mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96288 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			5541 lines
		
	
	
		
			223 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5541 lines
		
	
	
		
			223 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the PPCISelLowering class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "PPCISelLowering.h"
 | |
| #include "PPCMachineFunctionInfo.h"
 | |
| #include "PPCPredicates.h"
 | |
| #include "PPCTargetMachine.h"
 | |
| #include "PPCPerfectShuffle.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/VectorExtras.h"
 | |
| #include "llvm/CodeGen/CallingConvLower.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PseudoSourceValue.h"
 | |
| #include "llvm/CodeGen/SelectionDAG.h"
 | |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                      CCValAssign::LocInfo &LocInfo,
 | |
|                                      ISD::ArgFlagsTy &ArgFlags,
 | |
|                                      CCState &State);
 | |
| static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
 | |
|                                             EVT &LocVT,
 | |
|                                             CCValAssign::LocInfo &LocInfo,
 | |
|                                             ISD::ArgFlagsTy &ArgFlags,
 | |
|                                             CCState &State);
 | |
| static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
 | |
|                                               EVT &LocVT,
 | |
|                                               CCValAssign::LocInfo &LocInfo,
 | |
|                                               ISD::ArgFlagsTy &ArgFlags,
 | |
|                                               CCState &State);
 | |
| 
 | |
| static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
 | |
| cl::desc("enable preincrement load/store generation on PPC (experimental)"),
 | |
|                                      cl::Hidden);
 | |
| 
 | |
| static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
 | |
|   if (TM.getSubtargetImpl()->isDarwin())
 | |
|     return new TargetLoweringObjectFileMachO();
 | |
|   return new TargetLoweringObjectFileELF();
 | |
| }
 | |
| 
 | |
| 
 | |
| PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
 | |
|   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
 | |
| 
 | |
|   setPow2DivIsCheap();
 | |
| 
 | |
|   // Use _setjmp/_longjmp instead of setjmp/longjmp.
 | |
|   setUseUnderscoreSetJmp(true);
 | |
|   setUseUnderscoreLongJmp(true);
 | |
| 
 | |
|   // Set up the register classes.
 | |
|   addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
 | |
|   addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
 | |
|   addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
 | |
| 
 | |
|   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
 | |
|   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
 | |
| 
 | |
|   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
 | |
| 
 | |
|   // PowerPC has pre-inc load and store's.
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
 | |
|   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
 | |
|   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
 | |
| 
 | |
|   // This is used in the ppcf128->int sequence.  Note it has different semantics
 | |
|   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
 | |
|   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
 | |
| 
 | |
|   // PowerPC has no SREM/UREM instructions
 | |
|   setOperationAction(ISD::SREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UREM, MVT::i64, Expand);
 | |
| 
 | |
|   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
 | |
| 
 | |
|   // We don't support sin/cos/sqrt/fmod/pow
 | |
|   setOperationAction(ISD::FSIN , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FPOW , MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FSIN , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FCOS , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FREM , MVT::f32, Expand);
 | |
|   setOperationAction(ISD::FPOW , MVT::f32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
 | |
| 
 | |
|   // If we're enabling GP optimizations, use hardware square root
 | |
|   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
 | |
|     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
 | |
|     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
 | |
|   }
 | |
| 
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
 | |
|   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
 | |
| 
 | |
|   // PowerPC does not have BSWAP, CTPOP or CTTZ
 | |
|   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
 | |
|   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
 | |
|   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
 | |
|   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
 | |
| 
 | |
|   // PowerPC does not have ROTR
 | |
|   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
 | |
|   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
 | |
| 
 | |
|   // PowerPC does not have Select
 | |
|   setOperationAction(ISD::SELECT, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::SELECT, MVT::f64, Expand);
 | |
| 
 | |
|   // PowerPC wants to turn select_cc of FP into fsel when possible.
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
 | |
|   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
 | |
| 
 | |
|   // PowerPC wants to optimize integer setcc a bit
 | |
|   setOperationAction(ISD::SETCC, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC does not have BRCOND which requires SetCC
 | |
|   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
 | |
| 
 | |
|   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
 | |
|   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
 | |
| 
 | |
|   // PowerPC does not have [U|S]INT_TO_FP
 | |
|   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
 | |
| 
 | |
|   // We cannot sextinreg(i1).  Expand to shifts.
 | |
|   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
 | |
| 
 | |
|   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
 | |
|   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
 | |
|   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
 | |
| 
 | |
| 
 | |
|   // We want to legalize GlobalAddress and ConstantPool nodes into the
 | |
|   // appropriate instructions to materialize the address.
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
 | |
|   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
 | |
|   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
 | |
|   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
 | |
|   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
 | |
|   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
 | |
| 
 | |
|   // TRAP is legal.
 | |
|   setOperationAction(ISD::TRAP, MVT::Other, Legal);
 | |
| 
 | |
|   // TRAMPOLINE is custom lowered.
 | |
|   setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
 | |
| 
 | |
|   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
 | |
|   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
 | |
| 
 | |
|   // VAARG is custom lowered with the 32-bit SVR4 ABI.
 | |
|   if (    TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
 | |
|       && !TM.getSubtarget<PPCSubtarget>().isPPC64())
 | |
|     setOperationAction(ISD::VAARG, MVT::Other, Custom);
 | |
|   else
 | |
|     setOperationAction(ISD::VAARG, MVT::Other, Expand);
 | |
| 
 | |
|   // Use the default implementation.
 | |
|   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
 | |
|   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
 | |
|   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
 | |
| 
 | |
|   // We want to custom lower some of our intrinsics.
 | |
|   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
 | |
| 
 | |
|   // Comparisons that require checking two conditions.
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
 | |
|   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
 | |
| 
 | |
|   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
 | |
|     // They also have instructions for converting between i64 and fp.
 | |
|     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
 | |
|     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
 | |
|     // This is just the low 32 bits of a (signed) fp->i64 conversion.
 | |
|     // We cannot do this with Promote because i64 is not a legal type.
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
 | |
| 
 | |
|     // FIXME: disable this lowered code.  This generates 64-bit register values,
 | |
|     // and we don't model the fact that the top part is clobbered by calls.  We
 | |
|     // need to flag these together so that the value isn't live across a call.
 | |
|     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
 | |
|   } else {
 | |
|     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
 | |
|     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
 | |
|   }
 | |
| 
 | |
|   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
 | |
|     // 64-bit PowerPC implementations can support i64 types directly
 | |
|     addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
 | |
|     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
 | |
|     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
 | |
|     // 64-bit PowerPC wants to expand i128 shifts itself.
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
 | |
|   } else {
 | |
|     // 32-bit PowerPC wants to expand i64 shifts itself.
 | |
|     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
 | |
|     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
 | |
|   }
 | |
| 
 | |
|   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
 | |
|     // First set operation action for all vector types to expand. Then we
 | |
|     // will selectively turn on ones that can be effectively codegen'd.
 | |
|     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
 | |
|          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
 | |
|       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
 | |
| 
 | |
|       // add/sub are legal for all supported vector VT's.
 | |
|       setOperationAction(ISD::ADD , VT, Legal);
 | |
|       setOperationAction(ISD::SUB , VT, Legal);
 | |
| 
 | |
|       // We promote all shuffles to v16i8.
 | |
|       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
 | |
|       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
 | |
| 
 | |
|       // We promote all non-typed operations to v4i32.
 | |
|       setOperationAction(ISD::AND   , VT, Promote);
 | |
|       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::OR    , VT, Promote);
 | |
|       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::XOR   , VT, Promote);
 | |
|       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::LOAD  , VT, Promote);
 | |
|       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::SELECT, VT, Promote);
 | |
|       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
 | |
|       setOperationAction(ISD::STORE, VT, Promote);
 | |
|       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
 | |
| 
 | |
|       // No other operations are legal.
 | |
|       setOperationAction(ISD::MUL , VT, Expand);
 | |
|       setOperationAction(ISD::SDIV, VT, Expand);
 | |
|       setOperationAction(ISD::SREM, VT, Expand);
 | |
|       setOperationAction(ISD::UDIV, VT, Expand);
 | |
|       setOperationAction(ISD::UREM, VT, Expand);
 | |
|       setOperationAction(ISD::FDIV, VT, Expand);
 | |
|       setOperationAction(ISD::FNEG, VT, Expand);
 | |
|       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
 | |
|       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
 | |
|       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
 | |
|       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
 | |
|       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
 | |
|       setOperationAction(ISD::UDIVREM, VT, Expand);
 | |
|       setOperationAction(ISD::SDIVREM, VT, Expand);
 | |
|       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
 | |
|       setOperationAction(ISD::FPOW, VT, Expand);
 | |
|       setOperationAction(ISD::CTPOP, VT, Expand);
 | |
|       setOperationAction(ISD::CTLZ, VT, Expand);
 | |
|       setOperationAction(ISD::CTTZ, VT, Expand);
 | |
|     }
 | |
| 
 | |
|     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
 | |
|     // with merges, splats, etc.
 | |
|     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
 | |
|     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
 | |
|     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
 | |
| 
 | |
|     addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
 | |
|     addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
 | |
|     addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
 | |
|     addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
 | |
| 
 | |
|     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
 | |
|     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
 | |
|     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
 | |
| 
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
 | |
|     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
 | |
|   }
 | |
| 
 | |
|   setShiftAmountType(MVT::i32);
 | |
|   setBooleanContents(ZeroOrOneBooleanContent);
 | |
| 
 | |
|   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
 | |
|     setStackPointerRegisterToSaveRestore(PPC::X1);
 | |
|     setExceptionPointerRegister(PPC::X3);
 | |
|     setExceptionSelectorRegister(PPC::X4);
 | |
|   } else {
 | |
|     setStackPointerRegisterToSaveRestore(PPC::R1);
 | |
|     setExceptionPointerRegister(PPC::R3);
 | |
|     setExceptionSelectorRegister(PPC::R4);
 | |
|   }
 | |
| 
 | |
|   // We have target-specific dag combine patterns for the following nodes:
 | |
|   setTargetDAGCombine(ISD::SINT_TO_FP);
 | |
|   setTargetDAGCombine(ISD::STORE);
 | |
|   setTargetDAGCombine(ISD::BR_CC);
 | |
|   setTargetDAGCombine(ISD::BSWAP);
 | |
| 
 | |
|   // Darwin long double math library functions have $LDBL128 appended.
 | |
|   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
 | |
|     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
 | |
|     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
 | |
|     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
 | |
|     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
 | |
|     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
 | |
|     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
 | |
|     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
 | |
|   }
 | |
| 
 | |
|   computeRegisterProperties();
 | |
| }
 | |
| 
 | |
| /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
 | |
| /// function arguments in the caller parameter area.
 | |
| unsigned PPCTargetLowering::getByValTypeAlignment(const Type *Ty) const {
 | |
|   TargetMachine &TM = getTargetMachine();
 | |
|   // Darwin passes everything on 4 byte boundary.
 | |
|   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
 | |
|     return 4;
 | |
|   // FIXME SVR4 TBD
 | |
|   return 4;
 | |
| }
 | |
| 
 | |
| const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
 | |
|   switch (Opcode) {
 | |
|   default: return 0;
 | |
|   case PPCISD::FSEL:            return "PPCISD::FSEL";
 | |
|   case PPCISD::FCFID:           return "PPCISD::FCFID";
 | |
|   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
 | |
|   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
 | |
|   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
 | |
|   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
 | |
|   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
 | |
|   case PPCISD::VPERM:           return "PPCISD::VPERM";
 | |
|   case PPCISD::Hi:              return "PPCISD::Hi";
 | |
|   case PPCISD::Lo:              return "PPCISD::Lo";
 | |
|   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
 | |
|   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
 | |
|   case PPCISD::LOAD:            return "PPCISD::LOAD";
 | |
|   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
 | |
|   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
 | |
|   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
 | |
|   case PPCISD::SRL:             return "PPCISD::SRL";
 | |
|   case PPCISD::SRA:             return "PPCISD::SRA";
 | |
|   case PPCISD::SHL:             return "PPCISD::SHL";
 | |
|   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
 | |
|   case PPCISD::STD_32:          return "PPCISD::STD_32";
 | |
|   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
 | |
|   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
 | |
|   case PPCISD::NOP:             return "PPCISD::NOP";
 | |
|   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
 | |
|   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
 | |
|   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
 | |
|   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
 | |
|   case PPCISD::MFCR:            return "PPCISD::MFCR";
 | |
|   case PPCISD::VCMP:            return "PPCISD::VCMP";
 | |
|   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
 | |
|   case PPCISD::LBRX:            return "PPCISD::LBRX";
 | |
|   case PPCISD::STBRX:           return "PPCISD::STBRX";
 | |
|   case PPCISD::LARX:            return "PPCISD::LARX";
 | |
|   case PPCISD::STCX:            return "PPCISD::STCX";
 | |
|   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
 | |
|   case PPCISD::MFFS:            return "PPCISD::MFFS";
 | |
|   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
 | |
|   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
 | |
|   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
 | |
|   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
 | |
|   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
 | |
|   }
 | |
| }
 | |
| 
 | |
| MVT::SimpleValueType PPCTargetLowering::getSetCCResultType(EVT VT) const {
 | |
|   return MVT::i32;
 | |
| }
 | |
| 
 | |
| /// getFunctionAlignment - Return the Log2 alignment of this function.
 | |
| unsigned PPCTargetLowering::getFunctionAlignment(const Function *F) const {
 | |
|   if (getTargetMachine().getSubtarget<PPCSubtarget>().isDarwin())
 | |
|     return F->hasFnAttr(Attribute::OptimizeForSize) ? 2 : 4;
 | |
|   else
 | |
|     return 2;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Node matching predicates, for use by the tblgen matching code.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
 | |
| static bool isFloatingPointZero(SDValue Op) {
 | |
|   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
 | |
|     return CFP->getValueAPF().isZero();
 | |
|   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
 | |
|     // Maybe this has already been legalized into the constant pool?
 | |
|     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
 | |
|       if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
 | |
|         return CFP->getValueAPF().isZero();
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
 | |
| /// true if Op is undef or if it matches the specified value.
 | |
| static bool isConstantOrUndef(int Op, int Val) {
 | |
|   return Op < 0 || Op == Val;
 | |
| }
 | |
| 
 | |
| /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUHUM instruction.
 | |
| bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
 | |
|   if (!isUnary) {
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
 | |
|         return false;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != 8; ++i)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
 | |
| /// VPKUWUM instruction.
 | |
| bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
 | |
|   if (!isUnary) {
 | |
|     for (unsigned i = 0; i != 16; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
 | |
|         return false;
 | |
|   } else {
 | |
|     for (unsigned i = 0; i != 8; i += 2)
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMerge - Common function, used to match vmrg* shuffles.
 | |
| ///
 | |
| static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
 | |
|                      unsigned LHSStart, unsigned RHSStart) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 &&
 | |
|          "PPC only supports shuffles by bytes!");
 | |
|   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
 | |
|          "Unsupported merge size!");
 | |
| 
 | |
|   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
 | |
|     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
 | |
|       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
 | |
|                              LHSStart+j+i*UnitSize) ||
 | |
|           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
 | |
|                              RHSStart+j+i*UnitSize))
 | |
|         return false;
 | |
|     }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 
 | |
|                              bool isUnary) {
 | |
|   if (!isUnary)
 | |
|     return isVMerge(N, UnitSize, 8, 24);
 | |
|   return isVMerge(N, UnitSize, 8, 8);
 | |
| }
 | |
| 
 | |
| /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
 | |
| /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
 | |
| bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, 
 | |
|                              bool isUnary) {
 | |
|   if (!isUnary)
 | |
|     return isVMerge(N, UnitSize, 0, 16);
 | |
|   return isVMerge(N, UnitSize, 0, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
 | |
| /// amount, otherwise return -1.
 | |
| int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 &&
 | |
|          "PPC only supports shuffles by bytes!");
 | |
| 
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   
 | |
|   // Find the first non-undef value in the shuffle mask.
 | |
|   unsigned i;
 | |
|   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
 | |
|     /*search*/;
 | |
| 
 | |
|   if (i == 16) return -1;  // all undef.
 | |
| 
 | |
|   // Otherwise, check to see if the rest of the elements are consecutively
 | |
|   // numbered from this value.
 | |
|   unsigned ShiftAmt = SVOp->getMaskElt(i);
 | |
|   if (ShiftAmt < i) return -1;
 | |
|   ShiftAmt -= i;
 | |
| 
 | |
|   if (!isUnary) {
 | |
|     // Check the rest of the elements to see if they are consecutive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
 | |
|         return -1;
 | |
|   } else {
 | |
|     // Check the rest of the elements to see if they are consecutive.
 | |
|     for (++i; i != 16; ++i)
 | |
|       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
 | |
|         return -1;
 | |
|   }
 | |
|   return ShiftAmt;
 | |
| }
 | |
| 
 | |
| /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
 | |
| /// specifies a splat of a single element that is suitable for input to
 | |
| /// VSPLTB/VSPLTH/VSPLTW.
 | |
| bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
 | |
|   assert(N->getValueType(0) == MVT::v16i8 &&
 | |
|          (EltSize == 1 || EltSize == 2 || EltSize == 4));
 | |
| 
 | |
|   // This is a splat operation if each element of the permute is the same, and
 | |
|   // if the value doesn't reference the second vector.
 | |
|   unsigned ElementBase = N->getMaskElt(0);
 | |
|   
 | |
|   // FIXME: Handle UNDEF elements too!
 | |
|   if (ElementBase >= 16)
 | |
|     return false;
 | |
| 
 | |
|   // Check that the indices are consecutive, in the case of a multi-byte element
 | |
|   // splatted with a v16i8 mask.
 | |
|   for (unsigned i = 1; i != EltSize; ++i)
 | |
|     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
 | |
|       return false;
 | |
| 
 | |
|   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
 | |
|     if (N->getMaskElt(i) < 0) continue;
 | |
|     for (unsigned j = 0; j != EltSize; ++j)
 | |
|       if (N->getMaskElt(i+j) != N->getMaskElt(j))
 | |
|         return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isAllNegativeZeroVector - Returns true if all elements of build_vector
 | |
| /// are -0.0.
 | |
| bool PPC::isAllNegativeZeroVector(SDNode *N) {
 | |
|   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
 | |
| 
 | |
|   APInt APVal, APUndef;
 | |
|   unsigned BitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   
 | |
|   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
 | |
|     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
 | |
|       return CFP->getValueAPF().isNegZero();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
 | |
| /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
 | |
| unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
 | |
|   assert(isSplatShuffleMask(SVOp, EltSize));
 | |
|   return SVOp->getMaskElt(0) / EltSize;
 | |
| }
 | |
| 
 | |
| /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
 | |
| /// by using a vspltis[bhw] instruction of the specified element size, return
 | |
| /// the constant being splatted.  The ByteSize field indicates the number of
 | |
| /// bytes of each element [124] -> [bhw].
 | |
| SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
 | |
|   SDValue OpVal(0, 0);
 | |
| 
 | |
|   // If ByteSize of the splat is bigger than the element size of the
 | |
|   // build_vector, then we have a case where we are checking for a splat where
 | |
|   // multiple elements of the buildvector are folded together into a single
 | |
|   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
 | |
|   unsigned EltSize = 16/N->getNumOperands();
 | |
|   if (EltSize < ByteSize) {
 | |
|     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
 | |
|     SDValue UniquedVals[4];
 | |
|     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
 | |
| 
 | |
|     // See if all of the elements in the buildvector agree across.
 | |
|     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|       // If the element isn't a constant, bail fully out.
 | |
|       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
 | |
| 
 | |
| 
 | |
|       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
 | |
|         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
 | |
|       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
 | |
|         return SDValue();  // no match.
 | |
|     }
 | |
| 
 | |
|     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
 | |
|     // either constant or undef values that are identical for each chunk.  See
 | |
|     // if these chunks can form into a larger vspltis*.
 | |
| 
 | |
|     // Check to see if all of the leading entries are either 0 or -1.  If
 | |
|     // neither, then this won't fit into the immediate field.
 | |
|     bool LeadingZero = true;
 | |
|     bool LeadingOnes = true;
 | |
|     for (unsigned i = 0; i != Multiple-1; ++i) {
 | |
|       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
 | |
| 
 | |
|       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
 | |
|       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
 | |
|     }
 | |
|     // Finally, check the least significant entry.
 | |
|     if (LeadingZero) {
 | |
|       if (UniquedVals[Multiple-1].getNode() == 0)
 | |
|         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
 | |
|       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
 | |
|       if (Val < 16)
 | |
|         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
 | |
|     }
 | |
|     if (LeadingOnes) {
 | |
|       if (UniquedVals[Multiple-1].getNode() == 0)
 | |
|         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
 | |
|       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
 | |
|       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
 | |
|         return DAG.getTargetConstant(Val, MVT::i32);
 | |
|     }
 | |
| 
 | |
|     return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Check to see if this buildvec has a single non-undef value in its elements.
 | |
|   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | |
|     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
 | |
|     if (OpVal.getNode() == 0)
 | |
|       OpVal = N->getOperand(i);
 | |
|     else if (OpVal != N->getOperand(i))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
 | |
| 
 | |
|   unsigned ValSizeInBytes = EltSize;
 | |
|   uint64_t Value = 0;
 | |
|   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
 | |
|     Value = CN->getZExtValue();
 | |
|   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
 | |
|     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
 | |
|     Value = FloatToBits(CN->getValueAPF().convertToFloat());
 | |
|   }
 | |
| 
 | |
|   // If the splat value is larger than the element value, then we can never do
 | |
|   // this splat.  The only case that we could fit the replicated bits into our
 | |
|   // immediate field for would be zero, and we prefer to use vxor for it.
 | |
|   if (ValSizeInBytes < ByteSize) return SDValue();
 | |
| 
 | |
|   // If the element value is larger than the splat value, cut it in half and
 | |
|   // check to see if the two halves are equal.  Continue doing this until we
 | |
|   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
 | |
|   while (ValSizeInBytes > ByteSize) {
 | |
|     ValSizeInBytes >>= 1;
 | |
| 
 | |
|     // If the top half equals the bottom half, we're still ok.
 | |
|     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
 | |
|          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // Properly sign extend the value.
 | |
|   int ShAmt = (4-ByteSize)*8;
 | |
|   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
 | |
| 
 | |
|   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
 | |
|   if (MaskVal == 0) return SDValue();
 | |
| 
 | |
|   // Finally, if this value fits in a 5 bit sext field, return it
 | |
|   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
 | |
|     return DAG.getTargetConstant(MaskVal, MVT::i32);
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Addressing Mode Selection
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
 | |
| /// or 64-bit immediate, and if the value can be accurately represented as a
 | |
| /// sign extension from a 16-bit value.  If so, this returns true and the
 | |
| /// immediate.
 | |
| static bool isIntS16Immediate(SDNode *N, short &Imm) {
 | |
|   if (N->getOpcode() != ISD::Constant)
 | |
|     return false;
 | |
| 
 | |
|   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   if (N->getValueType(0) == MVT::i32)
 | |
|     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
|   else
 | |
|     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
 | |
| }
 | |
| static bool isIntS16Immediate(SDValue Op, short &Imm) {
 | |
|   return isIntS16Immediate(Op.getNode(), Imm);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// SelectAddressRegReg - Given the specified addressed, check to see if it
 | |
| /// can be represented as an indexed [r+r] operation.  Returns false if it
 | |
| /// can be more efficiently represented with [r+imm].
 | |
| bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
 | |
|                                             SDValue &Index,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   short imm = 0;
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm))
 | |
|       return false;    // r+i
 | |
|     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
 | |
|       return false;    // r+i
 | |
| 
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm))
 | |
|       return false;    // r+i can fold it if we can.
 | |
| 
 | |
|     // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|     // (for better address arithmetic) if the LHS and RHS of the OR are provably
 | |
|     // disjoint.
 | |
|     APInt LHSKnownZero, LHSKnownOne;
 | |
|     APInt RHSKnownZero, RHSKnownOne;
 | |
|     DAG.ComputeMaskedBits(N.getOperand(0),
 | |
|                           APInt::getAllOnesValue(N.getOperand(0)
 | |
|                             .getValueSizeInBits()),
 | |
|                           LHSKnownZero, LHSKnownOne);
 | |
| 
 | |
|     if (LHSKnownZero.getBoolValue()) {
 | |
|       DAG.ComputeMaskedBits(N.getOperand(1),
 | |
|                             APInt::getAllOnesValue(N.getOperand(1)
 | |
|                               .getValueSizeInBits()),
 | |
|                             RHSKnownZero, RHSKnownOne);
 | |
|       // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|       // carry.
 | |
|       if (~(LHSKnownZero | RHSKnownZero) == 0) {
 | |
|         Base = N.getOperand(0);
 | |
|         Index = N.getOperand(1);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Returns true if the address N can be represented by a base register plus
 | |
| /// a signed 16-bit displacement [r+imm], and if it is not better
 | |
| /// represented as reg+reg.
 | |
| bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
 | |
|                                             SDValue &Base,
 | |
|                                             SelectionDAG &DAG) const {
 | |
|   // FIXME dl should come from parent load or store, not from address
 | |
|   DebugLoc dl = N.getDebugLoc();
 | |
|   // If this can be more profitably realized as r+r, fail.
 | |
|   if (SelectAddressRegReg(N, Disp, Base, DAG))
 | |
|     return false;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     short imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm)) {
 | |
|       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|       } else {
 | |
|         Base = N.getOperand(0);
 | |
|       }
 | |
|       return true; // [r+i]
 | |
|     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | |
|       // Match LOAD (ADD (X, Lo(G))).
 | |
|      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
 | |
|              && "Cannot handle constant offsets yet!");
 | |
|       Disp = N.getOperand(1).getOperand(0);  // The global address.
 | |
|       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetConstantPool ||
 | |
|              Disp.getOpcode() == ISD::TargetJumpTable);
 | |
|       Base = N.getOperand(0);
 | |
|       return true;  // [&g+r]
 | |
|     }
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     short imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm)) {
 | |
|       // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|       // (for better address arithmetic) if the LHS and RHS of the OR are
 | |
|       // provably disjoint.
 | |
|       APInt LHSKnownZero, LHSKnownOne;
 | |
|       DAG.ComputeMaskedBits(N.getOperand(0),
 | |
|                             APInt::getAllOnesValue(N.getOperand(0)
 | |
|                                                    .getValueSizeInBits()),
 | |
|                             LHSKnownZero, LHSKnownOne);
 | |
| 
 | |
|       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | |
|         // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|         // carry.
 | |
|         Base = N.getOperand(0);
 | |
|         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // Loading from a constant address.
 | |
| 
 | |
|     // If this address fits entirely in a 16-bit sext immediate field, codegen
 | |
|     // this as "d, 0"
 | |
|     short Imm;
 | |
|     if (isIntS16Immediate(CN, Imm)) {
 | |
|       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
 | |
|       Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Handle 32-bit sext immediates with LIS + addr mode.
 | |
|     if (CN->getValueType(0) == MVT::i32 ||
 | |
|         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
 | |
|       int Addr = (int)CN->getZExtValue();
 | |
| 
 | |
|       // Otherwise, break this down into an LIS + disp.
 | |
|       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
 | |
| 
 | |
|       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
 | |
|       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | |
|       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Disp = DAG.getTargetConstant(0, getPointerTy());
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | |
|     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|   else
 | |
|     Base = N;
 | |
|   return true;      // [r+0]
 | |
| }
 | |
| 
 | |
| /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
 | |
| /// represented as an indexed [r+r] operation.
 | |
| bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
 | |
|                                                 SDValue &Index,
 | |
|                                                 SelectionDAG &DAG) const {
 | |
|   // Check to see if we can easily represent this as an [r+r] address.  This
 | |
|   // will fail if it thinks that the address is more profitably represented as
 | |
|   // reg+imm, e.g. where imm = 0.
 | |
|   if (SelectAddressRegReg(N, Base, Index, DAG))
 | |
|     return true;
 | |
| 
 | |
|   // If the operand is an addition, always emit this as [r+r], since this is
 | |
|   // better (for code size, and execution, as the memop does the add for free)
 | |
|   // than emitting an explicit add.
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     Base = N.getOperand(0);
 | |
|     Index = N.getOperand(1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, do it the hard way, using R0 as the base register.
 | |
|   Base = DAG.getRegister(PPC::R0, N.getValueType());
 | |
|   Index = N;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// SelectAddressRegImmShift - Returns true if the address N can be
 | |
| /// represented by a base register plus a signed 14-bit displacement
 | |
| /// [r+imm*4].  Suitable for use by STD and friends.
 | |
| bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
 | |
|                                                  SDValue &Base,
 | |
|                                                  SelectionDAG &DAG) const {
 | |
|   // FIXME dl should come from the parent load or store, not the address
 | |
|   DebugLoc dl = N.getDebugLoc();
 | |
|   // If this can be more profitably realized as r+r, fail.
 | |
|   if (SelectAddressRegReg(N, Disp, Base, DAG))
 | |
|     return false;
 | |
| 
 | |
|   if (N.getOpcode() == ISD::ADD) {
 | |
|     short imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
 | |
|       Disp =  DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
 | |
|       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
 | |
|         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|       } else {
 | |
|         Base = N.getOperand(0);
 | |
|       }
 | |
|       return true; // [r+i]
 | |
|     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
 | |
|       // Match LOAD (ADD (X, Lo(G))).
 | |
|      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
 | |
|              && "Cannot handle constant offsets yet!");
 | |
|       Disp = N.getOperand(1).getOperand(0);  // The global address.
 | |
|       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|              Disp.getOpcode() == ISD::TargetConstantPool ||
 | |
|              Disp.getOpcode() == ISD::TargetJumpTable);
 | |
|       Base = N.getOperand(0);
 | |
|       return true;  // [&g+r]
 | |
|     }
 | |
|   } else if (N.getOpcode() == ISD::OR) {
 | |
|     short imm = 0;
 | |
|     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
 | |
|       // If this is an or of disjoint bitfields, we can codegen this as an add
 | |
|       // (for better address arithmetic) if the LHS and RHS of the OR are
 | |
|       // provably disjoint.
 | |
|       APInt LHSKnownZero, LHSKnownOne;
 | |
|       DAG.ComputeMaskedBits(N.getOperand(0),
 | |
|                             APInt::getAllOnesValue(N.getOperand(0)
 | |
|                                                    .getValueSizeInBits()),
 | |
|                             LHSKnownZero, LHSKnownOne);
 | |
|       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
 | |
|         // If all of the bits are known zero on the LHS or RHS, the add won't
 | |
|         // carry.
 | |
|         Base = N.getOperand(0);
 | |
|         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
 | |
|     // Loading from a constant address.  Verify low two bits are clear.
 | |
|     if ((CN->getZExtValue() & 3) == 0) {
 | |
|       // If this address fits entirely in a 14-bit sext immediate field, codegen
 | |
|       // this as "d, 0"
 | |
|       short Imm;
 | |
|       if (isIntS16Immediate(CN, Imm)) {
 | |
|         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
 | |
|         Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       // Fold the low-part of 32-bit absolute addresses into addr mode.
 | |
|       if (CN->getValueType(0) == MVT::i32 ||
 | |
|           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
 | |
|         int Addr = (int)CN->getZExtValue();
 | |
| 
 | |
|         // Otherwise, break this down into an LIS + disp.
 | |
|         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
 | |
|         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
 | |
|         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
 | |
|         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Disp = DAG.getTargetConstant(0, getPointerTy());
 | |
|   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
 | |
|     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
 | |
|   else
 | |
|     Base = N;
 | |
|   return true;      // [r+0]
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getPreIndexedAddressParts - returns true by value, base pointer and
 | |
| /// offset pointer and addressing mode by reference if the node's address
 | |
| /// can be legally represented as pre-indexed load / store address.
 | |
| bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
 | |
|                                                   SDValue &Offset,
 | |
|                                                   ISD::MemIndexedMode &AM,
 | |
|                                                   SelectionDAG &DAG) const {
 | |
|   // Disabled by default for now.
 | |
|   if (!EnablePPCPreinc) return false;
 | |
| 
 | |
|   SDValue Ptr;
 | |
|   EVT VT;
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     Ptr = LD->getBasePtr();
 | |
|     VT = LD->getMemoryVT();
 | |
| 
 | |
|   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
 | |
|     ST = ST;
 | |
|     Ptr = ST->getBasePtr();
 | |
|     VT  = ST->getMemoryVT();
 | |
|   } else
 | |
|     return false;
 | |
| 
 | |
|   // PowerPC doesn't have preinc load/store instructions for vectors.
 | |
|   if (VT.isVector())
 | |
|     return false;
 | |
| 
 | |
|   // TODO: Check reg+reg first.
 | |
| 
 | |
|   // LDU/STU use reg+imm*4, others use reg+imm.
 | |
|   if (VT != MVT::i64) {
 | |
|     // reg + imm
 | |
|     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
 | |
|       return false;
 | |
|   } else {
 | |
|     // reg + imm * 4.
 | |
|     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
 | |
|     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
 | |
|     // sext i32 to i64 when addr mode is r+i.
 | |
|     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
 | |
|         LD->getExtensionType() == ISD::SEXTLOAD &&
 | |
|         isa<ConstantSDNode>(Offset))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   AM = ISD::PRE_INC;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  LowerOperation implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
 | |
|                                              SelectionDAG &DAG) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
 | |
|   Constant *C = CP->getConstVal();
 | |
|   SDValue CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   // FIXME there isn't really any debug info here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
| 
 | |
|   SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, CPI, Zero);
 | |
|   SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, CPI, Zero);
 | |
| 
 | |
|   // If this is a non-darwin platform, we don't support non-static relo models
 | |
|   // yet.
 | |
|   if (TM.getRelocationModel() == Reloc::Static ||
 | |
|       !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     // Generate non-pic code that has direct accesses to the constant pool.
 | |
|     // The address of the global is just (hi(&g)+lo(&g)).
 | |
|     return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
 | |
|   }
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|     // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|     Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg,
 | |
|                                  DebugLoc::getUnknownLoc(), PtrVT), Hi);
 | |
|   }
 | |
| 
 | |
|   Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
 | |
|   return Lo;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
 | |
|   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   // FIXME there isn't really any debug loc here
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
| 
 | |
|   SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, JTI, Zero);
 | |
|   SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, JTI, Zero);
 | |
| 
 | |
|   // If this is a non-darwin platform, we don't support non-static relo models
 | |
|   // yet.
 | |
|   if (TM.getRelocationModel() == Reloc::Static ||
 | |
|       !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     // Generate non-pic code that has direct accesses to the constant pool.
 | |
|     // The address of the global is just (hi(&g)+lo(&g)).
 | |
|     return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
 | |
|   }
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|     // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|     Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg,
 | |
|                                  DebugLoc::getUnknownLoc(), PtrVT), Hi);
 | |
|   }
 | |
| 
 | |
|   Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
 | |
|   return Lo;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) {
 | |
|   llvm_unreachable("TLS not implemented for PPC.");
 | |
|   return SDValue(); // Not reached
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   DebugLoc DL = Op.getDebugLoc();
 | |
| 
 | |
|   BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
 | |
|   SDValue TgtBA = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true);
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, TgtBA, Zero);
 | |
|   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, TgtBA, Zero);
 | |
| 
 | |
|   // If this is a non-darwin platform, we don't support non-static relo models
 | |
|   // yet.
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
|   if (TM.getRelocationModel() == Reloc::Static ||
 | |
|       !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     // Generate non-pic code that has direct accesses to globals.
 | |
|     // The address of the global is just (hi(&g)+lo(&g)).
 | |
|     return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
 | |
|   }
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|     // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg,
 | |
|                                  DebugLoc::getUnknownLoc(), PtrVT), Hi);
 | |
|   }
 | |
| 
 | |
|   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
 | |
|                                               SelectionDAG &DAG) {
 | |
|   EVT PtrVT = Op.getValueType();
 | |
|   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
 | |
|   GlobalValue *GV = GSDN->getGlobal();
 | |
|   SDValue GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
 | |
|   SDValue Zero = DAG.getConstant(0, PtrVT);
 | |
|   // FIXME there isn't really any debug info here
 | |
|   DebugLoc dl = GSDN->getDebugLoc();
 | |
| 
 | |
|   const TargetMachine &TM = DAG.getTarget();
 | |
| 
 | |
|   // 64-bit SVR4 ABI code is always position-independent.
 | |
|   // The actual address of the GlobalValue is stored in the TOC.
 | |
|   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
 | |
|     return DAG.getNode(PPCISD::TOC_ENTRY, dl, MVT::i64, GA,
 | |
|                        DAG.getRegister(PPC::X2, MVT::i64));
 | |
|   }
 | |
| 
 | |
|   SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, GA, Zero);
 | |
|   SDValue Lo = DAG.getNode(PPCISD::Lo, dl, PtrVT, GA, Zero);
 | |
| 
 | |
|   // If this is a non-darwin platform, we don't support non-static relo models
 | |
|   // yet.
 | |
|   if (TM.getRelocationModel() == Reloc::Static ||
 | |
|       !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
 | |
|     // Generate non-pic code that has direct accesses to globals.
 | |
|     // The address of the global is just (hi(&g)+lo(&g)).
 | |
|     return DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
 | |
|   }
 | |
| 
 | |
|   if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|     // With PIC, the first instruction is actually "GR+hi(&G)".
 | |
|     Hi = DAG.getNode(ISD::ADD, dl, PtrVT,
 | |
|                      DAG.getNode(PPCISD::GlobalBaseReg,
 | |
|                                  DebugLoc::getUnknownLoc(), PtrVT), Hi);
 | |
|   }
 | |
| 
 | |
|   Lo = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
 | |
| 
 | |
|   if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM))
 | |
|     return Lo;
 | |
| 
 | |
|   // If the global is weak or external, we have to go through the lazy
 | |
|   // resolution stub.
 | |
|   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Lo, NULL, 0,
 | |
|                      false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // If we're comparing for equality to zero, expose the fact that this is
 | |
|   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
 | |
|   // fold the new nodes.
 | |
|   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
 | |
|     if (C->isNullValue() && CC == ISD::SETEQ) {
 | |
|       EVT VT = Op.getOperand(0).getValueType();
 | |
|       SDValue Zext = Op.getOperand(0);
 | |
|       if (VT.bitsLT(MVT::i32)) {
 | |
|         VT = MVT::i32;
 | |
|         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
 | |
|       }
 | |
|       unsigned Log2b = Log2_32(VT.getSizeInBits());
 | |
|       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
 | |
|       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
 | |
|                                 DAG.getConstant(Log2b, MVT::i32));
 | |
|       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
 | |
|     }
 | |
|     // Leave comparisons against 0 and -1 alone for now, since they're usually
 | |
|     // optimized.  FIXME: revisit this when we can custom lower all setcc
 | |
|     // optimizations.
 | |
|     if (C->isAllOnesValue() || C->isNullValue())
 | |
|       return SDValue();
 | |
|   }
 | |
| 
 | |
|   // If we have an integer seteq/setne, turn it into a compare against zero
 | |
|   // by xor'ing the rhs with the lhs, which is faster than setting a
 | |
|   // condition register, reading it back out, and masking the correct bit.  The
 | |
|   // normal approach here uses sub to do this instead of xor.  Using xor exposes
 | |
|   // the result to other bit-twiddling opportunities.
 | |
|   EVT LHSVT = Op.getOperand(0).getValueType();
 | |
|   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
 | |
|     EVT VT = Op.getValueType();
 | |
|     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
 | |
|                                 Op.getOperand(1));
 | |
|     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
 | |
|                               int VarArgsFrameIndex,
 | |
|                               int VarArgsStackOffset,
 | |
|                               unsigned VarArgsNumGPR,
 | |
|                               unsigned VarArgsNumFPR,
 | |
|                               const PPCSubtarget &Subtarget) {
 | |
| 
 | |
|   llvm_unreachable("VAARG not yet implemented for the SVR4 ABI!");
 | |
|   return SDValue(); // Not reached
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerTRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Trmp = Op.getOperand(1); // trampoline
 | |
|   SDValue FPtr = Op.getOperand(2); // nested function
 | |
|   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = (PtrVT == MVT::i64);
 | |
|   const Type *IntPtrTy =
 | |
|     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
 | |
|                                                              *DAG.getContext());
 | |
| 
 | |
|   TargetLowering::ArgListTy Args;
 | |
|   TargetLowering::ArgListEntry Entry;
 | |
| 
 | |
|   Entry.Ty = IntPtrTy;
 | |
|   Entry.Node = Trmp; Args.push_back(Entry);
 | |
| 
 | |
|   // TrampSize == (isPPC64 ? 48 : 40);
 | |
|   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
 | |
|                                isPPC64 ? MVT::i64 : MVT::i32);
 | |
|   Args.push_back(Entry);
 | |
| 
 | |
|   Entry.Node = FPtr; Args.push_back(Entry);
 | |
|   Entry.Node = Nest; Args.push_back(Entry);
 | |
| 
 | |
|   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
 | |
|   std::pair<SDValue, SDValue> CallResult =
 | |
|     LowerCallTo(Chain, Op.getValueType().getTypeForEVT(*DAG.getContext()),
 | |
|                 false, false, false, false, 0, CallingConv::C, false,
 | |
|                 /*isReturnValueUsed=*/true,
 | |
|                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
 | |
|                 Args, DAG, dl, DAG.GetOrdering(Chain.getNode()));
 | |
| 
 | |
|   SDValue Ops[] =
 | |
|     { CallResult.first, CallResult.second };
 | |
| 
 | |
|   return DAG.getMergeValues(Ops, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
 | |
|                                         int VarArgsFrameIndex,
 | |
|                                         int VarArgsStackOffset,
 | |
|                                         unsigned VarArgsNumGPR,
 | |
|                                         unsigned VarArgsNumFPR,
 | |
|                                         const PPCSubtarget &Subtarget) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
 | |
|     // vastart just stores the address of the VarArgsFrameIndex slot into the
 | |
|     // memory location argument.
 | |
|     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|     SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | |
|     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
|     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
 | |
|                         false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
 | |
|   // We suppose the given va_list is already allocated.
 | |
|   //
 | |
|   // typedef struct {
 | |
|   //  char gpr;     /* index into the array of 8 GPRs
 | |
|   //                 * stored in the register save area
 | |
|   //                 * gpr=0 corresponds to r3,
 | |
|   //                 * gpr=1 to r4, etc.
 | |
|   //                 */
 | |
|   //  char fpr;     /* index into the array of 8 FPRs
 | |
|   //                 * stored in the register save area
 | |
|   //                 * fpr=0 corresponds to f1,
 | |
|   //                 * fpr=1 to f2, etc.
 | |
|   //                 */
 | |
|   //  char *overflow_arg_area;
 | |
|   //                /* location on stack that holds
 | |
|   //                 * the next overflow argument
 | |
|   //                 */
 | |
|   //  char *reg_save_area;
 | |
|   //               /* where r3:r10 and f1:f8 (if saved)
 | |
|   //                * are stored
 | |
|   //                */
 | |
|   // } va_list[1];
 | |
| 
 | |
| 
 | |
|   SDValue ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i32);
 | |
|   SDValue ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i32);
 | |
| 
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   SDValue StackOffsetFI = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
 | |
|   SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | |
| 
 | |
|   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
 | |
|   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
 | |
| 
 | |
|   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
 | |
|   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
 | |
| 
 | |
|   uint64_t FPROffset = 1;
 | |
|   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
 | |
| 
 | |
|   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
 | |
| 
 | |
|   // Store first byte : number of int regs
 | |
|   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
 | |
|                                          Op.getOperand(1), SV, 0, MVT::i8,
 | |
|                                          false, false, 0);
 | |
|   uint64_t nextOffset = FPROffset;
 | |
|   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
 | |
|                                   ConstFPROffset);
 | |
| 
 | |
|   // Store second byte : number of float regs
 | |
|   SDValue secondStore =
 | |
|     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, SV, nextOffset, MVT::i8,
 | |
|                       false, false, 0);
 | |
|   nextOffset += StackOffset;
 | |
|   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
 | |
| 
 | |
|   // Store second word : arguments given on stack
 | |
|   SDValue thirdStore =
 | |
|     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, SV, nextOffset,
 | |
|                  false, false, 0);
 | |
|   nextOffset += FrameOffset;
 | |
|   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
 | |
| 
 | |
|   // Store third word : arguments given in registers
 | |
|   return DAG.getStore(thirdStore, dl, FR, nextPtr, SV, nextOffset,
 | |
|                       false, false, 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| #include "PPCGenCallingConv.inc"
 | |
| 
 | |
| static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, EVT &ValVT, EVT &LocVT,
 | |
|                                      CCValAssign::LocInfo &LocInfo,
 | |
|                                      ISD::ArgFlagsTy &ArgFlags,
 | |
|                                      CCState &State) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, EVT &ValVT,
 | |
|                                             EVT &LocVT,
 | |
|                                             CCValAssign::LocInfo &LocInfo,
 | |
|                                             ISD::ArgFlagsTy &ArgFlags,
 | |
|                                             CCState &State) {
 | |
|   static const unsigned ArgRegs[] = {
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
|   
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
 | |
| 
 | |
|   // Skip one register if the first unallocated register has an even register
 | |
|   // number and there are still argument registers available which have not been
 | |
|   // allocated yet. RegNum is actually an index into ArgRegs, which means we
 | |
|   // need to skip a register if RegNum is odd.
 | |
|   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
 | |
|     State.AllocateReg(ArgRegs[RegNum]);
 | |
|   }
 | |
|   
 | |
|   // Always return false here, as this function only makes sure that the first
 | |
|   // unallocated register has an odd register number and does not actually
 | |
|   // allocate a register for the current argument.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, EVT &ValVT,
 | |
|                                               EVT &LocVT,
 | |
|                                               CCValAssign::LocInfo &LocInfo,
 | |
|                                               ISD::ArgFlagsTy &ArgFlags,
 | |
|                                               CCState &State) {
 | |
|   static const unsigned ArgRegs[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8
 | |
|   };
 | |
| 
 | |
|   const unsigned NumArgRegs = array_lengthof(ArgRegs);
 | |
|   
 | |
|   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
 | |
| 
 | |
|   // If there is only one Floating-point register left we need to put both f64
 | |
|   // values of a split ppc_fp128 value on the stack.
 | |
|   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
 | |
|     State.AllocateReg(ArgRegs[RegNum]);
 | |
|   }
 | |
|   
 | |
|   // Always return false here, as this function only makes sure that the two f64
 | |
|   // values a ppc_fp128 value is split into are both passed in registers or both
 | |
|   // passed on the stack and does not actually allocate a register for the
 | |
|   // current argument.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// GetFPR - Get the set of FP registers that should be allocated for arguments,
 | |
| /// on Darwin.
 | |
| static const unsigned *GetFPR() {
 | |
|   static const unsigned FPR[] = {
 | |
|     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
 | |
|   };
 | |
| 
 | |
|   return FPR;
 | |
| }
 | |
| 
 | |
| /// CalculateStackSlotSize - Calculates the size reserved for this argument on
 | |
| /// the stack.
 | |
| static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
 | |
|                                        unsigned PtrByteSize) {
 | |
|   unsigned ArgSize = ArgVT.getSizeInBits()/8;
 | |
|   if (Flags.isByVal())
 | |
|     ArgSize = Flags.getByValSize();
 | |
|   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
| 
 | |
|   return ArgSize;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments(SDValue Chain,
 | |
|                                         CallingConv::ID CallConv, bool isVarArg,
 | |
|                                         const SmallVectorImpl<ISD::InputArg>
 | |
|                                           &Ins,
 | |
|                                         DebugLoc dl, SelectionDAG &DAG,
 | |
|                                         SmallVectorImpl<SDValue> &InVals) {
 | |
|   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
 | |
|     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
 | |
|                                      dl, DAG, InVals);
 | |
|   } else {
 | |
|     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
 | |
|                                        dl, DAG, InVals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments_SVR4(
 | |
|                                       SDValue Chain,
 | |
|                                       CallingConv::ID CallConv, bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg>
 | |
|                                         &Ins,
 | |
|                                       DebugLoc dl, SelectionDAG &DAG,
 | |
|                                       SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   // 32-bit SVR4 ABI Stack Frame Layout:
 | |
|   //              +-----------------------------------+
 | |
|   //        +-->  |            Back chain             |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     | Floating-point register save area |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |    General register save area     |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |          CR save word             |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |         VRSAVE save word          |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |         Alignment padding         |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |     Vector register save area     |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |       Local variable space        |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |        Parameter list area        |
 | |
|   //        |     +-----------------------------------+
 | |
|   //        |     |           LR save word            |
 | |
|   //        |     +-----------------------------------+
 | |
|   // SP-->  +---  |            Back chain             |
 | |
|   //              +-----------------------------------+
 | |
|   //
 | |
|   // Specifications:
 | |
|   //   System V Application Binary Interface PowerPC Processor Supplement
 | |
|   //   AltiVec Technology Programming Interface Manual
 | |
|   
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
 | |
|   unsigned PtrByteSize = 4;
 | |
| 
 | |
|   // Assign locations to all of the incoming arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
 | |
|                  *DAG.getContext());
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
 | |
| 
 | |
|   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
 | |
|   
 | |
|   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     
 | |
|     // Arguments stored in registers.
 | |
|     if (VA.isRegLoc()) {
 | |
|       TargetRegisterClass *RC;
 | |
|       EVT ValVT = VA.getValVT();
 | |
|       
 | |
|       switch (ValVT.getSimpleVT().SimpleTy) {
 | |
|         default:
 | |
|           llvm_unreachable("ValVT not supported by formal arguments Lowering");
 | |
|         case MVT::i32:
 | |
|           RC = PPC::GPRCRegisterClass;
 | |
|           break;
 | |
|         case MVT::f32:
 | |
|           RC = PPC::F4RCRegisterClass;
 | |
|           break;
 | |
|         case MVT::f64:
 | |
|           RC = PPC::F8RCRegisterClass;
 | |
|           break;
 | |
|         case MVT::v16i8:
 | |
|         case MVT::v8i16:
 | |
|         case MVT::v4i32:
 | |
|         case MVT::v4f32:
 | |
|           RC = PPC::VRRCRegisterClass;
 | |
|           break;
 | |
|       }
 | |
|       
 | |
|       // Transform the arguments stored in physical registers into virtual ones.
 | |
|       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
 | |
|       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
 | |
| 
 | |
|       InVals.push_back(ArgValue);
 | |
|     } else {
 | |
|       // Argument stored in memory.
 | |
|       assert(VA.isMemLoc());
 | |
| 
 | |
|       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
 | |
|       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
 | |
|                                       isImmutable, false);
 | |
| 
 | |
|       // Create load nodes to retrieve arguments from the stack.
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0,
 | |
|                                    false, false, 0));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Assign locations to all of the incoming aggregate by value arguments.
 | |
|   // Aggregates passed by value are stored in the local variable space of the
 | |
|   // caller's stack frame, right above the parameter list area.
 | |
|   SmallVector<CCValAssign, 16> ByValArgLocs;
 | |
|   CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                       ByValArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve stack space for the allocations in CCInfo.
 | |
|   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | |
| 
 | |
|   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
 | |
| 
 | |
|   // Area that is at least reserved in the caller of this function.
 | |
|   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
 | |
|   
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized function's reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   MinReservedArea =
 | |
|     std::max(MinReservedArea,
 | |
|              PPCFrameInfo::getMinCallFrameSize(false, false));
 | |
|   
 | |
|   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
 | |
|     getStackAlignment();
 | |
|   unsigned AlignMask = TargetAlign-1;
 | |
|   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
 | |
|   
 | |
|   FI->setMinReservedArea(MinReservedArea);
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     static const unsigned GPArgRegs[] = {
 | |
|       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|     };
 | |
|     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
 | |
| 
 | |
|     static const unsigned FPArgRegs[] = {
 | |
|       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
 | |
|       PPC::F8
 | |
|     };
 | |
|     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
 | |
| 
 | |
|     VarArgsNumGPR = CCInfo.getFirstUnallocated(GPArgRegs, NumGPArgRegs);
 | |
|     VarArgsNumFPR = CCInfo.getFirstUnallocated(FPArgRegs, NumFPArgRegs);
 | |
| 
 | |
|     // Make room for NumGPArgRegs and NumFPArgRegs.
 | |
|     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
 | |
|                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
 | |
| 
 | |
|     VarArgsStackOffset = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
 | |
|                                                 CCInfo.getNextStackOffset(),
 | |
|                                                 true, false);
 | |
| 
 | |
|     VarArgsFrameIndex = MFI->CreateStackObject(Depth, 8, false);
 | |
|     SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | |
| 
 | |
|     // The fixed integer arguments of a variadic function are
 | |
|     // stored to the VarArgsFrameIndex on the stack.
 | |
|     unsigned GPRIndex = 0;
 | |
|     for (; GPRIndex != VarArgsNumGPR; ++GPRIndex) {
 | |
|       SDValue Val = DAG.getRegister(GPArgRegs[GPRIndex], PtrVT);
 | |
|       SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0,
 | |
|                                    false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
| 
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing the
 | |
|     // result of va_next.
 | |
|     for (; GPRIndex != NumGPArgRegs; ++GPRIndex) {
 | |
|       unsigned VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
 | |
|                                    false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
| 
 | |
|     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
 | |
|     // is set.
 | |
|     
 | |
|     // The double arguments are stored to the VarArgsFrameIndex
 | |
|     // on the stack.
 | |
|     unsigned FPRIndex = 0;
 | |
|     for (FPRIndex = 0; FPRIndex != VarArgsNumFPR; ++FPRIndex) {
 | |
|       SDValue Val = DAG.getRegister(FPArgRegs[FPRIndex], MVT::f64);
 | |
|       SDValue Store = DAG.getStore(Chain, dl, Val, FIN, NULL, 0,
 | |
|                                    false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by eight for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
 | |
|                                          PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
| 
 | |
|     for (; FPRIndex != NumFPArgRegs; ++FPRIndex) {
 | |
|       unsigned VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
 | |
|                                    false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by eight for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
 | |
|                                          PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl,
 | |
|                         MVT::Other, &MemOps[0], MemOps.size());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerFormalArguments_Darwin(
 | |
|                                       SDValue Chain,
 | |
|                                       CallingConv::ID CallConv, bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg>
 | |
|                                         &Ins,
 | |
|                                       DebugLoc dl, SelectionDAG &DAG,
 | |
|                                       SmallVectorImpl<SDValue> &InVals) {
 | |
|   // TODO: add description of PPC stack frame format, or at least some docs.
 | |
|   //
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
|   // Potential tail calls could cause overwriting of argument stack slots.
 | |
|   bool isImmutable = !(GuaranteedTailCallOpt && (CallConv==CallingConv::Fast));
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
 | |
|   // Area that is at least reserved in caller of this function.
 | |
|   unsigned MinReservedArea = ArgOffset;
 | |
| 
 | |
|   static const unsigned GPR_32[] = {           // 32-bit registers.
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned GPR_64[] = {           // 64-bit registers.
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
| 
 | |
|   static const unsigned *FPR = GetFPR();
 | |
| 
 | |
|   static const unsigned VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
| 
 | |
|   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
 | |
|   const unsigned Num_FPR_Regs = 13;
 | |
|   const unsigned Num_VR_Regs  = array_lengthof( VR);
 | |
| 
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
 | |
| 
 | |
|   // In 32-bit non-varargs functions, the stack space for vectors is after the
 | |
|   // stack space for non-vectors.  We do not use this space unless we have
 | |
|   // too many vectors to fit in registers, something that only occurs in
 | |
|   // constructed examples:), but we have to walk the arglist to figure
 | |
|   // that out...for the pathological case, compute VecArgOffset as the
 | |
|   // start of the vector parameter area.  Computing VecArgOffset is the
 | |
|   // entire point of the following loop.
 | |
|   unsigned VecArgOffset = ArgOffset;
 | |
|   if (!isVarArg && !isPPC64) {
 | |
|     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
 | |
|          ++ArgNo) {
 | |
|       EVT ObjectVT = Ins[ArgNo].VT;
 | |
|       unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | |
|       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
| 
 | |
|       if (Flags.isByVal()) {
 | |
|         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
 | |
|         ObjSize = Flags.getByValSize();
 | |
|         unsigned ArgSize =
 | |
|                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|         VecArgOffset += ArgSize;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       switch(ObjectVT.getSimpleVT().SimpleTy) {
 | |
|       default: llvm_unreachable("Unhandled argument type!");
 | |
|       case MVT::i32:
 | |
|       case MVT::f32:
 | |
|         VecArgOffset += isPPC64 ? 8 : 4;
 | |
|         break;
 | |
|       case MVT::i64:  // PPC64
 | |
|       case MVT::f64:
 | |
|         VecArgOffset += 8;
 | |
|         break;
 | |
|       case MVT::v4f32:
 | |
|       case MVT::v4i32:
 | |
|       case MVT::v8i16:
 | |
|       case MVT::v16i8:
 | |
|         // Nothing to do, we're only looking at Nonvector args here.
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // We've found where the vector parameter area in memory is.  Skip the
 | |
|   // first 12 parameters; these don't use that memory.
 | |
|   VecArgOffset = ((VecArgOffset+15)/16)*16;
 | |
|   VecArgOffset += 12*16;
 | |
| 
 | |
|   // Add DAG nodes to load the arguments or copy them out of registers.  On
 | |
|   // entry to a function on PPC, the arguments start after the linkage area,
 | |
|   // although the first ones are often in registers.
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOps;
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
|   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
 | |
|     SDValue ArgVal;
 | |
|     bool needsLoad = false;
 | |
|     EVT ObjectVT = Ins[ArgNo].VT;
 | |
|     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
 | |
|     unsigned ArgSize = ObjSize;
 | |
|     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
 | |
| 
 | |
|     unsigned CurArgOffset = ArgOffset;
 | |
| 
 | |
|     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
 | |
|         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
 | |
|       if (isVarArg || isPPC64) {
 | |
|         MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|         MinReservedArea += CalculateStackSlotSize(ObjectVT,
 | |
|                                                   Flags,
 | |
|                                                   PtrByteSize);
 | |
|       } else  nAltivecParamsAtEnd++;
 | |
|     } else
 | |
|       // Calculate min reserved area.
 | |
|       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
 | |
|                                                 Flags,
 | |
|                                                 PtrByteSize);
 | |
| 
 | |
|     // FIXME the codegen can be much improved in some cases.
 | |
|     // We do not have to keep everything in memory.
 | |
|     if (Flags.isByVal()) {
 | |
|       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
 | |
|       ObjSize = Flags.getByValSize();
 | |
|       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
 | |
|       // Objects of size 1 and 2 are right justified, everything else is
 | |
|       // left justified.  This means the memory address is adjusted forwards.
 | |
|       if (ObjSize==1 || ObjSize==2) {
 | |
|         CurArgOffset = CurArgOffset + (4 - ObjSize);
 | |
|       }
 | |
|       // The value of the object is its address.
 | |
|       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true, false);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       InVals.push_back(FIN);
 | |
|       if (ObjSize==1 || ObjSize==2) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
 | |
|                                             NULL, 0,
 | |
|                                             ObjSize==1 ? MVT::i8 : MVT::i16,
 | |
|                                             false, false, 0);
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|         }
 | |
|         
 | |
|         ArgOffset += PtrByteSize;
 | |
|         
 | |
|         continue;
 | |
|       }
 | |
|       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
 | |
|         // Store whatever pieces of the object are in registers
 | |
|         // to memory.  ArgVal will be address of the beginning of
 | |
|         // the object.
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true, false);
 | |
|           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
 | |
|                                        false, false, 0);
 | |
|           MemOps.push_back(Store);
 | |
|           ++GPR_idx;
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (ObjectVT.getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unhandled argument type!");
 | |
|     case MVT::i32:
 | |
|       if (!isPPC64) {
 | |
|         if (GPR_idx != Num_GPR_Regs) {
 | |
|           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
|           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
 | |
|           ++GPR_idx;
 | |
|         } else {
 | |
|           needsLoad = true;
 | |
|           ArgSize = PtrByteSize;
 | |
|         }
 | |
|         // All int arguments reserve stack space in the Darwin ABI.
 | |
|         ArgOffset += PtrByteSize;
 | |
|         break;
 | |
|       }
 | |
|       // FALLTHROUGH
 | |
|     case MVT::i64:  // PPC64
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
 | |
| 
 | |
|         if (ObjectVT == MVT::i32) {
 | |
|           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
 | |
|           // value to MVT::i64 and then truncate to the correct register size.
 | |
|           if (Flags.isSExt())
 | |
|             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
 | |
|                                  DAG.getValueType(ObjectVT));
 | |
|           else if (Flags.isZExt())
 | |
|             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
 | |
|                                  DAG.getValueType(ObjectVT));
 | |
| 
 | |
|           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
 | |
|         }
 | |
| 
 | |
|         ++GPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|         ArgSize = PtrByteSize;
 | |
|       }
 | |
|       // All int arguments reserve stack space in the Darwin ABI.
 | |
|       ArgOffset += 8;
 | |
|       break;
 | |
| 
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       // Every 4 bytes of argument space consumes one of the GPRs available for
 | |
|       // argument passing.
 | |
|       if (GPR_idx != Num_GPR_Regs) {
 | |
|         ++GPR_idx;
 | |
|         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
 | |
|           ++GPR_idx;
 | |
|       }
 | |
|       if (FPR_idx != Num_FPR_Regs) {
 | |
|         unsigned VReg;
 | |
| 
 | |
|         if (ObjectVT == MVT::f32)
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
 | |
|         else
 | |
|           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
 | |
| 
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         ++FPR_idx;
 | |
|       } else {
 | |
|         needsLoad = true;
 | |
|       }
 | |
| 
 | |
|       // All FP arguments reserve stack space in the Darwin ABI.
 | |
|       ArgOffset += isPPC64 ? 8 : ObjSize;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       // Note that vector arguments in registers don't reserve stack space,
 | |
|       // except in varargs functions.
 | |
|       if (VR_idx != Num_VR_Regs) {
 | |
|         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
 | |
|         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
 | |
|         if (isVarArg) {
 | |
|           while ((ArgOffset % 16) != 0) {
 | |
|             ArgOffset += PtrByteSize;
 | |
|             if (GPR_idx != Num_GPR_Regs)
 | |
|               GPR_idx++;
 | |
|           }
 | |
|           ArgOffset += 16;
 | |
|           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
 | |
|         }
 | |
|         ++VR_idx;
 | |
|       } else {
 | |
|         if (!isVarArg && !isPPC64) {
 | |
|           // Vectors go after all the nonvectors.
 | |
|           CurArgOffset = VecArgOffset;
 | |
|           VecArgOffset += 16;
 | |
|         } else {
 | |
|           // Vectors are aligned.
 | |
|           ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|           CurArgOffset = ArgOffset;
 | |
|           ArgOffset += 16;
 | |
|         }
 | |
|         needsLoad = true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // We need to load the argument to a virtual register if we determined above
 | |
|     // that we ran out of physical registers of the appropriate type.
 | |
|     if (needsLoad) {
 | |
|       int FI = MFI->CreateFixedObject(ObjSize,
 | |
|                                       CurArgOffset + (ArgSize - ObjSize),
 | |
|                                       isImmutable, false);
 | |
|       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
 | |
|       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, NULL, 0,
 | |
|                            false, false, 0);
 | |
|     }
 | |
| 
 | |
|     InVals.push_back(ArgVal);
 | |
|   }
 | |
| 
 | |
|   // Set the size that is at least reserved in caller of this function.  Tail
 | |
|   // call optimized function's reserved stack space needs to be aligned so that
 | |
|   // taking the difference between two stack areas will result in an aligned
 | |
|   // stack.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   // Add the Altivec parameters at the end, if needed.
 | |
|   if (nAltivecParamsAtEnd) {
 | |
|     MinReservedArea = ((MinReservedArea+15)/16)*16;
 | |
|     MinReservedArea += 16*nAltivecParamsAtEnd;
 | |
|   }
 | |
|   MinReservedArea =
 | |
|     std::max(MinReservedArea,
 | |
|              PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
 | |
|   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
 | |
|     getStackAlignment();
 | |
|   unsigned AlignMask = TargetAlign-1;
 | |
|   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
 | |
|   FI->setMinReservedArea(MinReservedArea);
 | |
| 
 | |
|   // If the function takes variable number of arguments, make a frame index for
 | |
|   // the start of the first vararg value... for expansion of llvm.va_start.
 | |
|   if (isVarArg) {
 | |
|     int Depth = ArgOffset;
 | |
| 
 | |
|     VarArgsFrameIndex = MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
 | |
|                                                Depth, true, false);
 | |
|     SDValue FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
 | |
| 
 | |
|     // If this function is vararg, store any remaining integer argument regs
 | |
|     // to their spots on the stack so that they may be loaded by deferencing the
 | |
|     // result of va_next.
 | |
|     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
 | |
|       unsigned VReg;
 | |
|       
 | |
|       if (isPPC64)
 | |
|         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
 | |
|       else
 | |
|         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
 | |
| 
 | |
|       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
 | |
|       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, NULL, 0,
 | |
|                                    false, false, 0);
 | |
|       MemOps.push_back(Store);
 | |
|       // Increment the address by four for the next argument to store
 | |
|       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
 | |
|       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOps.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl,
 | |
|                         MVT::Other, &MemOps[0], MemOps.size());
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
 | |
| /// linkage area for the Darwin ABI.
 | |
| static unsigned
 | |
| CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
 | |
|                                      bool isPPC64,
 | |
|                                      bool isVarArg,
 | |
|                                      unsigned CC,
 | |
|                                      const SmallVectorImpl<ISD::OutputArg>
 | |
|                                        &Outs,
 | |
|                                      unsigned &nAltivecParamsAtEnd) {
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  We start with 24/48 bytes, which is
 | |
|   // prereserved space for [SP][CR][LR][3 x unused].
 | |
|   unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, true);
 | |
|   unsigned NumOps = Outs.size();
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   // Add up all the space actually used.
 | |
|   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
 | |
|   // they all go in registers, but we must reserve stack space for them for
 | |
|   // possible use by the caller.  In varargs or 64-bit calls, parameters are
 | |
|   // assigned stack space in order, with padding so Altivec parameters are
 | |
|   // 16-byte aligned.
 | |
|   nAltivecParamsAtEnd = 0;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = Outs[i].Val;
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     EVT ArgVT = Arg.getValueType();
 | |
|     // Varargs Altivec parameters are padded to a 16 byte boundary.
 | |
|     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
 | |
|         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
 | |
|       if (!isVarArg && !isPPC64) {
 | |
|         // Non-varargs Altivec parameters go after all the non-Altivec
 | |
|         // parameters; handle those later so we know how much padding we need.
 | |
|         nAltivecParamsAtEnd++;
 | |
|         continue;
 | |
|       }
 | |
|       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
 | |
|       NumBytes = ((NumBytes+15)/16)*16;
 | |
|     }
 | |
|     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
 | |
|   }
 | |
| 
 | |
|    // Allow for Altivec parameters at the end, if needed.
 | |
|   if (nAltivecParamsAtEnd) {
 | |
|     NumBytes = ((NumBytes+15)/16)*16;
 | |
|     NumBytes += 16*nAltivecParamsAtEnd;
 | |
|   }
 | |
| 
 | |
|   // The prolog code of the callee may store up to 8 GPR argument registers to
 | |
|   // the stack, allowing va_start to index over them in memory if its varargs.
 | |
|   // Because we cannot tell if this is needed on the caller side, we have to
 | |
|   // conservatively assume that it is needed.  As such, make sure we have at
 | |
|   // least enough stack space for the caller to store the 8 GPRs.
 | |
|   NumBytes = std::max(NumBytes,
 | |
|                       PPCFrameInfo::getMinCallFrameSize(isPPC64, true));
 | |
| 
 | |
|   // Tail call needs the stack to be aligned.
 | |
|   if (CC==CallingConv::Fast && GuaranteedTailCallOpt) {
 | |
|     unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameInfo()->
 | |
|       getStackAlignment();
 | |
|     unsigned AlignMask = TargetAlign-1;
 | |
|     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
 | |
|   }
 | |
| 
 | |
|   return NumBytes;
 | |
| }
 | |
| 
 | |
| /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
 | |
| /// adjusted to accomodate the arguments for the tailcall.
 | |
| static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
 | |
|                                    unsigned ParamSize) {
 | |
| 
 | |
|   if (!isTailCall) return 0;
 | |
| 
 | |
|   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
 | |
|   unsigned CallerMinReservedArea = FI->getMinReservedArea();
 | |
|   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
 | |
|   // Remember only if the new adjustement is bigger.
 | |
|   if (SPDiff < FI->getTailCallSPDelta())
 | |
|     FI->setTailCallSPDelta(SPDiff);
 | |
| 
 | |
|   return SPDiff;
 | |
| }
 | |
| 
 | |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible
 | |
| /// for tail call optimization. Targets which want to do tail call
 | |
| /// optimization should implement this function.
 | |
| bool
 | |
| PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
 | |
|                                                      CallingConv::ID CalleeCC,
 | |
|                                                      bool isVarArg,
 | |
|                                       const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                                      SelectionDAG& DAG) const {
 | |
|   if (!GuaranteedTailCallOpt)
 | |
|     return false;
 | |
| 
 | |
|   // Variable argument functions are not supported.
 | |
|   if (isVarArg)
 | |
|     return false;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
 | |
|   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
 | |
|     // Functions containing by val parameters are not supported.
 | |
|     for (unsigned i = 0; i != Ins.size(); i++) {
 | |
|        ISD::ArgFlagsTy Flags = Ins[i].Flags;
 | |
|        if (Flags.isByVal()) return false;
 | |
|     }
 | |
| 
 | |
|     // Non PIC/GOT  tail calls are supported.
 | |
|     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
 | |
|       return true;
 | |
| 
 | |
|     // At the moment we can only do local tail calls (in same module, hidden
 | |
|     // or protected) if we are generating PIC.
 | |
|     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|       return G->getGlobal()->hasHiddenVisibility()
 | |
|           || G->getGlobal()->hasProtectedVisibility();
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCallCompatibleAddress - Return the immediate to use if the specified
 | |
| /// 32-bit value is representable in the immediate field of a BxA instruction.
 | |
| static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
 | |
|   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
 | |
|   if (!C) return 0;
 | |
| 
 | |
|   int Addr = C->getZExtValue();
 | |
|   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
 | |
|       (Addr << 6 >> 6) != Addr)
 | |
|     return 0;  // Top 6 bits have to be sext of immediate.
 | |
| 
 | |
|   return DAG.getConstant((int)C->getZExtValue() >> 2,
 | |
|                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct TailCallArgumentInfo {
 | |
|   SDValue Arg;
 | |
|   SDValue FrameIdxOp;
 | |
|   int       FrameIdx;
 | |
| 
 | |
|   TailCallArgumentInfo() : FrameIdx(0) {}
 | |
| };
 | |
| 
 | |
| }
 | |
| 
 | |
| /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
 | |
| static void
 | |
| StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
 | |
|                                            SDValue Chain,
 | |
|                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
 | |
|                    SmallVector<SDValue, 8> &MemOpChains,
 | |
|                    DebugLoc dl) {
 | |
|   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
 | |
|     SDValue Arg = TailCallArgs[i].Arg;
 | |
|     SDValue FIN = TailCallArgs[i].FrameIdxOp;
 | |
|     int FI = TailCallArgs[i].FrameIdx;
 | |
|     // Store relative to framepointer.
 | |
|     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
 | |
|                                        PseudoSourceValue::getFixedStack(FI),
 | |
|                                        0, false, false, 0));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
 | |
| /// the appropriate stack slot for the tail call optimized function call.
 | |
| static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
 | |
|                                                MachineFunction &MF,
 | |
|                                                SDValue Chain,
 | |
|                                                SDValue OldRetAddr,
 | |
|                                                SDValue OldFP,
 | |
|                                                int SPDiff,
 | |
|                                                bool isPPC64,
 | |
|                                                bool isDarwinABI,
 | |
|                                                DebugLoc dl) {
 | |
|   if (SPDiff) {
 | |
|     // Calculate the new stack slot for the return address.
 | |
|     int SlotSize = isPPC64 ? 8 : 4;
 | |
|     int NewRetAddrLoc = SPDiff + PPCFrameInfo::getReturnSaveOffset(isPPC64,
 | |
|                                                                    isDarwinABI);
 | |
|     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
 | |
|                                                           NewRetAddrLoc,
 | |
|                                                           true, false);
 | |
|     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | |
|     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
 | |
|     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
 | |
|                          PseudoSourceValue::getFixedStack(NewRetAddr), 0,
 | |
|                          false, false, 0);
 | |
| 
 | |
|     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
 | |
|     // slot as the FP is never overwritten.
 | |
|     if (isDarwinABI) {
 | |
|       int NewFPLoc =
 | |
|         SPDiff + PPCFrameInfo::getFramePointerSaveOffset(isPPC64, isDarwinABI);
 | |
|       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
 | |
|                                                           true, false);
 | |
|       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
 | |
|       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
 | |
|                            PseudoSourceValue::getFixedStack(NewFPIdx), 0,
 | |
|                            false, false, 0);
 | |
|     }
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
 | |
| /// the position of the argument.
 | |
| static void
 | |
| CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
 | |
|                          SDValue Arg, int SPDiff, unsigned ArgOffset,
 | |
|                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
 | |
|   int Offset = ArgOffset + SPDiff;
 | |
|   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
 | |
|   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true,false);
 | |
|   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
 | |
|   SDValue FIN = DAG.getFrameIndex(FI, VT);
 | |
|   TailCallArgumentInfo Info;
 | |
|   Info.Arg = Arg;
 | |
|   Info.FrameIdxOp = FIN;
 | |
|   Info.FrameIdx = FI;
 | |
|   TailCallArguments.push_back(Info);
 | |
| }
 | |
| 
 | |
| /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
 | |
| /// stack slot. Returns the chain as result and the loaded frame pointers in
 | |
| /// LROpOut/FPOpout. Used when tail calling.
 | |
| SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
 | |
|                                                         int SPDiff,
 | |
|                                                         SDValue Chain,
 | |
|                                                         SDValue &LROpOut,
 | |
|                                                         SDValue &FPOpOut,
 | |
|                                                         bool isDarwinABI,
 | |
|                                                         DebugLoc dl) {
 | |
|   if (SPDiff) {
 | |
|     // Load the LR and FP stack slot for later adjusting.
 | |
|     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
 | |
|     LROpOut = getReturnAddrFrameIndex(DAG);
 | |
|     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, NULL, 0,
 | |
|                           false, false, 0);
 | |
|     Chain = SDValue(LROpOut.getNode(), 1);
 | |
|     
 | |
|     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
 | |
|     // slot as the FP is never overwritten.
 | |
|     if (isDarwinABI) {
 | |
|       FPOpOut = getFramePointerFrameIndex(DAG);
 | |
|       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, NULL, 0,
 | |
|                             false, false, 0);
 | |
|       Chain = SDValue(FPOpOut.getNode(), 1);
 | |
|     }
 | |
|   }
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
 | |
| /// by "Src" to address "Dst" of size "Size".  Alignment information is
 | |
| /// specified by the specific parameter attribute. The copy will be passed as
 | |
| /// a byval function parameter.
 | |
| /// Sometimes what we are copying is the end of a larger object, the part that
 | |
| /// does not fit in registers.
 | |
| static SDValue
 | |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
 | |
|                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
 | |
|                           DebugLoc dl) {
 | |
|   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
 | |
|   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
 | |
|                        false, NULL, 0, NULL, 0);
 | |
| }
 | |
| 
 | |
| /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
 | |
| /// tail calls.
 | |
| static void
 | |
| LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
 | |
|                  SDValue Arg, SDValue PtrOff, int SPDiff,
 | |
|                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
 | |
|                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
 | |
|                  SmallVector<TailCallArgumentInfo, 8>& TailCallArguments,
 | |
|                  DebugLoc dl) {
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   if (!isTailCall) {
 | |
|     if (isVector) {
 | |
|       SDValue StackPtr;
 | |
|       if (isPPC64)
 | |
|         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
|       else
 | |
|         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                            DAG.getConstant(ArgOffset, PtrVT));
 | |
|     }
 | |
|     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
 | |
|                                        false, false, 0));
 | |
|   // Calculate and remember argument location.
 | |
|   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
 | |
|                                   TailCallArguments);
 | |
| }
 | |
| 
 | |
| static
 | |
| void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
 | |
|                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
 | |
|                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
 | |
|                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
 | |
|   // might overwrite each other in case of tail call optimization.
 | |
|   SmallVector<SDValue, 8> MemOpChains2;
 | |
|   // Do not flag preceeding copytoreg stuff together with the following stuff.
 | |
|   InFlag = SDValue();
 | |
|   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
 | |
|                                     MemOpChains2, dl);
 | |
|   if (!MemOpChains2.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains2[0], MemOpChains2.size());
 | |
| 
 | |
|   // Store the return address to the appropriate stack slot.
 | |
|   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
 | |
|                                         isPPC64, isDarwinABI, dl);
 | |
| 
 | |
|   // Emit callseq_end just before tailcall node.
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(0, true), InFlag);
 | |
|   InFlag = Chain.getValue(1);
 | |
| }
 | |
| 
 | |
| static
 | |
| unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
 | |
|                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
 | |
|                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
 | |
|                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
 | |
|                      bool isPPC64, bool isSVR4ABI) {
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   NodeTys.push_back(MVT::Other);   // Returns a chain
 | |
|   NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use.
 | |
| 
 | |
|   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
 | |
| 
 | |
|   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
 | |
|   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
 | |
|   // node so that legalize doesn't hack it.
 | |
|   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
 | |
|     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
 | |
|   else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
 | |
|     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
 | |
|   else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
 | |
|     // If this is an absolute destination address, use the munged value.
 | |
|     Callee = SDValue(Dest, 0);
 | |
|   else {
 | |
|     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
 | |
|     // to do the call, we can't use PPCISD::CALL.
 | |
|     SDValue MTCTROps[] = {Chain, Callee, InFlag};
 | |
| 
 | |
|     if (isSVR4ABI && isPPC64) {
 | |
|       // Function pointers in the 64-bit SVR4 ABI do not point to the function
 | |
|       // entry point, but to the function descriptor (the function entry point
 | |
|       // address is part of the function descriptor though).
 | |
|       // The function descriptor is a three doubleword structure with the
 | |
|       // following fields: function entry point, TOC base address and
 | |
|       // environment pointer.
 | |
|       // Thus for a call through a function pointer, the following actions need
 | |
|       // to be performed:
 | |
|       //   1. Save the TOC of the caller in the TOC save area of its stack
 | |
|       //      frame (this is done in LowerCall_Darwin()).
 | |
|       //   2. Load the address of the function entry point from the function
 | |
|       //      descriptor.
 | |
|       //   3. Load the TOC of the callee from the function descriptor into r2.
 | |
|       //   4. Load the environment pointer from the function descriptor into
 | |
|       //      r11.
 | |
|       //   5. Branch to the function entry point address.
 | |
|       //   6. On return of the callee, the TOC of the caller needs to be
 | |
|       //      restored (this is done in FinishCall()).
 | |
|       //
 | |
|       // All those operations are flagged together to ensure that no other
 | |
|       // operations can be scheduled in between. E.g. without flagging the
 | |
|       // operations together, a TOC access in the caller could be scheduled
 | |
|       // between the load of the callee TOC and the branch to the callee, which
 | |
|       // results in the TOC access going through the TOC of the callee instead
 | |
|       // of going through the TOC of the caller, which leads to incorrect code.
 | |
| 
 | |
|       // Load the address of the function entry point from the function
 | |
|       // descriptor.
 | |
|       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Flag);
 | |
|       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
 | |
|                                         InFlag.getNode() ? 3 : 2);
 | |
|       Chain = LoadFuncPtr.getValue(1);
 | |
|       InFlag = LoadFuncPtr.getValue(2);
 | |
| 
 | |
|       // Load environment pointer into r11.
 | |
|       // Offset of the environment pointer within the function descriptor.
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(16);
 | |
| 
 | |
|       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
 | |
|       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
 | |
|                                        InFlag);
 | |
|       Chain = LoadEnvPtr.getValue(1);
 | |
|       InFlag = LoadEnvPtr.getValue(2);
 | |
| 
 | |
|       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
 | |
|                                         InFlag);
 | |
|       Chain = EnvVal.getValue(0);
 | |
|       InFlag = EnvVal.getValue(1);
 | |
| 
 | |
|       // Load TOC of the callee into r2. We are using a target-specific load
 | |
|       // with r2 hard coded, because the result of a target-independent load
 | |
|       // would never go directly into r2, since r2 is a reserved register (which
 | |
|       // prevents the register allocator from allocating it), resulting in an
 | |
|       // additional register being allocated and an unnecessary move instruction
 | |
|       // being generated.
 | |
|       VTs = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
 | |
|                                        Callee, InFlag);
 | |
|       Chain = LoadTOCPtr.getValue(0);
 | |
|       InFlag = LoadTOCPtr.getValue(1);
 | |
| 
 | |
|       MTCTROps[0] = Chain;
 | |
|       MTCTROps[1] = LoadFuncPtr;
 | |
|       MTCTROps[2] = InFlag;
 | |
|     }
 | |
| 
 | |
|     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
 | |
|                         2 + (InFlag.getNode() != 0));
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::Other);
 | |
|     NodeTys.push_back(MVT::Flag);
 | |
|     Ops.push_back(Chain);
 | |
|     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
 | |
|     Callee.setNode(0);
 | |
|     // Add CTR register as callee so a bctr can be emitted later.
 | |
|     if (isTailCall)
 | |
|       Ops.push_back(DAG.getRegister(PPC::CTR, PtrVT));
 | |
|   }
 | |
| 
 | |
|   // If this is a direct call, pass the chain and the callee.
 | |
|   if (Callee.getNode()) {
 | |
|     Ops.push_back(Chain);
 | |
|     Ops.push_back(Callee);
 | |
|   }
 | |
|   // If this is a tail call add stack pointer delta.
 | |
|   if (isTailCall)
 | |
|     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
 | |
| 
 | |
|   // Add argument registers to the end of the list so that they are known live
 | |
|   // into the call.
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
 | |
|     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
 | |
|                                   RegsToPass[i].second.getValueType()));
 | |
| 
 | |
|   return CallOpc;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
 | |
|                                    CallingConv::ID CallConv, bool isVarArg,
 | |
|                                    const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                    DebugLoc dl, SelectionDAG &DAG,
 | |
|                                    SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCRetInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                     RVLocs, *DAG.getContext());
 | |
|   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
 | |
| 
 | |
|   // Copy all of the result registers out of their specified physreg.
 | |
|   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     EVT VT = VA.getValVT();
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|     Chain = DAG.getCopyFromReg(Chain, dl,
 | |
|                                VA.getLocReg(), VT, InFlag).getValue(1);
 | |
|     InVals.push_back(Chain.getValue(0));
 | |
|     InFlag = Chain.getValue(2);
 | |
|   }
 | |
| 
 | |
|   return Chain;
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
 | |
|                               bool isTailCall, bool isVarArg,
 | |
|                               SelectionDAG &DAG,
 | |
|                               SmallVector<std::pair<unsigned, SDValue>, 8>
 | |
|                                 &RegsToPass,
 | |
|                               SDValue InFlag, SDValue Chain,
 | |
|                               SDValue &Callee,
 | |
|                               int SPDiff, unsigned NumBytes,
 | |
|                               const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                               SmallVectorImpl<SDValue> &InVals) {
 | |
|   std::vector<EVT> NodeTys;
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
 | |
|                                  isTailCall, RegsToPass, Ops, NodeTys,
 | |
|                                  PPCSubTarget.isPPC64(),
 | |
|                                  PPCSubTarget.isSVR4ABI());
 | |
| 
 | |
|   // When performing tail call optimization the callee pops its arguments off
 | |
|   // the stack. Account for this here so these bytes can be pushed back on in
 | |
|   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
 | |
|   int BytesCalleePops =
 | |
|     (CallConv==CallingConv::Fast && GuaranteedTailCallOpt) ? NumBytes : 0;
 | |
| 
 | |
|   if (InFlag.getNode())
 | |
|     Ops.push_back(InFlag);
 | |
| 
 | |
|   // Emit tail call.
 | |
|   if (isTailCall) {
 | |
|     // If this is the first return lowered for this function, add the regs
 | |
|     // to the liveout set for the function.
 | |
|     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | |
|       SmallVector<CCValAssign, 16> RVLocs;
 | |
|       CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
 | |
|                      *DAG.getContext());
 | |
|       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
 | |
|       for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|     }
 | |
| 
 | |
|     assert(((Callee.getOpcode() == ISD::Register &&
 | |
|              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
 | |
|             Callee.getOpcode() == ISD::TargetExternalSymbol ||
 | |
|             Callee.getOpcode() == ISD::TargetGlobalAddress ||
 | |
|             isa<ConstantSDNode>(Callee)) &&
 | |
|     "Expecting an global address, external symbol, absolute value or register");
 | |
| 
 | |
|     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
 | |
|   InFlag = Chain.getValue(1);
 | |
| 
 | |
|   // Add a NOP immediately after the branch instruction when using the 64-bit
 | |
|   // SVR4 ABI. At link time, if caller and callee are in a different module and
 | |
|   // thus have a different TOC, the call will be replaced with a call to a stub
 | |
|   // function which saves the current TOC, loads the TOC of the callee and
 | |
|   // branches to the callee. The NOP will be replaced with a load instruction
 | |
|   // which restores the TOC of the caller from the TOC save slot of the current
 | |
|   // stack frame. If caller and callee belong to the same module (and have the
 | |
|   // same TOC), the NOP will remain unchanged.
 | |
|   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
 | |
|     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Flag);
 | |
|     if (CallOpc == PPCISD::BCTRL_SVR4) {
 | |
|       // This is a call through a function pointer.
 | |
|       // Restore the caller TOC from the save area into R2.
 | |
|       // See PrepareCall() for more information about calls through function
 | |
|       // pointers in the 64-bit SVR4 ABI.
 | |
|       // We are using a target-specific load with r2 hard coded, because the
 | |
|       // result of a target-independent load would never go directly into r2,
 | |
|       // since r2 is a reserved register (which prevents the register allocator
 | |
|       // from allocating it), resulting in an additional register being
 | |
|       // allocated and an unnecessary move instruction being generated.
 | |
|       Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
 | |
|       InFlag = Chain.getValue(1);
 | |
|     } else {
 | |
|       // Otherwise insert NOP.
 | |
|       InFlag = DAG.getNode(PPCISD::NOP, dl, MVT::Flag, InFlag);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
 | |
|                              DAG.getIntPtrConstant(BytesCalleePops, true),
 | |
|                              InFlag);
 | |
|   if (!Ins.empty())
 | |
|     InFlag = Chain.getValue(1);
 | |
| 
 | |
|   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
 | |
|                          Ins, dl, DAG, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
 | |
|                              CallingConv::ID CallConv, bool isVarArg,
 | |
|                              bool &isTailCall,
 | |
|                              const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                              const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                              DebugLoc dl, SelectionDAG &DAG,
 | |
|                              SmallVectorImpl<SDValue> &InVals) {
 | |
|   if (isTailCall)
 | |
|     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
 | |
|                                                    Ins, DAG);
 | |
| 
 | |
|   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
 | |
|     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
 | |
|                           isTailCall, Outs, Ins,
 | |
|                           dl, DAG, InVals);
 | |
|   } else {
 | |
|     return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
 | |
|                             isTailCall, Outs, Ins,
 | |
|                             dl, DAG, InVals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
 | |
|                                   CallingConv::ID CallConv, bool isVarArg,
 | |
|                                   bool isTailCall,
 | |
|                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                   const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                   DebugLoc dl, SelectionDAG &DAG,
 | |
|                                   SmallVectorImpl<SDValue> &InVals) {
 | |
|   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
 | |
|   // of the 32-bit SVR4 ABI stack frame layout.
 | |
| 
 | |
|   assert((CallConv == CallingConv::C ||
 | |
|           CallConv == CallingConv::Fast) && "Unknown calling convention!");
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   unsigned PtrByteSize = 4;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
|   
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, parameter list area and the part of the local variable space which
 | |
|   // contains copies of aggregates which are passed by value.
 | |
| 
 | |
|   // Assign locations to all of the outgoing arguments.
 | |
|   SmallVector<CCValAssign, 16> ArgLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  ArgLocs, *DAG.getContext());
 | |
| 
 | |
|   // Reserve space for the linkage area on the stack.
 | |
|   CCInfo.AllocateStack(PPCFrameInfo::getLinkageSize(false, false), PtrByteSize);
 | |
| 
 | |
|   if (isVarArg) {
 | |
|     // Handle fixed and variable vector arguments differently.
 | |
|     // Fixed vector arguments go into registers as long as registers are
 | |
|     // available. Variable vector arguments always go into memory.
 | |
|     unsigned NumArgs = Outs.size();
 | |
|     
 | |
|     for (unsigned i = 0; i != NumArgs; ++i) {
 | |
|       EVT ArgVT = Outs[i].Val.getValueType();
 | |
|       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
 | |
|       bool Result;
 | |
|       
 | |
|       if (Outs[i].IsFixed) {
 | |
|         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
 | |
|                              CCInfo);
 | |
|       } else {
 | |
|         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
 | |
|                                     ArgFlags, CCInfo);
 | |
|       }
 | |
|       
 | |
|       if (Result) {
 | |
| #ifndef NDEBUG
 | |
|         errs() << "Call operand #" << i << " has unhandled type "
 | |
|              << ArgVT.getEVTString() << "\n";
 | |
| #endif
 | |
|         llvm_unreachable(0);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // All arguments are treated the same.
 | |
|     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
 | |
|   }
 | |
|   
 | |
|   // Assign locations to all of the outgoing aggregate by value arguments.
 | |
|   SmallVector<CCValAssign, 16> ByValArgLocs;
 | |
|   CCState CCByValInfo(CallConv, isVarArg, getTargetMachine(), ByValArgLocs,
 | |
|                       *DAG.getContext());
 | |
| 
 | |
|   // Reserve stack space for the allocations in CCInfo.
 | |
|   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
 | |
| 
 | |
|   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
 | |
| 
 | |
|   // Size of the linkage area, parameter list area and the part of the local
 | |
|   // space variable where copies of aggregates which are passed by value are
 | |
|   // stored.
 | |
|   unsigned NumBytes = CCByValInfo.getNextStackOffset();
 | |
|   
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be moved somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
 | |
|                                        dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
|   
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
| 
 | |
|   // Walk the register/memloc assignments, inserting copies/loads.
 | |
|   for (unsigned i = 0, j = 0, e = ArgLocs.size();
 | |
|        i != e;
 | |
|        ++i) {
 | |
|     CCValAssign &VA = ArgLocs[i];
 | |
|     SDValue Arg = Outs[i].Val;
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
|     
 | |
|     if (Flags.isByVal()) {
 | |
|       // Argument is an aggregate which is passed by value, thus we need to
 | |
|       // create a copy of it in the local variable space of the current stack
 | |
|       // frame (which is the stack frame of the caller) and pass the address of
 | |
|       // this copy to the callee.
 | |
|       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
 | |
|       CCValAssign &ByValVA = ByValArgLocs[j++];
 | |
|       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
 | |
|       
 | |
|       // Memory reserved in the local variable space of the callers stack frame.
 | |
|       unsigned LocMemOffset = ByValVA.getLocMemOffset();
 | |
|       
 | |
|       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
|       
 | |
|       // Create a copy of the argument in the local area of the current
 | |
|       // stack frame.
 | |
|       SDValue MemcpyCall =
 | |
|         CreateCopyOfByValArgument(Arg, PtrOff,
 | |
|                                   CallSeqStart.getNode()->getOperand(0),
 | |
|                                   Flags, DAG, dl);
 | |
|       
 | |
|       // This must go outside the CALLSEQ_START..END.
 | |
|       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | |
|                            CallSeqStart.getNode()->getOperand(1));
 | |
|       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | |
|                              NewCallSeqStart.getNode());
 | |
|       Chain = CallSeqStart = NewCallSeqStart;
 | |
|       
 | |
|       // Pass the address of the aggregate copy on the stack either in a
 | |
|       // physical register or in the parameter list area of the current stack
 | |
|       // frame to the callee.
 | |
|       Arg = PtrOff;
 | |
|     }
 | |
|     
 | |
|     if (VA.isRegLoc()) {
 | |
|       // Put argument in a physical register.
 | |
|       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
 | |
|     } else {
 | |
|       // Put argument in the parameter list area of the current stack frame.
 | |
|       assert(VA.isMemLoc());
 | |
|       unsigned LocMemOffset = VA.getLocMemOffset();
 | |
| 
 | |
|       if (!isTailCall) {
 | |
|         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
 | |
| 
 | |
|         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
 | |
|                                            PseudoSourceValue::getStack(), LocMemOffset,
 | |
|                                            false, false, 0));
 | |
|       } else {
 | |
|         // Calculate and remember argument location.
 | |
|         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
 | |
|                                  TailCallArguments);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
|   
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
|   
 | |
|   // Set CR6 to true if this is a vararg call.
 | |
|   if (isVarArg) {
 | |
|     SDValue SetCR(DAG.getMachineNode(PPC::CRSET, dl, MVT::i32), 0);
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, PPC::CR1EQ, SetCR, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
 | |
|                     false, TailCallArguments);
 | |
|   }
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
 | |
|                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
 | |
|                     Ins, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
 | |
|                                     CallingConv::ID CallConv, bool isVarArg,
 | |
|                                     bool isTailCall,
 | |
|                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                     const SmallVectorImpl<ISD::InputArg> &Ins,
 | |
|                                     DebugLoc dl, SelectionDAG &DAG,
 | |
|                                     SmallVectorImpl<SDValue> &InVals) {
 | |
| 
 | |
|   unsigned NumOps  = Outs.size();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
|   unsigned PtrByteSize = isPPC64 ? 8 : 4;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
| 
 | |
|   // Mark this function as potentially containing a function that contains a
 | |
|   // tail call. As a consequence the frame pointer will be used for dynamicalloc
 | |
|   // and restoring the callers stack pointer in this functions epilog. This is
 | |
|   // done because by tail calling the called function might overwrite the value
 | |
|   // in this function's (MF) stack pointer stack slot 0(SP).
 | |
|   if (GuaranteedTailCallOpt && CallConv==CallingConv::Fast)
 | |
|     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
 | |
| 
 | |
|   unsigned nAltivecParamsAtEnd = 0;
 | |
| 
 | |
|   // Count how many bytes are to be pushed on the stack, including the linkage
 | |
|   // area, and parameter passing area.  We start with 24/48 bytes, which is
 | |
|   // prereserved space for [SP][CR][LR][3 x unused].
 | |
|   unsigned NumBytes =
 | |
|     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
 | |
|                                          Outs,
 | |
|                                          nAltivecParamsAtEnd);
 | |
| 
 | |
|   // Calculate by how many bytes the stack has to be adjusted in case of tail
 | |
|   // call optimization.
 | |
|   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
 | |
| 
 | |
|   // To protect arguments on the stack from being clobbered in a tail call,
 | |
|   // force all the loads to happen before doing any other lowering.
 | |
|   if (isTailCall)
 | |
|     Chain = DAG.getStackArgumentTokenFactor(Chain);
 | |
| 
 | |
|   // Adjust the stack pointer for the new arguments...
 | |
|   // These operations are automatically eliminated by the prolog/epilog pass
 | |
|   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
 | |
|   SDValue CallSeqStart = Chain;
 | |
| 
 | |
|   // Load the return address and frame pointer so it can be move somewhere else
 | |
|   // later.
 | |
|   SDValue LROp, FPOp;
 | |
|   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
 | |
|                                        dl);
 | |
| 
 | |
|   // Set up a copy of the stack pointer for use loading and storing any
 | |
|   // arguments that may not fit in the registers available for argument
 | |
|   // passing.
 | |
|   SDValue StackPtr;
 | |
|   if (isPPC64)
 | |
|     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
 | |
|   else
 | |
|     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
 | |
| 
 | |
|   // Figure out which arguments are going to go in registers, and which in
 | |
|   // memory.  Also, if this is a vararg function, floating point operations
 | |
|   // must be stored to our stack, and loaded into integer regs as well, if
 | |
|   // any integer regs are available for argument passing.
 | |
|   unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, true);
 | |
|   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
 | |
| 
 | |
|   static const unsigned GPR_32[] = {           // 32-bit registers.
 | |
|     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
 | |
|     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
 | |
|   };
 | |
|   static const unsigned GPR_64[] = {           // 64-bit registers.
 | |
|     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
 | |
|     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
 | |
|   };
 | |
|   static const unsigned *FPR = GetFPR();
 | |
| 
 | |
|   static const unsigned VR[] = {
 | |
|     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
 | |
|     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
 | |
|   };
 | |
|   const unsigned NumGPRs = array_lengthof(GPR_32);
 | |
|   const unsigned NumFPRs = 13;
 | |
|   const unsigned NumVRs  = array_lengthof(VR);
 | |
| 
 | |
|   const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
 | |
| 
 | |
|   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
 | |
|   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
 | |
| 
 | |
|   SmallVector<SDValue, 8> MemOpChains;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     SDValue Arg = Outs[i].Val;
 | |
|     ISD::ArgFlagsTy Flags = Outs[i].Flags;
 | |
| 
 | |
|     // PtrOff will be used to store the current argument to the stack if a
 | |
|     // register cannot be found for it.
 | |
|     SDValue PtrOff;
 | |
| 
 | |
|     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
 | |
| 
 | |
|     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
| 
 | |
|     // On PPC64, promote integers to 64-bit values.
 | |
|     if (isPPC64 && Arg.getValueType() == MVT::i32) {
 | |
|       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
 | |
|       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
 | |
|       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
 | |
|     }
 | |
| 
 | |
|     // FIXME memcpy is used way more than necessary.  Correctness first.
 | |
|     if (Flags.isByVal()) {
 | |
|       unsigned Size = Flags.getByValSize();
 | |
|       if (Size==1 || Size==2) {
 | |
|         // Very small objects are passed right-justified.
 | |
|         // Everything else is passed left-justified.
 | |
|         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
 | |
|                                         NULL, 0, VT, false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
| 
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
 | |
|           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
 | |
|           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
 | |
|                                 CallSeqStart.getNode()->getOperand(0),
 | |
|                                 Flags, DAG, dl);
 | |
|           // This must go outside the CALLSEQ_START..END.
 | |
|           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | |
|                                CallSeqStart.getNode()->getOperand(1));
 | |
|           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
 | |
|                                  NewCallSeqStart.getNode());
 | |
|           Chain = CallSeqStart = NewCallSeqStart;
 | |
|           ArgOffset += PtrByteSize;
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       // Copy entire object into memory.  There are cases where gcc-generated
 | |
|       // code assumes it is there, even if it could be put entirely into
 | |
|       // registers.  (This is not what the doc says.)
 | |
|       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
 | |
|                             CallSeqStart.getNode()->getOperand(0),
 | |
|                             Flags, DAG, dl);
 | |
|       // This must go outside the CALLSEQ_START..END.
 | |
|       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
 | |
|                            CallSeqStart.getNode()->getOperand(1));
 | |
|       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
 | |
|       Chain = CallSeqStart = NewCallSeqStart;
 | |
|       // And copy the pieces of it that fit into registers.
 | |
|       for (unsigned j=0; j<Size; j+=PtrByteSize) {
 | |
|         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
 | |
|         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
 | |
|         if (GPR_idx != NumGPRs) {
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, NULL, 0,
 | |
|                                      false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           ArgOffset += PtrByteSize;
 | |
|         } else {
 | |
|           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
 | |
|     default: llvm_unreachable("Unexpected ValueType for argument!");
 | |
|     case MVT::i32:
 | |
|     case MVT::i64:
 | |
|       if (GPR_idx != NumGPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
 | |
|       } else {
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       }
 | |
|       ArgOffset += PtrByteSize;
 | |
|       break;
 | |
|     case MVT::f32:
 | |
|     case MVT::f64:
 | |
|       if (FPR_idx != NumFPRs) {
 | |
|         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
 | |
| 
 | |
|         if (isVarArg) {
 | |
|           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
 | |
|                                        false, false, 0);
 | |
|           MemOpChains.push_back(Store);
 | |
| 
 | |
|           // Float varargs are always shadowed in available integer registers
 | |
|           if (GPR_idx != NumGPRs) {
 | |
|             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0,
 | |
|                                        false, false, 0);
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
 | |
|             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
 | |
|             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
 | |
|             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff, NULL, 0,
 | |
|                                        false, false, 0);
 | |
|             MemOpChains.push_back(Load.getValue(1));
 | |
|             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|           }
 | |
|         } else {
 | |
|           // If we have any FPRs remaining, we may also have GPRs remaining.
 | |
|           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
 | |
|           // GPRs.
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             ++GPR_idx;
 | |
|           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
 | |
|               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
 | |
|             ++GPR_idx;
 | |
|         }
 | |
|       } else {
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, false, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|       }
 | |
|       if (isPPC64)
 | |
|         ArgOffset += 8;
 | |
|       else
 | |
|         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
 | |
|       break;
 | |
|     case MVT::v4f32:
 | |
|     case MVT::v4i32:
 | |
|     case MVT::v8i16:
 | |
|     case MVT::v16i8:
 | |
|       if (isVarArg) {
 | |
|         // These go aligned on the stack, or in the corresponding R registers
 | |
|         // when within range.  The Darwin PPC ABI doc claims they also go in
 | |
|         // V registers; in fact gcc does this only for arguments that are
 | |
|         // prototyped, not for those that match the ...  We do it for all
 | |
|         // arguments, seems to work.
 | |
|         while (ArgOffset % 16 !=0) {
 | |
|           ArgOffset += PtrByteSize;
 | |
|           if (GPR_idx != NumGPRs)
 | |
|             GPR_idx++;
 | |
|         }
 | |
|         // We could elide this store in the case where the object fits
 | |
|         // entirely in R registers.  Maybe later.
 | |
|         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
 | |
|                             DAG.getConstant(ArgOffset, PtrVT));
 | |
|         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
 | |
|                                      false, false, 0);
 | |
|         MemOpChains.push_back(Store);
 | |
|         if (VR_idx != NumVRs) {
 | |
|           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, NULL, 0,
 | |
|                                      false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
 | |
|         }
 | |
|         ArgOffset += 16;
 | |
|         for (unsigned i=0; i<16; i+=PtrByteSize) {
 | |
|           if (GPR_idx == NumGPRs)
 | |
|             break;
 | |
|           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
 | |
|                                   DAG.getConstant(i, PtrVT));
 | |
|           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, NULL, 0,
 | |
|                                      false, false, 0);
 | |
|           MemOpChains.push_back(Load.getValue(1));
 | |
|           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Non-varargs Altivec params generally go in registers, but have
 | |
|       // stack space allocated at the end.
 | |
|       if (VR_idx != NumVRs) {
 | |
|         // Doesn't have GPR space allocated.
 | |
|         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
 | |
|       } else if (nAltivecParamsAtEnd==0) {
 | |
|         // We are emitting Altivec params in order.
 | |
|         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                          isPPC64, isTailCall, true, MemOpChains,
 | |
|                          TailCallArguments, dl);
 | |
|         ArgOffset += 16;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   // If all Altivec parameters fit in registers, as they usually do,
 | |
|   // they get stack space following the non-Altivec parameters.  We
 | |
|   // don't track this here because nobody below needs it.
 | |
|   // If there are more Altivec parameters than fit in registers emit
 | |
|   // the stores here.
 | |
|   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
 | |
|     unsigned j = 0;
 | |
|     // Offset is aligned; skip 1st 12 params which go in V registers.
 | |
|     ArgOffset = ((ArgOffset+15)/16)*16;
 | |
|     ArgOffset += 12*16;
 | |
|     for (unsigned i = 0; i != NumOps; ++i) {
 | |
|       SDValue Arg = Outs[i].Val;
 | |
|       EVT ArgType = Arg.getValueType();
 | |
|       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
 | |
|           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
 | |
|         if (++j > NumVRs) {
 | |
|           SDValue PtrOff;
 | |
|           // We are emitting Altivec params in order.
 | |
|           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
 | |
|                            isPPC64, isTailCall, true, MemOpChains,
 | |
|                            TailCallArguments, dl);
 | |
|           ArgOffset += 16;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MemOpChains.empty())
 | |
|     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
 | |
|                         &MemOpChains[0], MemOpChains.size());
 | |
| 
 | |
|   // Check if this is an indirect call (MTCTR/BCTRL).
 | |
|   // See PrepareCall() for more information about calls through function
 | |
|   // pointers in the 64-bit SVR4 ABI.
 | |
|   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
 | |
|       !dyn_cast<GlobalAddressSDNode>(Callee) &&
 | |
|       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
 | |
|       !isBLACompatibleAddress(Callee, DAG)) {
 | |
|     // Load r2 into a virtual register and store it to the TOC save area.
 | |
|     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
 | |
|     // TOC save area offset.
 | |
|     SDValue PtrOff = DAG.getIntPtrConstant(40);
 | |
|     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
 | |
|     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, NULL, 0,
 | |
|                          false, false, 0);
 | |
|   }
 | |
| 
 | |
|   // Build a sequence of copy-to-reg nodes chained together with token chain
 | |
|   // and flag operands which copy the outgoing args into the appropriate regs.
 | |
|   SDValue InFlag;
 | |
|   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
 | |
|                              RegsToPass[i].second, InFlag);
 | |
|     InFlag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (isTailCall) {
 | |
|     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
 | |
|                     FPOp, true, TailCallArguments);
 | |
|   }
 | |
| 
 | |
|   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
 | |
|                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
 | |
|                     Ins, InVals);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::LowerReturn(SDValue Chain,
 | |
|                                CallingConv::ID CallConv, bool isVarArg,
 | |
|                                const SmallVectorImpl<ISD::OutputArg> &Outs,
 | |
|                                DebugLoc dl, SelectionDAG &DAG) {
 | |
| 
 | |
|   SmallVector<CCValAssign, 16> RVLocs;
 | |
|   CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
 | |
|                  RVLocs, *DAG.getContext());
 | |
|   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
 | |
| 
 | |
|   // If this is the first return lowered for this function, add the regs to the
 | |
|   // liveout set for the function.
 | |
|   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
 | |
|     for (unsigned i = 0; i != RVLocs.size(); ++i)
 | |
|       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
 | |
|   }
 | |
| 
 | |
|   SDValue Flag;
 | |
| 
 | |
|   // Copy the result values into the output registers.
 | |
|   for (unsigned i = 0; i != RVLocs.size(); ++i) {
 | |
|     CCValAssign &VA = RVLocs[i];
 | |
|     assert(VA.isRegLoc() && "Can only return in registers!");
 | |
|     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
 | |
|                              Outs[i].Val, Flag);
 | |
|     Flag = Chain.getValue(1);
 | |
|   }
 | |
| 
 | |
|   if (Flag.getNode())
 | |
|     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
 | |
|   else
 | |
|     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
 | |
|                                    const PPCSubtarget &Subtarget) {
 | |
|   // When we pop the dynamic allocation we need to restore the SP link.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Get the corect type for pointers.
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Construct the stack pointer operand.
 | |
|   bool isPPC64 = Subtarget.isPPC64();
 | |
|   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
 | |
|   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
 | |
| 
 | |
|   // Get the operands for the STACKRESTORE.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue SaveSP = Op.getOperand(1);
 | |
| 
 | |
|   // Load the old link SP.
 | |
|   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, NULL, 0,
 | |
|                                    false, false, 0);
 | |
| 
 | |
|   // Restore the stack pointer.
 | |
|   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
 | |
| 
 | |
|   // Store the old link SP.
 | |
|   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, NULL, 0,
 | |
|                       false, false, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isPPC64 = PPCSubTarget.isPPC64();
 | |
|   bool isDarwinABI = PPCSubTarget.isDarwinABI();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Get current frame pointer save index.  The users of this index will be
 | |
|   // primarily DYNALLOC instructions.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   int RASI = FI->getReturnAddrSaveIndex();
 | |
| 
 | |
|   // If the frame pointer save index hasn't been defined yet.
 | |
|   if (!RASI) {
 | |
|     // Find out what the fix offset of the frame pointer save area.
 | |
|     int LROffset = PPCFrameInfo::getReturnSaveOffset(isPPC64, isDarwinABI);
 | |
|     // Allocate the frame index for frame pointer save area.
 | |
|     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset,
 | |
|                                                 true, false);
 | |
|     // Save the result.
 | |
|     FI->setReturnAddrSaveIndex(RASI);
 | |
|   }
 | |
|   return DAG.getFrameIndex(RASI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue
 | |
| PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   bool isPPC64 = PPCSubTarget.isPPC64();
 | |
|   bool isDarwinABI = PPCSubTarget.isDarwinABI();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
| 
 | |
|   // Get current frame pointer save index.  The users of this index will be
 | |
|   // primarily DYNALLOC instructions.
 | |
|   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
 | |
|   int FPSI = FI->getFramePointerSaveIndex();
 | |
| 
 | |
|   // If the frame pointer save index hasn't been defined yet.
 | |
|   if (!FPSI) {
 | |
|     // Find out what the fix offset of the frame pointer save area.
 | |
|     int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(isPPC64,
 | |
|                                                            isDarwinABI);
 | |
| 
 | |
|     // Allocate the frame index for frame pointer save area.
 | |
|     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset,
 | |
|                                                 true, false);
 | |
|     // Save the result.
 | |
|     FI->setFramePointerSaveIndex(FPSI);
 | |
|   }
 | |
|   return DAG.getFrameIndex(FPSI, PtrVT);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
 | |
|                                          SelectionDAG &DAG,
 | |
|                                          const PPCSubtarget &Subtarget) {
 | |
|   // Get the inputs.
 | |
|   SDValue Chain = Op.getOperand(0);
 | |
|   SDValue Size  = Op.getOperand(1);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // Get the corect type for pointers.
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   // Negate the size.
 | |
|   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
 | |
|                                   DAG.getConstant(0, PtrVT), Size);
 | |
|   // Construct a node for the frame pointer save index.
 | |
|   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
 | |
|   // Build a DYNALLOC node.
 | |
|   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
 | |
|   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
 | |
|   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
 | |
| }
 | |
| 
 | |
| /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
 | |
| /// possible.
 | |
| SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
 | |
|   // Not FP? Not a fsel.
 | |
|   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
 | |
|       !Op.getOperand(2).getValueType().isFloatingPoint())
 | |
|     return Op;
 | |
| 
 | |
|   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
 | |
| 
 | |
|   // Cannot handle SETEQ/SETNE.
 | |
|   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
 | |
| 
 | |
|   EVT ResVT = Op.getValueType();
 | |
|   EVT CmpVT = Op.getOperand(0).getValueType();
 | |
|   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
|   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
| 
 | |
|   // If the RHS of the comparison is a 0.0, we don't need to do the
 | |
|   // subtraction at all.
 | |
|   if (isFloatingPointZero(RHS))
 | |
|     switch (CC) {
 | |
|     default: break;       // SETUO etc aren't handled by fsel.
 | |
|     case ISD::SETULT:
 | |
|     case ISD::SETLT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|     case ISD::SETOGE:
 | |
|     case ISD::SETGE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
 | |
|     case ISD::SETUGT:
 | |
|     case ISD::SETGT:
 | |
|       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
 | |
|     case ISD::SETOLE:
 | |
|     case ISD::SETLE:
 | |
|       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
 | |
|                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
 | |
|     }
 | |
| 
 | |
|   SDValue Cmp;
 | |
|   switch (CC) {
 | |
|   default: break;       // SETUO etc aren't handled by fsel.
 | |
|   case ISD::SETULT:
 | |
|   case ISD::SETLT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETOGE:
 | |
|   case ISD::SETGE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|   case ISD::SETUGT:
 | |
|   case ISD::SETGT:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
 | |
|   case ISD::SETOLE:
 | |
|   case ISD::SETLE:
 | |
|     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
 | |
|     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
 | |
|       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
 | |
|       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
 | |
|   }
 | |
|   return Op;
 | |
| }
 | |
| 
 | |
| // FIXME: Split this code up when LegalizeDAGTypes lands.
 | |
| SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
 | |
|                                            DebugLoc dl) {
 | |
|   assert(Op.getOperand(0).getValueType().isFloatingPoint());
 | |
|   SDValue Src = Op.getOperand(0);
 | |
|   if (Src.getValueType() == MVT::f32)
 | |
|     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
 | |
| 
 | |
|   SDValue Tmp;
 | |
|   switch (Op.getValueType().getSimpleVT().SimpleTy) {
 | |
|   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
 | |
|   case MVT::i32:
 | |
|     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
 | |
|                                                          PPCISD::FCTIDZ, 
 | |
|                       dl, MVT::f64, Src);
 | |
|     break;
 | |
|   case MVT::i64:
 | |
|     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Convert the FP value to an int value through memory.
 | |
|   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
 | |
| 
 | |
|   // Emit a store to the stack slot.
 | |
|   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, NULL, 0,
 | |
|                                false, false, 0);
 | |
| 
 | |
|   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
 | |
|   // add in a bias.
 | |
|   if (Op.getValueType() == MVT::i32)
 | |
|     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
 | |
|                         DAG.getConstant(4, FIPtr.getValueType()));
 | |
|   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, NULL, 0,
 | |
|                      false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
 | |
|   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
 | |
|     return SDValue();
 | |
| 
 | |
|   if (Op.getOperand(0).getValueType() == MVT::i64) {
 | |
|     SDValue Bits = DAG.getNode(ISD::BIT_CONVERT, dl,
 | |
|                                MVT::f64, Op.getOperand(0));
 | |
|     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
 | |
|     if (Op.getValueType() == MVT::f32)
 | |
|       FP = DAG.getNode(ISD::FP_ROUND, dl,
 | |
|                        MVT::f32, FP, DAG.getIntPtrConstant(0));
 | |
|     return FP;
 | |
|   }
 | |
| 
 | |
|   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
 | |
|          "Unhandled SINT_TO_FP type in custom expander!");
 | |
|   // Since we only generate this in 64-bit mode, we can take advantage of
 | |
|   // 64-bit registers.  In particular, sign extend the input value into the
 | |
|   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
 | |
|   // then lfd it and fcfid it.
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
 | |
|                                 Op.getOperand(0));
 | |
| 
 | |
|   // STD the extended value into the stack slot.
 | |
|   MachineMemOperand *MMO =
 | |
|     MF.getMachineMemOperand(PseudoSourceValue::getFixedStack(FrameIdx),
 | |
|                             MachineMemOperand::MOStore, 0, 8, 8);
 | |
|   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
 | |
|   SDValue Store =
 | |
|     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
 | |
|                             Ops, 4, MVT::i64, MMO);
 | |
|   // Load the value as a double.
 | |
|   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, NULL, 0, false, false, 0);
 | |
| 
 | |
|   // FCFID it and return it.
 | |
|   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
 | |
|   if (Op.getValueType() == MVT::f32)
 | |
|     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
 | |
|   return FP;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   /*
 | |
|    The rounding mode is in bits 30:31 of FPSR, and has the following
 | |
|    settings:
 | |
|      00 Round to nearest
 | |
|      01 Round to 0
 | |
|      10 Round to +inf
 | |
|      11 Round to -inf
 | |
| 
 | |
|   FLT_ROUNDS, on the other hand, expects the following:
 | |
|     -1 Undefined
 | |
|      0 Round to 0
 | |
|      1 Round to nearest
 | |
|      2 Round to +inf
 | |
|      3 Round to -inf
 | |
| 
 | |
|   To perform the conversion, we do:
 | |
|     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
 | |
|   */
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   EVT VT = Op.getValueType();
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   std::vector<EVT> NodeTys;
 | |
|   SDValue MFFSreg, InFlag;
 | |
| 
 | |
|   // Save FP Control Word to register
 | |
|   NodeTys.push_back(MVT::f64);    // return register
 | |
|   NodeTys.push_back(MVT::Flag);   // unused in this context
 | |
|   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
 | |
| 
 | |
|   // Save FP register to stack slot
 | |
|   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
 | |
|   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
 | |
|                                StackSlot, NULL, 0, false, false, 0);
 | |
| 
 | |
|   // Load FP Control Word from low 32 bits of stack slot.
 | |
|   SDValue Four = DAG.getConstant(4, PtrVT);
 | |
|   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
 | |
|   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, NULL, 0,
 | |
|                             false, false, 0);
 | |
| 
 | |
|   // Transform as necessary
 | |
|   SDValue CWD1 =
 | |
|     DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                 CWD, DAG.getConstant(3, MVT::i32));
 | |
|   SDValue CWD2 =
 | |
|     DAG.getNode(ISD::SRL, dl, MVT::i32,
 | |
|                 DAG.getNode(ISD::AND, dl, MVT::i32,
 | |
|                             DAG.getNode(ISD::XOR, dl, MVT::i32,
 | |
|                                         CWD, DAG.getConstant(3, MVT::i32)),
 | |
|                             DAG.getConstant(3, MVT::i32)),
 | |
|                 DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   SDValue RetVal =
 | |
|     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
 | |
| 
 | |
|   return DAG.getNode((VT.getSizeInBits() < 16 ?
 | |
|                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SHL!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
 | |
|   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | |
|   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) {
 | |
|   EVT VT = Op.getValueType();
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SRL!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops.  Note that these ops
 | |
|   // depend on the PPC behavior for oversized shift amounts.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
 | |
|   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
 | |
|   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, 2, dl);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   EVT VT = Op.getValueType();
 | |
|   unsigned BitWidth = VT.getSizeInBits();
 | |
|   assert(Op.getNumOperands() == 3 &&
 | |
|          VT == Op.getOperand(1).getValueType() &&
 | |
|          "Unexpected SRA!");
 | |
| 
 | |
|   // Expand into a bunch of logical ops, followed by a select_cc.
 | |
|   SDValue Lo = Op.getOperand(0);
 | |
|   SDValue Hi = Op.getOperand(1);
 | |
|   SDValue Amt = Op.getOperand(2);
 | |
|   EVT AmtVT = Amt.getValueType();
 | |
| 
 | |
|   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
 | |
|                              DAG.getConstant(BitWidth, AmtVT), Amt);
 | |
|   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
 | |
|   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
 | |
|   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
 | |
|   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
 | |
|                              DAG.getConstant(-BitWidth, AmtVT));
 | |
|   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
 | |
|   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
 | |
|   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
 | |
|                                   Tmp4, Tmp6, ISD::SETLE);
 | |
|   SDValue OutOps[] = { OutLo, OutHi };
 | |
|   return DAG.getMergeValues(OutOps, 2, dl);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Vector related lowering.
 | |
| //
 | |
| 
 | |
| /// BuildSplatI - Build a canonical splati of Val with an element size of
 | |
| /// SplatSize.  Cast the result to VT.
 | |
| static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
 | |
|                              SelectionDAG &DAG, DebugLoc dl) {
 | |
|   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
 | |
| 
 | |
|   static const EVT VTys[] = { // canonical VT to use for each size.
 | |
|     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
 | |
|   };
 | |
| 
 | |
|   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
 | |
| 
 | |
|   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
 | |
|   if (Val == -1)
 | |
|     SplatSize = 1;
 | |
| 
 | |
|   EVT CanonicalVT = VTys[SplatSize-1];
 | |
| 
 | |
|   // Build a canonical splat for this value.
 | |
|   SDValue Elt = DAG.getConstant(Val, MVT::i32);
 | |
|   SmallVector<SDValue, 8> Ops;
 | |
|   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
 | |
|   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
 | |
|                               &Ops[0], Ops.size());
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, ReqVT, Res);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
 | |
|                                 SelectionDAG &DAG, DebugLoc dl,
 | |
|                                 EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
 | |
| /// specified intrinsic ID.
 | |
| static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
 | |
|                                 SDValue Op2, SelectionDAG &DAG,
 | |
|                                 DebugLoc dl, EVT DestVT = MVT::Other) {
 | |
|   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
 | |
|   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
 | |
|                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
 | |
| /// amount.  The result has the specified value type.
 | |
| static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
 | |
|                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
 | |
|   // Force LHS/RHS to be the right type.
 | |
|   LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, LHS);
 | |
|   RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, RHS);
 | |
| 
 | |
|   int Ops[16];
 | |
|   for (unsigned i = 0; i != 16; ++i)
 | |
|     Ops[i] = i + Amt;
 | |
|   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
 | |
| }
 | |
| 
 | |
| // If this is a case we can't handle, return null and let the default
 | |
| // expansion code take care of it.  If we CAN select this case, and if it
 | |
| // selects to a single instruction, return Op.  Otherwise, if we can codegen
 | |
| // this case more efficiently than a constant pool load, lower it to the
 | |
| // sequence of ops that should be used.
 | |
| SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
 | |
|   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
 | |
| 
 | |
|   // Check if this is a splat of a constant value.
 | |
|   APInt APSplatBits, APSplatUndef;
 | |
|   unsigned SplatBitSize;
 | |
|   bool HasAnyUndefs;
 | |
|   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
 | |
|                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
 | |
|     return SDValue();
 | |
| 
 | |
|   unsigned SplatBits = APSplatBits.getZExtValue();
 | |
|   unsigned SplatUndef = APSplatUndef.getZExtValue();
 | |
|   unsigned SplatSize = SplatBitSize / 8;
 | |
| 
 | |
|   // First, handle single instruction cases.
 | |
| 
 | |
|   // All zeros?
 | |
|   if (SplatBits == 0) {
 | |
|     // Canonicalize all zero vectors to be v4i32.
 | |
|     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
 | |
|       SDValue Z = DAG.getConstant(0, MVT::i32);
 | |
|       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
 | |
|       Op = DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Z);
 | |
|     }
 | |
|     return Op;
 | |
|   }
 | |
| 
 | |
|   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
 | |
|   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
 | |
|                     (32-SplatBitSize));
 | |
|   if (SextVal >= -16 && SextVal <= 15)
 | |
|     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
 | |
| 
 | |
| 
 | |
|   // Two instruction sequences.
 | |
| 
 | |
|   // If this value is in the range [-32,30] and is even, use:
 | |
|   //    tmp = VSPLTI[bhw], result = add tmp, tmp
 | |
|   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
 | |
|     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
 | |
|     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
 | |
|   }
 | |
| 
 | |
|   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
 | |
|   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
 | |
|   // for fneg/fabs.
 | |
|   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
 | |
|     // Make -1 and vspltisw -1:
 | |
|     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
 | |
| 
 | |
|     // Make the VSLW intrinsic, computing 0x8000_0000.
 | |
|     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
 | |
|                                    OnesV, DAG, dl);
 | |
| 
 | |
|     // xor by OnesV to invert it.
 | |
|     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is a wide variety of vsplti*, binop self cases.
 | |
|   static const signed char SplatCsts[] = {
 | |
|     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
 | |
|     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
 | |
|   };
 | |
| 
 | |
|   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
 | |
|     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
 | |
|     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
 | |
|     int i = SplatCsts[idx];
 | |
| 
 | |
|     // Figure out what shift amount will be used by altivec if shifted by i in
 | |
|     // this splat size.
 | |
|     unsigned TypeShiftAmt = i & (SplatBitSize-1);
 | |
| 
 | |
|     // vsplti + shl self.
 | |
|     if (SextVal == (i << (int)TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
 | |
|         Intrinsic::ppc_altivec_vslw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + srl self.
 | |
|     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
 | |
|         Intrinsic::ppc_altivec_vsrw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + sra self.
 | |
|     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
 | |
|         Intrinsic::ppc_altivec_vsraw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // vsplti + rol self.
 | |
|     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
 | |
|                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
 | |
|       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
 | |
|       static const unsigned IIDs[] = { // Intrinsic to use for each size.
 | |
|         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
 | |
|         Intrinsic::ppc_altivec_vrlw
 | |
|       };
 | |
|       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
 | |
|       return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Res);
 | |
|     }
 | |
| 
 | |
|     // t = vsplti c, result = vsldoi t, t, 1
 | |
|     if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|     // t = vsplti c, result = vsldoi t, t, 2
 | |
|     if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|     // t = vsplti c, result = vsldoi t, t, 3
 | |
|     if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
 | |
|       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
 | |
|       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Three instruction sequences.
 | |
| 
 | |
|   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
 | |
|   if (SextVal >= 0 && SextVal <= 31) {
 | |
|     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
 | |
|     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
 | |
|     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
 | |
|   }
 | |
|   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
 | |
|   if (SextVal >= -31 && SextVal <= 0) {
 | |
|     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
 | |
|     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
 | |
|     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), LHS);
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
 | |
| /// the specified operations to build the shuffle.
 | |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
 | |
|                                       SDValue RHS, SelectionDAG &DAG,
 | |
|                                       DebugLoc dl) {
 | |
|   unsigned OpNum = (PFEntry >> 26) & 0x0F;
 | |
|   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
 | |
|   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
 | |
| 
 | |
|   enum {
 | |
|     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
 | |
|     OP_VMRGHW,
 | |
|     OP_VMRGLW,
 | |
|     OP_VSPLTISW0,
 | |
|     OP_VSPLTISW1,
 | |
|     OP_VSPLTISW2,
 | |
|     OP_VSPLTISW3,
 | |
|     OP_VSLDOI4,
 | |
|     OP_VSLDOI8,
 | |
|     OP_VSLDOI12
 | |
|   };
 | |
| 
 | |
|   if (OpNum == OP_COPY) {
 | |
|     if (LHSID == (1*9+2)*9+3) return LHS;
 | |
|     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
 | |
|     return RHS;
 | |
|   }
 | |
| 
 | |
|   SDValue OpLHS, OpRHS;
 | |
|   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
 | |
|   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
 | |
| 
 | |
|   int ShufIdxs[16];
 | |
|   switch (OpNum) {
 | |
|   default: llvm_unreachable("Unknown i32 permute!");
 | |
|   case OP_VMRGHW:
 | |
|     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
 | |
|     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
 | |
|     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
 | |
|     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
 | |
|     break;
 | |
|   case OP_VMRGLW:
 | |
|     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
 | |
|     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
 | |
|     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
 | |
|     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
 | |
|     break;
 | |
|   case OP_VSPLTISW0:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+0;
 | |
|     break;
 | |
|   case OP_VSPLTISW1:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+4;
 | |
|     break;
 | |
|   case OP_VSPLTISW2:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+8;
 | |
|     break;
 | |
|   case OP_VSPLTISW3:
 | |
|     for (unsigned i = 0; i != 16; ++i)
 | |
|       ShufIdxs[i] = (i&3)+12;
 | |
|     break;
 | |
|   case OP_VSLDOI4:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
 | |
|   case OP_VSLDOI8:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
 | |
|   case OP_VSLDOI12:
 | |
|     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
 | |
|   }
 | |
|   EVT VT = OpLHS.getValueType();
 | |
|   OpLHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpLHS);
 | |
|   OpRHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OpRHS);
 | |
|   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
 | |
|   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, T);
 | |
| }
 | |
| 
 | |
| /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
 | |
| /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
 | |
| /// return the code it can be lowered into.  Worst case, it can always be
 | |
| /// lowered into a vperm.
 | |
| SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
 | |
|                                                SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   SDValue V1 = Op.getOperand(0);
 | |
|   SDValue V2 = Op.getOperand(1);
 | |
|   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
 | |
|   EVT VT = Op.getValueType();
 | |
| 
 | |
|   // Cases that are handled by instructions that take permute immediates
 | |
|   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
 | |
|   // selected by the instruction selector.
 | |
|   if (V2.getOpcode() == ISD::UNDEF) {
 | |
|     if (PPC::isSplatShuffleMask(SVOp, 1) ||
 | |
|         PPC::isSplatShuffleMask(SVOp, 2) ||
 | |
|         PPC::isSplatShuffleMask(SVOp, 4) ||
 | |
|         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
 | |
|         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
 | |
|         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
 | |
|         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
 | |
|         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
 | |
|       return Op;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Altivec has a variety of "shuffle immediates" that take two vector inputs
 | |
|   // and produce a fixed permutation.  If any of these match, do not lower to
 | |
|   // VPERM.
 | |
|   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
 | |
|       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
 | |
|       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
 | |
|       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
 | |
|       PPC::isVMRGHShuffleMask(SVOp, 4, false))
 | |
|     return Op;
 | |
| 
 | |
|   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
 | |
|   // perfect shuffle table to emit an optimal matching sequence.
 | |
|   SmallVector<int, 16> PermMask;
 | |
|   SVOp->getMask(PermMask);
 | |
|   
 | |
|   unsigned PFIndexes[4];
 | |
|   bool isFourElementShuffle = true;
 | |
|   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
 | |
|     unsigned EltNo = 8;   // Start out undef.
 | |
|     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
 | |
|       if (PermMask[i*4+j] < 0)
 | |
|         continue;   // Undef, ignore it.
 | |
| 
 | |
|       unsigned ByteSource = PermMask[i*4+j];
 | |
|       if ((ByteSource & 3) != j) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       if (EltNo == 8) {
 | |
|         EltNo = ByteSource/4;
 | |
|       } else if (EltNo != ByteSource/4) {
 | |
|         isFourElementShuffle = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     PFIndexes[i] = EltNo;
 | |
|   }
 | |
| 
 | |
|   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
 | |
|   // perfect shuffle vector to determine if it is cost effective to do this as
 | |
|   // discrete instructions, or whether we should use a vperm.
 | |
|   if (isFourElementShuffle) {
 | |
|     // Compute the index in the perfect shuffle table.
 | |
|     unsigned PFTableIndex =
 | |
|       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
 | |
| 
 | |
|     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
 | |
|     unsigned Cost  = (PFEntry >> 30);
 | |
| 
 | |
|     // Determining when to avoid vperm is tricky.  Many things affect the cost
 | |
|     // of vperm, particularly how many times the perm mask needs to be computed.
 | |
|     // For example, if the perm mask can be hoisted out of a loop or is already
 | |
|     // used (perhaps because there are multiple permutes with the same shuffle
 | |
|     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
 | |
|     // the loop requires an extra register.
 | |
|     //
 | |
|     // As a compromise, we only emit discrete instructions if the shuffle can be
 | |
|     // generated in 3 or fewer operations.  When we have loop information
 | |
|     // available, if this block is within a loop, we should avoid using vperm
 | |
|     // for 3-operation perms and use a constant pool load instead.
 | |
|     if (Cost < 3)
 | |
|       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
 | |
|   }
 | |
| 
 | |
|   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
 | |
|   // vector that will get spilled to the constant pool.
 | |
|   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
 | |
| 
 | |
|   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
 | |
|   // that it is in input element units, not in bytes.  Convert now.
 | |
|   EVT EltVT = V1.getValueType().getVectorElementType();
 | |
|   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
 | |
| 
 | |
|   SmallVector<SDValue, 16> ResultMask;
 | |
|   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
 | |
|     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
 | |
| 
 | |
|     for (unsigned j = 0; j != BytesPerElement; ++j)
 | |
|       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
 | |
|                                            MVT::i32));
 | |
|   }
 | |
| 
 | |
|   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
 | |
|                                     &ResultMask[0], ResultMask.size());
 | |
|   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
 | |
| }
 | |
| 
 | |
| /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
 | |
| /// altivec comparison.  If it is, return true and fill in Opc/isDot with
 | |
| /// information about the intrinsic.
 | |
| static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
 | |
|                                   bool &isDot) {
 | |
|   unsigned IntrinsicID =
 | |
|     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
 | |
|   CompareOpc = -1;
 | |
|   isDot = false;
 | |
|   switch (IntrinsicID) {
 | |
|   default: return false;
 | |
|     // Comparison predicates.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
 | |
| 
 | |
|     // Normal Comparisons.
 | |
|   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
 | |
|   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
 | |
| /// lower, do it, otherwise return null.
 | |
| SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
 | |
|                                                      SelectionDAG &DAG) {
 | |
|   // If this is a lowered altivec predicate compare, CompareOpc is set to the
 | |
|   // opcode number of the comparison.
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   int CompareOpc;
 | |
|   bool isDot;
 | |
|   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
 | |
|     return SDValue();    // Don't custom lower most intrinsics.
 | |
| 
 | |
|   // If this is a non-dot comparison, make the VCMP node and we are done.
 | |
|   if (!isDot) {
 | |
|     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
 | |
|                                 Op.getOperand(1), Op.getOperand(2),
 | |
|                                 DAG.getConstant(CompareOpc, MVT::i32));
 | |
|     return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Tmp);
 | |
|   }
 | |
| 
 | |
|   // Create the PPCISD altivec 'dot' comparison node.
 | |
|   SDValue Ops[] = {
 | |
|     Op.getOperand(2),  // LHS
 | |
|     Op.getOperand(3),  // RHS
 | |
|     DAG.getConstant(CompareOpc, MVT::i32)
 | |
|   };
 | |
|   std::vector<EVT> VTs;
 | |
|   VTs.push_back(Op.getOperand(2).getValueType());
 | |
|   VTs.push_back(MVT::Flag);
 | |
|   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
 | |
| 
 | |
|   // Now that we have the comparison, emit a copy from the CR to a GPR.
 | |
|   // This is flagged to the above dot comparison.
 | |
|   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
 | |
|                                 DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                                 CompNode.getValue(1));
 | |
| 
 | |
|   // Unpack the result based on how the target uses it.
 | |
|   unsigned BitNo;   // Bit # of CR6.
 | |
|   bool InvertBit;   // Invert result?
 | |
|   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
 | |
|   default:  // Can't happen, don't crash on invalid number though.
 | |
|   case 0:   // Return the value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = false;
 | |
|     break;
 | |
|   case 1:   // Return the inverted value of the EQ bit of CR6.
 | |
|     BitNo = 0; InvertBit = true;
 | |
|     break;
 | |
|   case 2:   // Return the value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = false;
 | |
|     break;
 | |
|   case 3:   // Return the inverted value of the LT bit of CR6.
 | |
|     BitNo = 2; InvertBit = true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Shift the bit into the low position.
 | |
|   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
 | |
|                       DAG.getConstant(8-(3-BitNo), MVT::i32));
 | |
|   // Isolate the bit.
 | |
|   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
 | |
|                       DAG.getConstant(1, MVT::i32));
 | |
| 
 | |
|   // If we are supposed to, toggle the bit.
 | |
|   if (InvertBit)
 | |
|     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
 | |
|                         DAG.getConstant(1, MVT::i32));
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
 | |
|                                                    SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // Create a stack slot that is 16-byte aligned.
 | |
|   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
 | |
|   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
 | |
| 
 | |
|   // Store the input value into Value#0 of the stack slot.
 | |
|   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
 | |
|                                Op.getOperand(0), FIdx, NULL, 0,
 | |
|                                false, false, 0);
 | |
|   // Load it out.
 | |
|   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, NULL, 0,
 | |
|                      false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   if (Op.getValueType() == MVT::v4i32) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
 | |
|     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
 | |
| 
 | |
|     SDValue RHSSwap =   // = vrlw RHS, 16
 | |
|       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
 | |
| 
 | |
|     // Shrinkify inputs to v8i16.
 | |
|     LHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, LHS);
 | |
|     RHS = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHS);
 | |
|     RHSSwap = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, RHSSwap);
 | |
| 
 | |
|     // Low parts multiplied together, generating 32-bit results (we ignore the
 | |
|     // top parts).
 | |
|     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
 | |
|                                         LHS, RHS, DAG, dl, MVT::v4i32);
 | |
| 
 | |
|     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
 | |
|                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
 | |
|     // Shift the high parts up 16 bits.
 | |
|     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
 | |
|                               Neg16, DAG, dl);
 | |
|     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
 | |
|   } else if (Op.getValueType() == MVT::v8i16) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
 | |
| 
 | |
|     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
 | |
|                             LHS, RHS, Zero, DAG, dl);
 | |
|   } else if (Op.getValueType() == MVT::v16i8) {
 | |
|     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
 | |
| 
 | |
|     // Multiply the even 8-bit parts, producing 16-bit sums.
 | |
|     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
 | |
|                                            LHS, RHS, DAG, dl, MVT::v8i16);
 | |
|     EvenParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, EvenParts);
 | |
| 
 | |
|     // Multiply the odd 8-bit parts, producing 16-bit sums.
 | |
|     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
 | |
|                                           LHS, RHS, DAG, dl, MVT::v8i16);
 | |
|     OddParts = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, OddParts);
 | |
| 
 | |
|     // Merge the results together.
 | |
|     int Ops[16];
 | |
|     for (unsigned i = 0; i != 8; ++i) {
 | |
|       Ops[i*2  ] = 2*i+1;
 | |
|       Ops[i*2+1] = 2*i+1+16;
 | |
|     }
 | |
|     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
 | |
|   } else {
 | |
|     llvm_unreachable("Unknown mul to lower!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LowerOperation - Provide custom lowering hooks for some operations.
 | |
| ///
 | |
| SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
 | |
|   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
 | |
|   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
 | |
|   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
 | |
|   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
 | |
|   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
 | |
|   case ISD::SETCC:              return LowerSETCC(Op, DAG);
 | |
|   case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
 | |
|   case ISD::VASTART:
 | |
|     return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
 | |
|                         VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
 | |
| 
 | |
|   case ISD::VAARG:
 | |
|     return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
 | |
|                       VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
 | |
| 
 | |
|   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
 | |
|   case ISD::DYNAMIC_STACKALLOC:
 | |
|     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
 | |
| 
 | |
|   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
 | |
|   case ISD::FP_TO_UINT:
 | |
|   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
 | |
|                                                        Op.getDebugLoc());
 | |
|   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
 | |
|   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
 | |
| 
 | |
|   // Lower 64-bit shifts.
 | |
|   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
 | |
|   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
 | |
|   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
 | |
| 
 | |
|   // Vector-related lowering.
 | |
|   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
 | |
|   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
 | |
|   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
 | |
|   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
 | |
|   case ISD::MUL:                return LowerMUL(Op, DAG);
 | |
| 
 | |
|   // Frame & Return address.
 | |
|   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
 | |
|   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
 | |
|   }
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
 | |
|                                            SmallVectorImpl<SDValue>&Results,
 | |
|                                            SelectionDAG &DAG) {
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   switch (N->getOpcode()) {
 | |
|   default:
 | |
|     assert(false && "Do not know how to custom type legalize this operation!");
 | |
|     return;
 | |
|   case ISD::FP_ROUND_INREG: {
 | |
|     assert(N->getValueType(0) == MVT::ppcf128);
 | |
|     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
 | |
|     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                              MVT::f64, N->getOperand(0),
 | |
|                              DAG.getIntPtrConstant(0));
 | |
|     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
 | |
|                              MVT::f64, N->getOperand(0),
 | |
|                              DAG.getIntPtrConstant(1));
 | |
| 
 | |
|     // This sequence changes FPSCR to do round-to-zero, adds the two halves
 | |
|     // of the long double, and puts FPSCR back the way it was.  We do not
 | |
|     // actually model FPSCR.
 | |
|     std::vector<EVT> NodeTys;
 | |
|     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
 | |
| 
 | |
|     NodeTys.push_back(MVT::f64);   // Return register
 | |
|     NodeTys.push_back(MVT::Flag);    // Returns a flag for later insns
 | |
|     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
 | |
|     MFFSreg = Result.getValue(0);
 | |
|     InFlag = Result.getValue(1);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::Flag);   // Returns a flag
 | |
|     Ops[0] = DAG.getConstant(31, MVT::i32);
 | |
|     Ops[1] = InFlag;
 | |
|     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
 | |
|     InFlag = Result.getValue(0);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::Flag);   // Returns a flag
 | |
|     Ops[0] = DAG.getConstant(30, MVT::i32);
 | |
|     Ops[1] = InFlag;
 | |
|     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
 | |
|     InFlag = Result.getValue(0);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::f64);    // result of add
 | |
|     NodeTys.push_back(MVT::Flag);   // Returns a flag
 | |
|     Ops[0] = Lo;
 | |
|     Ops[1] = Hi;
 | |
|     Ops[2] = InFlag;
 | |
|     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
 | |
|     FPreg = Result.getValue(0);
 | |
|     InFlag = Result.getValue(1);
 | |
| 
 | |
|     NodeTys.clear();
 | |
|     NodeTys.push_back(MVT::f64);
 | |
|     Ops[0] = DAG.getConstant(1, MVT::i32);
 | |
|     Ops[1] = MFFSreg;
 | |
|     Ops[2] = FPreg;
 | |
|     Ops[3] = InFlag;
 | |
|     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
 | |
|     FPreg = Result.getValue(0);
 | |
| 
 | |
|     // We know the low half is about to be thrown away, so just use something
 | |
|     // convenient.
 | |
|     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
 | |
|                                 FPreg, FPreg));
 | |
|     return;
 | |
|   }
 | |
|   case ISD::FP_TO_SINT:
 | |
|     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
 | |
|     return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Other Lowering Code
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
 | |
|                                     bool is64bit, unsigned BinOpcode) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptrA = MI->getOperand(1).getReg();
 | |
|   unsigned ptrB = MI->getOperand(2).getReg();
 | |
|   unsigned incr = MI->getOperand(3).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, loopMBB);
 | |
|   F->insert(It, exitMBB);
 | |
|   exitMBB->transferSuccessors(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|   unsigned TmpReg = (!BinOpcode) ? incr :
 | |
|     RegInfo.createVirtualRegister(
 | |
|        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | |
|                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   //  loopMBB:
 | |
|   //   l[wd]arx dest, ptr
 | |
|   //   add r0, dest, incr
 | |
|   //   st[wd]cx. r0, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   BB = loopMBB;
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
 | |
|     .addReg(ptrA).addReg(ptrB);
 | |
|   if (BinOpcode)
 | |
|     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | |
|     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
 | |
|   BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
 | |
|                                             MachineBasicBlock *BB,
 | |
|                                             bool is8bit,    // operation
 | |
|                                             unsigned BinOpcode) const {
 | |
|   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
|   // In 64 bit mode we have to use 64 bits for addresses, even though the
 | |
|   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
 | |
|   // registers without caring whether they're 32 or 64, but here we're
 | |
|   // doing actual arithmetic on the addresses.
 | |
|   bool is64bit = PPCSubTarget.isPPC64();
 | |
| 
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction *F = BB->getParent();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   unsigned dest = MI->getOperand(0).getReg();
 | |
|   unsigned ptrA = MI->getOperand(1).getReg();
 | |
|   unsigned ptrB = MI->getOperand(2).getReg();
 | |
|   unsigned incr = MI->getOperand(3).getReg();
 | |
|   DebugLoc dl = MI->getDebugLoc();
 | |
| 
 | |
|   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|   F->insert(It, loopMBB);
 | |
|   F->insert(It, exitMBB);
 | |
|   exitMBB->transferSuccessors(BB);
 | |
| 
 | |
|   MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | |
|               (const TargetRegisterClass *) &PPC::GPRCRegClass;
 | |
|   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | |
|   unsigned Ptr1Reg;
 | |
|   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
 | |
| 
 | |
|   //  thisMBB:
 | |
|   //   ...
 | |
|   //   fallthrough --> loopMBB
 | |
|   BB->addSuccessor(loopMBB);
 | |
| 
 | |
|   // The 4-byte load must be aligned, while a char or short may be
 | |
|   // anywhere in the word.  Hence all this nasty bookkeeping code.
 | |
|   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | |
|   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | |
|   //   xori shift, shift1, 24 [16]
 | |
|   //   rlwinm ptr, ptr1, 0, 0, 29
 | |
|   //   slw incr2, incr, shift
 | |
|   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | |
|   //   slw mask, mask2, shift
 | |
|   //  loopMBB:
 | |
|   //   lwarx tmpDest, ptr
 | |
|   //   add tmp, tmpDest, incr2
 | |
|   //   andc tmp2, tmpDest, mask
 | |
|   //   and tmp3, tmp, mask
 | |
|   //   or tmp4, tmp3, tmp2
 | |
|   //   stwcx. tmp4, ptr
 | |
|   //   bne- loopMBB
 | |
|   //   fallthrough --> exitMBB
 | |
|   //   srw dest, tmpDest, shift
 | |
| 
 | |
|   if (ptrA!=PPC::R0) {
 | |
|     Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | |
|       .addReg(ptrA).addReg(ptrB);
 | |
|   } else {
 | |
|     Ptr1Reg = ptrB;
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | |
|       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | |
|       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | |
|   if (is64bit)
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | |
|       .addReg(Ptr1Reg).addImm(0).addImm(61);
 | |
|   else
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | |
|       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | |
|   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
 | |
|       .addReg(incr).addReg(ShiftReg);
 | |
|   if (is8bit)
 | |
|     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | |
|   else {
 | |
|     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | |
|     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
 | |
|   }
 | |
|   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | |
|       .addReg(Mask2Reg).addReg(ShiftReg);
 | |
| 
 | |
|   BB = loopMBB;
 | |
|   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | |
|     .addReg(PPC::R0).addReg(PtrReg);
 | |
|   if (BinOpcode)
 | |
|     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
 | |
|       .addReg(Incr2Reg).addReg(TmpDestReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
 | |
|     .addReg(TmpDestReg).addReg(MaskReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
 | |
|     .addReg(TmpReg).addReg(MaskReg);
 | |
|   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
 | |
|     .addReg(Tmp3Reg).addReg(Tmp2Reg);
 | |
|   BuildMI(BB, dl, TII->get(PPC::STWCX))
 | |
|     .addReg(Tmp4Reg).addReg(PPC::R0).addReg(PtrReg);
 | |
|   BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
 | |
|   BB->addSuccessor(loopMBB);
 | |
|   BB->addSuccessor(exitMBB);
 | |
| 
 | |
|   //  exitMBB:
 | |
|   //   ...
 | |
|   BB = exitMBB;
 | |
|   BuildMI(BB, dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg).addReg(ShiftReg);
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock *
 | |
| PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
 | |
|                                                MachineBasicBlock *BB,
 | |
|                    DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
 | |
|   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
 | |
| 
 | |
|   // To "insert" these instructions we actually have to insert their
 | |
|   // control-flow patterns.
 | |
|   const BasicBlock *LLVM_BB = BB->getBasicBlock();
 | |
|   MachineFunction::iterator It = BB;
 | |
|   ++It;
 | |
| 
 | |
|   MachineFunction *F = BB->getParent();
 | |
| 
 | |
|   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
 | |
|       MI->getOpcode() == PPC::SELECT_CC_I8 ||
 | |
|       MI->getOpcode() == PPC::SELECT_CC_F4 ||
 | |
|       MI->getOpcode() == PPC::SELECT_CC_F8 ||
 | |
|       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
 | |
| 
 | |
|     // The incoming instruction knows the destination vreg to set, the
 | |
|     // condition code register to branch on, the true/false values to
 | |
|     // select between, and a branch opcode to use.
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //  ...
 | |
|     //   TrueVal = ...
 | |
|     //   cmpTY ccX, r1, r2
 | |
|     //   bCC copy1MBB
 | |
|     //   fallthrough --> copy0MBB
 | |
|     MachineBasicBlock *thisMBB = BB;
 | |
|     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     unsigned SelectPred = MI->getOperand(4).getImm();
 | |
|     DebugLoc dl = MI->getDebugLoc();
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
 | |
|     F->insert(It, copy0MBB);
 | |
|     F->insert(It, sinkMBB);
 | |
|     // Update machine-CFG edges by first adding all successors of the current
 | |
|     // block to the new block which will contain the Phi node for the select.
 | |
|     // Also inform sdisel of the edge changes.
 | |
|     for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), 
 | |
|            E = BB->succ_end(); I != E; ++I) {
 | |
|       EM->insert(std::make_pair(*I, sinkMBB));
 | |
|       sinkMBB->addSuccessor(*I);
 | |
|     }
 | |
|     // Next, remove all successors of the current block, and add the true
 | |
|     // and fallthrough blocks as its successors.
 | |
|     while (!BB->succ_empty())
 | |
|       BB->removeSuccessor(BB->succ_begin());
 | |
|     // Next, add the true and fallthrough blocks as its successors.
 | |
|     BB->addSuccessor(copy0MBB);
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  copy0MBB:
 | |
|     //   %FalseValue = ...
 | |
|     //   # fallthrough to sinkMBB
 | |
|     BB = copy0MBB;
 | |
| 
 | |
|     // Update machine-CFG edges
 | |
|     BB->addSuccessor(sinkMBB);
 | |
| 
 | |
|     //  sinkMBB:
 | |
|     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
 | |
|     //  ...
 | |
|     BB = sinkMBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::PHI), MI->getOperand(0).getReg())
 | |
|       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
 | |
|       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
 | |
|   }
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
 | |
|     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
 | |
|     BB = EmitAtomicBinary(MI, BB, false, 0);
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
 | |
|     BB = EmitAtomicBinary(MI, BB, true, 0);
 | |
| 
 | |
|   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
 | |
|            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
 | |
|     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
 | |
| 
 | |
|     unsigned dest   = MI->getOperand(0).getReg();
 | |
|     unsigned ptrA   = MI->getOperand(1).getReg();
 | |
|     unsigned ptrB   = MI->getOperand(2).getReg();
 | |
|     unsigned oldval = MI->getOperand(3).getReg();
 | |
|     unsigned newval = MI->getOperand(4).getReg();
 | |
|     DebugLoc dl     = MI->getDebugLoc();
 | |
| 
 | |
|     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, loop1MBB);
 | |
|     F->insert(It, loop2MBB);
 | |
|     F->insert(It, midMBB);
 | |
|     F->insert(It, exitMBB);
 | |
|     exitMBB->transferSuccessors(BB);
 | |
| 
 | |
|     //  thisMBB:
 | |
|     //   ...
 | |
|     //   fallthrough --> loopMBB
 | |
|     BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|     // loop1MBB:
 | |
|     //   l[wd]arx dest, ptr
 | |
|     //   cmp[wd] dest, oldval
 | |
|     //   bne- midMBB
 | |
|     // loop2MBB:
 | |
|     //   st[wd]cx. newval, ptr
 | |
|     //   bne- loopMBB
 | |
|     //   b exitBB
 | |
|     // midMBB:
 | |
|     //   st[wd]cx. dest, ptr
 | |
|     // exitBB:
 | |
|     BB = loop1MBB;
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
 | |
|       .addReg(ptrA).addReg(ptrB);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
 | |
|       .addReg(oldval).addReg(dest);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(midMBB);
 | |
| 
 | |
|     BB = loop2MBB;
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | |
|       .addReg(newval).addReg(ptrA).addReg(ptrB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop1MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     BB = midMBB;
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
 | |
|       .addReg(dest).addReg(ptrA).addReg(ptrB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     //  exitMBB:
 | |
|     //   ...
 | |
|     BB = exitMBB;
 | |
|   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
 | |
|              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
 | |
|     // We must use 64-bit registers for addresses when targeting 64-bit,
 | |
|     // since we're actually doing arithmetic on them.  Other registers
 | |
|     // can be 32-bit.
 | |
|     bool is64bit = PPCSubTarget.isPPC64();
 | |
|     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
 | |
| 
 | |
|     unsigned dest   = MI->getOperand(0).getReg();
 | |
|     unsigned ptrA   = MI->getOperand(1).getReg();
 | |
|     unsigned ptrB   = MI->getOperand(2).getReg();
 | |
|     unsigned oldval = MI->getOperand(3).getReg();
 | |
|     unsigned newval = MI->getOperand(4).getReg();
 | |
|     DebugLoc dl     = MI->getDebugLoc();
 | |
| 
 | |
|     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
 | |
|     F->insert(It, loop1MBB);
 | |
|     F->insert(It, loop2MBB);
 | |
|     F->insert(It, midMBB);
 | |
|     F->insert(It, exitMBB);
 | |
|     exitMBB->transferSuccessors(BB);
 | |
| 
 | |
|     MachineRegisterInfo &RegInfo = F->getRegInfo();
 | |
|     const TargetRegisterClass *RC =
 | |
|       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
 | |
|                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
 | |
|     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
 | |
|     unsigned Ptr1Reg;
 | |
|     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
 | |
|     //  thisMBB:
 | |
|     //   ...
 | |
|     //   fallthrough --> loopMBB
 | |
|     BB->addSuccessor(loop1MBB);
 | |
| 
 | |
|     // The 4-byte load must be aligned, while a char or short may be
 | |
|     // anywhere in the word.  Hence all this nasty bookkeeping code.
 | |
|     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
 | |
|     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
 | |
|     //   xori shift, shift1, 24 [16]
 | |
|     //   rlwinm ptr, ptr1, 0, 0, 29
 | |
|     //   slw newval2, newval, shift
 | |
|     //   slw oldval2, oldval,shift
 | |
|     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
 | |
|     //   slw mask, mask2, shift
 | |
|     //   and newval3, newval2, mask
 | |
|     //   and oldval3, oldval2, mask
 | |
|     // loop1MBB:
 | |
|     //   lwarx tmpDest, ptr
 | |
|     //   and tmp, tmpDest, mask
 | |
|     //   cmpw tmp, oldval3
 | |
|     //   bne- midMBB
 | |
|     // loop2MBB:
 | |
|     //   andc tmp2, tmpDest, mask
 | |
|     //   or tmp4, tmp2, newval3
 | |
|     //   stwcx. tmp4, ptr
 | |
|     //   bne- loop1MBB
 | |
|     //   b exitBB
 | |
|     // midMBB:
 | |
|     //   stwcx. tmpDest, ptr
 | |
|     // exitBB:
 | |
|     //   srw dest, tmpDest, shift
 | |
|     if (ptrA!=PPC::R0) {
 | |
|       Ptr1Reg = RegInfo.createVirtualRegister(RC);
 | |
|       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
 | |
|         .addReg(ptrA).addReg(ptrB);
 | |
|     } else {
 | |
|       Ptr1Reg = ptrB;
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
 | |
|         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
 | |
|     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
 | |
|         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
 | |
|     if (is64bit)
 | |
|       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
 | |
|         .addReg(Ptr1Reg).addImm(0).addImm(61);
 | |
|     else
 | |
|       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
 | |
|         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
 | |
|         .addReg(newval).addReg(ShiftReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
 | |
|         .addReg(oldval).addReg(ShiftReg);
 | |
|     if (is8bit)
 | |
|       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
 | |
|     else {
 | |
|       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
 | |
|       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
 | |
|         .addReg(Mask3Reg).addImm(65535);
 | |
|     }
 | |
|     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
 | |
|         .addReg(Mask2Reg).addReg(ShiftReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
 | |
|         .addReg(NewVal2Reg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
 | |
|         .addReg(OldVal2Reg).addReg(MaskReg);
 | |
| 
 | |
|     BB = loop1MBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
 | |
|         .addReg(PPC::R0).addReg(PtrReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
 | |
|         .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
 | |
|         .addReg(TmpReg).addReg(OldVal3Reg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
 | |
|     BB->addSuccessor(loop2MBB);
 | |
|     BB->addSuccessor(midMBB);
 | |
| 
 | |
|     BB = loop2MBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
 | |
|         .addReg(TmpDestReg).addReg(MaskReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
 | |
|         .addReg(Tmp2Reg).addReg(NewVal3Reg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
 | |
|         .addReg(PPC::R0).addReg(PtrReg);
 | |
|     BuildMI(BB, dl, TII->get(PPC::BCC))
 | |
|       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
 | |
|     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
 | |
|     BB->addSuccessor(loop1MBB);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     BB = midMBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
 | |
|       .addReg(PPC::R0).addReg(PtrReg);
 | |
|     BB->addSuccessor(exitMBB);
 | |
| 
 | |
|     //  exitMBB:
 | |
|     //   ...
 | |
|     BB = exitMBB;
 | |
|     BuildMI(BB, dl, TII->get(PPC::SRW),dest).addReg(TmpReg).addReg(ShiftReg);
 | |
|   } else {
 | |
|     llvm_unreachable("Unexpected instr type to insert");
 | |
|   }
 | |
| 
 | |
|   F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Target Optimization Hooks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
 | |
|                                              DAGCombinerInfo &DCI) const {
 | |
|   TargetMachine &TM = getTargetMachine();
 | |
|   SelectionDAG &DAG = DCI.DAG;
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   switch (N->getOpcode()) {
 | |
|   default: break;
 | |
|   case PPCISD::SHL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->getZExtValue() == 0)   // 0 << V -> 0.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case PPCISD::SRL:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->getZExtValue() == 0)   // 0 >>u V -> 0.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
|   case PPCISD::SRA:
 | |
|     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
 | |
|       if (C->getZExtValue() == 0 ||   //  0 >>s V -> 0.
 | |
|           C->isAllOnesValue())    // -1 >>s V -> -1.
 | |
|         return N->getOperand(0);
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case ISD::SINT_TO_FP:
 | |
|     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
 | |
|       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
 | |
|         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
 | |
|         // We allow the src/dst to be either f32/f64, but the intermediate
 | |
|         // type must be i64.
 | |
|         if (N->getOperand(0).getValueType() == MVT::i64 &&
 | |
|             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
 | |
|           SDValue Val = N->getOperand(0).getOperand(0);
 | |
|           if (Val.getValueType() == MVT::f32) {
 | |
|             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | |
|             DCI.AddToWorklist(Val.getNode());
 | |
|           }
 | |
| 
 | |
|           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
 | |
|           DCI.AddToWorklist(Val.getNode());
 | |
|           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
 | |
|           DCI.AddToWorklist(Val.getNode());
 | |
|           if (N->getValueType(0) == MVT::f32) {
 | |
|             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
 | |
|                               DAG.getIntPtrConstant(0));
 | |
|             DCI.AddToWorklist(Val.getNode());
 | |
|           }
 | |
|           return Val;
 | |
|         } else if (N->getOperand(0).getValueType() == MVT::i32) {
 | |
|           // If the intermediate type is i32, we can avoid the load/store here
 | |
|           // too.
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case ISD::STORE:
 | |
|     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
 | |
|     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
 | |
|         !cast<StoreSDNode>(N)->isTruncatingStore() &&
 | |
|         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
 | |
|         N->getOperand(1).getValueType() == MVT::i32 &&
 | |
|         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
 | |
|       SDValue Val = N->getOperand(1).getOperand(0);
 | |
|       if (Val.getValueType() == MVT::f32) {
 | |
|         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
 | |
|         DCI.AddToWorklist(Val.getNode());
 | |
|       }
 | |
|       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
 | |
|       DCI.AddToWorklist(Val.getNode());
 | |
| 
 | |
|       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
 | |
|                         N->getOperand(2), N->getOperand(3));
 | |
|       DCI.AddToWorklist(Val.getNode());
 | |
|       return Val;
 | |
|     }
 | |
| 
 | |
|     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
 | |
|     if (cast<StoreSDNode>(N)->isUnindexed() &&
 | |
|         N->getOperand(1).getOpcode() == ISD::BSWAP &&
 | |
|         N->getOperand(1).getNode()->hasOneUse() &&
 | |
|         (N->getOperand(1).getValueType() == MVT::i32 ||
 | |
|          N->getOperand(1).getValueType() == MVT::i16)) {
 | |
|       SDValue BSwapOp = N->getOperand(1).getOperand(0);
 | |
|       // Do an any-extend to 32-bits if this is a half-word input.
 | |
|       if (BSwapOp.getValueType() == MVT::i16)
 | |
|         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
 | |
| 
 | |
|       SDValue Ops[] = {
 | |
|         N->getOperand(0), BSwapOp, N->getOperand(2),
 | |
|         DAG.getValueType(N->getOperand(1).getValueType())
 | |
|       };
 | |
|       return
 | |
|         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
 | |
|                                 Ops, array_lengthof(Ops),
 | |
|                                 cast<StoreSDNode>(N)->getMemoryVT(),
 | |
|                                 cast<StoreSDNode>(N)->getMemOperand());
 | |
|     }
 | |
|     break;
 | |
|   case ISD::BSWAP:
 | |
|     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
 | |
|     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
 | |
|         N->getOperand(0).hasOneUse() &&
 | |
|         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
 | |
|       SDValue Load = N->getOperand(0);
 | |
|       LoadSDNode *LD = cast<LoadSDNode>(Load);
 | |
|       // Create the byte-swapping load.
 | |
|       SDValue Ops[] = {
 | |
|         LD->getChain(),    // Chain
 | |
|         LD->getBasePtr(),  // Ptr
 | |
|         DAG.getValueType(N->getValueType(0)) // VT
 | |
|       };
 | |
|       SDValue BSLoad =
 | |
|         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
 | |
|                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
 | |
|                                 LD->getMemoryVT(), LD->getMemOperand());
 | |
| 
 | |
|       // If this is an i16 load, insert the truncate.
 | |
|       SDValue ResVal = BSLoad;
 | |
|       if (N->getValueType(0) == MVT::i16)
 | |
|         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
 | |
| 
 | |
|       // First, combine the bswap away.  This makes the value produced by the
 | |
|       // load dead.
 | |
|       DCI.CombineTo(N, ResVal);
 | |
| 
 | |
|       // Next, combine the load away, we give it a bogus result value but a real
 | |
|       // chain result.  The result value is dead because the bswap is dead.
 | |
|       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
 | |
| 
 | |
|       // Return N so it doesn't get rechecked!
 | |
|       return SDValue(N, 0);
 | |
|     }
 | |
| 
 | |
|     break;
 | |
|   case PPCISD::VCMP: {
 | |
|     // If a VCMPo node already exists with exactly the same operands as this
 | |
|     // node, use its result instead of this node (VCMPo computes both a CR6 and
 | |
|     // a normal output).
 | |
|     //
 | |
|     if (!N->getOperand(0).hasOneUse() &&
 | |
|         !N->getOperand(1).hasOneUse() &&
 | |
|         !N->getOperand(2).hasOneUse()) {
 | |
| 
 | |
|       // Scan all of the users of the LHS, looking for VCMPo's that match.
 | |
|       SDNode *VCMPoNode = 0;
 | |
| 
 | |
|       SDNode *LHSN = N->getOperand(0).getNode();
 | |
|       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
 | |
|            UI != E; ++UI)
 | |
|         if (UI->getOpcode() == PPCISD::VCMPo &&
 | |
|             UI->getOperand(1) == N->getOperand(1) &&
 | |
|             UI->getOperand(2) == N->getOperand(2) &&
 | |
|             UI->getOperand(0) == N->getOperand(0)) {
 | |
|           VCMPoNode = *UI;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // If there is no VCMPo node, or if the flag value has a single use, don't
 | |
|       // transform this.
 | |
|       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
 | |
|         break;
 | |
| 
 | |
|       // Look at the (necessarily single) use of the flag value.  If it has a
 | |
|       // chain, this transformation is more complex.  Note that multiple things
 | |
|       // could use the value result, which we should ignore.
 | |
|       SDNode *FlagUser = 0;
 | |
|       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
 | |
|            FlagUser == 0; ++UI) {
 | |
|         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
 | |
|         SDNode *User = *UI;
 | |
|         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
 | |
|           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
 | |
|             FlagUser = User;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
 | |
|       // give up for right now.
 | |
|       if (FlagUser->getOpcode() == PPCISD::MFCR)
 | |
|         return SDValue(VCMPoNode, 0);
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case ISD::BR_CC: {
 | |
|     // If this is a branch on an altivec predicate comparison, lower this so
 | |
|     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
 | |
|     // lowering is done pre-legalize, because the legalizer lowers the predicate
 | |
|     // compare down to code that is difficult to reassemble.
 | |
|     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
 | |
|     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
 | |
|     int CompareOpc;
 | |
|     bool isDot;
 | |
| 
 | |
|     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
 | |
|         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
 | |
|         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
 | |
|       assert(isDot && "Can't compare against a vector result!");
 | |
| 
 | |
|       // If this is a comparison against something other than 0/1, then we know
 | |
|       // that the condition is never/always true.
 | |
|       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
 | |
|       if (Val != 0 && Val != 1) {
 | |
|         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
 | |
|           return N->getOperand(0);
 | |
|         // Always !=, turn it into an unconditional branch.
 | |
|         return DAG.getNode(ISD::BR, dl, MVT::Other,
 | |
|                            N->getOperand(0), N->getOperand(4));
 | |
|       }
 | |
| 
 | |
|       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
 | |
| 
 | |
|       // Create the PPCISD altivec 'dot' comparison node.
 | |
|       std::vector<EVT> VTs;
 | |
|       SDValue Ops[] = {
 | |
|         LHS.getOperand(2),  // LHS of compare
 | |
|         LHS.getOperand(3),  // RHS of compare
 | |
|         DAG.getConstant(CompareOpc, MVT::i32)
 | |
|       };
 | |
|       VTs.push_back(LHS.getOperand(2).getValueType());
 | |
|       VTs.push_back(MVT::Flag);
 | |
|       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
 | |
| 
 | |
|       // Unpack the result based on how the target uses it.
 | |
|       PPC::Predicate CompOpc;
 | |
|       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
 | |
|       default:  // Can't happen, don't crash on invalid number though.
 | |
|       case 0:   // Branch on the value of the EQ bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
 | |
|         break;
 | |
|       case 1:   // Branch on the inverted value of the EQ bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
 | |
|         break;
 | |
|       case 2:   // Branch on the value of the LT bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
 | |
|         break;
 | |
|       case 3:   // Branch on the inverted value of the LT bit of CR6.
 | |
|         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
 | |
|                          DAG.getConstant(CompOpc, MVT::i32),
 | |
|                          DAG.getRegister(PPC::CR6, MVT::i32),
 | |
|                          N->getOperand(4), CompNode.getValue(1));
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return SDValue();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Inline Assembly Support
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
 | |
|                                                        const APInt &Mask,
 | |
|                                                        APInt &KnownZero,
 | |
|                                                        APInt &KnownOne,
 | |
|                                                        const SelectionDAG &DAG,
 | |
|                                                        unsigned Depth) const {
 | |
|   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
 | |
|   switch (Op.getOpcode()) {
 | |
|   default: break;
 | |
|   case PPCISD::LBRX: {
 | |
|     // lhbrx is known to have the top bits cleared out.
 | |
|     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
 | |
|       KnownZero = 0xFFFF0000;
 | |
|     break;
 | |
|   }
 | |
|   case ISD::INTRINSIC_WO_CHAIN: {
 | |
|     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
 | |
|     default: break;
 | |
|     case Intrinsic::ppc_altivec_vcmpbfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpeqfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpequw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgefp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtfp_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsb_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtsw_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtub_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuh_p:
 | |
|     case Intrinsic::ppc_altivec_vcmpgtuw_p:
 | |
|       KnownZero = ~1U;  // All bits but the low one are known to be zero.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// getConstraintType - Given a constraint, return the type of
 | |
| /// constraint it is for this target.
 | |
| PPCTargetLowering::ConstraintType
 | |
| PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     switch (Constraint[0]) {
 | |
|     default: break;
 | |
|     case 'b':
 | |
|     case 'r':
 | |
|     case 'f':
 | |
|     case 'v':
 | |
|     case 'y':
 | |
|       return C_RegisterClass;
 | |
|     }
 | |
|   }
 | |
|   return TargetLowering::getConstraintType(Constraint);
 | |
| }
 | |
| 
 | |
| std::pair<unsigned, const TargetRegisterClass*>
 | |
| PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
 | |
|                                                 EVT VT) const {
 | |
|   if (Constraint.size() == 1) {
 | |
|     // GCC RS6000 Constraint Letters
 | |
|     switch (Constraint[0]) {
 | |
|     case 'b':   // R1-R31
 | |
|     case 'r':   // R0-R31
 | |
|       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
 | |
|         return std::make_pair(0U, PPC::G8RCRegisterClass);
 | |
|       return std::make_pair(0U, PPC::GPRCRegisterClass);
 | |
|     case 'f':
 | |
|       if (VT == MVT::f32)
 | |
|         return std::make_pair(0U, PPC::F4RCRegisterClass);
 | |
|       else if (VT == MVT::f64)
 | |
|         return std::make_pair(0U, PPC::F8RCRegisterClass);
 | |
|       break;
 | |
|     case 'v':
 | |
|       return std::make_pair(0U, PPC::VRRCRegisterClass);
 | |
|     case 'y':   // crrc
 | |
|       return std::make_pair(0U, PPC::CRRCRegisterClass);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
 | |
| /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is true
 | |
| /// it means one of the asm constraint of the inline asm instruction being
 | |
| /// processed is 'm'.
 | |
| void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, char Letter,
 | |
|                                                      bool hasMemory,
 | |
|                                                      std::vector<SDValue>&Ops,
 | |
|                                                      SelectionDAG &DAG) const {
 | |
|   SDValue Result(0,0);
 | |
|   switch (Letter) {
 | |
|   default: break;
 | |
|   case 'I':
 | |
|   case 'J':
 | |
|   case 'K':
 | |
|   case 'L':
 | |
|   case 'M':
 | |
|   case 'N':
 | |
|   case 'O':
 | |
|   case 'P': {
 | |
|     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
 | |
|     if (!CST) return; // Must be an immediate to match.
 | |
|     unsigned Value = CST->getZExtValue();
 | |
|     switch (Letter) {
 | |
|     default: llvm_unreachable("Unknown constraint letter!");
 | |
|     case 'I':  // "I" is a signed 16-bit constant.
 | |
|       if ((short)Value == (int)Value)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
 | |
|     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
 | |
|       if ((short)Value == 0)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
 | |
|       if ((Value >> 16) == 0)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'M':  // "M" is a constant that is greater than 31.
 | |
|       if (Value > 31)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'N':  // "N" is a positive constant that is an exact power of two.
 | |
|       if ((int)Value > 0 && isPowerOf2_32(Value))
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'O':  // "O" is the constant zero.
 | |
|       if (Value == 0)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
 | |
|       if ((short)-Value == (int)-Value)
 | |
|         Result = DAG.getTargetConstant(Value, Op.getValueType());
 | |
|       break;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Result.getNode()) {
 | |
|     Ops.push_back(Result);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Handle standard constraint letters.
 | |
|   TargetLowering::LowerAsmOperandForConstraint(Op, Letter, hasMemory, Ops, DAG);
 | |
| }
 | |
| 
 | |
| // isLegalAddressingMode - Return true if the addressing mode represented
 | |
| // by AM is legal for this target, for a load/store of the specified type.
 | |
| bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
 | |
|                                               const Type *Ty) const {
 | |
|   // FIXME: PPC does not allow r+i addressing modes for vectors!
 | |
| 
 | |
|   // PPC allows a sign-extended 16-bit immediate field.
 | |
|   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
 | |
|     return false;
 | |
| 
 | |
|   // No global is ever allowed as a base.
 | |
|   if (AM.BaseGV)
 | |
|     return false;
 | |
| 
 | |
|   // PPC only support r+r,
 | |
|   switch (AM.Scale) {
 | |
|   case 0:  // "r+i" or just "i", depending on HasBaseReg.
 | |
|     break;
 | |
|   case 1:
 | |
|     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
 | |
|       return false;
 | |
|     // Otherwise we have r+r or r+i.
 | |
|     break;
 | |
|   case 2:
 | |
|     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
 | |
|       return false;
 | |
|     // Allow 2*r as r+r.
 | |
|     break;
 | |
|   default:
 | |
|     // No other scales are supported.
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isLegalAddressImmediate - Return true if the integer value can be used
 | |
| /// as the offset of the target addressing mode for load / store of the
 | |
| /// given type.
 | |
| bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
 | |
|   // PPC allows a sign-extended 16-bit immediate field.
 | |
|   return (V > -(1 << 16) && V < (1 << 16)-1);
 | |
| }
 | |
| 
 | |
| bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // Depths > 0 not supported yet!
 | |
|   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
 | |
|     return SDValue();
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
 | |
| 
 | |
|   // Just load the return address off the stack.
 | |
|   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
 | |
| 
 | |
|   // Make sure the function really does not optimize away the store of the RA
 | |
|   // to the stack.
 | |
|   FuncInfo->setLRStoreRequired();
 | |
|   return DAG.getLoad(getPointerTy(), dl,
 | |
|                      DAG.getEntryNode(), RetAddrFI, NULL, 0,
 | |
|                      false, false, 0);
 | |
| }
 | |
| 
 | |
| SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
 | |
|   DebugLoc dl = Op.getDebugLoc();
 | |
|   // Depths > 0 not supported yet!
 | |
|   if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
 | |
|     return SDValue();
 | |
| 
 | |
|   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
 | |
|   bool isPPC64 = PtrVT == MVT::i64;
 | |
| 
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
 | |
|                   && MFI->getStackSize();
 | |
| 
 | |
|   if (isPPC64)
 | |
|     return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::X31 : PPC::X1,
 | |
|       MVT::i64);
 | |
|   else
 | |
|     return DAG.getCopyFromReg(DAG.getEntryNode(), dl, is31 ? PPC::R31 : PPC::R1,
 | |
|       MVT::i32);
 | |
| }
 | |
| 
 | |
| bool
 | |
| PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
 | |
|   // The PowerPC target isn't yet aware of offsets.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
 | |
|                                            bool isSrcConst, bool isSrcStr,
 | |
|                                            SelectionDAG &DAG) const {
 | |
|   if (this->PPCSubTarget.isPPC64()) {
 | |
|     return MVT::i64;
 | |
|   } else {
 | |
|     return MVT::i32;
 | |
|   }
 | |
| }
 |