 | |
|     return;
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Found a strided access that we can version");
 | |
|   DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *Stride << "\n");
 | |
|   Strides[Ptr] = Stride;
 | |
|   StrideSet.insert(Stride);
 | |
| }
 | |
| 
 | |
| void LoopVectorizationLegality::collectLoopUniforms() {
 | |
|   // We now know that the loop is vectorizable!
 | |
|   // Collect variables that will remain uniform after vectorization.
 | |
|   std::vector<Value*> Worklist;
 | |
|   BasicBlock *Latch = TheLoop->getLoopLatch();
 | |
| 
 | |
|   // Start with the conditional branch and walk up the block.
 | |
|   Worklist.push_back(Latch->getTerminator()->getOperand(0));
 | |
| 
 | |
|   // Also add all consecutive pointer values; these values will be uniform
 | |
|   // after vectorization (and subsequent cleanup) and, until revectorization is
 | |
|   // supported, all dependencies must also be uniform.
 | |
|   for (Loop::block_iterator B = TheLoop->block_begin(),
 | |
|        BE = TheLoop->block_end(); B != BE; ++B)
 | |
|     for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
 | |
|          I != IE; ++I)
 | |
|       if (I->getType()->isPointerTy() && isConsecutivePtr(I))
 | |
|         Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
 | |
| 
 | |
|   while (Worklist.size()) {
 | |
|     Instruction *I = dyn_cast<Instruction>(Worklist.back());
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // Look at instructions inside this loop.
 | |
|     // Stop when reaching PHI nodes.
 | |
|     // TODO: we need to follow values all over the loop, not only in this block.
 | |
|     if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
 | |
|       continue;
 | |
| 
 | |
|     // This is a known uniform.
 | |
|     Uniforms.insert(I);
 | |
| 
 | |
|     // Insert all operands.
 | |
|     Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Analyses memory accesses in a loop.
 | |
| ///
 | |
| /// Checks whether run time pointer checks are needed and builds sets for data
 | |
| /// dependence checking.
 | |
| class AccessAnalysis {
 | |
| public:
 | |
|   /// \brief Read or write access location.
 | |
|   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
 | |
|   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 | |
| 
 | |
|   /// \brief Set of potential dependent memory accesses.
 | |
|   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
 | |
| 
 | |
|   AccessAnalysis(const DataLayout *Dl, DepCandidates &DA) :
 | |
|     DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
 | |
|     AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
 | |
| 
 | |
|   /// \brief Register a load  and whether it is only read from.
 | |
|   void addLoad(Value *Ptr, bool IsReadOnly) {
 | |
|     Accesses.insert(MemAccessInfo(Ptr, false));
 | |
|     if (IsReadOnly)
 | |
|       ReadOnlyPtr.insert(Ptr);
 | |
|   }
 | |
| 
 | |
|   /// \brief Register a store.
 | |
|   void addStore(Value *Ptr) {
 | |
|     Accesses.insert(MemAccessInfo(Ptr, true));
 | |
|   }
 | |
| 
 | |
|   /// \brief Check whether we can check the pointers at runtime for
 | |
|   /// non-intersection.
 | |
|   bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
 | |
|                        unsigned &NumComparisons, ScalarEvolution *SE,
 | |
|                        Loop *TheLoop, ValueToValueMap &Strides,
 | |
|                        bool ShouldCheckStride = false);
 | |
| 
 | |
|   /// \brief Goes over all memory accesses, checks whether a RT check is needed
 | |
|   /// and builds sets of dependent accesses.
 | |
|   void buildDependenceSets() {
 | |
|     // Process read-write pointers first.
 | |
|     processMemAccesses(false);
 | |
|     // Next, process read pointers.
 | |
|     processMemAccesses(true);
 | |
|   }
 | |
| 
 | |
|   bool isRTCheckNeeded() { return IsRTCheckNeeded; }
 | |
| 
 | |
|   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
 | |
|   void resetDepChecks() { CheckDeps.clear(); }
 | |
| 
 | |
|   MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
 | |
| 
 | |
| private:
 | |
|   typedef SetVector<MemAccessInfo> PtrAccessSet;
 | |
|   typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
 | |
| 
 | |
|   /// \brief Go over all memory access or only the deferred ones if
 | |
|   /// \p UseDeferred is true and check whether runtime pointer checks are needed
 | |
|   /// and build sets of dependency check candidates.
 | |
|   void processMemAccesses(bool UseDeferred);
 | |
| 
 | |
|   /// Set of all accesses.
 | |
|   PtrAccessSet Accesses;
 | |
| 
 | |
|   /// Set of access to check after all writes have been processed.
 | |
|   PtrAccessSet DeferredAccesses;
 | |
| 
 | |
|   /// Map of pointers to last access encountered.
 | |
|   UnderlyingObjToAccessMap ObjToLastAccess;
 | |
| 
 | |
|   /// Set of accesses that need a further dependence check.
 | |
|   MemAccessInfoSet CheckDeps;
 | |
| 
 | |
|   /// Set of pointers that are read only.
 | |
|   SmallPtrSet<Value*, 16> ReadOnlyPtr;
 | |
| 
 | |
|   /// Set of underlying objects already written to.
 | |
|   SmallPtrSet<Value*, 16> WriteObjects;
 | |
| 
 | |
|   const DataLayout *DL;
 | |
| 
 | |
|   /// Sets of potentially dependent accesses - members of one set share an
 | |
|   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
 | |
|   /// dependence check.
 | |
|   DepCandidates &DepCands;
 | |
| 
 | |
|   bool AreAllWritesIdentified;
 | |
|   bool AreAllReadsIdentified;
 | |
|   bool IsRTCheckNeeded;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// \brief Check whether a pointer can participate in a runtime bounds check.
 | |
| static bool hasComputableBounds(ScalarEvolution *SE, ValueToValueMap &Strides,
 | |
|                                 Value *Ptr) {
 | |
|   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
 | |
|   if (!AR)
 | |
|     return false;
 | |
| 
 | |
|   return AR->isAffine();
 | |
| }
 | |
| 
 | |
| /// \brief Check the stride of the pointer and ensure that it does not wrap in
 | |
| /// the address space.
 | |
| static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
 | |
|                         const Loop *Lp, ValueToValueMap &StridesMap);
 | |
| 
 | |
| bool AccessAnalysis::canCheckPtrAtRT(
 | |
|     LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
 | |
|     unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
 | |
|     ValueToValueMap &StridesMap, bool ShouldCheckStride) {
 | |
|   // Find pointers with computable bounds. We are going to use this information
 | |
|   // to place a runtime bound check.
 | |
|   unsigned NumReadPtrChecks = 0;
 | |
|   unsigned NumWritePtrChecks = 0;
 | |
|   bool CanDoRT = true;
 | |
| 
 | |
|   bool IsDepCheckNeeded = isDependencyCheckNeeded();
 | |
|   // We assign consecutive id to access from different dependence sets.
 | |
|   // Accesses within the same set don't need a runtime check.
 | |
|   unsigned RunningDepId = 1;
 | |
|   DenseMap<Value *, unsigned> DepSetId;
 | |
| 
 | |
|   for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
 | |
|        AI != AE; ++AI) {
 | |
|     const MemAccessInfo &Access = *AI;
 | |
|     Value *Ptr = Access.getPointer();
 | |
|     bool IsWrite = Access.getInt();
 | |
| 
 | |
|     // Just add write checks if we have both.
 | |
|     if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
 | |
|       continue;
 | |
| 
 | |
|     if (IsWrite)
 | |
|       ++NumWritePtrChecks;
 | |
|     else
 | |
|       ++NumReadPtrChecks;
 | |
| 
 | |
|     if (hasComputableBounds(SE, StridesMap, Ptr) &&
 | |
|         // When we run after a failing dependency check we have to make sure we
 | |
|         // don't have wrapping pointers.
 | |
|         (!ShouldCheckStride ||
 | |
|          isStridedPtr(SE, DL, Ptr, TheLoop, StridesMap) == 1)) {
 | |
|       // The id of the dependence set.
 | |
|       unsigned DepId;
 | |
| 
 | |
|       if (IsDepCheckNeeded) {
 | |
|         Value *Leader = DepCands.getLeaderValue(Access).getPointer();
 | |
|         unsigned &LeaderId = DepSetId[Leader];
 | |
|         if (!LeaderId)
 | |
|           LeaderId = RunningDepId++;
 | |
|         DepId = LeaderId;
 | |
|       } else
 | |
|         // Each access has its own dependence set.
 | |
|         DepId = RunningDepId++;
 | |
| 
 | |
|       RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId, StridesMap);
 | |
| 
 | |
|       DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
 | |
|     } else {
 | |
|       CanDoRT = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
 | |
|     NumComparisons = 0; // Only one dependence set.
 | |
|   else {
 | |
|     NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
 | |
|                                            NumWritePtrChecks - 1));
 | |
|   }
 | |
| 
 | |
|   // If the pointers that we would use for the bounds comparison have different
 | |
|   // address spaces, assume the values aren't directly comparable, so we can't
 | |
|   // use them for the runtime check. We also have to assume they could
 | |
|   // overlap. In the future there should be metadata for whether address spaces
 | |
|   // are disjoint.
 | |
|   unsigned NumPointers = RtCheck.Pointers.size();
 | |
|   for (unsigned i = 0; i < NumPointers; ++i) {
 | |
|     for (unsigned j = i + 1; j < NumPointers; ++j) {
 | |
|       // Only need to check pointers between two different dependency sets.
 | |
|       if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
 | |
|        continue;
 | |
| 
 | |
|       Value *PtrI = RtCheck.Pointers[i];
 | |
|       Value *PtrJ = RtCheck.Pointers[j];
 | |
| 
 | |
|       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
 | |
|       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
 | |
|       if (ASi != ASj) {
 | |
|         DEBUG(dbgs() << "LV: Runtime check would require comparison between"
 | |
|                        " different address spaces\n");
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return CanDoRT;
 | |
| }
 | |
| 
 | |
| static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
 | |
|   return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
 | |
| }
 | |
| 
 | |
| void AccessAnalysis::processMemAccesses(bool UseDeferred) {
 | |
|   // We process the set twice: first we process read-write pointers, last we
 | |
|   // process read-only pointers. This allows us to skip dependence tests for
 | |
|   // read-only pointers.
 | |
| 
 | |
|   PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
 | |
|   for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
 | |
|     const MemAccessInfo &Access = *AI;
 | |
|     Value *Ptr = Access.getPointer();
 | |
|     bool IsWrite = Access.getInt();
 | |
| 
 | |
|     DepCands.insert(Access);
 | |
| 
 | |
|     // Memorize read-only pointers for later processing and skip them in the
 | |
|     // first round (they need to be checked after we have seen all write
 | |
|     // pointers). Note: we also mark pointer that are not consecutive as
 | |
|     // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
 | |
|     // second check for "!IsWrite".
 | |
|     bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
 | |
|     if (!UseDeferred && IsReadOnlyPtr) {
 | |
|       DeferredAccesses.insert(Access);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     bool NeedDepCheck = false;
 | |
|     // Check whether there is the possibility of dependency because of
 | |
|     // underlying objects being the same.
 | |
|     typedef SmallVector<Value*, 16> ValueVector;
 | |
|     ValueVector TempObjects;
 | |
|     GetUnderlyingObjects(Ptr, TempObjects, DL);
 | |
|     for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
 | |
|          UI != UE; ++UI) {
 | |
|       Value *UnderlyingObj = *UI;
 | |
| 
 | |
|       // If this is a write then it needs to be an identified object.  If this a
 | |
|       // read and all writes (so far) are identified function scope objects we
 | |
|       // don't need an identified underlying object but only an Argument (the
 | |
|       // next write is going to invalidate this assumption if it is
 | |
|       // unidentified).
 | |
|       // This is a micro-optimization for the case where all writes are
 | |
|       // identified and we have one argument pointer.
 | |
|       // Otherwise, we do need a runtime check.
 | |
|       if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
 | |
|           (!IsWrite && (!AreAllWritesIdentified ||
 | |
|                         !isa<Argument>(UnderlyingObj)) &&
 | |
|            !isIdentifiedObject(UnderlyingObj))) {
 | |
|         DEBUG(dbgs() << "LV: Found an unidentified " <<
 | |
|               (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
 | |
|               "\n");
 | |
|         IsRTCheckNeeded = (IsRTCheckNeeded ||
 | |
|                            !isIdentifiedObject(UnderlyingObj) ||
 | |
|                            !AreAllReadsIdentified);
 | |
| 
 | |
|         if (IsWrite)
 | |
|           AreAllWritesIdentified = false;
 | |
|         if (!IsWrite)
 | |
|           AreAllReadsIdentified = false;
 | |
|       }
 | |
| 
 | |
|       // If this is a write - check other reads and writes for conflicts.  If
 | |
|       // this is a read only check other writes for conflicts (but only if there
 | |
|       // is no other write to the ptr - this is an optimization to catch "a[i] =
 | |
|       // a[i] + " without having to do a dependence check).
 | |
|       if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
 | |
|         NeedDepCheck = true;
 | |
| 
 | |
|       if (IsWrite)
 | |
|         WriteObjects.insert(UnderlyingObj);
 | |
| 
 | |
|       // Create sets of pointers connected by shared underlying objects.
 | |
|       UnderlyingObjToAccessMap::iterator Prev =
 | |
|         ObjToLastAccess.find(UnderlyingObj);
 | |
|       if (Prev != ObjToLastAccess.end())
 | |
|         DepCands.unionSets(Access, Prev->second);
 | |
| 
 | |
|       ObjToLastAccess[UnderlyingObj] = Access;
 | |
|     }
 | |
| 
 | |
|     if (NeedDepCheck)
 | |
|       CheckDeps.insert(Access);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// \brief Checks memory dependences among accesses to the same underlying
 | |
| /// object to determine whether there vectorization is legal or not (and at
 | |
| /// which vectorization factor).
 | |
| ///
 | |
| /// This class works under the assumption that we already checked that memory
 | |
| /// locations with different underlying pointers are "must-not alias".
 | |
| /// We use the ScalarEvolution framework to symbolically evalutate access
 | |
| /// functions pairs. Since we currently don't restructure the loop we can rely
 | |
| /// on the program order of memory accesses to determine their safety.
 | |
| /// At the moment we will only deem accesses as safe for:
 | |
| ///  * A negative constant distance assuming program order.
 | |
| ///
 | |
| ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
 | |
| ///            a[i] = tmp;                y = a[i];
 | |
| ///
 | |
| ///   The latter case is safe because later checks guarantuee that there can't
 | |
| ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
 | |
| ///   the same variable: a header phi can only be an induction or a reduction, a
 | |
| ///   reduction can't have a memory sink, an induction can't have a memory
 | |
| ///   source). This is important and must not be violated (or we have to
 | |
| ///   resort to checking for cycles through memory).
 | |
| ///
 | |
| ///  * A positive constant distance assuming program order that is bigger
 | |
| ///    than the biggest memory access.
 | |
| ///
 | |
| ///     tmp = a[i]        OR              b[i] = x
 | |
| ///     a[i+2] = tmp                      y = b[i+2];
 | |
| ///
 | |
| ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
 | |
| ///
 | |
| ///  * Zero distances and all accesses have the same size.
 | |
| ///
 | |
| class MemoryDepChecker {
 | |
| public:
 | |
|   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
 | |
|   typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
 | |
| 
 | |
|   MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L)
 | |
|       : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
 | |
|         ShouldRetryWithRuntimeCheck(false) {}
 | |
| 
 | |
|   /// \brief Register the location (instructions are given increasing numbers)
 | |
|   /// of a write access.
 | |
|   void addAccess(StoreInst *SI) {
 | |
|     Value *Ptr = SI->getPointerOperand();
 | |
|     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
 | |
|     InstMap.push_back(SI);
 | |
|     ++AccessIdx;
 | |
|   }
 | |
| 
 | |
|   /// \brief Register the location (instructions are given increasing numbers)
 | |
|   /// of a write access.
 | |
|   void addAccess(LoadInst *LI) {
 | |
|     Value *Ptr = LI->getPointerOperand();
 | |
|     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
 | |
|     InstMap.push_back(LI);
 | |
|     ++AccessIdx;
 | |
|   }
 | |
| 
 | |
|   /// \brief Check whether the dependencies between the accesses are safe.
 | |
|   ///
 | |
|   /// Only checks sets with elements in \p CheckDeps.
 | |
|   bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
 | |
|                    MemAccessInfoSet &CheckDeps, ValueToValueMap &Strides);
 | |
| 
 | |
|   /// \brief The maximum number of bytes of a vector register we can vectorize
 | |
|   /// the accesses safely with.
 | |
|   unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
 | |
| 
 | |
|   /// \brief In same cases when the dependency check fails we can still
 | |
|   /// vectorize the loop with a dynamic array access check.
 | |
|   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
 | |
| 
 | |
| private:
 | |
|   ScalarEvolution *SE;
 | |
|   const DataLayout *DL;
 | |
|   const Loop *InnermostLoop;
 | |
| 
 | |
|   /// \brief Maps access locations (ptr, read/write) to program order.
 | |
|   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
 | |
| 
 | |
|   /// \brief Memory access instructions in program order.
 | |
|   SmallVector<Instruction *, 16> InstMap;
 | |
| 
 | |
|   /// \brief The program order index to be used for the next instruction.
 | |
|   unsigned AccessIdx;
 | |
| 
 | |
|   // We can access this many bytes in parallel safely.
 | |
|   unsigned MaxSafeDepDistBytes;
 | |
| 
 | |
|   /// \brief If we see a non-constant dependence distance we can still try to
 | |
|   /// vectorize this loop with runtime checks.
 | |
|   bool ShouldRetryWithRuntimeCheck;
 | |
| 
 | |
|   /// \brief Check whether there is a plausible dependence between the two
 | |
|   /// accesses.
 | |
|   ///
 | |
|   /// Access \p A must happen before \p B in program order. The two indices
 | |
|   /// identify the index into the program order map.
 | |
|   ///
 | |
|   /// This function checks  whether there is a plausible dependence (or the
 | |
|   /// absence of such can't be proved) between the two accesses. If there is a
 | |
|   /// plausible dependence but the dependence distance is bigger than one
 | |
|   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
 | |
|   /// distance is smaller than any other distance encountered so far).
 | |
|   /// Otherwise, this function returns true signaling a possible dependence.
 | |
|   bool isDependent(const MemAccessInfo &A, unsigned AIdx,
 | |
|                    const MemAccessInfo &B, unsigned BIdx,
 | |
|                    ValueToValueMap &Strides);
 | |
| 
 | |
|   /// \brief Check whether the data dependence could prevent store-load
 | |
|   /// forwarding.
 | |
|   bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| static bool isInBoundsGep(Value *Ptr) {
 | |
|   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
 | |
|     return GEP->isInBounds();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the access through \p Ptr has a constant stride.
 | |
| static int isStridedPtr(ScalarEvolution *SE, const DataLayout *DL, Value *Ptr,
 | |
|                         const Loop *Lp, ValueToValueMap &StridesMap) {
 | |
|   const Type *Ty = Ptr->getType();
 | |
|   assert(Ty->isPointerTy() && "Unexpected non-ptr");
 | |
| 
 | |
|   // Make sure that the pointer does not point to aggregate types.
 | |
|   const PointerType *PtrTy = cast<PointerType>(Ty);
 | |
|   if (PtrTy->getElementType()->isAggregateType()) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
 | |
|           "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   const SCEV *PtrScev = replaceSymbolicStrideSCEV(SE, StridesMap, Ptr);
 | |
| 
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
 | |
|           << *Ptr << " SCEV: " << *PtrScev << "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // The accesss function must stride over the innermost loop.
 | |
|   if (Lp != AR->getLoop()) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
 | |
|           *Ptr << " SCEV: " << *PtrScev << "\n");
 | |
|   }
 | |
| 
 | |
|   // The address calculation must not wrap. Otherwise, a dependence could be
 | |
|   // inverted.
 | |
|   // An inbounds getelementptr that is a AddRec with a unit stride
 | |
|   // cannot wrap per definition. The unit stride requirement is checked later.
 | |
|   // An getelementptr without an inbounds attribute and unit stride would have
 | |
|   // to access the pointer value "0" which is undefined behavior in address
 | |
|   // space 0, therefore we can also vectorize this case.
 | |
|   bool IsInBoundsGEP = isInBoundsGep(Ptr);
 | |
|   bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
 | |
|   bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
 | |
|   if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
 | |
|           << *Ptr << " SCEV: " << *PtrScev << "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Check the step is constant.
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!C) {
 | |
|     DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
 | |
|           " SCEV: " << *PtrScev << "\n");
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
 | |
|   const APInt &APStepVal = C->getValue()->getValue();
 | |
| 
 | |
|   // Huge step value - give up.
 | |
|   if (APStepVal.getBitWidth() > 64)
 | |
|     return 0;
 | |
| 
 | |
|   int64_t StepVal = APStepVal.getSExtValue();
 | |
| 
 | |
|   // Strided access.
 | |
|   int64_t Stride = StepVal / Size;
 | |
|   int64_t Rem = StepVal % Size;
 | |
|   if (Rem)
 | |
|     return 0;
 | |
| 
 | |
|   // If the SCEV could wrap but we have an inbounds gep with a unit stride we
 | |
|   // know we can't "wrap around the address space". In case of address space
 | |
|   // zero we know that this won't happen without triggering undefined behavior.
 | |
|   if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
 | |
|       Stride != 1 && Stride != -1)
 | |
|     return 0;
 | |
| 
 | |
|   return Stride;
 | |
| }
 | |
| 
 | |
| bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
 | |
|                                                     unsigned TypeByteSize) {
 | |
|   // If loads occur at a distance that is not a multiple of a feasible vector
 | |
|   // factor store-load forwarding does not take place.
 | |
|   // Positive dependences might cause troubles because vectorizing them might
 | |
|   // prevent store-load forwarding making vectorized code run a lot slower.
 | |
|   //   a[i] = a[i-3] ^ a[i-8];
 | |
|   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
 | |
|   //   hence on your typical architecture store-load forwarding does not take
 | |
|   //   place. Vectorizing in such cases does not make sense.
 | |
|   // Store-load forwarding distance.
 | |
|   const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
 | |
|   // Maximum vector factor.
 | |
|   unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
 | |
|   if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
 | |
|     MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
 | |
| 
 | |
|   for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
 | |
|        vf *= 2) {
 | |
|     if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
 | |
|       MaxVFWithoutSLForwardIssues = (vf >>=1);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
 | |
|     DEBUG(dbgs() << "LV: Distance " << Distance <<
 | |
|           " that could cause a store-load forwarding conflict\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
 | |
|       MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
 | |
|     MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
 | |
|                                    const MemAccessInfo &B, unsigned BIdx,
 | |
|                                    ValueToValueMap &Strides) {
 | |
|   assert (AIdx < BIdx && "Must pass arguments in program order");
 | |
| 
 | |
|   Value *APtr = A.getPointer();
 | |
|   Value *BPtr = B.getPointer();
 | |
|   bool AIsWrite = A.getInt();
 | |
|   bool BIsWrite = B.getInt();
 | |
| 
 | |
|   // Two reads are independent.
 | |
|   if (!AIsWrite && !BIsWrite)
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *AScev = replaceSymbolicStrideSCEV(SE, Strides, APtr);
 | |
|   const SCEV *BScev = replaceSymbolicStrideSCEV(SE, Strides, BPtr);
 | |
| 
 | |
|   int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop, Strides);
 | |
|   int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop, Strides);
 | |
| 
 | |
|   const SCEV *Src = AScev;
 | |
|   const SCEV *Sink = BScev;
 | |
| 
 | |
|   // If the induction step is negative we have to invert source and sink of the
 | |
|   // dependence.
 | |
|   if (StrideAPtr < 0) {
 | |
|     //Src = BScev;
 | |
|     //Sink = AScev;
 | |
|     std::swap(APtr, BPtr);
 | |
|     std::swap(Src, Sink);
 | |
|     std::swap(AIsWrite, BIsWrite);
 | |
|     std::swap(AIdx, BIdx);
 | |
|     std::swap(StrideAPtr, StrideBPtr);
 | |
|   }
 | |
| 
 | |
|   const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
 | |
|         << "(Induction step: " << StrideAPtr <<  ")\n");
 | |
|   DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
 | |
|         << *InstMap[BIdx] << ": " << *Dist << "\n");
 | |
| 
 | |
|   // Need consecutive accesses. We don't want to vectorize
 | |
|   // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
 | |
|   // the address space.
 | |
|   if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
 | |
|     DEBUG(dbgs() << "Non-consecutive pointer access\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
 | |
|   if (!C) {
 | |
|     DEBUG(dbgs() << "LV: Dependence because of non-constant distance\n");
 | |
|     ShouldRetryWithRuntimeCheck = true;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Type *ATy = APtr->getType()->getPointerElementType();
 | |
|   Type *BTy = BPtr->getType()->getPointerElementType();
 | |
|   unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
 | |
| 
 | |
|   // Negative distances are not plausible dependencies.
 | |
|   const APInt &Val = C->getValue()->getValue();
 | |
|   if (Val.isNegative()) {
 | |
|     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
 | |
|     if (IsTrueDataDependence &&
 | |
|         (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
 | |
|          ATy != BTy))
 | |
|       return true;
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Write to the same location with the same size.
 | |
|   // Could be improved to assert type sizes are the same (i32 == float, etc).
 | |
|   if (Val == 0) {
 | |
|     if (ATy == BTy)
 | |
|       return false;
 | |
|     DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(Val.isStrictlyPositive() && "Expect a positive value");
 | |
| 
 | |
|   // Positive distance bigger than max vectorization factor.
 | |
|   if (ATy != BTy) {
 | |
|     DEBUG(dbgs() <<
 | |
|           "LV: ReadWrite-Write positive dependency with different types\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned Distance = (unsigned) Val.getZExtValue();
 | |
| 
 | |
|   // Bail out early if passed-in parameters make vectorization not feasible.
 | |
|   unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
 | |
|   unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
 | |
| 
 | |
|   // The distance must be bigger than the size needed for a vectorized version
 | |
|   // of the operation and the size of the vectorized operation must not be
 | |
|   // bigger than the currrent maximum size.
 | |
|   if (Distance < 2*TypeByteSize ||
 | |
|       2*TypeByteSize > MaxSafeDepDistBytes ||
 | |
|       Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
 | |
|     DEBUG(dbgs() << "LV: Failure because of Positive distance "
 | |
|         << Val.getSExtValue() << '\n');
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
 | |
|     Distance : MaxSafeDepDistBytes;
 | |
| 
 | |
|   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
 | |
|   if (IsTrueDataDependence &&
 | |
|       couldPreventStoreLoadForward(Distance, TypeByteSize))
 | |
|      return true;
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
 | |
|         " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
 | |
|                                    MemAccessInfoSet &CheckDeps,
 | |
|                                    ValueToValueMap &Strides) {
 | |
| 
 | |
|   MaxSafeDepDistBytes = -1U;
 | |
|   while (!CheckDeps.empty()) {
 | |
|     MemAccessInfo CurAccess = *CheckDeps.begin();
 | |
| 
 | |
|     // Get the relevant memory access set.
 | |
|     EquivalenceClasses<MemAccessInfo>::iterator I =
 | |
|       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
 | |
| 
 | |
|     // Check accesses within this set.
 | |
|     EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
 | |
|     AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
 | |
| 
 | |
|     // Check every access pair.
 | |
|     while (AI != AE) {
 | |
|       CheckDeps.erase(*AI);
 | |
|       EquivalenceClasses<MemAccessInfo>::member_iterator OI = std::next(AI);
 | |
|       while (OI != AE) {
 | |
|         // Check every accessing instruction pair in program order.
 | |
|         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
 | |
|              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
 | |
|           for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
 | |
|                I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
 | |
|             if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2, Strides))
 | |
|               return false;
 | |
|             if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1, Strides))
 | |
|               return false;
 | |
|           }
 | |
|         ++OI;
 | |
|       }
 | |
|       AI++;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::canVectorizeMemory() {
 | |
| 
 | |
|   typedef SmallVector<Value*, 16> ValueVector;
 | |
|   typedef SmallPtrSet<Value*, 16> ValueSet;
 | |
| 
 | |
|   // Holds the Load and Store *instructions*.
 | |
|   ValueVector Loads;
 | |
|   ValueVector Stores;
 | |
| 
 | |
|   // Holds all the different accesses in the loop.
 | |
|   unsigned NumReads = 0;
 | |
|   unsigned NumReadWrites = 0;
 | |
| 
 | |
|   PtrRtCheck.Pointers.clear();
 | |
|   PtrRtCheck.Need = false;
 | |
| 
 | |
|   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
 | |
|   MemoryDepChecker DepChecker(SE, DL, TheLoop);
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
| 
 | |
|     // Scan the BB and collect legal loads and stores.
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
| 
 | |
|       // If this is a load, save it. If this instruction can read from memory
 | |
|       // but is not a load, then we quit. Notice that we don't handle function
 | |
|       // calls that read or write.
 | |
|       if (it->mayReadFromMemory()) {
 | |
|         // Many math library functions read the rounding mode. We will only
 | |
|         // vectorize a loop if it contains known function calls that don't set
 | |
|         // the flag. Therefore, it is safe to ignore this read from memory.
 | |
|         CallInst *Call = dyn_cast<CallInst>(it);
 | |
|         if (Call && getIntrinsicIDForCall(Call, TLI))
 | |
|           continue;
 | |
| 
 | |
|         LoadInst *Ld = dyn_cast<LoadInst>(it);
 | |
|         if (!Ld) return false;
 | |
|         if (!Ld->isSimple() && !IsAnnotatedParallel) {
 | |
|           DEBUG(dbgs() << "LV: Found a non-simple load.\n");
 | |
|           return false;
 | |
|         }
 | |
|         NumLoads++;
 | |
|         Loads.push_back(Ld);
 | |
|         DepChecker.addAccess(Ld);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Save 'store' instructions. Abort if other instructions write to memory.
 | |
|       if (it->mayWriteToMemory()) {
 | |
|         StoreInst *St = dyn_cast<StoreInst>(it);
 | |
|         if (!St) return false;
 | |
|         if (!St->isSimple() && !IsAnnotatedParallel) {
 | |
|           DEBUG(dbgs() << "LV: Found a non-simple store.\n");
 | |
|           return false;
 | |
|         }
 | |
|         NumStores++;
 | |
|         Stores.push_back(St);
 | |
|         DepChecker.addAccess(St);
 | |
|       }
 | |
|     } // Next instr.
 | |
|   } // Next block.
 | |
| 
 | |
|   // Now we have two lists that hold the loads and the stores.
 | |
|   // Next, we find the pointers that they use.
 | |
| 
 | |
|   // Check if we see any stores. If there are no stores, then we don't
 | |
|   // care if the pointers are *restrict*.
 | |
|   if (!Stores.size()) {
 | |
|     DEBUG(dbgs() << "LV: Found a read-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   AccessAnalysis::DepCandidates DependentAccesses;
 | |
|   AccessAnalysis Accesses(DL, DependentAccesses);
 | |
| 
 | |
|   // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
 | |
|   // multiple times on the same object. If the ptr is accessed twice, once
 | |
|   // for read and once for write, it will only appear once (on the write
 | |
|   // list). This is okay, since we are going to check for conflicts between
 | |
|   // writes and between reads and writes, but not between reads and reads.
 | |
|   ValueSet Seen;
 | |
| 
 | |
|   ValueVector::iterator I, IE;
 | |
|   for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
 | |
|     StoreInst *ST = cast<StoreInst>(*I);
 | |
|     Value* Ptr = ST->getPointerOperand();
 | |
| 
 | |
|     if (isUniform(Ptr)) {
 | |
|       DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // If we did *not* see this pointer before, insert it to  the read-write
 | |
|     // list. At this phase it is only a 'write' list.
 | |
|     if (Seen.insert(Ptr)) {
 | |
|       ++NumReadWrites;
 | |
|       Accesses.addStore(Ptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (IsAnnotatedParallel) {
 | |
|     DEBUG(dbgs()
 | |
|           << "LV: A loop annotated parallel, ignore memory dependency "
 | |
|           << "checks.\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
 | |
|     LoadInst *LD = cast<LoadInst>(*I);
 | |
|     Value* Ptr = LD->getPointerOperand();
 | |
|     // If we did *not* see this pointer before, insert it to the
 | |
|     // read list. If we *did* see it before, then it is already in
 | |
|     // the read-write list. This allows us to vectorize expressions
 | |
|     // such as A[i] += x;  Because the address of A[i] is a read-write
 | |
|     // pointer. This only works if the index of A[i] is consecutive.
 | |
|     // If the address of i is unknown (for example A[B[i]]) then we may
 | |
|     // read a few words, modify, and write a few words, and some of the
 | |
|     // words may be written to the same address.
 | |
|     bool IsReadOnlyPtr = false;
 | |
|     if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop, Strides)) {
 | |
|       ++NumReads;
 | |
|       IsReadOnlyPtr = true;
 | |
|     }
 | |
|     Accesses.addLoad(Ptr, IsReadOnlyPtr);
 | |
|   }
 | |
| 
 | |
|   // If we write (or read-write) to a single destination and there are no
 | |
|   // other reads in this loop then is it safe to vectorize.
 | |
|   if (NumReadWrites == 1 && NumReads == 0) {
 | |
|     DEBUG(dbgs() << "LV: Found a write-only loop!\n");
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Build dependence sets and check whether we need a runtime pointer bounds
 | |
|   // check.
 | |
|   Accesses.buildDependenceSets();
 | |
|   bool NeedRTCheck = Accesses.isRTCheckNeeded();
 | |
| 
 | |
|   // Find pointers with computable bounds. We are going to use this information
 | |
|   // to place a runtime bound check.
 | |
|   unsigned NumComparisons = 0;
 | |
|   bool CanDoRT = false;
 | |
|   if (NeedRTCheck)
 | |
|     CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop,
 | |
|                                        Strides);
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
 | |
|         " pointer comparisons.\n");
 | |
| 
 | |
|   // If we only have one set of dependences to check pointers among we don't
 | |
|   // need a runtime check.
 | |
|   if (NumComparisons == 0 && NeedRTCheck)
 | |
|     NeedRTCheck = false;
 | |
| 
 | |
|   // Check that we did not collect too many pointers or found an unsizeable
 | |
|   // pointer.
 | |
|   if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
 | |
|     PtrRtCheck.reset();
 | |
|     CanDoRT = false;
 | |
|   }
 | |
| 
 | |
|   if (CanDoRT) {
 | |
|     DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
 | |
|   }
 | |
| 
 | |
|   if (NeedRTCheck && !CanDoRT) {
 | |
|     DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
 | |
|           "the array bounds.\n");
 | |
|     PtrRtCheck.reset();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   PtrRtCheck.Need = NeedRTCheck;
 | |
| 
 | |
|   bool CanVecMem = true;
 | |
|   if (Accesses.isDependencyCheckNeeded()) {
 | |
|     DEBUG(dbgs() << "LV: Checking memory dependencies\n");
 | |
|     CanVecMem = DepChecker.areDepsSafe(
 | |
|         DependentAccesses, Accesses.getDependenciesToCheck(), Strides);
 | |
|     MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
 | |
| 
 | |
|     if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
 | |
|       DEBUG(dbgs() << "LV: Retrying with memory checks\n");
 | |
|       NeedRTCheck = true;
 | |
| 
 | |
|       // Clear the dependency checks. We assume they are not needed.
 | |
|       Accesses.resetDepChecks();
 | |
| 
 | |
|       PtrRtCheck.reset();
 | |
|       PtrRtCheck.Need = true;
 | |
| 
 | |
|       CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
 | |
|                                          TheLoop, Strides, true);
 | |
|       // Check that we did not collect too many pointers or found an unsizeable
 | |
|       // pointer.
 | |
|       if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
 | |
|         DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
 | |
|         PtrRtCheck.reset();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       CanVecMem = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
 | |
|         " need a runtime memory check.\n");
 | |
| 
 | |
|   return CanVecMem;
 | |
| }
 | |
| 
 | |
| static bool hasMultipleUsesOf(Instruction *I,
 | |
|                               SmallPtrSet<Instruction *, 8> &Insts) {
 | |
|   unsigned NumUses = 0;
 | |
|   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
 | |
|     if (Insts.count(dyn_cast<Instruction>(*Use)))
 | |
|       ++NumUses;
 | |
|     if (NumUses > 1)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
 | |
|   for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
 | |
|     if (!Set.count(dyn_cast<Instruction>(*Use)))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
 | |
|                                                 ReductionKind Kind) {
 | |
|   if (Phi->getNumIncomingValues() != 2)
 | |
|     return false;
 | |
| 
 | |
|   // Reduction variables are only found in the loop header block.
 | |
|   if (Phi->getParent() != TheLoop->getHeader())
 | |
|     return false;
 | |
| 
 | |
|   // Obtain the reduction start value from the value that comes from the loop
 | |
|   // preheader.
 | |
|   Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
 | |
| 
 | |
|   // ExitInstruction is the single value which is used outside the loop.
 | |
|   // We only allow for a single reduction value to be used outside the loop.
 | |
|   // This includes users of the reduction, variables (which form a cycle
 | |
|   // which ends in the phi node).
 | |
|   Instruction *ExitInstruction = 0;
 | |
|   // Indicates that we found a reduction operation in our scan.
 | |
|   bool FoundReduxOp = false;
 | |
| 
 | |
|   // We start with the PHI node and scan for all of the users of this
 | |
|   // instruction. All users must be instructions that can be used as reduction
 | |
|   // variables (such as ADD). We must have a single out-of-block user. The cycle
 | |
|   // must include the original PHI.
 | |
|   bool FoundStartPHI = false;
 | |
| 
 | |
|   // To recognize min/max patterns formed by a icmp select sequence, we store
 | |
|   // the number of instruction we saw from the recognized min/max pattern,
 | |
|   //  to make sure we only see exactly the two instructions.
 | |
|   unsigned NumCmpSelectPatternInst = 0;
 | |
|   ReductionInstDesc ReduxDesc(false, 0);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> VisitedInsts;
 | |
|   SmallVector<Instruction *, 8> Worklist;
 | |
|   Worklist.push_back(Phi);
 | |
|   VisitedInsts.insert(Phi);
 | |
| 
 | |
|   // A value in the reduction can be used:
 | |
|   //  - By the reduction:
 | |
|   //      - Reduction operation:
 | |
|   //        - One use of reduction value (safe).
 | |
|   //        - Multiple use of reduction value (not safe).
 | |
|   //      - PHI:
 | |
|   //        - All uses of the PHI must be the reduction (safe).
 | |
|   //        - Otherwise, not safe.
 | |
|   //  - By one instruction outside of the loop (safe).
 | |
|   //  - By further instructions outside of the loop (not safe).
 | |
|   //  - By an instruction that is not part of the reduction (not safe).
 | |
|   //    This is either:
 | |
|   //      * An instruction type other than PHI or the reduction operation.
 | |
|   //      * A PHI in the header other than the initial PHI.
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *Cur = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // No Users.
 | |
|     // If the instruction has no users then this is a broken chain and can't be
 | |
|     // a reduction variable.
 | |
|     if (Cur->use_empty())
 | |
|       return false;
 | |
| 
 | |
|     bool IsAPhi = isa<PHINode>(Cur);
 | |
| 
 | |
|     // A header PHI use other than the original PHI.
 | |
|     if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
 | |
|       return false;
 | |
| 
 | |
|     // Reductions of instructions such as Div, and Sub is only possible if the
 | |
|     // LHS is the reduction variable.
 | |
|     if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
 | |
|         !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
 | |
|         !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
 | |
|       return false;
 | |
| 
 | |
|     // Any reduction instruction must be of one of the allowed kinds.
 | |
|     ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
 | |
|     if (!ReduxDesc.IsReduction)
 | |
|       return false;
 | |
| 
 | |
|     // A reduction operation must only have one use of the reduction value.
 | |
|     if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
 | |
|         hasMultipleUsesOf(Cur, VisitedInsts))
 | |
|       return false;
 | |
| 
 | |
|     // All inputs to a PHI node must be a reduction value.
 | |
|     if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
 | |
|       return false;
 | |
| 
 | |
|     if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
 | |
|                                      isa<SelectInst>(Cur)))
 | |
|       ++NumCmpSelectPatternInst;
 | |
|     if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
 | |
|                                    isa<SelectInst>(Cur)))
 | |
|       ++NumCmpSelectPatternInst;
 | |
| 
 | |
|     // Check  whether we found a reduction operator.
 | |
|     FoundReduxOp |= !IsAPhi;
 | |
| 
 | |
|     // Process users of current instruction. Push non-PHI nodes after PHI nodes
 | |
|     // onto the stack. This way we are going to have seen all inputs to PHI
 | |
|     // nodes once we get to them.
 | |
|     SmallVector<Instruction *, 8> NonPHIs;
 | |
|     SmallVector<Instruction *, 8> PHIs;
 | |
|     for (User *U : Cur->users()) {
 | |
|       Instruction *UI = cast<Instruction>(U);
 | |
| 
 | |
|       // Check if we found the exit user.
 | |
|       BasicBlock *Parent = UI->getParent();
 | |
|       if (!TheLoop->contains(Parent)) {
 | |
|         // Exit if you find multiple outside users or if the header phi node is
 | |
|         // being used. In this case the user uses the value of the previous
 | |
|         // iteration, in which case we would loose "VF-1" iterations of the
 | |
|         // reduction operation if we vectorize.
 | |
|         if (ExitInstruction != 0 || Cur == Phi)
 | |
|           return false;
 | |
| 
 | |
|         // The instruction used by an outside user must be the last instruction
 | |
|         // before we feed back to the reduction phi. Otherwise, we loose VF-1
 | |
|         // operations on the value.
 | |
|         if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
 | |
|          return false;
 | |
| 
 | |
|         ExitInstruction = Cur;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Process instructions only once (termination). Each reduction cycle
 | |
|       // value must only be used once, except by phi nodes and min/max
 | |
|       // reductions which are represented as a cmp followed by a select.
 | |
|       ReductionInstDesc IgnoredVal(false, 0);
 | |
|       if (VisitedInsts.insert(UI)) {
 | |
|         if (isa<PHINode>(UI))
 | |
|           PHIs.push_back(UI);
 | |
|         else
 | |
|           NonPHIs.push_back(UI);
 | |
|       } else if (!isa<PHINode>(UI) &&
 | |
|                  ((!isa<FCmpInst>(UI) &&
 | |
|                    !isa<ICmpInst>(UI) &&
 | |
|                    !isa<SelectInst>(UI)) ||
 | |
|                   !isMinMaxSelectCmpPattern(UI, IgnoredVal).IsReduction))
 | |
|         return false;
 | |
| 
 | |
|       // Remember that we completed the cycle.
 | |
|       if (UI == Phi)
 | |
|         FoundStartPHI = true;
 | |
|     }
 | |
|     Worklist.append(PHIs.begin(), PHIs.end());
 | |
|     Worklist.append(NonPHIs.begin(), NonPHIs.end());
 | |
|   }
 | |
| 
 | |
|   // This means we have seen one but not the other instruction of the
 | |
|   // pattern or more than just a select and cmp.
 | |
|   if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
 | |
|       NumCmpSelectPatternInst != 2)
 | |
|     return false;
 | |
| 
 | |
|   if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
 | |
|     return false;
 | |
| 
 | |
|   // We found a reduction var if we have reached the original phi node and we
 | |
|   // only have a single instruction with out-of-loop users.
 | |
| 
 | |
|   // This instruction is allowed to have out-of-loop users.
 | |
|   AllowedExit.insert(ExitInstruction);
 | |
| 
 | |
|   // Save the description of this reduction variable.
 | |
|   ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
 | |
|                          ReduxDesc.MinMaxKind);
 | |
|   Reductions[Phi] = RD;
 | |
|   // We've ended the cycle. This is a reduction variable if we have an
 | |
|   // outside user and it has a binary op.
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
 | |
| /// pattern corresponding to a min(X, Y) or max(X, Y).
 | |
| LoopVectorizationLegality::ReductionInstDesc
 | |
| LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
 | |
|                                                     ReductionInstDesc &Prev) {
 | |
| 
 | |
|   assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
 | |
|          "Expect a select instruction");
 | |
|   Instruction *Cmp = 0;
 | |
|   SelectInst *Select = 0;
 | |
| 
 | |
|   // We must handle the select(cmp()) as a single instruction. Advance to the
 | |
|   // select.
 | |
|   if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
 | |
|     if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
 | |
|       return ReductionInstDesc(false, I);
 | |
|     return ReductionInstDesc(Select, Prev.MinMaxKind);
 | |
|   }
 | |
| 
 | |
|   // Only handle single use cases for now.
 | |
|   if (!(Select = dyn_cast<SelectInst>(I)))
 | |
|     return ReductionInstDesc(false, I);
 | |
|   if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
 | |
|       !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
 | |
|     return ReductionInstDesc(false, I);
 | |
|   if (!Cmp->hasOneUse())
 | |
|     return ReductionInstDesc(false, I);
 | |
| 
 | |
|   Value *CmpLeft;
 | |
|   Value *CmpRight;
 | |
| 
 | |
|   // Look for a min/max pattern.
 | |
|   if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_UIntMin);
 | |
|   else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_UIntMax);
 | |
|   else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_SIntMax);
 | |
|   else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_SIntMin);
 | |
|   else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_FloatMin);
 | |
|   else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_FloatMax);
 | |
|   else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_FloatMin);
 | |
|   else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
 | |
|     return ReductionInstDesc(Select, MRK_FloatMax);
 | |
| 
 | |
|   return ReductionInstDesc(false, I);
 | |
| }
 | |
| 
 | |
| LoopVectorizationLegality::ReductionInstDesc
 | |
| LoopVectorizationLegality::isReductionInstr(Instruction *I,
 | |
|                                             ReductionKind Kind,
 | |
|                                             ReductionInstDesc &Prev) {
 | |
|   bool FP = I->getType()->isFloatingPointTy();
 | |
|   bool FastMath = (FP && I->isCommutative() && I->isAssociative());
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     return ReductionInstDesc(false, I);
 | |
|   case Instruction::PHI:
 | |
|       if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
 | |
|                  Kind != RK_FloatMinMax))
 | |
|         return ReductionInstDesc(false, I);
 | |
|     return ReductionInstDesc(I, Prev.MinMaxKind);
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Add:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerAdd, I);
 | |
|   case Instruction::Mul:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerMult, I);
 | |
|   case Instruction::And:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerAnd, I);
 | |
|   case Instruction::Or:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerOr, I);
 | |
|   case Instruction::Xor:
 | |
|     return ReductionInstDesc(Kind == RK_IntegerXor, I);
 | |
|   case Instruction::FMul:
 | |
|     return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
 | |
|   case Instruction::FAdd:
 | |
|     return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::Select:
 | |
|     if (Kind != RK_IntegerMinMax &&
 | |
|         (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
 | |
|       return ReductionInstDesc(false, I);
 | |
|     return isMinMaxSelectCmpPattern(I, Prev);
 | |
|   }
 | |
| }
 | |
| 
 | |
| LoopVectorizationLegality::InductionKind
 | |
| LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
 | |
|   Type *PhiTy = Phi->getType();
 | |
|   // We only handle integer and pointer inductions variables.
 | |
|   if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
 | |
|     return IK_NoInduction;
 | |
| 
 | |
|   // Check that the PHI is consecutive.
 | |
|   const SCEV *PhiScev = SE->getSCEV(Phi);
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
 | |
|   if (!AR) {
 | |
|     DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
 | |
|     return IK_NoInduction;
 | |
|   }
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Integer inductions need to have a stride of one.
 | |
|   if (PhiTy->isIntegerTy()) {
 | |
|     if (Step->isOne())
 | |
|       return IK_IntInduction;
 | |
|     if (Step->isAllOnesValue())
 | |
|       return IK_ReverseIntInduction;
 | |
|     return IK_NoInduction;
 | |
|   }
 | |
| 
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!C)
 | |
|     return IK_NoInduction;
 | |
| 
 | |
|   assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
 | |
|   uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
 | |
|   if (C->getValue()->equalsInt(Size))
 | |
|     return IK_PtrInduction;
 | |
|   else if (C->getValue()->equalsInt(0 - Size))
 | |
|     return IK_ReversePtrInduction;
 | |
| 
 | |
|   return IK_NoInduction;
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
 | |
|   Value *In0 = const_cast<Value*>(V);
 | |
|   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
 | |
|   if (!PN)
 | |
|     return false;
 | |
| 
 | |
|   return Inductions.count(PN);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
 | |
|   assert(TheLoop->contains(BB) && "Unknown block used");
 | |
| 
 | |
|   // Blocks that do not dominate the latch need predication.
 | |
|   BasicBlock* Latch = TheLoop->getLoopLatch();
 | |
|   return !DT->dominates(BB, Latch);
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
 | |
|                                             SmallPtrSet<Value *, 8>& SafePtrs) {
 | |
|   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|     // We might be able to hoist the load.
 | |
|     if (it->mayReadFromMemory()) {
 | |
|       LoadInst *LI = dyn_cast<LoadInst>(it);
 | |
|       if (!LI || !SafePtrs.count(LI->getPointerOperand()))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // We don't predicate stores at the moment.
 | |
|     if (it->mayWriteToMemory()) {
 | |
|       StoreInst *SI = dyn_cast<StoreInst>(it);
 | |
|       // We only support predication of stores in basic blocks with one
 | |
|       // predecessor.
 | |
|       if (!SI || ++NumPredStores > NumberOfStoresToPredicate ||
 | |
|           !SafePtrs.count(SI->getPointerOperand()) ||
 | |
|           !SI->getParent()->getSinglePredecessor())
 | |
|         return false;
 | |
|     }
 | |
|     if (it->mayThrow())
 | |
|       return false;
 | |
| 
 | |
|     // Check that we don't have a constant expression that can trap as operand.
 | |
|     for (Instruction::op_iterator OI = it->op_begin(), OE = it->op_end();
 | |
|          OI != OE; ++OI) {
 | |
|       if (Constant *C = dyn_cast<Constant>(*OI))
 | |
|         if (C->canTrap())
 | |
|           return false;
 | |
|     }
 | |
| 
 | |
|     // The instructions below can trap.
 | |
|     switch (it->getOpcode()) {
 | |
|     default: continue;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::URem:
 | |
|     case Instruction::SRem:
 | |
|              return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| LoopVectorizationCostModel::VectorizationFactor
 | |
| LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
 | |
|                                                       unsigned UserVF) {
 | |
|   // Width 1 means no vectorize
 | |
|   VectorizationFactor Factor = { 1U, 0U };
 | |
|   if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
 | |
|     DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
 | |
|     return Factor;
 | |
|   }
 | |
| 
 | |
|   if (!EnableCondStoresVectorization && Legal->NumPredStores) {
 | |
|     DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n");
 | |
|     return Factor;
 | |
|   }
 | |
| 
 | |
|   // Find the trip count.
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
 | |
|   DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
 | |
| 
 | |
|   unsigned WidestType = getWidestType();
 | |
|   unsigned WidestRegister = TTI.getRegisterBitWidth(true);
 | |
|   unsigned MaxSafeDepDist = -1U;
 | |
|   if (Legal->getMaxSafeDepDistBytes() != -1U)
 | |
|     MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
 | |
|   WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
 | |
|                     WidestRegister : MaxSafeDepDist);
 | |
|   unsigned MaxVectorSize = WidestRegister / WidestType;
 | |
|   DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
 | |
|   DEBUG(dbgs() << "LV: The Widest register is: "
 | |
|           << WidestRegister << " bits.\n");
 | |
| 
 | |
|   if (MaxVectorSize == 0) {
 | |
|     DEBUG(dbgs() << "LV: The target has no vector registers.\n");
 | |
|     MaxVectorSize = 1;
 | |
|   }
 | |
| 
 | |
|   assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
 | |
|          " into one vector!");
 | |
| 
 | |
|   unsigned VF = MaxVectorSize;
 | |
| 
 | |
|   // If we optimize the program for size, avoid creating the tail loop.
 | |
|   if (OptForSize) {
 | |
|     // If we are unable to calculate the trip count then don't try to vectorize.
 | |
|     if (TC < 2) {
 | |
|       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
 | |
|       return Factor;
 | |
|     }
 | |
| 
 | |
|     // Find the maximum SIMD width that can fit within the trip count.
 | |
|     VF = TC % MaxVectorSize;
 | |
| 
 | |
|     if (VF == 0)
 | |
|       VF = MaxVectorSize;
 | |
| 
 | |
|     // If the trip count that we found modulo the vectorization factor is not
 | |
|     // zero then we require a tail.
 | |
|     if (VF < 2) {
 | |
|       DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
 | |
|       return Factor;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (UserVF != 0) {
 | |
|     assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
 | |
|     DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
 | |
| 
 | |
|     Factor.Width = UserVF;
 | |
|     return Factor;
 | |
|   }
 | |
| 
 | |
|   float Cost = expectedCost(1);
 | |
|   unsigned Width = 1;
 | |
|   DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
 | |
|   for (unsigned i=2; i <= VF; i*=2) {
 | |
|     // Notice that the vector loop needs to be executed less times, so
 | |
|     // we need to divide the cost of the vector loops by the width of
 | |
|     // the vector elements.
 | |
|     float VectorCost = expectedCost(i) / (float)i;
 | |
|     DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
 | |
|           (int)VectorCost << ".\n");
 | |
|     if (VectorCost < Cost) {
 | |
|       Cost = VectorCost;
 | |
|       Width = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
 | |
|   Factor.Width = Width;
 | |
|   Factor.Cost = Width * Cost;
 | |
|   return Factor;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::getWidestType() {
 | |
|   unsigned MaxWidth = 8;
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
|     BasicBlock *BB = *bb;
 | |
| 
 | |
|     // For each instruction in the loop.
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       Type *T = it->getType();
 | |
| 
 | |
|       // Only examine Loads, Stores and PHINodes.
 | |
|       if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
 | |
|         continue;
 | |
| 
 | |
|       // Examine PHI nodes that are reduction variables.
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(it))
 | |
|         if (!Legal->getReductionVars()->count(PN))
 | |
|           continue;
 | |
| 
 | |
|       // Examine the stored values.
 | |
|       if (StoreInst *ST = dyn_cast<StoreInst>(it))
 | |
|         T = ST->getValueOperand()->getType();
 | |
| 
 | |
|       // Ignore loaded pointer types and stored pointer types that are not
 | |
|       // consecutive. However, we do want to take consecutive stores/loads of
 | |
|       // pointer vectors into account.
 | |
|       if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
 | |
|         continue;
 | |
| 
 | |
|       MaxWidth = std::max(MaxWidth,
 | |
|                           (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MaxWidth;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
 | |
|                                                unsigned UserUF,
 | |
|                                                unsigned VF,
 | |
|                                                unsigned LoopCost) {
 | |
| 
 | |
|   // -- The unroll heuristics --
 | |
|   // We unroll the loop in order to expose ILP and reduce the loop overhead.
 | |
|   // There are many micro-architectural considerations that we can't predict
 | |
|   // at this level. For example frontend pressure (on decode or fetch) due to
 | |
|   // code size, or the number and capabilities of the execution ports.
 | |
|   //
 | |
|   // We use the following heuristics to select the unroll factor:
 | |
|   // 1. If the code has reductions the we unroll in order to break the cross
 | |
|   // iteration dependency.
 | |
|   // 2. If the loop is really small then we unroll in order to reduce the loop
 | |
|   // overhead.
 | |
|   // 3. We don't unroll if we think that we will spill registers to memory due
 | |
|   // to the increased register pressure.
 | |
| 
 | |
|   // Use the user preference, unless 'auto' is selected.
 | |
|   if (UserUF != 0)
 | |
|     return UserUF;
 | |
| 
 | |
|   // When we optimize for size we don't unroll.
 | |
|   if (OptForSize)
 | |
|     return 1;
 | |
| 
 | |
|   // We used the distance for the unroll factor.
 | |
|   if (Legal->getMaxSafeDepDistBytes() != -1U)
 | |
|     return 1;
 | |
| 
 | |
|   // Do not unroll loops with a relatively small trip count.
 | |
|   unsigned TC = SE->getSmallConstantTripCount(TheLoop,
 | |
|                                               TheLoop->getLoopLatch());
 | |
|   if (TC > 1 && TC < TinyTripCountUnrollThreshold)
 | |
|     return 1;
 | |
| 
 | |
|   unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
 | |
|   DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters <<
 | |
|         " registers\n");
 | |
| 
 | |
|   if (VF == 1) {
 | |
|     if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
 | |
|       TargetNumRegisters = ForceTargetNumScalarRegs;
 | |
|   } else {
 | |
|     if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
 | |
|       TargetNumRegisters = ForceTargetNumVectorRegs;
 | |
|   }
 | |
| 
 | |
|   LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
 | |
|   // We divide by these constants so assume that we have at least one
 | |
|   // instruction that uses at least one register.
 | |
|   R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
 | |
|   R.NumInstructions = std::max(R.NumInstructions, 1U);
 | |
| 
 | |
|   // We calculate the unroll factor using the following formula.
 | |
|   // Subtract the number of loop invariants from the number of available
 | |
|   // registers. These registers are used by all of the unrolled instances.
 | |
|   // Next, divide the remaining registers by the number of registers that is
 | |
|   // required by the loop, in order to estimate how many parallel instances
 | |
|   // fit without causing spills. All of this is rounded down if necessary to be
 | |
|   // a power of two. We want power of two unroll factors to simplify any
 | |
|   // addressing operations or alignment considerations.
 | |
|   unsigned UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
 | |
|                               R.MaxLocalUsers);
 | |
| 
 | |
|   // Don't count the induction variable as unrolled.
 | |
|   if (EnableIndVarRegisterHeur)
 | |
|     UF = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
 | |
|                        std::max(1U, (R.MaxLocalUsers - 1)));
 | |
| 
 | |
|   // Clamp the unroll factor ranges to reasonable factors.
 | |
|   unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
 | |
| 
 | |
|   // Check if the user has overridden the unroll max.
 | |
|   if (VF == 1) {
 | |
|     if (ForceTargetMaxScalarUnrollFactor.getNumOccurrences() > 0)
 | |
|       MaxUnrollSize = ForceTargetMaxScalarUnrollFactor;
 | |
|   } else {
 | |
|     if (ForceTargetMaxVectorUnrollFactor.getNumOccurrences() > 0)
 | |
|       MaxUnrollSize = ForceTargetMaxVectorUnrollFactor;
 | |
|   }
 | |
| 
 | |
|   // If we did not calculate the cost for VF (because the user selected the VF)
 | |
|   // then we calculate the cost of VF here.
 | |
|   if (LoopCost == 0)
 | |
|     LoopCost = expectedCost(VF);
 | |
| 
 | |
|   // Clamp the calculated UF to be between the 1 and the max unroll factor
 | |
|   // that the target allows.
 | |
|   if (UF > MaxUnrollSize)
 | |
|     UF = MaxUnrollSize;
 | |
|   else if (UF < 1)
 | |
|     UF = 1;
 | |
| 
 | |
|   // Unroll if we vectorized this loop and there is a reduction that could
 | |
|   // benefit from unrolling.
 | |
|   if (VF > 1 && Legal->getReductionVars()->size()) {
 | |
|     DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
 | |
|     return UF;
 | |
|   }
 | |
| 
 | |
|   // Note that if we've already vectorized the loop we will have done the
 | |
|   // runtime check and so unrolling won't require further checks.
 | |
|   bool UnrollingRequiresRuntimePointerCheck =
 | |
|       (VF == 1 && Legal->getRuntimePointerCheck()->Need);
 | |
| 
 | |
|   // We want to unroll small loops in order to reduce the loop overhead and
 | |
|   // potentially expose ILP opportunities.
 | |
|   DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
 | |
|   if (!UnrollingRequiresRuntimePointerCheck &&
 | |
|       LoopCost < SmallLoopCost) {
 | |
|     // We assume that the cost overhead is 1 and we use the cost model
 | |
|     // to estimate the cost of the loop and unroll until the cost of the
 | |
|     // loop overhead is about 5% of the cost of the loop.
 | |
|     unsigned SmallUF = std::min(UF, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
 | |
| 
 | |
|     // Unroll until store/load ports (estimated by max unroll factor) are
 | |
|     // saturated.
 | |
|     unsigned StoresUF = UF / (Legal->NumStores ? Legal->NumStores : 1);
 | |
|     unsigned LoadsUF = UF /  (Legal->NumLoads ? Legal->NumLoads : 1);
 | |
| 
 | |
|     if (EnableLoadStoreRuntimeUnroll && std::max(StoresUF, LoadsUF) > SmallUF) {
 | |
|       DEBUG(dbgs() << "LV: Unrolling to saturate store or load ports.\n");
 | |
|       return std::max(StoresUF, LoadsUF);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
 | |
|     return SmallUF;
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "LV: Not Unrolling.\n");
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| LoopVectorizationCostModel::RegisterUsage
 | |
| LoopVectorizationCostModel::calculateRegisterUsage() {
 | |
|   // This function calculates the register usage by measuring the highest number
 | |
|   // of values that are alive at a single location. Obviously, this is a very
 | |
|   // rough estimation. We scan the loop in a topological order in order and
 | |
|   // assign a number to each instruction. We use RPO to ensure that defs are
 | |
|   // met before their users. We assume that each instruction that has in-loop
 | |
|   // users starts an interval. We record every time that an in-loop value is
 | |
|   // used, so we have a list of the first and last occurrences of each
 | |
|   // instruction. Next, we transpose this data structure into a multi map that
 | |
|   // holds the list of intervals that *end* at a specific location. This multi
 | |
|   // map allows us to perform a linear search. We scan the instructions linearly
 | |
|   // and record each time that a new interval starts, by placing it in a set.
 | |
|   // If we find this value in the multi-map then we remove it from the set.
 | |
|   // The max register usage is the maximum size of the set.
 | |
|   // We also search for instructions that are defined outside the loop, but are
 | |
|   // used inside the loop. We need this number separately from the max-interval
 | |
|   // usage number because when we unroll, loop-invariant values do not take
 | |
|   // more register.
 | |
|   LoopBlocksDFS DFS(TheLoop);
 | |
|   DFS.perform(LI);
 | |
| 
 | |
|   RegisterUsage R;
 | |
|   R.NumInstructions = 0;
 | |
| 
 | |
|   // Each 'key' in the map opens a new interval. The values
 | |
|   // of the map are the index of the 'last seen' usage of the
 | |
|   // instruction that is the key.
 | |
|   typedef DenseMap<Instruction*, unsigned> IntervalMap;
 | |
|   // Maps instruction to its index.
 | |
|   DenseMap<unsigned, Instruction*> IdxToInstr;
 | |
|   // Marks the end of each interval.
 | |
|   IntervalMap EndPoint;
 | |
|   // Saves the list of instruction indices that are used in the loop.
 | |
|   SmallSet<Instruction*, 8> Ends;
 | |
|   // Saves the list of values that are used in the loop but are
 | |
|   // defined outside the loop, such as arguments and constants.
 | |
|   SmallPtrSet<Value*, 8> LoopInvariants;
 | |
| 
 | |
|   unsigned Index = 0;
 | |
|   for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
 | |
|        be = DFS.endRPO(); bb != be; ++bb) {
 | |
|     R.NumInstructions += (*bb)->size();
 | |
|     for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
 | |
|          ++it) {
 | |
|       Instruction *I = it;
 | |
|       IdxToInstr[Index++] = I;
 | |
| 
 | |
|       // Save the end location of each USE.
 | |
|       for (unsigned i = 0; i < I->getNumOperands(); ++i) {
 | |
|         Value *U = I->getOperand(i);
 | |
|         Instruction *Instr = dyn_cast<Instruction>(U);
 | |
| 
 | |
|         // Ignore non-instruction values such as arguments, constants, etc.
 | |
|         if (!Instr) continue;
 | |
| 
 | |
|         // If this instruction is outside the loop then record it and continue.
 | |
|         if (!TheLoop->contains(Instr)) {
 | |
|           LoopInvariants.insert(Instr);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Overwrite previous end points.
 | |
|         EndPoint[Instr] = Index;
 | |
|         Ends.insert(Instr);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Saves the list of intervals that end with the index in 'key'.
 | |
|   typedef SmallVector<Instruction*, 2> InstrList;
 | |
|   DenseMap<unsigned, InstrList> TransposeEnds;
 | |
| 
 | |
|   // Transpose the EndPoints to a list of values that end at each index.
 | |
|   for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
 | |
|        it != e; ++it)
 | |
|     TransposeEnds[it->second].push_back(it->first);
 | |
| 
 | |
|   SmallSet<Instruction*, 8> OpenIntervals;
 | |
|   unsigned MaxUsage = 0;
 | |
| 
 | |
| 
 | |
|   DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
 | |
|   for (unsigned int i = 0; i < Index; ++i) {
 | |
|     Instruction *I = IdxToInstr[i];
 | |
|     // Ignore instructions that are never used within the loop.
 | |
|     if (!Ends.count(I)) continue;
 | |
| 
 | |
|     // Remove all of the instructions that end at this location.
 | |
|     InstrList &List = TransposeEnds[i];
 | |
|     for (unsigned int j=0, e = List.size(); j < e; ++j)
 | |
|       OpenIntervals.erase(List[j]);
 | |
| 
 | |
|     // Count the number of live interals.
 | |
|     MaxUsage = std::max(MaxUsage, OpenIntervals.size());
 | |
| 
 | |
|     DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
 | |
|           OpenIntervals.size() << '\n');
 | |
| 
 | |
|     // Add the current instruction to the list of open intervals.
 | |
|     OpenIntervals.insert(I);
 | |
|   }
 | |
| 
 | |
|   unsigned Invariant = LoopInvariants.size();
 | |
|   DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
 | |
|   DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
 | |
|   DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
 | |
| 
 | |
|   R.LoopInvariantRegs = Invariant;
 | |
|   R.MaxLocalUsers = MaxUsage;
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   // For each block.
 | |
|   for (Loop::block_iterator bb = TheLoop->block_begin(),
 | |
|        be = TheLoop->block_end(); bb != be; ++bb) {
 | |
|     unsigned BlockCost = 0;
 | |
|     BasicBlock *BB = *bb;
 | |
| 
 | |
|     // For each instruction in the old loop.
 | |
|     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
 | |
|       // Skip dbg intrinsics.
 | |
|       if (isa<DbgInfoIntrinsic>(it))
 | |
|         continue;
 | |
| 
 | |
|       unsigned C = getInstructionCost(it, VF);
 | |
| 
 | |
|       // Check if we should override the cost.
 | |
|       if (ForceTargetInstructionCost.getNumOccurrences() > 0)
 | |
|         C = ForceTargetInstructionCost;
 | |
| 
 | |
|       BlockCost += C;
 | |
|       DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
 | |
|             VF << " For instruction: " << *it << '\n');
 | |
|     }
 | |
| 
 | |
|     // We assume that if-converted blocks have a 50% chance of being executed.
 | |
|     // When the code is scalar then some of the blocks are avoided due to CF.
 | |
|     // When the code is vectorized we execute all code paths.
 | |
|     if (VF == 1 && Legal->blockNeedsPredication(*bb))
 | |
|       BlockCost /= 2;
 | |
| 
 | |
|     Cost += BlockCost;
 | |
|   }
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| /// \brief Check whether the address computation for a non-consecutive memory
 | |
| /// access looks like an unlikely candidate for being merged into the indexing
 | |
| /// mode.
 | |
| ///
 | |
| /// We look for a GEP which has one index that is an induction variable and all
 | |
| /// other indices are loop invariant. If the stride of this access is also
 | |
| /// within a small bound we decide that this address computation can likely be
 | |
| /// merged into the addressing mode.
 | |
| /// In all other cases, we identify the address computation as complex.
 | |
| static bool isLikelyComplexAddressComputation(Value *Ptr,
 | |
|                                               LoopVectorizationLegality *Legal,
 | |
|                                               ScalarEvolution *SE,
 | |
|                                               const Loop *TheLoop) {
 | |
|   GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|   if (!Gep)
 | |
|     return true;
 | |
| 
 | |
|   // We are looking for a gep with all loop invariant indices except for one
 | |
|   // which should be an induction variable.
 | |
|   unsigned NumOperands = Gep->getNumOperands();
 | |
|   for (unsigned i = 1; i < NumOperands; ++i) {
 | |
|     Value *Opd = Gep->getOperand(i);
 | |
|     if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
 | |
|         !Legal->isInductionVariable(Opd))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
 | |
|   // can likely be merged into the address computation.
 | |
|   unsigned MaxMergeDistance = 64;
 | |
| 
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
 | |
|   if (!AddRec)
 | |
|     return true;
 | |
| 
 | |
|   // Check the step is constant.
 | |
|   const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | |
|   // Calculate the pointer stride and check if it is consecutive.
 | |
|   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!C)
 | |
|     return true;
 | |
| 
 | |
|   const APInt &APStepVal = C->getValue()->getValue();
 | |
| 
 | |
|   // Huge step value - give up.
 | |
|   if (APStepVal.getBitWidth() > 64)
 | |
|     return true;
 | |
| 
 | |
|   int64_t StepVal = APStepVal.getSExtValue();
 | |
| 
 | |
|   return StepVal > MaxMergeDistance;
 | |
| }
 | |
| 
 | |
| static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
 | |
|   if (Legal->hasStride(I->getOperand(0)) || Legal->hasStride(I->getOperand(1)))
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
 | |
|   // If we know that this instruction will remain uniform, check the cost of
 | |
|   // the scalar version.
 | |
|   if (Legal->isUniformAfterVectorization(I))
 | |
|     VF = 1;
 | |
| 
 | |
|   Type *RetTy = I->getType();
 | |
|   Type *VectorTy = ToVectorTy(RetTy, VF);
 | |
| 
 | |
|   // TODO: We need to estimate the cost of intrinsic calls.
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::GetElementPtr:
 | |
|     // We mark this instruction as zero-cost because the cost of GEPs in
 | |
|     // vectorized code depends on whether the corresponding memory instruction
 | |
|     // is scalarized or not. Therefore, we handle GEPs with the memory
 | |
|     // instruction cost.
 | |
|     return 0;
 | |
|   case Instruction::Br: {
 | |
|     return TTI.getCFInstrCost(I->getOpcode());
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     //TODO: IF-converted IFs become selects.
 | |
|     return 0;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor: {
 | |
|     // Since we will replace the stride by 1 the multiplication should go away.
 | |
|     if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
 | |
|       return 0;
 | |
|     // Certain instructions can be cheaper to vectorize if they have a constant
 | |
|     // second vector operand. One example of this are shifts on x86.
 | |
|     TargetTransformInfo::OperandValueKind Op1VK =
 | |
|       TargetTransformInfo::OK_AnyValue;
 | |
|     TargetTransformInfo::OperandValueKind Op2VK =
 | |
|       TargetTransformInfo::OK_AnyValue;
 | |
|     Value *Op2 = I->getOperand(1);
 | |
| 
 | |
|     // Check for a splat of a constant or for a non uniform vector of constants.
 | |
|     if (isa<ConstantInt>(Op2))
 | |
|       Op2VK = TargetTransformInfo::OK_UniformConstantValue;
 | |
|     else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
 | |
|       Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
 | |
|       if (cast<Constant>(Op2)->getSplatValue() != NULL)
 | |
|         Op2VK = TargetTransformInfo::OK_UniformConstantValue;
 | |
|     }
 | |
| 
 | |
|     return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
 | |
|   }
 | |
|   case Instruction::Select: {
 | |
|     SelectInst *SI = cast<SelectInst>(I);
 | |
|     const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
 | |
|     bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
 | |
|     Type *CondTy = SI->getCondition()->getType();
 | |
|     if (!ScalarCond)
 | |
|       CondTy = VectorType::get(CondTy, VF);
 | |
| 
 | |
|     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
 | |
|   }
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp: {
 | |
|     Type *ValTy = I->getOperand(0)->getType();
 | |
|     VectorTy = ToVectorTy(ValTy, VF);
 | |
|     return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
 | |
|   }
 | |
|   case Instruction::Store:
 | |
|   case Instruction::Load: {
 | |
|     StoreInst *SI = dyn_cast<StoreInst>(I);
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(I);
 | |
|     Type *ValTy = (SI ? SI->getValueOperand()->getType() :
 | |
|                    LI->getType());
 | |
|     VectorTy = ToVectorTy(ValTy, VF);
 | |
| 
 | |
|     unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
 | |
|     unsigned AS = SI ? SI->getPointerAddressSpace() :
 | |
|       LI->getPointerAddressSpace();
 | |
|     Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
 | |
|     // We add the cost of address computation here instead of with the gep
 | |
|     // instruction because only here we know whether the operation is
 | |
|     // scalarized.
 | |
|     if (VF == 1)
 | |
|       return TTI.getAddressComputationCost(VectorTy) +
 | |
|         TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
 | |
| 
 | |
|     // Scalarized loads/stores.
 | |
|     int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
 | |
|     bool Reverse = ConsecutiveStride < 0;
 | |
|     unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
 | |
|     unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
 | |
|     if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
 | |
|       bool IsComplexComputation =
 | |
|         isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
 | |
|       unsigned Cost = 0;
 | |
|       // The cost of extracting from the value vector and pointer vector.
 | |
|       Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
 | |
|       for (unsigned i = 0; i < VF; ++i) {
 | |
|         //  The cost of extracting the pointer operand.
 | |
|         Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
 | |
|         // In case of STORE, the cost of ExtractElement from the vector.
 | |
|         // In case of LOAD, the cost of InsertElement into the returned
 | |
|         // vector.
 | |
|         Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
 | |
|                                             Instruction::InsertElement,
 | |
|                                             VectorTy, i);
 | |
|       }
 | |
| 
 | |
|       // The cost of the scalar loads/stores.
 | |
|       Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
 | |
|       Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
 | |
|                                        Alignment, AS);
 | |
|       return Cost;
 | |
|     }
 | |
| 
 | |
|     // Wide load/stores.
 | |
|     unsigned Cost = TTI.getAddressComputationCost(VectorTy);
 | |
|     Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
 | |
| 
 | |
|     if (Reverse)
 | |
|       Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
 | |
|                                   VectorTy, 0);
 | |
|     return Cost;
 | |
|   }
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast: {
 | |
|     // We optimize the truncation of induction variable.
 | |
|     // The cost of these is the same as the scalar operation.
 | |
|     if (I->getOpcode() == Instruction::Trunc &&
 | |
|         Legal->isInductionVariable(I->getOperand(0)))
 | |
|       return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
 | |
|                                   I->getOperand(0)->getType());
 | |
| 
 | |
|     Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
 | |
|     return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
 | |
|   }
 | |
|   case Instruction::Call: {
 | |
|     CallInst *CI = cast<CallInst>(I);
 | |
|     Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
 | |
|     assert(ID && "Not an intrinsic call!");
 | |
|     Type *RetTy = ToVectorTy(CI->getType(), VF);
 | |
|     SmallVector<Type*, 4> Tys;
 | |
|     for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
 | |
|       Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
 | |
|     return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
 | |
|   }
 | |
|   default: {
 | |
|     // We are scalarizing the instruction. Return the cost of the scalar
 | |
|     // instruction, plus the cost of insert and extract into vector
 | |
|     // elements, times the vector width.
 | |
|     unsigned Cost = 0;
 | |
| 
 | |
|     if (!RetTy->isVoidTy() && VF != 1) {
 | |
|       unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
 | |
|                                                 VectorTy);
 | |
|       unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
 | |
|                                                 VectorTy);
 | |
| 
 | |
|       // The cost of inserting the results plus extracting each one of the
 | |
|       // operands.
 | |
|       Cost += VF * (InsCost + ExtCost * I->getNumOperands());
 | |
|     }
 | |
| 
 | |
|     // The cost of executing VF copies of the scalar instruction. This opcode
 | |
|     // is unknown. Assume that it is the same as 'mul'.
 | |
|     Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
 | |
|     return Cost;
 | |
|   }
 | |
|   }// end of switch.
 | |
| }
 | |
| 
 | |
| Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
 | |
|   if (Scalar->isVoidTy() || VF == 1)
 | |
|     return Scalar;
 | |
|   return VectorType::get(Scalar, VF);
 | |
| }
 | |
| 
 | |
| char LoopVectorize::ID = 0;
 | |
| static const char lv_name[] = "Loop Vectorization";
 | |
| INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
 | |
| 
 | |
| namespace llvm {
 | |
|   Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
 | |
|     return new LoopVectorize(NoUnrolling, AlwaysVectorize);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
 | |
|   // Check for a store.
 | |
|   if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
 | |
|     return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
 | |
| 
 | |
|   // Check for a load.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|     return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
 | |
|                                              bool IfPredicateStore) {
 | |
|   assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
 | |
|   // Holds vector parameters or scalars, in case of uniform vals.
 | |
|   SmallVector<VectorParts, 4> Params;
 | |
| 
 | |
|   setDebugLocFromInst(Builder, Instr);
 | |
| 
 | |
|   // Find all of the vectorized parameters.
 | |
|   for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|     Value *SrcOp = Instr->getOperand(op);
 | |
| 
 | |
|     // If we are accessing the old induction variable, use the new one.
 | |
|     if (SrcOp == OldInduction) {
 | |
|       Params.push_back(getVectorValue(SrcOp));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Try using previously calculated values.
 | |
|     Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
 | |
| 
 | |
|     // If the src is an instruction that appeared earlier in the basic block
 | |
|     // then it should already be vectorized.
 | |
|     if (SrcInst && OrigLoop->contains(SrcInst)) {
 | |
|       assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
 | |
|       // The parameter is a vector value from earlier.
 | |
|       Params.push_back(WidenMap.get(SrcInst));
 | |
|     } else {
 | |
|       // The parameter is a scalar from outside the loop. Maybe even a constant.
 | |
|       VectorParts Scalars;
 | |
|       Scalars.append(UF, SrcOp);
 | |
|       Params.push_back(Scalars);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(Params.size() == Instr->getNumOperands() &&
 | |
|          "Invalid number of operands");
 | |
| 
 | |
|   // Does this instruction return a value ?
 | |
|   bool IsVoidRetTy = Instr->getType()->isVoidTy();
 | |
| 
 | |
|   Value *UndefVec = IsVoidRetTy ? 0 :
 | |
|   UndefValue::get(Instr->getType());
 | |
|   // Create a new entry in the WidenMap and initialize it to Undef or Null.
 | |
|   VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
 | |
| 
 | |
|   Instruction *InsertPt = Builder.GetInsertPoint();
 | |
|   BasicBlock *IfBlock = Builder.GetInsertBlock();
 | |
|   BasicBlock *CondBlock = 0;
 | |
| 
 | |
|   VectorParts Cond;
 | |
|   Loop *VectorLp = 0;
 | |
|   if (IfPredicateStore) {
 | |
|     assert(Instr->getParent()->getSinglePredecessor() &&
 | |
|            "Only support single predecessor blocks");
 | |
|     Cond = createEdgeMask(Instr->getParent()->getSinglePredecessor(),
 | |
|                           Instr->getParent());
 | |
|     VectorLp = LI->getLoopFor(IfBlock);
 | |
|     assert(VectorLp && "Must have a loop for this block");
 | |
|   }
 | |
| 
 | |
|   // For each vector unroll 'part':
 | |
|   for (unsigned Part = 0; Part < UF; ++Part) {
 | |
|     // For each scalar that we create:
 | |
| 
 | |
|     // Start an "if (pred) a[i] = ..." block.
 | |
|     Value *Cmp = 0;
 | |
|     if (IfPredicateStore) {
 | |
|       if (Cond[Part]->getType()->isVectorTy())
 | |
|         Cond[Part] =
 | |
|             Builder.CreateExtractElement(Cond[Part], Builder.getInt32(0));
 | |
|       Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cond[Part],
 | |
|                                ConstantInt::get(Cond[Part]->getType(), 1));
 | |
|       CondBlock = IfBlock->splitBasicBlock(InsertPt, "cond.store");
 | |
|       LoopVectorBody.push_back(CondBlock);
 | |
|       VectorLp->addBasicBlockToLoop(CondBlock, LI->getBase());
 | |
|       // Update Builder with newly created basic block.
 | |
|       Builder.SetInsertPoint(InsertPt);
 | |
|     }
 | |
| 
 | |
|     Instruction *Cloned = Instr->clone();
 | |
|       if (!IsVoidRetTy)
 | |
|         Cloned->setName(Instr->getName() + ".cloned");
 | |
|       // Replace the operands of the cloned instructions with extracted scalars.
 | |
|       for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
 | |
|         Value *Op = Params[op][Part];
 | |
|         Cloned->setOperand(op, Op);
 | |
|       }
 | |
| 
 | |
|       // Place the cloned scalar in the new loop.
 | |
|       Builder.Insert(Cloned);
 | |
| 
 | |
|       // If the original scalar returns a value we need to place it in a vector
 | |
|       // so that future users will be able to use it.
 | |
|       if (!IsVoidRetTy)
 | |
|         VecResults[Part] = Cloned;
 | |
| 
 | |
|     // End if-block.
 | |
|       if (IfPredicateStore) {
 | |
|         BasicBlock *NewIfBlock = CondBlock->splitBasicBlock(InsertPt, "else");
 | |
|         LoopVectorBody.push_back(NewIfBlock);
 | |
|         VectorLp->addBasicBlockToLoop(NewIfBlock, LI->getBase());
 | |
|         Builder.SetInsertPoint(InsertPt);
 | |
|         Instruction *OldBr = IfBlock->getTerminator();
 | |
|         BranchInst::Create(CondBlock, NewIfBlock, Cmp, OldBr);
 | |
|         OldBr->eraseFromParent();
 | |
|         IfBlock = NewIfBlock;
 | |
|       }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr) {
 | |
|   StoreInst *SI = dyn_cast<StoreInst>(Instr);
 | |
|   bool IfPredicateStore = (SI && Legal->blockNeedsPredication(SI->getParent()));
 | |
| 
 | |
|   return scalarizeInstruction(Instr, IfPredicateStore);
 | |
| }
 | |
| 
 | |
| Value *InnerLoopUnroller::reverseVector(Value *Vec) {
 | |
|   return Vec;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
 | |
|                                                bool Negate) {
 | |
|   // When unrolling and the VF is 1, we only need to add a simple scalar.
 | |
|   Type *ITy = Val->getType();
 | |
|   assert(!ITy->isVectorTy() && "Val must be a scalar");
 | |
|   Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
 | |
|   return Builder.CreateAdd(Val, C, "induction");
 | |
| }
 | |
| 
 |