2003-08-28 21:43:17 +00:00

732 lines
27 KiB
C++

//===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===//
//
// Scheduling graph based on SSA graph plus extra dependence edges capturing
// dependences due to machine resources (machine registers, CC registers, and
// any others).
//
//===----------------------------------------------------------------------===//
#include "SchedGraph.h"
#include "llvm/Function.h"
#include "llvm/iOther.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "Support/STLExtras.h"
//*********************** Internal Data Structures *************************/
// The following two types need to be classes, not typedefs, so we can use
// opaque declarations in SchedGraph.h
//
struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > {
typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator;
typedef
std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator;
};
struct RegToRefVecMap: public hash_map<int, RefVec> {
typedef hash_map<int, RefVec>:: iterator iterator;
typedef hash_map<int, RefVec>::const_iterator const_iterator;
};
struct ValueToDefVecMap: public hash_map<const Value*, RefVec> {
typedef hash_map<const Value*, RefVec>:: iterator iterator;
typedef hash_map<const Value*, RefVec>::const_iterator const_iterator;
};
//
// class SchedGraphNode
//
SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb,
int indexInBB, const TargetMachine& Target)
: SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(mbb ? (*mbb)[indexInBB] : 0) {
if (MI) {
MachineOpCode mopCode = MI->getOpCode();
latency = Target.getInstrInfo().hasResultInterlock(mopCode)
? Target.getInstrInfo().minLatency(mopCode)
: Target.getInstrInfo().maxLatency(mopCode);
}
}
//
// Method: SchedGraphNode Destructor
//
// Description:
// Free memory allocated by the SchedGraphNode object.
//
// Notes:
// Do not delete the edges here. The base class will take care of that.
// Only handle subclass specific stuff here (where currently there is
// none).
//
SchedGraphNode::~SchedGraphNode() {
}
//
// class SchedGraph
//
SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target)
: MBB(mbb) {
buildGraph(target);
}
//
// Method: SchedGraph Destructor
//
// Description:
// This method deletes memory allocated by the SchedGraph object.
//
// Notes:
// Do not delete the graphRoot or graphLeaf here. The base class handles
// that bit of work.
//
SchedGraph::~SchedGraph() {
for (const_iterator I = begin(); I != end(); ++I)
delete I->second;
}
void SchedGraph::dump() const {
std::cerr << " Sched Graph for Basic Block: ";
std::cerr << MBB.getBasicBlock()->getName()
<< " (" << MBB.getBasicBlock() << ")";
std::cerr << "\n\n Actual Root nodes : ";
for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++)
std::cerr << graphRoot->outEdges[i]->getSink()->getNodeId()
<< ((i == N-1)? "" : ", ");
std::cerr << "\n Graph Nodes:\n";
for (const_iterator I=begin(); I != end(); ++I)
std::cerr << "\n" << *I->second;
std::cerr << "\n";
}
void SchedGraph::addDummyEdges() {
assert(graphRoot->outEdges.size() == 0);
for (const_iterator I=begin(); I != end(); ++I) {
SchedGraphNode* node = (*I).second;
assert(node != graphRoot && node != graphLeaf);
if (node->beginInEdges() == node->endInEdges())
(void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
if (node->beginOutEdges() == node->endOutEdges())
(void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
void SchedGraph::addCDEdges(const TerminatorInst* term,
const TargetMachine& target) {
const TargetInstrInfo& mii = target.getInstrInfo();
MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term);
// Find the first branch instr in the sequence of machine instrs for term
//
unsigned first = 0;
while (! mii.isBranch(termMvec[first]->getOpCode()) &&
! mii.isReturn(termMvec[first]->getOpCode()))
++first;
assert(first < termMvec.size() &&
"No branch instructions for terminator? Ok, but weird!");
if (first == termMvec.size())
return;
SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]);
// Add CD edges from each instruction in the sequence to the
// *last preceding* branch instr. in the sequence
// Use a latency of 0 because we only need to prevent out-of-order issue.
//
for (unsigned i = termMvec.size(); i > first+1; --i) {
SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]);
assert(toNode && "No node for instr generated for branch/ret?");
for (unsigned j = i-1; j != 0; --j)
if (mii.isBranch(termMvec[j-1]->getOpCode()) ||
mii.isReturn(termMvec[j-1]->getOpCode())) {
SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]);
assert(brNode && "No node for instr generated for branch/ret?");
(void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
break; // only one incoming edge is enough
}
}
// Add CD edges from each instruction preceding the first branch
// to the first branch. Use a latency of 0 as above.
//
for (unsigned i = first; i != 0; --i) {
SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]);
assert(fromNode && "No node for instr generated for branch?");
(void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
// Now add CD edges to the first branch instruction in the sequence from
// all preceding instructions in the basic block. Use 0 latency again.
//
for (unsigned i=0, N=MBB.size(); i < N; i++) {
if (MBB[i] == termMvec[first]) // reached the first branch
break;
SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]);
if (fromNode == NULL)
continue; // dummy instruction, e.g., PHI
(void) new SchedGraphEdge(fromNode, firstBrNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
// If we find any other machine instructions (other than due to
// the terminator) that also have delay slots, add an outgoing edge
// from the instruction to the instructions in the delay slots.
//
unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode());
assert(i+d < N && "Insufficient delay slots for instruction?");
for (unsigned j=1; j <= d; j++) {
SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]);
assert(toNode && "No node for machine instr in delay slot?");
(void) new SchedGraphEdge(fromNode, toNode,
SchedGraphEdge::CtrlDep,
SchedGraphEdge::NonDataDep, 0);
}
}
}
static const int SG_LOAD_REF = 0;
static const int SG_STORE_REF = 1;
static const int SG_CALL_REF = 2;
static const unsigned int SG_DepOrderArray[][3] = {
{ SchedGraphEdge::NonDataDep,
SchedGraphEdge::AntiDep,
SchedGraphEdge::AntiDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep },
{ SchedGraphEdge::TrueDep,
SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep,
SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep
| SchedGraphEdge::OutputDep }
};
// Add a dependence edge between every pair of machine load/store/call
// instructions, where at least one is a store or a call.
// Use latency 1 just to ensure that memory operations are ordered;
// latency does not otherwise matter (true dependences enforce that).
//
void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec,
const TargetMachine& target) {
const TargetInstrInfo& mii = target.getInstrInfo();
// Instructions in memNodeVec are in execution order within the basic block,
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
//
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) {
MachineOpCode fromOpCode = memNodeVec[im]->getOpCode();
int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF
: (mii.isLoad(fromOpCode)? SG_LOAD_REF
: SG_STORE_REF));
for (unsigned jm=im+1; jm < NM; jm++) {
MachineOpCode toOpCode = memNodeVec[jm]->getOpCode();
int toType = (mii.isCall(toOpCode)? SG_CALL_REF
: (mii.isLoad(toOpCode)? SG_LOAD_REF
: SG_STORE_REF));
if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF)
(void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm],
SchedGraphEdge::MemoryDep,
SG_DepOrderArray[fromType][toType], 1);
}
}
}
// Add edges from/to CC reg instrs to/from call instrs.
// Essentially this prevents anything that sets or uses a CC reg from being
// reordered w.r.t. a call.
// Use a latency of 0 because we only need to prevent out-of-order issue,
// like with control dependences.
//
void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec,
const TargetMachine& target) {
const TargetInstrInfo& mii = target.getInstrInfo();
// Instructions in memNodeVec are in execution order within the basic block,
// so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>.
//
for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++)
if (mii.isCall(callDepNodeVec[ic]->getOpCode())) {
// Add SG_CALL_REF edges from all preds to this instruction.
for (unsigned jc=0; jc < ic; jc++)
(void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic],
SchedGraphEdge::MachineRegister,
MachineIntRegsRID, 0);
// And do the same from this instruction to all successors.
for (unsigned jc=ic+1; jc < NC; jc++)
(void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc],
SchedGraphEdge::MachineRegister,
MachineIntRegsRID, 0);
}
#ifdef CALL_DEP_NODE_VEC_CANNOT_WORK
// Find the call instruction nodes and put them in a vector.
std::vector<SchedGraphNode*> callNodeVec;
for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++)
if (mii.isCall(memNodeVec[im]->getOpCode()))
callNodeVec.push_back(memNodeVec[im]);
// Now walk the entire basic block, looking for CC instructions *and*
// call instructions, and keep track of the order of the instructions.
// Use the call node vec to quickly find earlier and later call nodes
// relative to the current CC instruction.
//
int lastCallNodeIdx = -1;
for (unsigned i=0, N=bbMvec.size(); i < N; i++)
if (mii.isCall(bbMvec[i]->getOpCode())) {
++lastCallNodeIdx;
for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx)
if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i])
break;
assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?");
}
else if (mii.isCCInstr(bbMvec[i]->getOpCode())) {
// Add incoming/outgoing edges from/to preceding/later calls
SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]);
int j=0;
for ( ; j <= lastCallNodeIdx; j++)
(void) new SchedGraphEdge(callNodeVec[j], ccNode,
MachineCCRegsRID, 0);
for ( ; j < (int) callNodeVec.size(); j++)
(void) new SchedGraphEdge(ccNode, callNodeVec[j],
MachineCCRegsRID, 0);
}
#endif
}
void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap,
const TargetMachine& target) {
// This code assumes that two registers with different numbers are
// not aliased!
//
for (RegToRefVecMap::iterator I = regToRefVecMap.begin();
I != regToRefVecMap.end(); ++I) {
int regNum = (*I).first;
RefVec& regRefVec = (*I).second;
// regRefVec is ordered by control flow order in the basic block
for (unsigned i=0; i < regRefVec.size(); ++i) {
SchedGraphNode* node = regRefVec[i].first;
unsigned int opNum = regRefVec[i].second;
const MachineOperand& mop =
node->getMachineInstr()->getExplOrImplOperand(opNum);
bool isDef = mop.opIsDefOnly();
bool isDefAndUse = mop.opIsDefAndUse();
for (unsigned p=0; p < i; ++p) {
SchedGraphNode* prevNode = regRefVec[p].first;
if (prevNode != node) {
unsigned int prevOpNum = regRefVec[p].second;
const MachineOperand& prevMop =
prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum);
bool prevIsDef = prevMop.opIsDefOnly();
bool prevIsDefAndUse = prevMop.opIsDefAndUse();
if (isDef) {
if (prevIsDef)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::OutputDep);
if (!prevIsDef || prevIsDefAndUse)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::AntiDep);
}
if (prevIsDef)
if (!isDef || isDefAndUse)
new SchedGraphEdge(prevNode, node, regNum,
SchedGraphEdge::TrueDep);
}
}
}
}
}
// Adds dependences to/from refNode from/to all other defs
// in the basic block. refNode may be a use, a def, or both.
// We do not consider other uses because we are not building use-use deps.
//
void SchedGraph::addEdgesForValue(SchedGraphNode* refNode,
const RefVec& defVec,
const Value* defValue,
bool refNodeIsDef,
bool refNodeIsDefAndUse,
const TargetMachine& target) {
bool refNodeIsUse = !refNodeIsDef || refNodeIsDefAndUse;
// Add true or output dep edges from all def nodes before refNode in BB.
// Add anti or output dep edges to all def nodes after refNode.
for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) {
if ((*I).first == refNode)
continue; // Dont add any self-loops
if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) {
// (*).first is before refNode
if (refNodeIsDef)
(void) new SchedGraphEdge((*I).first, refNode, defValue,
SchedGraphEdge::OutputDep);
if (refNodeIsUse)
(void) new SchedGraphEdge((*I).first, refNode, defValue,
SchedGraphEdge::TrueDep);
} else {
// (*).first is after refNode
if (refNodeIsDef)
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
SchedGraphEdge::OutputDep);
if (refNodeIsUse)
(void) new SchedGraphEdge(refNode, (*I).first, defValue,
SchedGraphEdge::AntiDep);
}
}
}
void SchedGraph::addEdgesForInstruction(const MachineInstr& MI,
const ValueToDefVecMap& valueToDefVecMap,
const TargetMachine& target) {
SchedGraphNode* node = getGraphNodeForInstr(&MI);
if (node == NULL)
return;
// Add edges for all operands of the machine instruction.
//
for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) {
switch (MI.getOperand(i).getType()) {
case MachineOperand::MO_VirtualRegister:
case MachineOperand::MO_CCRegister:
if (const Value* srcI = MI.getOperand(i).getVRegValue()) {
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
if (I != valueToDefVecMap.end())
addEdgesForValue(node, I->second, srcI,
MI.getOperand(i).opIsDefOnly(),
MI.getOperand(i).opIsDefAndUse(), target);
}
break;
case MachineOperand::MO_MachineRegister:
break;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
case MachineOperand::MO_PCRelativeDisp:
break; // nothing to do for immediate fields
default:
assert(0 && "Unknown machine operand type in SchedGraph builder");
break;
}
}
// Add edges for values implicitly used by the machine instruction.
// Examples include function arguments to a Call instructions or the return
// value of a Ret instruction.
//
for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i)
if (MI.getImplicitOp(i).opIsUse() || MI.getImplicitOp(i).opIsDefAndUse())
if (const Value* srcI = MI.getImplicitRef(i)) {
ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI);
if (I != valueToDefVecMap.end())
addEdgesForValue(node, I->second, srcI,
MI.getImplicitOp(i).opIsDefOnly(),
MI.getImplicitOp(i).opIsDefAndUse(), target);
}
}
void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target,
SchedGraphNode* node,
std::vector<SchedGraphNode*>& memNodeVec,
std::vector<SchedGraphNode*>& callDepNodeVec,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap) {
const TargetInstrInfo& mii = target.getInstrInfo();
MachineOpCode opCode = node->getOpCode();
if (mii.isCall(opCode) || mii.isCCInstr(opCode))
callDepNodeVec.push_back(node);
if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode))
memNodeVec.push_back(node);
// Collect the register references and value defs. for explicit operands
//
const MachineInstr& MI = *node->getMachineInstr();
for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) {
const MachineOperand& mop = MI.getOperand(i);
// if this references a register other than the hardwired
// "zero" register, record the reference.
if (mop.hasAllocatedReg()) {
int regNum = mop.getAllocatedRegNum();
// If this is not a dummy zero register, record the reference in order
if (regNum != target.getRegInfo().getZeroRegNum())
regToRefVecMap[mop.getAllocatedRegNum()]
.push_back(std::make_pair(node, i));
// If this is a volatile register, add the instruction to callDepVec
// (only if the node is not already on the callDepVec!)
if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node)
{
unsigned rcid;
int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid);
if (target.getRegInfo().getMachineRegClass(rcid)
->isRegVolatile(regInClass))
callDepNodeVec.push_back(node);
}
continue; // nothing more to do
}
// ignore all other non-def operands
if (!MI.getOperand(i).opIsDefOnly() &&
!MI.getOperand(i).opIsDefAndUse())
continue;
// We must be defining a value.
assert((mop.getType() == MachineOperand::MO_VirtualRegister ||
mop.getType() == MachineOperand::MO_CCRegister)
&& "Do not expect any other kind of operand to be defined!");
assert(mop.getVRegValue() != NULL && "Null value being defined?");
valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i));
}
//
// Collect value defs. for implicit operands. They may have allocated
// physical registers also.
//
for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) {
const MachineOperand& mop = MI.getImplicitOp(i);
if (mop.hasAllocatedReg()) {
int regNum = mop.getAllocatedRegNum();
if (regNum != target.getRegInfo().getZeroRegNum())
regToRefVecMap[mop.getAllocatedRegNum()]
.push_back(std::make_pair(node, i + MI.getNumOperands()));
continue; // nothing more to do
}
if (mop.opIsDefOnly() || mop.opIsDefAndUse()) {
assert(MI.getImplicitRef(i) != NULL && "Null value being defined?");
valueToDefVecMap[MI.getImplicitRef(i)].push_back(std::make_pair(node,
-i));
}
}
}
void SchedGraph::buildNodesForBB(const TargetMachine& target,
MachineBasicBlock& MBB,
std::vector<SchedGraphNode*>& memNodeVec,
std::vector<SchedGraphNode*>& callDepNodeVec,
RegToRefVecMap& regToRefVecMap,
ValueToDefVecMap& valueToDefVecMap) {
const TargetInstrInfo& mii = target.getInstrInfo();
// Build graph nodes for each VM instruction and gather def/use info.
// Do both those together in a single pass over all machine instructions.
for (unsigned i=0; i < MBB.size(); i++)
if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) {
SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target);
noteGraphNodeForInstr(MBB[i], node);
// Remember all register references and value defs
findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec,
regToRefVecMap, valueToDefVecMap);
}
}
void SchedGraph::buildGraph(const TargetMachine& target) {
// Use this data structure to note all machine operands that compute
// ordinary LLVM values. These must be computed defs (i.e., instructions).
// Note that there may be multiple machine instructions that define
// each Value.
ValueToDefVecMap valueToDefVecMap;
// Use this data structure to note all memory instructions.
// We use this to add memory dependence edges without a second full walk.
std::vector<SchedGraphNode*> memNodeVec;
// Use this data structure to note all instructions that access physical
// registers that can be modified by a call (including call instructions)
std::vector<SchedGraphNode*> callDepNodeVec;
// Use this data structure to note any uses or definitions of
// machine registers so we can add edges for those later without
// extra passes over the nodes.
// The vector holds an ordered list of references to the machine reg,
// ordered according to control-flow order. This only works for a
// single basic block, hence the assertion. Each reference is identified
// by the pair: <node, operand-number>.
//
RegToRefVecMap regToRefVecMap;
// Make a dummy root node. We'll add edges to the real roots later.
graphRoot = new SchedGraphNode(0, NULL, -1, target);
graphLeaf = new SchedGraphNode(1, NULL, -1, target);
//----------------------------------------------------------------
// First add nodes for all the machine instructions in the basic block
// because this greatly simplifies identifying which edges to add.
// Do this one VM instruction at a time since the SchedGraphNode needs that.
// Also, remember the load/store instructions to add memory deps later.
//----------------------------------------------------------------
buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec,
regToRefVecMap, valueToDefVecMap);
//----------------------------------------------------------------
// Now add edges for the following (all are incoming edges except (4)):
// (1) operands of the machine instruction, including hidden operands
// (2) machine register dependences
// (3) memory load/store dependences
// (3) other resource dependences for the machine instruction, if any
// (4) output dependences when multiple machine instructions define the
// same value; all must have been generated from a single VM instrn
// (5) control dependences to branch instructions generated for the
// terminator instruction of the BB. Because of delay slots and
// 2-way conditional branches, multiple CD edges are needed
// (see addCDEdges for details).
// Also, note any uses or defs of machine registers.
//
//----------------------------------------------------------------
// First, add edges to the terminator instruction of the basic block.
this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target);
// Then add memory dep edges: store->load, load->store, and store->store.
// Call instructions are treated as both load and store.
this->addMemEdges(memNodeVec, target);
// Then add edges between call instructions and CC set/use instructions
this->addCallDepEdges(callDepNodeVec, target);
// Then add incoming def-use (SSA) edges for each machine instruction.
for (unsigned i=0, N=MBB.size(); i < N; i++)
addEdgesForInstruction(*MBB[i], valueToDefVecMap, target);
#ifdef NEED_SEPARATE_NONSSA_EDGES_CODE
// Then add non-SSA edges for all VM instructions in the block.
// We assume that all machine instructions that define a value are
// generated from the VM instruction corresponding to that value.
// TODO: This could probably be done much more efficiently.
for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II)
this->addNonSSAEdgesForValue(*II, target);
#endif //NEED_SEPARATE_NONSSA_EDGES_CODE
// Then add edges for dependences on machine registers
this->addMachineRegEdges(regToRefVecMap, target);
// Finally, add edges from the dummy root and to dummy leaf
this->addDummyEdges();
}
//
// class SchedGraphSet
//
SchedGraphSet::SchedGraphSet(const Function* _function,
const TargetMachine& target) :
function(_function) {
buildGraphsForMethod(function, target);
}
SchedGraphSet::~SchedGraphSet() {
// delete all the graphs
for(iterator I = begin(), E = end(); I != E; ++I)
delete *I; // destructor is a friend
}
void SchedGraphSet::dump() const {
std::cerr << "======== Sched graphs for function `" << function->getName()
<< "' ========\n\n";
for (const_iterator I=begin(); I != end(); ++I)
(*I)->dump();
std::cerr << "\n====== End graphs for function `" << function->getName()
<< "' ========\n\n";
}
void SchedGraphSet::buildGraphsForMethod(const Function *F,
const TargetMachine& target) {
MachineFunction &MF = MachineFunction::get(F);
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
addGraph(new SchedGraph(*I, target));
}
void SchedGraphEdge::print(std::ostream &os) const {
os << "edge [" << src->getNodeId() << "] -> ["
<< sink->getNodeId() << "] : ";
switch(depType) {
case SchedGraphEdge::CtrlDep:
os<< "Control Dep";
break;
case SchedGraphEdge::ValueDep:
os<< "Reg Value " << val;
break;
case SchedGraphEdge::MemoryDep:
os<< "Memory Dep";
break;
case SchedGraphEdge::MachineRegister:
os<< "Reg " << machineRegNum;
break;
case SchedGraphEdge::MachineResource:
os<<"Resource "<< resourceId;
break;
default:
assert(0);
break;
}
os << " : delay = " << minDelay << "\n";
}
void SchedGraphNode::print(std::ostream &os) const {
os << std::string(8, ' ')
<< "Node " << ID << " : "
<< "latency = " << latency << "\n" << std::string(12, ' ');
if (getMachineInstr() == NULL)
os << "(Dummy node)\n";
else {
os << *getMachineInstr() << "\n" << std::string(12, ' ');
os << inEdges.size() << " Incoming Edges:\n";
for (unsigned i=0, N = inEdges.size(); i < N; i++)
os << std::string(16, ' ') << *inEdges[i];
os << std::string(12, ' ') << outEdges.size()
<< " Outgoing Edges:\n";
for (unsigned i=0, N= outEdges.size(); i < N; i++)
os << std::string(16, ' ') << *outEdges[i];
}
}