mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-29 08:16:51 +00:00 
			
		
		
		
	No functionality change. It should suffice to check the type of a debug info metadata, instead of calling Verify. For cases where we know the type of a DI metadata, use assert. Also update testing cases to make them conform to the format of DI classes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@185135 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			490 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements routines for translating functions from LLVM IR into
 | |
| // Machine IR.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "function-lowering-info"
 | |
| #include "llvm/CodeGen/FunctionLoweringInfo.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/CodeGen/Analysis.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/DebugInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetLowering.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
 | |
| /// PHI nodes or outside of the basic block that defines it, or used by a
 | |
| /// switch or atomic instruction, which may expand to multiple basic blocks.
 | |
| static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
 | |
|   if (I->use_empty()) return false;
 | |
|   if (isa<PHINode>(I)) return true;
 | |
|   const BasicBlock *BB = I->getParent();
 | |
|   for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
 | |
|         UI != E; ++UI) {
 | |
|     const User *U = *UI;
 | |
|     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
 | |
|   const TargetLowering *TLI = TM.getTargetLowering();
 | |
| 
 | |
|   Fn = &fn;
 | |
|   MF = &mf;
 | |
|   RegInfo = &MF->getRegInfo();
 | |
| 
 | |
|   // Check whether the function can return without sret-demotion.
 | |
|   SmallVector<ISD::OutputArg, 4> Outs;
 | |
|   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
 | |
|   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
 | |
|                                        Fn->isVarArg(),
 | |
|                                        Outs, Fn->getContext());
 | |
| 
 | |
|   // Initialize the mapping of values to registers.  This is only set up for
 | |
|   // instruction values that are used outside of the block that defines
 | |
|   // them.
 | |
|   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
 | |
|   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
 | |
|       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
 | |
|         Type *Ty = AI->getAllocatedType();
 | |
|         uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
 | |
|         unsigned Align =
 | |
|           std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
 | |
|                    AI->getAlignment());
 | |
| 
 | |
|         TySize *= CUI->getZExtValue();   // Get total allocated size.
 | |
|         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
 | |
| 
 | |
|         // The object may need to be placed onto the stack near the stack
 | |
|         // protector if one exists. Determine here if this object is a suitable
 | |
|         // candidate. I.e., it would trigger the creation of a stack protector.
 | |
|         bool MayNeedSP =
 | |
|           (AI->isArrayAllocation() ||
 | |
|            (TySize >= 8 && isa<ArrayType>(Ty) &&
 | |
|             cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
 | |
|         StaticAllocaMap[AI] =
 | |
|           MF->getFrameInfo()->CreateStackObject(TySize, Align, false,
 | |
|                                                 MayNeedSP, AI);
 | |
|       }
 | |
| 
 | |
|   for (; BB != EB; ++BB)
 | |
|     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
 | |
|          I != E; ++I) {
 | |
|       // Mark values used outside their block as exported, by allocating
 | |
|       // a virtual register for them.
 | |
|       if (isUsedOutsideOfDefiningBlock(I))
 | |
|         if (!isa<AllocaInst>(I) ||
 | |
|             !StaticAllocaMap.count(cast<AllocaInst>(I)))
 | |
|           InitializeRegForValue(I);
 | |
| 
 | |
|       // Collect llvm.dbg.declare information. This is done now instead of
 | |
|       // during the initial isel pass through the IR so that it is done
 | |
|       // in a predictable order.
 | |
|       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
 | |
|         MachineModuleInfo &MMI = MF->getMMI();
 | |
|         DIVariable DIVar(DI->getVariable());
 | |
|         assert((!DIVar || DIVar.isVariable()) &&
 | |
|           "Variable in DbgDeclareInst should be either null or a DIVariable.");
 | |
|         if (MMI.hasDebugInfo() &&
 | |
|             DIVar &&
 | |
|             !DI->getDebugLoc().isUnknown()) {
 | |
|           // Don't handle byval struct arguments or VLAs, for example.
 | |
|           // Non-byval arguments are handled here (they refer to the stack
 | |
|           // temporary alloca at this point).
 | |
|           const Value *Address = DI->getAddress();
 | |
|           if (Address) {
 | |
|             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
 | |
|               Address = BCI->getOperand(0);
 | |
|             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
 | |
|               DenseMap<const AllocaInst *, int>::iterator SI =
 | |
|                 StaticAllocaMap.find(AI);
 | |
|               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
 | |
|                 int FI = SI->second;
 | |
|                 MMI.setVariableDbgInfo(DI->getVariable(),
 | |
|                                        FI, DI->getDebugLoc());
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
 | |
|   // also creates the initial PHI MachineInstrs, though none of the input
 | |
|   // operands are populated.
 | |
|   for (BB = Fn->begin(); BB != EB; ++BB) {
 | |
|     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
 | |
|     MBBMap[BB] = MBB;
 | |
|     MF->push_back(MBB);
 | |
| 
 | |
|     // Transfer the address-taken flag. This is necessary because there could
 | |
|     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
 | |
|     // the first one should be marked.
 | |
|     if (BB->hasAddressTaken())
 | |
|       MBB->setHasAddressTaken();
 | |
| 
 | |
|     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
 | |
|     // appropriate.
 | |
|     for (BasicBlock::const_iterator I = BB->begin();
 | |
|          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
 | |
|       if (PN->use_empty()) continue;
 | |
| 
 | |
|       // Skip empty types
 | |
|       if (PN->getType()->isEmptyTy())
 | |
|         continue;
 | |
| 
 | |
|       DebugLoc DL = PN->getDebugLoc();
 | |
|       unsigned PHIReg = ValueMap[PN];
 | |
|       assert(PHIReg && "PHI node does not have an assigned virtual register!");
 | |
| 
 | |
|       SmallVector<EVT, 4> ValueVTs;
 | |
|       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
 | |
|       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
 | |
|         EVT VT = ValueVTs[vti];
 | |
|         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
 | |
|         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
|         for (unsigned i = 0; i != NumRegisters; ++i)
 | |
|           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
 | |
|         PHIReg += NumRegisters;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Mark landing pad blocks.
 | |
|   for (BB = Fn->begin(); BB != EB; ++BB)
 | |
|     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
 | |
|       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
 | |
| }
 | |
| 
 | |
| /// clear - Clear out all the function-specific state. This returns this
 | |
| /// FunctionLoweringInfo to an empty state, ready to be used for a
 | |
| /// different function.
 | |
| void FunctionLoweringInfo::clear() {
 | |
|   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
 | |
|          "Not all catch info was assigned to a landing pad!");
 | |
| 
 | |
|   MBBMap.clear();
 | |
|   ValueMap.clear();
 | |
|   StaticAllocaMap.clear();
 | |
| #ifndef NDEBUG
 | |
|   CatchInfoLost.clear();
 | |
|   CatchInfoFound.clear();
 | |
| #endif
 | |
|   LiveOutRegInfo.clear();
 | |
|   VisitedBBs.clear();
 | |
|   ArgDbgValues.clear();
 | |
|   ByValArgFrameIndexMap.clear();
 | |
|   RegFixups.clear();
 | |
| }
 | |
| 
 | |
| /// CreateReg - Allocate a single virtual register for the given type.
 | |
| unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
 | |
|   return RegInfo->
 | |
|     createVirtualRegister(TM.getTargetLowering()->getRegClassFor(VT));
 | |
| }
 | |
| 
 | |
| /// CreateRegs - Allocate the appropriate number of virtual registers of
 | |
| /// the correctly promoted or expanded types.  Assign these registers
 | |
| /// consecutive vreg numbers and return the first assigned number.
 | |
| ///
 | |
| /// In the case that the given value has struct or array type, this function
 | |
| /// will assign registers for each member or element.
 | |
| ///
 | |
| unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
 | |
|   const TargetLowering *TLI = TM.getTargetLowering();
 | |
| 
 | |
|   SmallVector<EVT, 4> ValueVTs;
 | |
|   ComputeValueVTs(*TLI, Ty, ValueVTs);
 | |
| 
 | |
|   unsigned FirstReg = 0;
 | |
|   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
 | |
|     EVT ValueVT = ValueVTs[Value];
 | |
|     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
 | |
| 
 | |
|     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
 | |
|     for (unsigned i = 0; i != NumRegs; ++i) {
 | |
|       unsigned R = CreateReg(RegisterVT);
 | |
|       if (!FirstReg) FirstReg = R;
 | |
|     }
 | |
|   }
 | |
|   return FirstReg;
 | |
| }
 | |
| 
 | |
| /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
 | |
| /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
 | |
| /// the register's LiveOutInfo is for a smaller bit width, it is extended to
 | |
| /// the larger bit width by zero extension. The bit width must be no smaller
 | |
| /// than the LiveOutInfo's existing bit width.
 | |
| const FunctionLoweringInfo::LiveOutInfo *
 | |
| FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
 | |
|   if (!LiveOutRegInfo.inBounds(Reg))
 | |
|     return NULL;
 | |
| 
 | |
|   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
 | |
|   if (!LOI->IsValid)
 | |
|     return NULL;
 | |
| 
 | |
|   if (BitWidth > LOI->KnownZero.getBitWidth()) {
 | |
|     LOI->NumSignBits = 1;
 | |
|     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
 | |
|     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
 | |
|   }
 | |
| 
 | |
|   return LOI;
 | |
| }
 | |
| 
 | |
| /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
 | |
| /// register based on the LiveOutInfo of its operands.
 | |
| void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
 | |
|   Type *Ty = PN->getType();
 | |
|   if (!Ty->isIntegerTy() || Ty->isVectorTy())
 | |
|     return;
 | |
| 
 | |
|   const TargetLowering *TLI = TM.getTargetLowering();
 | |
| 
 | |
|   SmallVector<EVT, 1> ValueVTs;
 | |
|   ComputeValueVTs(*TLI, Ty, ValueVTs);
 | |
|   assert(ValueVTs.size() == 1 &&
 | |
|          "PHIs with non-vector integer types should have a single VT.");
 | |
|   EVT IntVT = ValueVTs[0];
 | |
| 
 | |
|   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
 | |
|     return;
 | |
|   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
 | |
|   unsigned BitWidth = IntVT.getSizeInBits();
 | |
| 
 | |
|   unsigned DestReg = ValueMap[PN];
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
 | |
|     return;
 | |
|   LiveOutRegInfo.grow(DestReg);
 | |
|   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
 | |
| 
 | |
|   Value *V = PN->getIncomingValue(0);
 | |
|   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | |
|     DestLOI.NumSignBits = 1;
 | |
|     APInt Zero(BitWidth, 0);
 | |
|     DestLOI.KnownZero = Zero;
 | |
|     DestLOI.KnownOne = Zero;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | |
|     DestLOI.NumSignBits = Val.getNumSignBits();
 | |
|     DestLOI.KnownZero = ~Val;
 | |
|     DestLOI.KnownOne = Val;
 | |
|   } else {
 | |
|     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
 | |
|                                 "CopyToReg node was created.");
 | |
|     unsigned SrcReg = ValueMap[V];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | |
|     if (!SrcLOI) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     DestLOI = *SrcLOI;
 | |
|   }
 | |
| 
 | |
|   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
 | |
|          DestLOI.KnownOne.getBitWidth() == BitWidth &&
 | |
|          "Masks should have the same bit width as the type.");
 | |
| 
 | |
|   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
|     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
 | |
|       DestLOI.NumSignBits = 1;
 | |
|       APInt Zero(BitWidth, 0);
 | |
|       DestLOI.KnownZero = Zero;
 | |
|       DestLOI.KnownOne = Zero;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
 | |
|       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
 | |
|       DestLOI.KnownZero &= ~Val;
 | |
|       DestLOI.KnownOne &= Val;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
 | |
|                                 "its CopyToReg node was created.");
 | |
|     unsigned SrcReg = ValueMap[V];
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
 | |
|     if (!SrcLOI) {
 | |
|       DestLOI.IsValid = false;
 | |
|       return;
 | |
|     }
 | |
|     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
 | |
|     DestLOI.KnownZero &= SrcLOI->KnownZero;
 | |
|     DestLOI.KnownOne &= SrcLOI->KnownOne;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// setArgumentFrameIndex - Record frame index for the byval
 | |
| /// argument. This overrides previous frame index entry for this argument,
 | |
| /// if any.
 | |
| void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
 | |
|                                                  int FI) {
 | |
|   ByValArgFrameIndexMap[A] = FI;
 | |
| }
 | |
| 
 | |
| /// getArgumentFrameIndex - Get frame index for the byval argument.
 | |
| /// If the argument does not have any assigned frame index then 0 is
 | |
| /// returned.
 | |
| int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
 | |
|   DenseMap<const Argument *, int>::iterator I =
 | |
|     ByValArgFrameIndexMap.find(A);
 | |
|   if (I != ByValArgFrameIndexMap.end())
 | |
|     return I->second;
 | |
|   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
 | |
| /// being passed to this variadic function, and set the MachineModuleInfo's
 | |
| /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
 | |
| /// reference to _fltused on Windows, which will link in MSVCRT's
 | |
| /// floating-point support.
 | |
| void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
 | |
|                                       MachineModuleInfo *MMI)
 | |
| {
 | |
|   FunctionType *FT = cast<FunctionType>(
 | |
|     I.getCalledValue()->getType()->getContainedType(0));
 | |
|   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
 | |
|     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
 | |
|       Type* T = I.getArgOperand(i)->getType();
 | |
|       for (po_iterator<Type*> i = po_begin(T), e = po_end(T);
 | |
|            i != e; ++i) {
 | |
|         if (i->isFloatingPointTy()) {
 | |
|           MMI->setUsesVAFloatArgument(true);
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddCatchInfo - Extract the personality and type infos from an eh.selector
 | |
| /// call, and add them to the specified machine basic block.
 | |
| void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
 | |
|                         MachineBasicBlock *MBB) {
 | |
|   // Inform the MachineModuleInfo of the personality for this landing pad.
 | |
|   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
 | |
|   assert(CE->getOpcode() == Instruction::BitCast &&
 | |
|          isa<Function>(CE->getOperand(0)) &&
 | |
|          "Personality should be a function");
 | |
|   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
 | |
| 
 | |
|   // Gather all the type infos for this landing pad and pass them along to
 | |
|   // MachineModuleInfo.
 | |
|   std::vector<const GlobalVariable *> TyInfo;
 | |
|   unsigned N = I.getNumArgOperands();
 | |
| 
 | |
|   for (unsigned i = N - 1; i > 1; --i) {
 | |
|     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
 | |
|       unsigned FilterLength = CI->getZExtValue();
 | |
|       unsigned FirstCatch = i + FilterLength + !FilterLength;
 | |
|       assert(FirstCatch <= N && "Invalid filter length");
 | |
| 
 | |
|       if (FirstCatch < N) {
 | |
|         TyInfo.reserve(N - FirstCatch);
 | |
|         for (unsigned j = FirstCatch; j < N; ++j)
 | |
|           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
 | |
|         MMI->addCatchTypeInfo(MBB, TyInfo);
 | |
|         TyInfo.clear();
 | |
|       }
 | |
| 
 | |
|       if (!FilterLength) {
 | |
|         // Cleanup.
 | |
|         MMI->addCleanup(MBB);
 | |
|       } else {
 | |
|         // Filter.
 | |
|         TyInfo.reserve(FilterLength - 1);
 | |
|         for (unsigned j = i + 1; j < FirstCatch; ++j)
 | |
|           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
 | |
|         MMI->addFilterTypeInfo(MBB, TyInfo);
 | |
|         TyInfo.clear();
 | |
|       }
 | |
| 
 | |
|       N = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (N > 2) {
 | |
|     TyInfo.reserve(N - 2);
 | |
|     for (unsigned j = 2; j < N; ++j)
 | |
|       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
 | |
|     MMI->addCatchTypeInfo(MBB, TyInfo);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// AddLandingPadInfo - Extract the exception handling information from the
 | |
| /// landingpad instruction and add them to the specified machine module info.
 | |
| void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
 | |
|                              MachineBasicBlock *MBB) {
 | |
|   MMI.addPersonality(MBB,
 | |
|                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
 | |
| 
 | |
|   if (I.isCleanup())
 | |
|     MMI.addCleanup(MBB);
 | |
| 
 | |
|   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
 | |
|   //        but we need to do it this way because of how the DWARF EH emitter
 | |
|   //        processes the clauses.
 | |
|   for (unsigned i = I.getNumClauses(); i != 0; --i) {
 | |
|     Value *Val = I.getClause(i - 1);
 | |
|     if (I.isCatch(i - 1)) {
 | |
|       MMI.addCatchTypeInfo(MBB,
 | |
|                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
 | |
|     } else {
 | |
|       // Add filters in a list.
 | |
|       Constant *CVal = cast<Constant>(Val);
 | |
|       SmallVector<const GlobalVariable*, 4> FilterList;
 | |
|       for (User::op_iterator
 | |
|              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
 | |
|         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
 | |
| 
 | |
|       MMI.addFilterTypeInfo(MBB, FilterList);
 | |
|     }
 | |
|   }
 | |
| }
 |