llvm-6502/lib/ExecutionEngine/MCJIT/MCJIT.h
Yaron Keren f14bb8f5e6 Added comments from Andrew Kaylor.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@193033 91177308-0d34-0410-b5e6-96231b3b80d8
2013-10-19 09:03:20 +00:00

244 lines
9.0 KiB
C++
Raw Blame History

//===-- MCJIT.h - Class definition for the MCJIT ----------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_MCJIT_H
#define LLVM_LIB_EXECUTIONENGINE_MCJIT_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/PassManager.h"
namespace llvm {
class MCJIT;
// This is a helper class that the MCJIT execution engine uses for linking
// functions across modules that it owns. It aggregates the memory manager
// that is passed in to the MCJIT constructor and defers most functionality
// to that object.
class LinkingMemoryManager : public RTDyldMemoryManager {
public:
LinkingMemoryManager(MCJIT *Parent, RTDyldMemoryManager *MM)
: ParentEngine(Parent), ClientMM(MM) {}
virtual uint64_t getSymbolAddress(const std::string &Name);
// Functions deferred to client memory manager
virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName) {
return ClientMM->allocateCodeSection(Size, Alignment, SectionID, SectionName);
}
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID, StringRef SectionName,
bool IsReadOnly) {
return ClientMM->allocateDataSection(Size, Alignment,
SectionID, SectionName, IsReadOnly);
}
virtual void notifyObjectLoaded(ExecutionEngine *EE,
const ObjectImage *Obj) {
ClientMM->notifyObjectLoaded(EE, Obj);
}
virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr, size_t Size) {
ClientMM->registerEHFrames(Addr, LoadAddr, Size);
}
virtual void deregisterEHFrames(uint8_t *Addr,
uint64_t LoadAddr,
size_t Size) {
ClientMM->deregisterEHFrames(Addr, LoadAddr, Size);
}
virtual bool finalizeMemory(std::string *ErrMsg = 0) {
return ClientMM->finalizeMemory(ErrMsg);
}
private:
MCJIT *ParentEngine;
OwningPtr<RTDyldMemoryManager> ClientMM;
};
// FIXME: This makes all kinds of horrible assumptions for the time being,
// like only having one module, not needing to worry about multi-threading,
// blah blah. Purely in get-it-up-and-limping mode for now.
// About Module states:
//
// The purpose of the "added" state is having modules in standby. (added=known
// but not compiled). The idea is that you can add a module to provide function
// definitions but if nothing in that module is referenced by a module in which
// a function is executed (note the wording here because it<69>s not exactly the
// ideal case) then the module never gets compiled. This is sort of lazy
// compilation.
//
// The purpose of the "loaded" state (loaded=compiled and required sections
// copied into local memory but not yet ready for execution) is to have an
// intermediate state wherein clients can remap the addresses of sections, using
// MCJIT::mapSectionAddress, (in preparation for later copying to a new location
// or an external process) before relocations and page permissions are applied.
//
// It might not be obvious at first glance, but the "remote-mcjit" case in the
// lli tool does this. In that case, the intermediate action is taken by the
// RemoteMemoryManager in response to the notifyObjectLoaded function being
// called.
class MCJIT : public ExecutionEngine {
MCJIT(Module *M, TargetMachine *tm, RTDyldMemoryManager *MemMgr,
bool AllocateGVsWithCode);
enum ModuleState {
ModuleAdded,
ModuleEmitted,
ModuleLoading,
ModuleLoaded,
ModuleFinalizing,
ModuleFinalized
};
class MCJITModuleState {
public:
MCJITModuleState() : State(ModuleAdded) {}
MCJITModuleState & operator=(ModuleState s) { State = s; return *this; }
bool hasBeenEmitted() { return State != ModuleAdded; }
bool hasBeenLoaded() { return State != ModuleAdded &&
State != ModuleEmitted; }
bool hasBeenFinalized() { return State == ModuleFinalized; }
private:
ModuleState State;
};
TargetMachine *TM;
MCContext *Ctx;
LinkingMemoryManager MemMgr;
RuntimeDyld Dyld;
SmallVector<JITEventListener*, 2> EventListeners;
typedef DenseMap<Module *, MCJITModuleState> ModuleStateMap;
ModuleStateMap ModuleStates;
typedef DenseMap<Module *, ObjectImage *> LoadedObjectMap;
LoadedObjectMap LoadedObjects;
// An optional ObjectCache to be notified of compiled objects and used to
// perform lookup of pre-compiled code to avoid re-compilation.
ObjectCache *ObjCache;
public:
~MCJIT();
/// @name ExecutionEngine interface implementation
/// @{
virtual void addModule(Module *M);
/// Sets the object manager that MCJIT should use to avoid compilation.
virtual void setObjectCache(ObjectCache *manager);
virtual void generateCodeForModule(Module *M);
/// finalizeObject - ensure the module is fully processed and is usable.
///
/// It is the user-level function for completing the process of making the
/// object usable for execution. It should be called after sections within an
/// object have been relocated using mapSectionAddress. When this method is
/// called the MCJIT execution engine will reapply relocations for a loaded
/// object.
/// Is it OK to finalize a set of modules, add modules and finalize again.
/// FIXME: Do we really need both of these?
virtual void finalizeObject();
virtual void finalizeModule(Module *);
void finalizeLoadedModules();
virtual void *getPointerToBasicBlock(BasicBlock *BB);
virtual void *getPointerToFunction(Function *F);
virtual void *recompileAndRelinkFunction(Function *F);
virtual void freeMachineCodeForFunction(Function *F);
virtual GenericValue runFunction(Function *F,
const std::vector<GenericValue> &ArgValues);
/// getPointerToNamedFunction - This method returns the address of the
/// specified function by using the dlsym function call. As such it is only
/// useful for resolving library symbols, not code generated symbols.
///
/// If AbortOnFailure is false and no function with the given name is
/// found, this function silently returns a null pointer. Otherwise,
/// it prints a message to stderr and aborts.
///
virtual void *getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure = true);
/// mapSectionAddress - map a section to its target address space value.
/// Map the address of a JIT section as returned from the memory manager
/// to the address in the target process as the running code will see it.
/// This is the address which will be used for relocation resolution.
virtual void mapSectionAddress(const void *LocalAddress,
uint64_t TargetAddress) {
Dyld.mapSectionAddress(LocalAddress, TargetAddress);
}
virtual void RegisterJITEventListener(JITEventListener *L);
virtual void UnregisterJITEventListener(JITEventListener *L);
// If successful, these function will implicitly finalize all loaded objects.
// To get a function address within MCJIT without causing a finalize, use
// getSymbolAddress.
virtual uint64_t getGlobalValueAddress(const std::string &Name);
virtual uint64_t getFunctionAddress(const std::string &Name);
/// @}
/// @name (Private) Registration Interfaces
/// @{
static void Register() {
MCJITCtor = createJIT;
}
static ExecutionEngine *createJIT(Module *M,
std::string *ErrorStr,
RTDyldMemoryManager *MemMgr,
bool GVsWithCode,
TargetMachine *TM);
// @}
// This is not directly exposed via the ExecutionEngine API, but it is
// used by the LinkingMemoryManager.
uint64_t getSymbolAddress(const std::string &Name,
bool CheckFunctionsOnly);
protected:
/// emitObject -- Generate a JITed object in memory from the specified module
/// Currently, MCJIT only supports a single module and the module passed to
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
/// the future.
ObjectBufferStream* emitObject(Module *M);
void NotifyObjectEmitted(const ObjectImage& Obj);
void NotifyFreeingObject(const ObjectImage& Obj);
uint64_t getExistingSymbolAddress(const std::string &Name);
Module *findModuleForSymbol(const std::string &Name,
bool CheckFunctionsOnly);
};
} // End llvm namespace
#endif