llvm-6502/lib/CodeGen/WinEHPrepare.cpp
David Majnemer 0a8ff297ad [WinEH] Run cleanup handlers when an exception is thrown
Generate tables in the .xdata section representing what actions to take
when an exception is thrown.  This currently fills in state for
cleanups, catch handlers are still unfinished.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233636 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-30 22:58:10 +00:00

1447 lines
57 KiB
C++

//===-- WinEHPrepare - Prepare exception handling for code generation ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass lowers LLVM IR exception handling into something closer to what the
// backend wants. It snifs the personality function to see which kind of
// preparation is necessary. If the personality function uses the Itanium LSDA,
// this pass delegates to the DWARF EH preparation pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
#include <memory>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "winehprepare"
namespace {
// This map is used to model frame variable usage during outlining, to
// construct a structure type to hold the frame variables in a frame
// allocation block, and to remap the frame variable allocas (including
// spill locations as needed) to GEPs that get the variable from the
// frame allocation structure.
typedef MapVector<Value *, TinyPtrVector<AllocaInst *>> FrameVarInfoMap;
typedef SmallSet<BasicBlock *, 4> VisitedBlockSet;
class LandingPadActions;
class LandingPadMap;
typedef DenseMap<const BasicBlock *, CatchHandler *> CatchHandlerMapTy;
typedef DenseMap<const BasicBlock *, CleanupHandler *> CleanupHandlerMapTy;
class WinEHPrepare : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid.
WinEHPrepare(const TargetMachine *TM = nullptr)
: FunctionPass(ID) {}
bool runOnFunction(Function &Fn) override;
bool doFinalization(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
const char *getPassName() const override {
return "Windows exception handling preparation";
}
private:
bool prepareExceptionHandlers(Function &F,
SmallVectorImpl<LandingPadInst *> &LPads);
bool outlineHandler(ActionHandler *Action, Function *SrcFn,
LandingPadInst *LPad, BasicBlock *StartBB,
FrameVarInfoMap &VarInfo);
void mapLandingPadBlocks(LandingPadInst *LPad, LandingPadActions &Actions);
CatchHandler *findCatchHandler(BasicBlock *BB, BasicBlock *&NextBB,
VisitedBlockSet &VisitedBlocks);
CleanupHandler *findCleanupHandler(BasicBlock *StartBB, BasicBlock *EndBB);
void processSEHCatchHandler(CatchHandler *Handler, BasicBlock *StartBB);
// All fields are reset by runOnFunction.
EHPersonality Personality;
CatchHandlerMapTy CatchHandlerMap;
CleanupHandlerMapTy CleanupHandlerMap;
DenseMap<const LandingPadInst *, LandingPadMap> LPadMaps;
};
class WinEHFrameVariableMaterializer : public ValueMaterializer {
public:
WinEHFrameVariableMaterializer(Function *OutlinedFn,
FrameVarInfoMap &FrameVarInfo);
~WinEHFrameVariableMaterializer() {}
virtual Value *materializeValueFor(Value *V) override;
private:
FrameVarInfoMap &FrameVarInfo;
IRBuilder<> Builder;
};
class LandingPadMap {
public:
LandingPadMap() : OriginLPad(nullptr) {}
void mapLandingPad(const LandingPadInst *LPad);
bool isInitialized() { return OriginLPad != nullptr; }
bool mapIfEHPtrLoad(const LoadInst *Load) {
return mapIfEHLoad(Load, EHPtrStores, EHPtrStoreAddrs);
}
bool mapIfSelectorLoad(const LoadInst *Load) {
return mapIfEHLoad(Load, SelectorStores, SelectorStoreAddrs);
}
bool isOriginLandingPadBlock(const BasicBlock *BB) const;
bool isLandingPadSpecificInst(const Instruction *Inst) const;
void remapSelector(ValueToValueMapTy &VMap, Value *MappedValue) const;
private:
bool mapIfEHLoad(const LoadInst *Load,
SmallVectorImpl<const StoreInst *> &Stores,
SmallVectorImpl<const Value *> &StoreAddrs);
const LandingPadInst *OriginLPad;
// We will normally only see one of each of these instructions, but
// if more than one occurs for some reason we can handle that.
TinyPtrVector<const ExtractValueInst *> ExtractedEHPtrs;
TinyPtrVector<const ExtractValueInst *> ExtractedSelectors;
// In optimized code, there will typically be at most one instance of
// each of the following, but in unoptimized IR it is not uncommon
// for the values to be stored, loaded and then stored again. In that
// case we will create a second entry for each store and store address.
SmallVector<const StoreInst *, 2> EHPtrStores;
SmallVector<const StoreInst *, 2> SelectorStores;
SmallVector<const Value *, 2> EHPtrStoreAddrs;
SmallVector<const Value *, 2> SelectorStoreAddrs;
};
class WinEHCloningDirectorBase : public CloningDirector {
public:
WinEHCloningDirectorBase(Function *HandlerFn,
FrameVarInfoMap &VarInfo,
LandingPadMap &LPadMap)
: Materializer(HandlerFn, VarInfo),
SelectorIDType(Type::getInt32Ty(HandlerFn->getContext())),
Int8PtrType(Type::getInt8PtrTy(HandlerFn->getContext())),
LPadMap(LPadMap) {}
CloningAction handleInstruction(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
virtual CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) = 0;
virtual CloningAction handleEndCatch(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) = 0;
virtual CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) = 0;
virtual CloningAction handleInvoke(ValueToValueMapTy &VMap,
const InvokeInst *Invoke,
BasicBlock *NewBB) = 0;
virtual CloningAction handleResume(ValueToValueMapTy &VMap,
const ResumeInst *Resume,
BasicBlock *NewBB) = 0;
ValueMaterializer *getValueMaterializer() override { return &Materializer; }
protected:
WinEHFrameVariableMaterializer Materializer;
Type *SelectorIDType;
Type *Int8PtrType;
LandingPadMap &LPadMap;
};
class WinEHCatchDirector : public WinEHCloningDirectorBase {
public:
WinEHCatchDirector(Function *CatchFn, Value *Selector,
FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
: WinEHCloningDirectorBase(CatchFn, VarInfo, LPadMap),
CurrentSelector(Selector->stripPointerCasts()),
ExceptionObjectVar(nullptr) {}
CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
BasicBlock *NewBB) override;
CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
BasicBlock *NewBB) override;
CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
BasicBlock *NewBB) override;
const Value *getExceptionVar() { return ExceptionObjectVar; }
TinyPtrVector<BasicBlock *> &getReturnTargets() { return ReturnTargets; }
private:
Value *CurrentSelector;
const Value *ExceptionObjectVar;
TinyPtrVector<BasicBlock *> ReturnTargets;
};
class WinEHCleanupDirector : public WinEHCloningDirectorBase {
public:
WinEHCleanupDirector(Function *CleanupFn,
FrameVarInfoMap &VarInfo, LandingPadMap &LPadMap)
: WinEHCloningDirectorBase(CleanupFn, VarInfo, LPadMap) {}
CloningAction handleBeginCatch(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
CloningAction handleEndCatch(ValueToValueMapTy &VMap, const Instruction *Inst,
BasicBlock *NewBB) override;
CloningAction handleTypeIdFor(ValueToValueMapTy &VMap,
const Instruction *Inst,
BasicBlock *NewBB) override;
CloningAction handleInvoke(ValueToValueMapTy &VMap, const InvokeInst *Invoke,
BasicBlock *NewBB) override;
CloningAction handleResume(ValueToValueMapTy &VMap, const ResumeInst *Resume,
BasicBlock *NewBB) override;
};
class LandingPadActions {
public:
LandingPadActions() : HasCleanupHandlers(false) {}
void insertCatchHandler(CatchHandler *Action) { Actions.push_back(Action); }
void insertCleanupHandler(CleanupHandler *Action) {
Actions.push_back(Action);
HasCleanupHandlers = true;
}
bool includesCleanup() const { return HasCleanupHandlers; }
SmallVectorImpl<ActionHandler *> &actions() { return Actions; }
SmallVectorImpl<ActionHandler *>::iterator begin() { return Actions.begin(); }
SmallVectorImpl<ActionHandler *>::iterator end() { return Actions.end(); }
private:
// Note that this class does not own the ActionHandler objects in this vector.
// The ActionHandlers are owned by the CatchHandlerMap and CleanupHandlerMap
// in the WinEHPrepare class.
SmallVector<ActionHandler *, 4> Actions;
bool HasCleanupHandlers;
};
} // end anonymous namespace
char WinEHPrepare::ID = 0;
INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
false, false)
FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
return new WinEHPrepare(TM);
}
// FIXME: Remove this once the backend can handle the prepared IR.
static cl::opt<bool>
SEHPrepare("sehprepare", cl::Hidden,
cl::desc("Prepare functions with SEH personalities"));
bool WinEHPrepare::runOnFunction(Function &Fn) {
SmallVector<LandingPadInst *, 4> LPads;
SmallVector<ResumeInst *, 4> Resumes;
for (BasicBlock &BB : Fn) {
if (auto *LP = BB.getLandingPadInst())
LPads.push_back(LP);
if (auto *Resume = dyn_cast<ResumeInst>(BB.getTerminator()))
Resumes.push_back(Resume);
}
// No need to prepare functions that lack landing pads.
if (LPads.empty())
return false;
// Classify the personality to see what kind of preparation we need.
Personality = classifyEHPersonality(LPads.back()->getPersonalityFn());
// Do nothing if this is not an MSVC personality.
if (!isMSVCEHPersonality(Personality))
return false;
if (isAsynchronousEHPersonality(Personality) && !SEHPrepare) {
// Replace all resume instructions with unreachable.
// FIXME: Remove this once the backend can handle the prepared IR.
for (ResumeInst *Resume : Resumes) {
IRBuilder<>(Resume).CreateUnreachable();
Resume->eraseFromParent();
}
return true;
}
// If there were any landing pads, prepareExceptionHandlers will make changes.
prepareExceptionHandlers(Fn, LPads);
return true;
}
bool WinEHPrepare::doFinalization(Module &M) {
return false;
}
void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
bool WinEHPrepare::prepareExceptionHandlers(
Function &F, SmallVectorImpl<LandingPadInst *> &LPads) {
// These containers are used to re-map frame variables that are used in
// outlined catch and cleanup handlers. They will be populated as the
// handlers are outlined.
FrameVarInfoMap FrameVarInfo;
bool HandlersOutlined = false;
Module *M = F.getParent();
LLVMContext &Context = M->getContext();
// Create a new function to receive the handler contents.
PointerType *Int8PtrType = Type::getInt8PtrTy(Context);
Type *Int32Type = Type::getInt32Ty(Context);
Function *ActionIntrin = Intrinsic::getDeclaration(M, Intrinsic::eh_actions);
for (LandingPadInst *LPad : LPads) {
// Look for evidence that this landingpad has already been processed.
bool LPadHasActionList = false;
BasicBlock *LPadBB = LPad->getParent();
for (Instruction &Inst : *LPadBB) {
if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Inst)) {
if (IntrinCall->getIntrinsicID() == Intrinsic::eh_actions) {
LPadHasActionList = true;
break;
}
}
// FIXME: This is here to help with the development of nested landing pad
// outlining. It should be removed when that is finished.
if (isa<UnreachableInst>(Inst)) {
LPadHasActionList = true;
break;
}
}
// If we've already outlined the handlers for this landingpad,
// there's nothing more to do here.
if (LPadHasActionList)
continue;
LandingPadActions Actions;
mapLandingPadBlocks(LPad, Actions);
for (ActionHandler *Action : Actions) {
if (Action->hasBeenProcessed())
continue;
BasicBlock *StartBB = Action->getStartBlock();
// SEH doesn't do any outlining for catches. Instead, pass the handler
// basic block addr to llvm.eh.actions and list the block as a return
// target.
if (isAsynchronousEHPersonality(Personality)) {
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
processSEHCatchHandler(CatchAction, StartBB);
HandlersOutlined = true;
continue;
}
}
if (outlineHandler(Action, &F, LPad, StartBB, FrameVarInfo)) {
HandlersOutlined = true;
}
} // End for each Action
// FIXME: We need a guard against partially outlined functions.
if (!HandlersOutlined)
continue;
// Replace the landing pad with a new llvm.eh.action based landing pad.
BasicBlock *NewLPadBB = BasicBlock::Create(Context, "lpad", &F, LPadBB);
assert(!isa<PHINode>(LPadBB->begin()));
auto *NewLPad = cast<LandingPadInst>(LPad->clone());
NewLPadBB->getInstList().push_back(NewLPad);
while (!pred_empty(LPadBB)) {
auto *pred = *pred_begin(LPadBB);
InvokeInst *Invoke = cast<InvokeInst>(pred->getTerminator());
Invoke->setUnwindDest(NewLPadBB);
}
// Replace uses of the old lpad in phis with this block and delete the old
// block.
LPadBB->replaceSuccessorsPhiUsesWith(NewLPadBB);
LPadBB->getTerminator()->eraseFromParent();
new UnreachableInst(LPadBB->getContext(), LPadBB);
// Add a call to describe the actions for this landing pad.
std::vector<Value *> ActionArgs;
for (ActionHandler *Action : Actions) {
// Action codes from docs are: 0 cleanup, 1 catch.
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
ActionArgs.push_back(ConstantInt::get(Int32Type, 1));
ActionArgs.push_back(CatchAction->getSelector());
Value *EHObj = const_cast<Value *>(CatchAction->getExceptionVar());
if (EHObj)
ActionArgs.push_back(EHObj);
else
ActionArgs.push_back(ConstantPointerNull::get(Int8PtrType));
} else {
ActionArgs.push_back(ConstantInt::get(Int32Type, 0));
}
ActionArgs.push_back(Action->getHandlerBlockOrFunc());
}
CallInst *Recover =
CallInst::Create(ActionIntrin, ActionArgs, "recover", NewLPadBB);
// Add an indirect branch listing possible successors of the catch handlers.
IndirectBrInst *Branch = IndirectBrInst::Create(Recover, 0, NewLPadBB);
for (ActionHandler *Action : Actions) {
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
for (auto *Target : CatchAction->getReturnTargets()) {
Branch->addDestination(Target);
}
}
}
} // End for each landingpad
// If nothing got outlined, there is no more processing to be done.
if (!HandlersOutlined)
return false;
F.addFnAttr("wineh-parent", F.getName());
// Delete any blocks that were only used by handlers that were outlined above.
removeUnreachableBlocks(F);
BasicBlock *Entry = &F.getEntryBlock();
IRBuilder<> Builder(F.getParent()->getContext());
Builder.SetInsertPoint(Entry->getFirstInsertionPt());
Function *FrameEscapeFn =
Intrinsic::getDeclaration(M, Intrinsic::frameescape);
Function *RecoverFrameFn =
Intrinsic::getDeclaration(M, Intrinsic::framerecover);
// Finally, replace all of the temporary allocas for frame variables used in
// the outlined handlers with calls to llvm.framerecover.
BasicBlock::iterator II = Entry->getFirstInsertionPt();
Instruction *AllocaInsertPt = II;
SmallVector<Value *, 8> AllocasToEscape;
for (auto &VarInfoEntry : FrameVarInfo) {
Value *ParentVal = VarInfoEntry.first;
TinyPtrVector<AllocaInst *> &Allocas = VarInfoEntry.second;
// If the mapped value isn't already an alloca, we need to spill it if it
// is a computed value or copy it if it is an argument.
AllocaInst *ParentAlloca = dyn_cast<AllocaInst>(ParentVal);
if (!ParentAlloca) {
if (auto *Arg = dyn_cast<Argument>(ParentVal)) {
// Lower this argument to a copy and then demote that to the stack.
// We can't just use the argument location because the handler needs
// it to be in the frame allocation block.
// Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
Value *TrueValue = ConstantInt::getTrue(Context);
Value *UndefValue = UndefValue::get(Arg->getType());
Instruction *SI =
SelectInst::Create(TrueValue, Arg, UndefValue,
Arg->getName() + ".tmp", AllocaInsertPt);
Arg->replaceAllUsesWith(SI);
// Reset the select operand, because it was clobbered by the RAUW above.
SI->setOperand(1, Arg);
ParentAlloca = DemoteRegToStack(*SI, true, SI);
} else if (auto *PN = dyn_cast<PHINode>(ParentVal)) {
ParentAlloca = DemotePHIToStack(PN, AllocaInsertPt);
} else {
Instruction *ParentInst = cast<Instruction>(ParentVal);
// FIXME: This is a work-around to temporarily handle the case where an
// instruction that is only used in handlers is not sunk.
// Without uses, DemoteRegToStack would just eliminate the value.
// This will fail if ParentInst is an invoke.
if (ParentInst->getNumUses() == 0) {
BasicBlock::iterator InsertPt = ParentInst;
++InsertPt;
ParentAlloca =
new AllocaInst(ParentInst->getType(), nullptr,
ParentInst->getName() + ".reg2mem", InsertPt);
new StoreInst(ParentInst, ParentAlloca, InsertPt);
} else {
ParentAlloca = DemoteRegToStack(*ParentInst, true, ParentInst);
}
}
}
// If the parent alloca is no longer used and only one of the handlers used
// it, erase the parent and leave the copy in the outlined handler.
if (ParentAlloca->getNumUses() == 0 && Allocas.size() == 1) {
ParentAlloca->eraseFromParent();
continue;
}
// Add this alloca to the list of things to escape.
AllocasToEscape.push_back(ParentAlloca);
// Next replace all outlined allocas that are mapped to it.
for (AllocaInst *TempAlloca : Allocas) {
Function *HandlerFn = TempAlloca->getParent()->getParent();
// FIXME: Sink this GEP into the blocks where it is used.
Builder.SetInsertPoint(TempAlloca);
Builder.SetCurrentDebugLocation(TempAlloca->getDebugLoc());
Value *RecoverArgs[] = {
Builder.CreateBitCast(&F, Int8PtrType, ""),
&(HandlerFn->getArgumentList().back()),
llvm::ConstantInt::get(Int32Type, AllocasToEscape.size() - 1)};
Value *RecoveredAlloca = Builder.CreateCall(RecoverFrameFn, RecoverArgs);
// Add a pointer bitcast if the alloca wasn't an i8.
if (RecoveredAlloca->getType() != TempAlloca->getType()) {
RecoveredAlloca->setName(Twine(TempAlloca->getName()) + ".i8");
RecoveredAlloca =
Builder.CreateBitCast(RecoveredAlloca, TempAlloca->getType());
}
TempAlloca->replaceAllUsesWith(RecoveredAlloca);
TempAlloca->removeFromParent();
RecoveredAlloca->takeName(TempAlloca);
delete TempAlloca;
}
} // End for each FrameVarInfo entry.
// Insert 'call void (...)* @llvm.frameescape(...)' at the end of the entry
// block.
Builder.SetInsertPoint(&F.getEntryBlock().back());
Builder.CreateCall(FrameEscapeFn, AllocasToEscape);
// Insert an alloca for the EH state in the entry block. On x86, we will also
// insert stores to update the EH state, but on other ISAs, the runtime does
// it for us.
// FIXME: This record is different on x86.
Type *UnwindHelpTy = Type::getInt64Ty(Context);
AllocaInst *UnwindHelp =
new AllocaInst(UnwindHelpTy, "unwindhelp", &F.getEntryBlock().front());
Builder.CreateStore(llvm::ConstantInt::get(UnwindHelpTy, -2), UnwindHelp,
/*isVolatile=*/true);
Function *UnwindHelpFn =
Intrinsic::getDeclaration(M, Intrinsic::eh_unwindhelp);
Builder.CreateCall(UnwindHelpFn,
Builder.CreateBitCast(UnwindHelp, Int8PtrType));
// Clean up the handler action maps we created for this function
DeleteContainerSeconds(CatchHandlerMap);
CatchHandlerMap.clear();
DeleteContainerSeconds(CleanupHandlerMap);
CleanupHandlerMap.clear();
return HandlersOutlined;
}
// This function examines a block to determine whether the block ends with a
// conditional branch to a catch handler based on a selector comparison.
// This function is used both by the WinEHPrepare::findSelectorComparison() and
// WinEHCleanupDirector::handleTypeIdFor().
static bool isSelectorDispatch(BasicBlock *BB, BasicBlock *&CatchHandler,
Constant *&Selector, BasicBlock *&NextBB) {
ICmpInst::Predicate Pred;
BasicBlock *TBB, *FBB;
Value *LHS, *RHS;
if (!match(BB->getTerminator(),
m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TBB, FBB)))
return false;
if (!match(LHS,
m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))) &&
!match(RHS, m_Intrinsic<Intrinsic::eh_typeid_for>(m_Constant(Selector))))
return false;
if (Pred == CmpInst::ICMP_EQ) {
CatchHandler = TBB;
NextBB = FBB;
return true;
}
if (Pred == CmpInst::ICMP_NE) {
CatchHandler = FBB;
NextBB = TBB;
return true;
}
return false;
}
bool WinEHPrepare::outlineHandler(ActionHandler *Action, Function *SrcFn,
LandingPadInst *LPad, BasicBlock *StartBB,
FrameVarInfoMap &VarInfo) {
Module *M = SrcFn->getParent();
LLVMContext &Context = M->getContext();
// Create a new function to receive the handler contents.
Type *Int8PtrType = Type::getInt8PtrTy(Context);
std::vector<Type *> ArgTys;
ArgTys.push_back(Int8PtrType);
ArgTys.push_back(Int8PtrType);
Function *Handler;
if (Action->getType() == Catch) {
FunctionType *FnType = FunctionType::get(Int8PtrType, ArgTys, false);
Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
SrcFn->getName() + ".catch", M);
} else {
FunctionType *FnType =
FunctionType::get(Type::getVoidTy(Context), ArgTys, false);
Handler = Function::Create(FnType, GlobalVariable::InternalLinkage,
SrcFn->getName() + ".cleanup", M);
}
Handler->addFnAttr("wineh-parent", SrcFn->getName());
// Generate a standard prolog to setup the frame recovery structure.
IRBuilder<> Builder(Context);
BasicBlock *Entry = BasicBlock::Create(Context, "entry");
Handler->getBasicBlockList().push_front(Entry);
Builder.SetInsertPoint(Entry);
Builder.SetCurrentDebugLocation(LPad->getDebugLoc());
std::unique_ptr<WinEHCloningDirectorBase> Director;
ValueToValueMapTy VMap;
LandingPadMap &LPadMap = LPadMaps[LPad];
if (!LPadMap.isInitialized())
LPadMap.mapLandingPad(LPad);
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
// Insert an alloca for the object which holds the address of the parent's
// frame pointer. The stack offset of this object needs to be encoded in
// xdata.
AllocaInst *ParentFrame = new AllocaInst(Int8PtrType, "parentframe", Entry);
Builder.CreateStore(&Handler->getArgumentList().back(), ParentFrame,
/*isStore=*/true);
Function *ParentFrameFn =
Intrinsic::getDeclaration(M, Intrinsic::eh_parentframe);
Builder.CreateCall(ParentFrameFn, ParentFrame);
Constant *Sel = CatchAction->getSelector();
Director.reset(new WinEHCatchDirector(Handler, Sel, VarInfo, LPadMap));
LPadMap.remapSelector(VMap, ConstantInt::get(Type::getInt32Ty(Context), 1));
} else {
Director.reset(new WinEHCleanupDirector(Handler, VarInfo, LPadMap));
}
SmallVector<ReturnInst *, 8> Returns;
ClonedCodeInfo OutlinedFunctionInfo;
// If the start block contains PHI nodes, we need to map them.
BasicBlock::iterator II = StartBB->begin();
while (auto *PN = dyn_cast<PHINode>(II)) {
bool Mapped = false;
// Look for PHI values that we have already mapped (such as the selector).
for (Value *Val : PN->incoming_values()) {
if (VMap.count(Val)) {
VMap[PN] = VMap[Val];
Mapped = true;
}
}
// If we didn't find a match for this value, map it as an undef.
if (!Mapped) {
VMap[PN] = UndefValue::get(PN->getType());
}
++II;
}
// Skip over PHIs and, if applicable, landingpad instructions.
II = StartBB->getFirstInsertionPt();
CloneAndPruneIntoFromInst(Handler, SrcFn, II, VMap,
/*ModuleLevelChanges=*/false, Returns, "",
&OutlinedFunctionInfo, Director.get());
// Move all the instructions in the first cloned block into our entry block.
BasicBlock *FirstClonedBB = std::next(Function::iterator(Entry));
Entry->getInstList().splice(Entry->end(), FirstClonedBB->getInstList());
FirstClonedBB->eraseFromParent();
if (auto *CatchAction = dyn_cast<CatchHandler>(Action)) {
WinEHCatchDirector *CatchDirector =
reinterpret_cast<WinEHCatchDirector *>(Director.get());
CatchAction->setExceptionVar(CatchDirector->getExceptionVar());
CatchAction->setReturnTargets(CatchDirector->getReturnTargets());
}
Action->setHandlerBlockOrFunc(Handler);
return true;
}
/// This BB must end in a selector dispatch. All we need to do is pass the
/// handler block to llvm.eh.actions and list it as a possible indirectbr
/// target.
void WinEHPrepare::processSEHCatchHandler(CatchHandler *CatchAction,
BasicBlock *StartBB) {
BasicBlock *HandlerBB;
BasicBlock *NextBB;
Constant *Selector;
bool Res = isSelectorDispatch(StartBB, HandlerBB, Selector, NextBB);
if (Res) {
// If this was EH dispatch, this must be a conditional branch to the handler
// block.
// FIXME: Handle instructions in the dispatch block. Currently we drop them,
// leading to crashes if some optimization hoists stuff here.
assert(CatchAction->getSelector() && HandlerBB &&
"expected catch EH dispatch");
} else {
// This must be a catch-all. Split the block after the landingpad.
assert(CatchAction->getSelector()->isNullValue() && "expected catch-all");
HandlerBB =
StartBB->splitBasicBlock(StartBB->getFirstInsertionPt(), "catch.all");
}
CatchAction->setHandlerBlockOrFunc(BlockAddress::get(HandlerBB));
TinyPtrVector<BasicBlock *> Targets(HandlerBB);
CatchAction->setReturnTargets(Targets);
}
void LandingPadMap::mapLandingPad(const LandingPadInst *LPad) {
// Each instance of this class should only ever be used to map a single
// landing pad.
assert(OriginLPad == nullptr || OriginLPad == LPad);
// If the landing pad has already been mapped, there's nothing more to do.
if (OriginLPad == LPad)
return;
OriginLPad = LPad;
// The landingpad instruction returns an aggregate value. Typically, its
// value will be passed to a pair of extract value instructions and the
// results of those extracts are often passed to store instructions.
// In unoptimized code the stored value will often be loaded and then stored
// again.
for (auto *U : LPad->users()) {
const ExtractValueInst *Extract = dyn_cast<ExtractValueInst>(U);
if (!Extract)
continue;
assert(Extract->getNumIndices() == 1 &&
"Unexpected operation: extracting both landing pad values");
unsigned int Idx = *(Extract->idx_begin());
assert((Idx == 0 || Idx == 1) &&
"Unexpected operation: extracting an unknown landing pad element");
if (Idx == 0) {
// Element 0 doesn't directly corresponds to anything in the WinEH
// scheme.
// It will be stored to a memory location, then later loaded and finally
// the loaded value will be used as the argument to an
// llvm.eh.begincatch
// call. We're tracking it here so that we can skip the store and load.
ExtractedEHPtrs.push_back(Extract);
} else if (Idx == 1) {
// Element 1 corresponds to the filter selector. We'll map it to 1 for
// matching purposes, but it will also probably be stored to memory and
// reloaded, so we need to track the instuction so that we can map the
// loaded value too.
ExtractedSelectors.push_back(Extract);
}
// Look for stores of the extracted values.
for (auto *EU : Extract->users()) {
if (auto *Store = dyn_cast<StoreInst>(EU)) {
if (Idx == 1) {
SelectorStores.push_back(Store);
SelectorStoreAddrs.push_back(Store->getPointerOperand());
} else {
EHPtrStores.push_back(Store);
EHPtrStoreAddrs.push_back(Store->getPointerOperand());
}
}
}
}
}
bool LandingPadMap::isOriginLandingPadBlock(const BasicBlock *BB) const {
return BB->getLandingPadInst() == OriginLPad;
}
bool LandingPadMap::isLandingPadSpecificInst(const Instruction *Inst) const {
if (Inst == OriginLPad)
return true;
for (auto *Extract : ExtractedEHPtrs) {
if (Inst == Extract)
return true;
}
for (auto *Extract : ExtractedSelectors) {
if (Inst == Extract)
return true;
}
for (auto *Store : EHPtrStores) {
if (Inst == Store)
return true;
}
for (auto *Store : SelectorStores) {
if (Inst == Store)
return true;
}
return false;
}
void LandingPadMap::remapSelector(ValueToValueMapTy &VMap,
Value *MappedValue) const {
// Remap all selector extract instructions to the specified value.
for (auto *Extract : ExtractedSelectors)
VMap[Extract] = MappedValue;
}
bool LandingPadMap::mapIfEHLoad(const LoadInst *Load,
SmallVectorImpl<const StoreInst *> &Stores,
SmallVectorImpl<const Value *> &StoreAddrs) {
// This makes the assumption that a store we've previously seen dominates
// this load instruction. That might seem like a rather huge assumption,
// but given the way that landingpads are constructed its fairly safe.
// FIXME: Add debug/assert code that verifies this.
const Value *LoadAddr = Load->getPointerOperand();
for (auto *StoreAddr : StoreAddrs) {
if (LoadAddr == StoreAddr) {
// Handle the common debug scenario where this loaded value is stored
// to a different location.
for (auto *U : Load->users()) {
if (auto *Store = dyn_cast<StoreInst>(U)) {
Stores.push_back(Store);
StoreAddrs.push_back(Store->getPointerOperand());
}
}
return true;
}
}
return false;
}
CloningDirector::CloningAction WinEHCloningDirectorBase::handleInstruction(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
// If this is one of the boilerplate landing pad instructions, skip it.
// The instruction will have already been remapped in VMap.
if (LPadMap.isLandingPadSpecificInst(Inst))
return CloningDirector::SkipInstruction;
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
// Look for loads of (previously suppressed) landingpad values.
// The EHPtr load can be mapped to an undef value as it should only be used
// as an argument to llvm.eh.begincatch, but the selector value needs to be
// mapped to a constant value of 1. This value will be used to simplify the
// branching to always flow to the current handler.
if (LPadMap.mapIfSelectorLoad(Load)) {
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
return CloningDirector::SkipInstruction;
}
if (LPadMap.mapIfEHPtrLoad(Load)) {
VMap[Inst] = UndefValue::get(Int8PtrType);
return CloningDirector::SkipInstruction;
}
// Any other loads just get cloned.
return CloningDirector::CloneInstruction;
}
// Nested landing pads will be cloned as stubs, with just the
// landingpad instruction and an unreachable instruction. When
// all landingpads have been outlined, we'll replace this with the
// llvm.eh.actions call and indirect branch created when the
// landing pad was outlined.
if (auto *NestedLPad = dyn_cast<LandingPadInst>(Inst)) {
Instruction *NewInst = NestedLPad->clone();
if (NestedLPad->hasName())
NewInst->setName(NestedLPad->getName());
// FIXME: Store this mapping somewhere else also.
VMap[NestedLPad] = NewInst;
BasicBlock::InstListType &InstList = NewBB->getInstList();
InstList.push_back(NewInst);
InstList.push_back(new UnreachableInst(NewBB->getContext()));
return CloningDirector::StopCloningBB;
}
if (auto *Invoke = dyn_cast<InvokeInst>(Inst))
return handleInvoke(VMap, Invoke, NewBB);
if (auto *Resume = dyn_cast<ResumeInst>(Inst))
return handleResume(VMap, Resume, NewBB);
if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
return handleBeginCatch(VMap, Inst, NewBB);
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
return handleEndCatch(VMap, Inst, NewBB);
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
return handleTypeIdFor(VMap, Inst, NewBB);
// Continue with the default cloning behavior.
return CloningDirector::CloneInstruction;
}
CloningDirector::CloningAction WinEHCatchDirector::handleBeginCatch(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
// The argument to the call is some form of the first element of the
// landingpad aggregate value, but that doesn't matter. It isn't used
// here.
// The second argument is an outparameter where the exception object will be
// stored. Typically the exception object is a scalar, but it can be an
// aggregate when catching by value.
// FIXME: Leave something behind to indicate where the exception object lives
// for this handler. Should it be part of llvm.eh.actions?
assert(ExceptionObjectVar == nullptr && "Multiple calls to "
"llvm.eh.begincatch found while "
"outlining catch handler.");
ExceptionObjectVar = Inst->getOperand(1)->stripPointerCasts();
return CloningDirector::SkipInstruction;
}
CloningDirector::CloningAction
WinEHCatchDirector::handleEndCatch(ValueToValueMapTy &VMap,
const Instruction *Inst, BasicBlock *NewBB) {
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
// It might be interesting to track whether or not we are inside a catch
// function, but that might make the algorithm more brittle than it needs
// to be.
// The end catch call can occur in one of two places: either in a
// landingpad block that is part of the catch handlers exception mechanism,
// or at the end of the catch block. However, a catch-all handler may call
// end catch from the original landing pad. If the call occurs in a nested
// landing pad block, we must skip it and continue so that the landing pad
// gets cloned.
auto *ParentBB = IntrinCall->getParent();
if (ParentBB->isLandingPad() && !LPadMap.isOriginLandingPadBlock(ParentBB))
return CloningDirector::SkipInstruction;
// If an end catch occurs anywhere else the next instruction should be an
// unconditional branch instruction that we want to replace with a return
// to the the address of the branch target.
const BasicBlock *EndCatchBB = IntrinCall->getParent();
const TerminatorInst *Terminator = EndCatchBB->getTerminator();
const BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
assert(Branch && Branch->isUnconditional());
assert(std::next(BasicBlock::const_iterator(IntrinCall)) ==
BasicBlock::const_iterator(Branch));
BasicBlock *ContinueLabel = Branch->getSuccessor(0);
ReturnInst::Create(NewBB->getContext(), BlockAddress::get(ContinueLabel),
NewBB);
ReturnTargets.push_back(ContinueLabel);
// We just added a terminator to the cloned block.
// Tell the caller to stop processing the current basic block so that
// the branch instruction will be skipped.
return CloningDirector::StopCloningBB;
}
CloningDirector::CloningAction WinEHCatchDirector::handleTypeIdFor(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
auto *IntrinCall = dyn_cast<IntrinsicInst>(Inst);
Value *Selector = IntrinCall->getArgOperand(0)->stripPointerCasts();
// This causes a replacement that will collapse the landing pad CFG based
// on the filter function we intend to match.
if (Selector == CurrentSelector)
VMap[Inst] = ConstantInt::get(SelectorIDType, 1);
else
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
// Tell the caller not to clone this instruction.
return CloningDirector::SkipInstruction;
}
CloningDirector::CloningAction
WinEHCatchDirector::handleInvoke(ValueToValueMapTy &VMap,
const InvokeInst *Invoke, BasicBlock *NewBB) {
return CloningDirector::CloneInstruction;
}
CloningDirector::CloningAction
WinEHCatchDirector::handleResume(ValueToValueMapTy &VMap,
const ResumeInst *Resume, BasicBlock *NewBB) {
// Resume instructions shouldn't be reachable from catch handlers.
// We still need to handle it, but it will be pruned.
BasicBlock::InstListType &InstList = NewBB->getInstList();
InstList.push_back(new UnreachableInst(NewBB->getContext()));
return CloningDirector::StopCloningBB;
}
CloningDirector::CloningAction WinEHCleanupDirector::handleBeginCatch(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
// Catch blocks within cleanup handlers will always be unreachable.
// We'll insert an unreachable instruction now, but it will be pruned
// before the cloning process is complete.
BasicBlock::InstListType &InstList = NewBB->getInstList();
InstList.push_back(new UnreachableInst(NewBB->getContext()));
return CloningDirector::StopCloningBB;
}
CloningDirector::CloningAction WinEHCleanupDirector::handleEndCatch(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
// Catch blocks within cleanup handlers will always be unreachable.
// We'll insert an unreachable instruction now, but it will be pruned
// before the cloning process is complete.
BasicBlock::InstListType &InstList = NewBB->getInstList();
InstList.push_back(new UnreachableInst(NewBB->getContext()));
return CloningDirector::StopCloningBB;
}
CloningDirector::CloningAction WinEHCleanupDirector::handleTypeIdFor(
ValueToValueMapTy &VMap, const Instruction *Inst, BasicBlock *NewBB) {
// If we encounter a selector comparison while cloning a cleanup handler,
// we want to stop cloning immediately. Anything after the dispatch
// will be outlined into a different handler.
BasicBlock *CatchHandler;
Constant *Selector;
BasicBlock *NextBB;
if (isSelectorDispatch(const_cast<BasicBlock *>(Inst->getParent()),
CatchHandler, Selector, NextBB)) {
ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
return CloningDirector::StopCloningBB;
}
// If eg.typeid.for is called for any other reason, it can be ignored.
VMap[Inst] = ConstantInt::get(SelectorIDType, 0);
return CloningDirector::SkipInstruction;
}
CloningDirector::CloningAction WinEHCleanupDirector::handleInvoke(
ValueToValueMapTy &VMap, const InvokeInst *Invoke, BasicBlock *NewBB) {
// All invokes in cleanup handlers can be replaced with calls.
SmallVector<Value *, 16> CallArgs(Invoke->op_begin(), Invoke->op_end() - 3);
// Insert a normal call instruction...
CallInst *NewCall =
CallInst::Create(const_cast<Value *>(Invoke->getCalledValue()), CallArgs,
Invoke->getName(), NewBB);
NewCall->setCallingConv(Invoke->getCallingConv());
NewCall->setAttributes(Invoke->getAttributes());
NewCall->setDebugLoc(Invoke->getDebugLoc());
VMap[Invoke] = NewCall;
// Insert an unconditional branch to the normal destination.
BranchInst::Create(Invoke->getNormalDest(), NewBB);
// The unwind destination won't be cloned into the new function, so
// we don't need to clean up its phi nodes.
// We just added a terminator to the cloned block.
// Tell the caller to stop processing the current basic block.
return CloningDirector::StopCloningBB;
}
CloningDirector::CloningAction WinEHCleanupDirector::handleResume(
ValueToValueMapTy &VMap, const ResumeInst *Resume, BasicBlock *NewBB) {
ReturnInst::Create(NewBB->getContext(), nullptr, NewBB);
// We just added a terminator to the cloned block.
// Tell the caller to stop processing the current basic block so that
// the branch instruction will be skipped.
return CloningDirector::StopCloningBB;
}
WinEHFrameVariableMaterializer::WinEHFrameVariableMaterializer(
Function *OutlinedFn, FrameVarInfoMap &FrameVarInfo)
: FrameVarInfo(FrameVarInfo), Builder(OutlinedFn->getContext()) {
Builder.SetInsertPoint(&OutlinedFn->getEntryBlock());
}
Value *WinEHFrameVariableMaterializer::materializeValueFor(Value *V) {
// If we're asked to materialize a value that is an instruction, we
// temporarily create an alloca in the outlined function and add this
// to the FrameVarInfo map. When all the outlining is complete, we'll
// collect these into a structure, spilling non-alloca values in the
// parent frame as necessary, and replace these temporary allocas with
// GEPs referencing the frame allocation block.
// If the value is an alloca, the mapping is direct.
if (auto *AV = dyn_cast<AllocaInst>(V)) {
AllocaInst *NewAlloca = dyn_cast<AllocaInst>(AV->clone());
Builder.Insert(NewAlloca, AV->getName());
FrameVarInfo[AV].push_back(NewAlloca);
return NewAlloca;
}
// For other types of instructions or arguments, we need an alloca based on
// the value's type and a load of the alloca. The alloca will be replaced
// by a GEP, but the load will stay. In the parent function, the value will
// be spilled to a location in the frame allocation block.
if (isa<Instruction>(V) || isa<Argument>(V)) {
AllocaInst *NewAlloca =
Builder.CreateAlloca(V->getType(), nullptr, "eh.temp.alloca");
FrameVarInfo[V].push_back(NewAlloca);
LoadInst *NewLoad = Builder.CreateLoad(NewAlloca, V->getName() + ".reload");
return NewLoad;
}
// Don't materialize other values.
return nullptr;
}
// This function maps the catch and cleanup handlers that are reachable from the
// specified landing pad. The landing pad sequence will have this basic shape:
//
// <cleanup handler>
// <selector comparison>
// <catch handler>
// <cleanup handler>
// <selector comparison>
// <catch handler>
// <cleanup handler>
// ...
//
// Any of the cleanup slots may be absent. The cleanup slots may be occupied by
// any arbitrary control flow, but all paths through the cleanup code must
// eventually reach the next selector comparison and no path can skip to a
// different selector comparisons, though some paths may terminate abnormally.
// Therefore, we will use a depth first search from the start of any given
// cleanup block and stop searching when we find the next selector comparison.
//
// If the landingpad instruction does not have a catch clause, we will assume
// that any instructions other than selector comparisons and catch handlers can
// be ignored. In practice, these will only be the boilerplate instructions.
//
// The catch handlers may also have any control structure, but we are only
// interested in the start of the catch handlers, so we don't need to actually
// follow the flow of the catch handlers. The start of the catch handlers can
// be located from the compare instructions, but they can be skipped in the
// flow by following the contrary branch.
void WinEHPrepare::mapLandingPadBlocks(LandingPadInst *LPad,
LandingPadActions &Actions) {
unsigned int NumClauses = LPad->getNumClauses();
unsigned int HandlersFound = 0;
BasicBlock *BB = LPad->getParent();
DEBUG(dbgs() << "Mapping landing pad: " << BB->getName() << "\n");
if (NumClauses == 0) {
// This landing pad contains only cleanup code.
CleanupHandler *Action = new CleanupHandler(BB);
CleanupHandlerMap[BB] = Action;
Actions.insertCleanupHandler(Action);
DEBUG(dbgs() << " Assuming cleanup code in block " << BB->getName()
<< "\n");
assert(LPad->isCleanup());
return;
}
VisitedBlockSet VisitedBlocks;
while (HandlersFound != NumClauses) {
BasicBlock *NextBB = nullptr;
// See if the clause we're looking for is a catch-all.
// If so, the catch begins immediately.
if (isa<ConstantPointerNull>(LPad->getClause(HandlersFound))) {
// The catch all must occur last.
assert(HandlersFound == NumClauses - 1);
// For C++ EH, check if there is any interesting cleanup code before we
// begin the catch. This is important because cleanups cannot rethrow
// exceptions but code called from catches can. For SEH, it isn't
// important if some finally code before a catch-all is executed out of
// line or after recovering from the exception.
if (Personality == EHPersonality::MSVC_CXX) {
if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
// Add a cleanup entry to the list
Actions.insertCleanupHandler(CleanupAction);
DEBUG(dbgs() << " Found cleanup code in block "
<< CleanupAction->getStartBlock()->getName() << "\n");
}
}
// Add the catch handler to the action list.
CatchHandler *Action =
new CatchHandler(BB, LPad->getClause(HandlersFound), nullptr);
CatchHandlerMap[BB] = Action;
Actions.insertCatchHandler(Action);
DEBUG(dbgs() << " Catch all handler at block " << BB->getName() << "\n");
++HandlersFound;
// Once we reach a catch-all, don't expect to hit a resume instruction.
BB = nullptr;
break;
}
CatchHandler *CatchAction = findCatchHandler(BB, NextBB, VisitedBlocks);
// See if there is any interesting code executed before the dispatch.
if (auto *CleanupAction =
findCleanupHandler(BB, CatchAction->getStartBlock())) {
// Add a cleanup entry to the list
Actions.insertCleanupHandler(CleanupAction);
DEBUG(dbgs() << " Found cleanup code in block "
<< CleanupAction->getStartBlock()->getName() << "\n");
}
assert(CatchAction);
++HandlersFound;
// Add the catch handler to the action list.
Actions.insertCatchHandler(CatchAction);
DEBUG(dbgs() << " Found catch dispatch in block "
<< CatchAction->getStartBlock()->getName() << "\n");
// Move on to the block after the catch handler.
BB = NextBB;
}
// If we didn't wind up in a catch-all, see if there is any interesting code
// executed before the resume.
if (auto *CleanupAction = findCleanupHandler(BB, BB)) {
// Add a cleanup entry to the list
Actions.insertCleanupHandler(CleanupAction);
DEBUG(dbgs() << " Found cleanup code in block "
<< CleanupAction->getStartBlock()->getName() << "\n");
}
// It's possible that some optimization moved code into a landingpad that
// wasn't
// previously being used for cleanup. If that happens, we need to execute
// that
// extra code from a cleanup handler.
if (Actions.includesCleanup() && !LPad->isCleanup())
LPad->setCleanup(true);
}
// This function searches starting with the input block for the next
// block that terminates with a branch whose condition is based on a selector
// comparison. This may be the input block. See the mapLandingPadBlocks
// comments for a discussion of control flow assumptions.
//
CatchHandler *WinEHPrepare::findCatchHandler(BasicBlock *BB,
BasicBlock *&NextBB,
VisitedBlockSet &VisitedBlocks) {
// See if we've already found a catch handler use it.
// Call count() first to avoid creating a null entry for blocks
// we haven't seen before.
if (CatchHandlerMap.count(BB) && CatchHandlerMap[BB] != nullptr) {
CatchHandler *Action = cast<CatchHandler>(CatchHandlerMap[BB]);
NextBB = Action->getNextBB();
return Action;
}
// VisitedBlocks applies only to the current search. We still
// need to consider blocks that we've visited while mapping other
// landing pads.
VisitedBlocks.insert(BB);
BasicBlock *CatchBlock = nullptr;
Constant *Selector = nullptr;
// If this is the first time we've visited this block from any landing pad
// look to see if it is a selector dispatch block.
if (!CatchHandlerMap.count(BB)) {
if (isSelectorDispatch(BB, CatchBlock, Selector, NextBB)) {
CatchHandler *Action = new CatchHandler(BB, Selector, NextBB);
CatchHandlerMap[BB] = Action;
return Action;
}
}
// Visit each successor, looking for the dispatch.
// FIXME: We expect to find the dispatch quickly, so this will probably
// work better as a breadth first search.
for (BasicBlock *Succ : successors(BB)) {
if (VisitedBlocks.count(Succ))
continue;
CatchHandler *Action = findCatchHandler(Succ, NextBB, VisitedBlocks);
if (Action)
return Action;
}
return nullptr;
}
// These are helper functions to combine repeated code from findCleanupHandler.
static CleanupHandler *createCleanupHandler(CleanupHandlerMapTy &CleanupHandlerMap,
BasicBlock *BB) {
CleanupHandler *Action = new CleanupHandler(BB);
CleanupHandlerMap[BB] = Action;
return Action;
}
// This function searches starting with the input block for the next block that
// contains code that is not part of a catch handler and would not be eliminated
// during handler outlining.
//
CleanupHandler *WinEHPrepare::findCleanupHandler(BasicBlock *StartBB,
BasicBlock *EndBB) {
// Here we will skip over the following:
//
// landing pad prolog:
//
// Unconditional branches
//
// Selector dispatch
//
// Resume pattern
//
// Anything else marks the start of an interesting block
BasicBlock *BB = StartBB;
// Anything other than an unconditional branch will kick us out of this loop
// one way or another.
while (BB) {
// If we've already scanned this block, don't scan it again. If it is
// a cleanup block, there will be an action in the CleanupHandlerMap.
// If we've scanned it and it is not a cleanup block, there will be a
// nullptr in the CleanupHandlerMap. If we have not scanned it, there will
// be no entry in the CleanupHandlerMap. We must call count() first to
// avoid creating a null entry for blocks we haven't scanned.
if (CleanupHandlerMap.count(BB)) {
if (auto *Action = CleanupHandlerMap[BB]) {
return cast<CleanupHandler>(Action);
} else {
// Here we handle the case where the cleanup handler map contains a
// value for this block but the value is a nullptr. This means that
// we have previously analyzed the block and determined that it did
// not contain any cleanup code. Based on the earlier analysis, we
// know the the block must end in either an unconditional branch, a
// resume or a conditional branch that is predicated on a comparison
// with a selector. Either the resume or the selector dispatch
// would terminate the search for cleanup code, so the unconditional
// branch is the only case for which we might need to continue
// searching.
if (BB == EndBB)
return nullptr;
BasicBlock *SuccBB;
if (!match(BB->getTerminator(), m_UnconditionalBr(SuccBB)))
return nullptr;
BB = SuccBB;
continue;
}
}
// Create an entry in the cleanup handler map for this block. Initially
// we create an entry that says this isn't a cleanup block. If we find
// cleanup code, the caller will replace this entry.
CleanupHandlerMap[BB] = nullptr;
TerminatorInst *Terminator = BB->getTerminator();
// Landing pad blocks have extra instructions we need to accept.
LandingPadMap *LPadMap = nullptr;
if (BB->isLandingPad()) {
LandingPadInst *LPad = BB->getLandingPadInst();
LPadMap = &LPadMaps[LPad];
if (!LPadMap->isInitialized())
LPadMap->mapLandingPad(LPad);
}
// Look for the bare resume pattern:
// %exn2 = load i8** %exn.slot
// %sel2 = load i32* %ehselector.slot
// %lpad.val1 = insertvalue { i8*, i32 } undef, i8* %exn2, 0
// %lpad.val2 = insertvalue { i8*, i32 } %lpad.val1, i32 %sel2, 1
// resume { i8*, i32 } %lpad.val2
if (auto *Resume = dyn_cast<ResumeInst>(Terminator)) {
InsertValueInst *Insert1 = nullptr;
InsertValueInst *Insert2 = nullptr;
Value *ResumeVal = Resume->getOperand(0);
// If there is only one landingpad, we may use the lpad directly with no
// insertions.
if (isa<LandingPadInst>(ResumeVal))
return nullptr;
if (!isa<PHINode>(ResumeVal)) {
Insert2 = dyn_cast<InsertValueInst>(ResumeVal);
if (!Insert2)
return createCleanupHandler(CleanupHandlerMap, BB);
Insert1 = dyn_cast<InsertValueInst>(Insert2->getAggregateOperand());
if (!Insert1)
return createCleanupHandler(CleanupHandlerMap, BB);
}
for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(), IE = BB->end();
II != IE; ++II) {
Instruction *Inst = II;
if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
continue;
if (Inst == Insert1 || Inst == Insert2 || Inst == Resume)
continue;
if (!Inst->hasOneUse() ||
(Inst->user_back() != Insert1 && Inst->user_back() != Insert2)) {
return createCleanupHandler(CleanupHandlerMap, BB);
}
}
return nullptr;
}
BranchInst *Branch = dyn_cast<BranchInst>(Terminator);
if (Branch) {
if (Branch->isConditional()) {
// Look for the selector dispatch.
// %sel = load i32* %ehselector.slot
// %2 = call i32 @llvm.eh.typeid.for(i8* bitcast (i8** @_ZTIf to i8*))
// %matches = icmp eq i32 %sel12, %2
// br i1 %matches, label %catch14, label %eh.resume
CmpInst *Compare = dyn_cast<CmpInst>(Branch->getCondition());
if (!Compare || !Compare->isEquality())
return createCleanupHandler(CleanupHandlerMap, BB);
for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
IE = BB->end();
II != IE; ++II) {
Instruction *Inst = II;
if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
continue;
if (Inst == Compare || Inst == Branch)
continue;
if (!Inst->hasOneUse() || (Inst->user_back() != Compare))
return createCleanupHandler(CleanupHandlerMap, BB);
if (match(Inst, m_Intrinsic<Intrinsic::eh_typeid_for>()))
continue;
if (!isa<LoadInst>(Inst))
return createCleanupHandler(CleanupHandlerMap, BB);
}
// The selector dispatch block should always terminate our search.
assert(BB == EndBB);
return nullptr;
} else {
// Look for empty blocks with unconditional branches.
for (BasicBlock::iterator II = BB->getFirstNonPHIOrDbg(),
IE = BB->end();
II != IE; ++II) {
Instruction *Inst = II;
if (LPadMap && LPadMap->isLandingPadSpecificInst(Inst))
continue;
if (Inst == Branch)
continue;
// This can happen with a catch-all handler.
if (match(Inst, m_Intrinsic<Intrinsic::eh_begincatch>()))
return nullptr;
if (match(Inst, m_Intrinsic<Intrinsic::eh_endcatch>()))
continue;
// Anything else makes this interesting cleanup code.
return createCleanupHandler(CleanupHandlerMap, BB);
}
if (BB == EndBB)
return nullptr;
// The branch was unconditional.
BB = Branch->getSuccessor(0);
continue;
} // End else of if branch was conditional
} // End if Branch
// Anything else makes this interesting cleanup code.
return createCleanupHandler(CleanupHandlerMap, BB);
}
return nullptr;
}