mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	and into the ScheduleDAGInstrs class, so that they don't get destructed and re-constructed for each block. This fixes a compile-time hot spot in the post-pass scheduler. To help facilitate this, tidy and do some minor reorganization in the scheduler constructor functions. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@62275 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			624 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			624 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This implements a fast scheduler.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "pre-RA-sched"
 | 
						|
#include "llvm/CodeGen/ScheduleDAGSDNodes.h"
 | 
						|
#include "llvm/CodeGen/SchedulerRegistry.h"
 | 
						|
#include "llvm/CodeGen/SelectionDAGISel.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumUnfolds,    "Number of nodes unfolded");
 | 
						|
STATISTIC(NumDups,       "Number of duplicated nodes");
 | 
						|
STATISTIC(NumPRCopies,   "Number of physical copies");
 | 
						|
 | 
						|
static RegisterScheduler
 | 
						|
  fastDAGScheduler("fast", "Fast suboptimal list scheduling",
 | 
						|
                   createFastDAGScheduler);
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// FastPriorityQueue - A degenerate priority queue that considers
 | 
						|
  /// all nodes to have the same priority.
 | 
						|
  ///
 | 
						|
  struct VISIBILITY_HIDDEN FastPriorityQueue {
 | 
						|
    SmallVector<SUnit *, 16> Queue;
 | 
						|
 | 
						|
    bool empty() const { return Queue.empty(); }
 | 
						|
    
 | 
						|
    void push(SUnit *U) {
 | 
						|
      Queue.push_back(U);
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *pop() {
 | 
						|
      if (empty()) return NULL;
 | 
						|
      SUnit *V = Queue.back();
 | 
						|
      Queue.pop_back();
 | 
						|
      return V;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// ScheduleDAGFast - The actual "fast" list scheduler implementation.
 | 
						|
///
 | 
						|
class VISIBILITY_HIDDEN ScheduleDAGFast : public ScheduleDAGSDNodes {
 | 
						|
private:
 | 
						|
  /// AvailableQueue - The priority queue to use for the available SUnits.
 | 
						|
  FastPriorityQueue AvailableQueue;
 | 
						|
 | 
						|
  /// LiveRegDefs - A set of physical registers and their definition
 | 
						|
  /// that are "live". These nodes must be scheduled before any other nodes that
 | 
						|
  /// modifies the registers can be scheduled.
 | 
						|
  unsigned NumLiveRegs;
 | 
						|
  std::vector<SUnit*> LiveRegDefs;
 | 
						|
  std::vector<unsigned> LiveRegCycles;
 | 
						|
 | 
						|
public:
 | 
						|
  ScheduleDAGFast(MachineFunction &mf)
 | 
						|
    : ScheduleDAGSDNodes(mf) {}
 | 
						|
 | 
						|
  void Schedule();
 | 
						|
 | 
						|
  /// AddPred - adds a predecessor edge to SUnit SU.
 | 
						|
  /// This returns true if this is a new predecessor.
 | 
						|
  void AddPred(SUnit *SU, const SDep &D) {
 | 
						|
    SU->addPred(D);
 | 
						|
  }
 | 
						|
 | 
						|
  /// RemovePred - removes a predecessor edge from SUnit SU.
 | 
						|
  /// This returns true if an edge was removed.
 | 
						|
  void RemovePred(SUnit *SU, const SDep &D) {
 | 
						|
    SU->removePred(D);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  void ReleasePred(SUnit *SU, SDep *PredEdge);
 | 
						|
  void ScheduleNodeBottomUp(SUnit*, unsigned);
 | 
						|
  SUnit *CopyAndMoveSuccessors(SUnit*);
 | 
						|
  void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
 | 
						|
                                const TargetRegisterClass*,
 | 
						|
                                const TargetRegisterClass*,
 | 
						|
                                SmallVector<SUnit*, 2>&);
 | 
						|
  bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
 | 
						|
  void ListScheduleBottomUp();
 | 
						|
 | 
						|
  /// ForceUnitLatencies - The fast scheduler doesn't care about real latencies.
 | 
						|
  bool ForceUnitLatencies() const { return true; }
 | 
						|
};
 | 
						|
}  // end anonymous namespace
 | 
						|
 | 
						|
 | 
						|
/// Schedule - Schedule the DAG using list scheduling.
 | 
						|
void ScheduleDAGFast::Schedule() {
 | 
						|
  DOUT << "********** List Scheduling **********\n";
 | 
						|
 | 
						|
  NumLiveRegs = 0;
 | 
						|
  LiveRegDefs.resize(TRI->getNumRegs(), NULL);  
 | 
						|
  LiveRegCycles.resize(TRI->getNumRegs(), 0);
 | 
						|
 | 
						|
  // Build the scheduling graph.
 | 
						|
  BuildSchedGraph();
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
 | 
						|
  // Execute the actual scheduling loop.
 | 
						|
  ListScheduleBottomUp();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  Bottom-Up Scheduling
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
 | 
						|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
 | 
						|
void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
 | 
						|
  SUnit *PredSU = PredEdge->getSUnit();
 | 
						|
  --PredSU->NumSuccsLeft;
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft < 0) {
 | 
						|
    cerr << "*** Scheduling failed! ***\n";
 | 
						|
    PredSU->dump(this);
 | 
						|
    cerr << " has been released too many times!\n";
 | 
						|
    assert(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  
 | 
						|
  if (PredSU->NumSuccsLeft == 0) {
 | 
						|
    PredSU->isAvailable = true;
 | 
						|
    AvailableQueue.push(PredSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
 | 
						|
/// count of its predecessors. If a predecessor pending count is zero, add it to
 | 
						|
/// the Available queue.
 | 
						|
void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
 | 
						|
  DOUT << "*** Scheduling [" << CurCycle << "]: ";
 | 
						|
  DEBUG(SU->dump(this));
 | 
						|
 | 
						|
  assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
 | 
						|
  SU->setHeightToAtLeast(CurCycle);
 | 
						|
  Sequence.push_back(SU);
 | 
						|
 | 
						|
  // Bottom up: release predecessors
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    ReleasePred(SU, &*I);
 | 
						|
    if (I->isAssignedRegDep()) {
 | 
						|
      // This is a physical register dependency and it's impossible or
 | 
						|
      // expensive to copy the register. Make sure nothing that can 
 | 
						|
      // clobber the register is scheduled between the predecessor and
 | 
						|
      // this node.
 | 
						|
      if (!LiveRegDefs[I->getReg()]) {
 | 
						|
        ++NumLiveRegs;
 | 
						|
        LiveRegDefs[I->getReg()] = I->getSUnit();
 | 
						|
        LiveRegCycles[I->getReg()] = CurCycle;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Release all the implicit physical register defs that are live.
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isAssignedRegDep()) {
 | 
						|
      if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
 | 
						|
        assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
 | 
						|
        assert(LiveRegDefs[I->getReg()] == SU &&
 | 
						|
               "Physical register dependency violated?");
 | 
						|
        --NumLiveRegs;
 | 
						|
        LiveRegDefs[I->getReg()] = NULL;
 | 
						|
        LiveRegCycles[I->getReg()] = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
 | 
						|
/// successors to the newly created node.
 | 
						|
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
 | 
						|
  if (SU->getNode()->getFlaggedNode())
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SDNode *N = SU->getNode();
 | 
						|
  if (!N)
 | 
						|
    return NULL;
 | 
						|
 | 
						|
  SUnit *NewSU;
 | 
						|
  bool TryUnfold = false;
 | 
						|
  for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | 
						|
    MVT VT = N->getValueType(i);
 | 
						|
    if (VT == MVT::Flag)
 | 
						|
      return NULL;
 | 
						|
    else if (VT == MVT::Other)
 | 
						|
      TryUnfold = true;
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
 | 
						|
    const SDValue &Op = N->getOperand(i);
 | 
						|
    MVT VT = Op.getNode()->getValueType(Op.getResNo());
 | 
						|
    if (VT == MVT::Flag)
 | 
						|
      return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  if (TryUnfold) {
 | 
						|
    SmallVector<SDNode*, 2> NewNodes;
 | 
						|
    if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
 | 
						|
      return NULL;
 | 
						|
 | 
						|
    DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
 | 
						|
    assert(NewNodes.size() == 2 && "Expected a load folding node!");
 | 
						|
 | 
						|
    N = NewNodes[1];
 | 
						|
    SDNode *LoadNode = NewNodes[0];
 | 
						|
    unsigned NumVals = N->getNumValues();
 | 
						|
    unsigned OldNumVals = SU->getNode()->getNumValues();
 | 
						|
    for (unsigned i = 0; i != NumVals; ++i)
 | 
						|
      DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
 | 
						|
    DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
 | 
						|
                                   SDValue(LoadNode, 1));
 | 
						|
 | 
						|
    SUnit *NewSU = NewSUnit(N);
 | 
						|
    assert(N->getNodeId() == -1 && "Node already inserted!");
 | 
						|
    N->setNodeId(NewSU->NodeNum);
 | 
						|
      
 | 
						|
    const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | 
						|
    for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
 | 
						|
      if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
 | 
						|
        NewSU->isTwoAddress = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (TID.isCommutable())
 | 
						|
      NewSU->isCommutable = true;
 | 
						|
 | 
						|
    // LoadNode may already exist. This can happen when there is another
 | 
						|
    // load from the same location and producing the same type of value
 | 
						|
    // but it has different alignment or volatileness.
 | 
						|
    bool isNewLoad = true;
 | 
						|
    SUnit *LoadSU;
 | 
						|
    if (LoadNode->getNodeId() != -1) {
 | 
						|
      LoadSU = &SUnits[LoadNode->getNodeId()];
 | 
						|
      isNewLoad = false;
 | 
						|
    } else {
 | 
						|
      LoadSU = NewSUnit(LoadNode);
 | 
						|
      LoadNode->setNodeId(LoadSU->NodeNum);
 | 
						|
    }
 | 
						|
 | 
						|
    SDep ChainPred;
 | 
						|
    SmallVector<SDep, 4> ChainSuccs;
 | 
						|
    SmallVector<SDep, 4> LoadPreds;
 | 
						|
    SmallVector<SDep, 4> NodePreds;
 | 
						|
    SmallVector<SDep, 4> NodeSuccs;
 | 
						|
    for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl())
 | 
						|
        ChainPred = *I;
 | 
						|
      else if (I->getSUnit()->getNode() &&
 | 
						|
               I->getSUnit()->getNode()->isOperandOf(LoadNode))
 | 
						|
        LoadPreds.push_back(*I);
 | 
						|
      else
 | 
						|
        NodePreds.push_back(*I);
 | 
						|
    }
 | 
						|
    for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      if (I->isCtrl())
 | 
						|
        ChainSuccs.push_back(*I);
 | 
						|
      else
 | 
						|
        NodeSuccs.push_back(*I);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ChainPred.getSUnit()) {
 | 
						|
      RemovePred(SU, ChainPred);
 | 
						|
      if (isNewLoad)
 | 
						|
        AddPred(LoadSU, ChainPred);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
 | 
						|
      const SDep &Pred = LoadPreds[i];
 | 
						|
      RemovePred(SU, Pred);
 | 
						|
      if (isNewLoad) {
 | 
						|
        AddPred(LoadSU, Pred);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
 | 
						|
      const SDep &Pred = NodePreds[i];
 | 
						|
      RemovePred(SU, Pred);
 | 
						|
      AddPred(NewSU, Pred);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
 | 
						|
      SDep D = NodeSuccs[i];
 | 
						|
      SUnit *SuccDep = D.getSUnit();
 | 
						|
      D.setSUnit(SU);
 | 
						|
      RemovePred(SuccDep, D);
 | 
						|
      D.setSUnit(NewSU);
 | 
						|
      AddPred(SuccDep, D);
 | 
						|
    }
 | 
						|
    for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
 | 
						|
      SDep D = ChainSuccs[i];
 | 
						|
      SUnit *SuccDep = D.getSUnit();
 | 
						|
      D.setSUnit(SU);
 | 
						|
      RemovePred(SuccDep, D);
 | 
						|
      if (isNewLoad) {
 | 
						|
        D.setSUnit(LoadSU);
 | 
						|
        AddPred(SuccDep, D);
 | 
						|
      }
 | 
						|
    } 
 | 
						|
    if (isNewLoad) {
 | 
						|
      AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
 | 
						|
    }
 | 
						|
 | 
						|
    ++NumUnfolds;
 | 
						|
 | 
						|
    if (NewSU->NumSuccsLeft == 0) {
 | 
						|
      NewSU->isAvailable = true;
 | 
						|
      return NewSU;
 | 
						|
    }
 | 
						|
    SU = NewSU;
 | 
						|
  }
 | 
						|
 | 
						|
  DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
 | 
						|
  NewSU = Clone(SU);
 | 
						|
 | 
						|
  // New SUnit has the exact same predecessors.
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I)
 | 
						|
    if (!I->isArtificial())
 | 
						|
      AddPred(NewSU, *I);
 | 
						|
 | 
						|
  // Only copy scheduled successors. Cut them from old node's successor
 | 
						|
  // list and move them over.
 | 
						|
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isArtificial())
 | 
						|
      continue;
 | 
						|
    SUnit *SuccSU = I->getSUnit();
 | 
						|
    if (SuccSU->isScheduled) {
 | 
						|
      SDep D = *I;
 | 
						|
      D.setSUnit(NewSU);
 | 
						|
      AddPred(SuccSU, D);
 | 
						|
      D.setSUnit(SU);
 | 
						|
      DelDeps.push_back(std::make_pair(SuccSU, D));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
 | 
						|
    RemovePred(DelDeps[i].first, DelDeps[i].second);
 | 
						|
 | 
						|
  ++NumDups;
 | 
						|
  return NewSU;
 | 
						|
}
 | 
						|
 | 
						|
/// InsertCopiesAndMoveSuccs - Insert register copies and move all
 | 
						|
/// scheduled successors of the given SUnit to the last copy.
 | 
						|
void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
 | 
						|
                                              const TargetRegisterClass *DestRC,
 | 
						|
                                              const TargetRegisterClass *SrcRC,
 | 
						|
                                               SmallVector<SUnit*, 2> &Copies) {
 | 
						|
  SUnit *CopyFromSU = NewSUnit(static_cast<SDNode *>(NULL));
 | 
						|
  CopyFromSU->CopySrcRC = SrcRC;
 | 
						|
  CopyFromSU->CopyDstRC = DestRC;
 | 
						|
 | 
						|
  SUnit *CopyToSU = NewSUnit(static_cast<SDNode *>(NULL));
 | 
						|
  CopyToSU->CopySrcRC = DestRC;
 | 
						|
  CopyToSU->CopyDstRC = SrcRC;
 | 
						|
 | 
						|
  // Only copy scheduled successors. Cut them from old node's successor
 | 
						|
  // list and move them over.
 | 
						|
  SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isArtificial())
 | 
						|
      continue;
 | 
						|
    SUnit *SuccSU = I->getSUnit();
 | 
						|
    if (SuccSU->isScheduled) {
 | 
						|
      SDep D = *I;
 | 
						|
      D.setSUnit(CopyToSU);
 | 
						|
      AddPred(SuccSU, D);
 | 
						|
      DelDeps.push_back(std::make_pair(SuccSU, *I));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
 | 
						|
    RemovePred(DelDeps[i].first, DelDeps[i].second);
 | 
						|
  }
 | 
						|
 | 
						|
  AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
 | 
						|
  AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
 | 
						|
 | 
						|
  Copies.push_back(CopyFromSU);
 | 
						|
  Copies.push_back(CopyToSU);
 | 
						|
 | 
						|
  ++NumPRCopies;
 | 
						|
}
 | 
						|
 | 
						|
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
 | 
						|
/// definition of the specified node.
 | 
						|
/// FIXME: Move to SelectionDAG?
 | 
						|
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
 | 
						|
                                 const TargetInstrInfo *TII) {
 | 
						|
  const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
 | 
						|
  assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
 | 
						|
  unsigned NumRes = TID.getNumDefs();
 | 
						|
  for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
 | 
						|
    if (Reg == *ImpDef)
 | 
						|
      break;
 | 
						|
    ++NumRes;
 | 
						|
  }
 | 
						|
  return N->getValueType(NumRes);
 | 
						|
}
 | 
						|
 | 
						|
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
 | 
						|
/// scheduling of the given node to satisfy live physical register dependencies.
 | 
						|
/// If the specific node is the last one that's available to schedule, do
 | 
						|
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
 | 
						|
bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
 | 
						|
                                               SmallVector<unsigned, 4> &LRegs){
 | 
						|
  if (NumLiveRegs == 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallSet<unsigned, 4> RegAdded;
 | 
						|
  // If this node would clobber any "live" register, then it's not ready.
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isAssignedRegDep()) {
 | 
						|
      unsigned Reg = I->getReg();
 | 
						|
      if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
 | 
						|
        if (RegAdded.insert(Reg))
 | 
						|
          LRegs.push_back(Reg);
 | 
						|
      }
 | 
						|
      for (const unsigned *Alias = TRI->getAliasSet(Reg);
 | 
						|
           *Alias; ++Alias)
 | 
						|
        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
 | 
						|
          if (RegAdded.insert(*Alias))
 | 
						|
            LRegs.push_back(*Alias);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (SDNode *Node = SU->getNode(); Node; Node = Node->getFlaggedNode()) {
 | 
						|
    if (!Node->isMachineOpcode())
 | 
						|
      continue;
 | 
						|
    const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
 | 
						|
    if (!TID.ImplicitDefs)
 | 
						|
      continue;
 | 
						|
    for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
 | 
						|
      if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
 | 
						|
        if (RegAdded.insert(*Reg))
 | 
						|
          LRegs.push_back(*Reg);
 | 
						|
      }
 | 
						|
      for (const unsigned *Alias = TRI->getAliasSet(*Reg);
 | 
						|
           *Alias; ++Alias)
 | 
						|
        if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
 | 
						|
          if (RegAdded.insert(*Alias))
 | 
						|
            LRegs.push_back(*Alias);
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return !LRegs.empty();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
 | 
						|
/// schedulers.
 | 
						|
void ScheduleDAGFast::ListScheduleBottomUp() {
 | 
						|
  unsigned CurCycle = 0;
 | 
						|
  // Add root to Available queue.
 | 
						|
  if (!SUnits.empty()) {
 | 
						|
    SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
 | 
						|
    assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
 | 
						|
    RootSU->isAvailable = true;
 | 
						|
    AvailableQueue.push(RootSU);
 | 
						|
  }
 | 
						|
 | 
						|
  // While Available queue is not empty, grab the node with the highest
 | 
						|
  // priority. If it is not ready put it back.  Schedule the node.
 | 
						|
  SmallVector<SUnit*, 4> NotReady;
 | 
						|
  DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
 | 
						|
  Sequence.reserve(SUnits.size());
 | 
						|
  while (!AvailableQueue.empty()) {
 | 
						|
    bool Delayed = false;
 | 
						|
    LRegsMap.clear();
 | 
						|
    SUnit *CurSU = AvailableQueue.pop();
 | 
						|
    while (CurSU) {
 | 
						|
      SmallVector<unsigned, 4> LRegs;
 | 
						|
      if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
 | 
						|
        break;
 | 
						|
      Delayed = true;
 | 
						|
      LRegsMap.insert(std::make_pair(CurSU, LRegs));
 | 
						|
 | 
						|
      CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
 | 
						|
      NotReady.push_back(CurSU);
 | 
						|
      CurSU = AvailableQueue.pop();
 | 
						|
    }
 | 
						|
 | 
						|
    // All candidates are delayed due to live physical reg dependencies.
 | 
						|
    // Try code duplication or inserting cross class copies
 | 
						|
    // to resolve it.
 | 
						|
    if (Delayed && !CurSU) {
 | 
						|
      if (!CurSU) {
 | 
						|
        // Try duplicating the nodes that produces these
 | 
						|
        // "expensive to copy" values to break the dependency. In case even
 | 
						|
        // that doesn't work, insert cross class copies.
 | 
						|
        SUnit *TrySU = NotReady[0];
 | 
						|
        SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
 | 
						|
        assert(LRegs.size() == 1 && "Can't handle this yet!");
 | 
						|
        unsigned Reg = LRegs[0];
 | 
						|
        SUnit *LRDef = LiveRegDefs[Reg];
 | 
						|
        MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
 | 
						|
        const TargetRegisterClass *RC =
 | 
						|
          TRI->getPhysicalRegisterRegClass(Reg, VT);
 | 
						|
        const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
 | 
						|
 | 
						|
        // If cross copy register class is null, then it must be possible copy
 | 
						|
        // the value directly. Do not try duplicate the def.
 | 
						|
        SUnit *NewDef = 0;
 | 
						|
        if (DestRC)
 | 
						|
          NewDef = CopyAndMoveSuccessors(LRDef);
 | 
						|
        else
 | 
						|
          DestRC = RC;
 | 
						|
        if (!NewDef) {
 | 
						|
          // Issue copies, these can be expensive cross register class copies.
 | 
						|
          SmallVector<SUnit*, 2> Copies;
 | 
						|
          InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
 | 
						|
          DOUT << "Adding an edge from SU # " << TrySU->NodeNum
 | 
						|
               << " to SU #" << Copies.front()->NodeNum << "\n";
 | 
						|
          AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
 | 
						|
                              /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                              /*isMustAlias=*/false, /*isArtificial=*/true));
 | 
						|
          NewDef = Copies.back();
 | 
						|
        }
 | 
						|
 | 
						|
        DOUT << "Adding an edge from SU # " << NewDef->NodeNum
 | 
						|
             << " to SU #" << TrySU->NodeNum << "\n";
 | 
						|
        LiveRegDefs[Reg] = NewDef;
 | 
						|
        AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
 | 
						|
                             /*Reg=*/0, /*isNormalMemory=*/false,
 | 
						|
                             /*isMustAlias=*/false, /*isArtificial=*/true));
 | 
						|
        TrySU->isAvailable = false;
 | 
						|
        CurSU = NewDef;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!CurSU) {
 | 
						|
        assert(false && "Unable to resolve live physical register dependencies!");
 | 
						|
        abort();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Add the nodes that aren't ready back onto the available list.
 | 
						|
    for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
 | 
						|
      NotReady[i]->isPending = false;
 | 
						|
      // May no longer be available due to backtracking.
 | 
						|
      if (NotReady[i]->isAvailable)
 | 
						|
        AvailableQueue.push(NotReady[i]);
 | 
						|
    }
 | 
						|
    NotReady.clear();
 | 
						|
 | 
						|
    if (CurSU)
 | 
						|
      ScheduleNodeBottomUp(CurSU, CurCycle);
 | 
						|
    ++CurCycle;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reverse the order if it is bottom up.
 | 
						|
  std::reverse(Sequence.begin(), Sequence.end());
 | 
						|
  
 | 
						|
  
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Verify that all SUnits were scheduled.
 | 
						|
  bool AnyNotSched = false;
 | 
						|
  unsigned DeadNodes = 0;
 | 
						|
  unsigned Noops = 0;
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    if (!SUnits[i].isScheduled) {
 | 
						|
      if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
 | 
						|
        ++DeadNodes;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(this);
 | 
						|
      cerr << "has not been scheduled!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
    if (SUnits[i].NumSuccsLeft != 0) {
 | 
						|
      if (!AnyNotSched)
 | 
						|
        cerr << "*** List scheduling failed! ***\n";
 | 
						|
      SUnits[i].dump(this);
 | 
						|
      cerr << "has successors left!\n";
 | 
						|
      AnyNotSched = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | 
						|
    if (!Sequence[i])
 | 
						|
      ++Noops;
 | 
						|
  assert(!AnyNotSched);
 | 
						|
  assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
 | 
						|
         "The number of nodes scheduled doesn't match the expected number!");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                         Public Constructor Functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
llvm::ScheduleDAG* llvm::createFastDAGScheduler(SelectionDAGISel *IS, bool) {
 | 
						|
  return new ScheduleDAGFast(*IS->MF);
 | 
						|
}
 |