llvm-6502/include/llvm/CodeGen/MachineInstr.h
Chad Rosier e891f49ad5 [BranchFolding] Remove MMOs during tail merge to preserve dependencies.
When tail merging it may be necessary to remove MMOs from memory operations to
ensures later passes (e.g., MI sched) conservatively compute dependencies.
Currently, we only remove the MMO from the common tail if the MMO doesn't match
with the relative instruction in the non-common tail(s).

A more robust solution would be to add multiple MMOs from the duplicate MIs to
the new MI. Currently ScheduleDAGInstrs.cpp ignores all MMOs on instructions
with multiple MMOs, so this solution is equivalent for the time being.

No test case included as this is incredibly difficult to reproduce.

Patch was a collaborative effort between Ana Pazos and myself.
Phabricator: http://reviews.llvm.org/D7769

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231799 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-10 16:22:52 +00:00

1254 lines
51 KiB
C++

//===-- llvm/CodeGen/MachineInstr.h - MachineInstr class --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the MachineInstr class, which is the
// basic representation for all target dependent machine instructions used by
// the back end.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEINSTR_H
#define LLVM_CODEGEN_MACHINEINSTR_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Target/TargetOpcodes.h"
namespace llvm {
template <typename T> class SmallVectorImpl;
class AliasAnalysis;
class TargetInstrInfo;
class TargetRegisterClass;
class TargetRegisterInfo;
class MachineFunction;
class MachineMemOperand;
//===----------------------------------------------------------------------===//
/// MachineInstr - Representation of each machine instruction.
///
/// This class isn't a POD type, but it must have a trivial destructor. When a
/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
/// without having their destructor called.
///
class MachineInstr : public ilist_node<MachineInstr> {
public:
typedef MachineMemOperand **mmo_iterator;
/// Flags to specify different kinds of comments to output in
/// assembly code. These flags carry semantic information not
/// otherwise easily derivable from the IR text.
///
enum CommentFlag {
ReloadReuse = 0x1
};
enum MIFlag {
NoFlags = 0,
FrameSetup = 1 << 0, // Instruction is used as a part of
// function frame setup code.
BundledPred = 1 << 1, // Instruction has bundled predecessors.
BundledSucc = 1 << 2 // Instruction has bundled successors.
};
private:
const MCInstrDesc *MCID; // Instruction descriptor.
MachineBasicBlock *Parent; // Pointer to the owning basic block.
// Operands are allocated by an ArrayRecycler.
MachineOperand *Operands; // Pointer to the first operand.
unsigned NumOperands; // Number of operands on instruction.
typedef ArrayRecycler<MachineOperand>::Capacity OperandCapacity;
OperandCapacity CapOperands; // Capacity of the Operands array.
uint8_t Flags; // Various bits of additional
// information about machine
// instruction.
uint8_t AsmPrinterFlags; // Various bits of information used by
// the AsmPrinter to emit helpful
// comments. This is *not* semantic
// information. Do not use this for
// anything other than to convey comment
// information to AsmPrinter.
uint8_t NumMemRefs; // Information on memory references.
mmo_iterator MemRefs;
DebugLoc debugLoc; // Source line information.
MachineInstr(const MachineInstr&) = delete;
void operator=(const MachineInstr&) = delete;
// Use MachineFunction::DeleteMachineInstr() instead.
~MachineInstr() = delete;
// Intrusive list support
friend struct ilist_traits<MachineInstr>;
friend struct ilist_traits<MachineBasicBlock>;
void setParent(MachineBasicBlock *P) { Parent = P; }
/// MachineInstr ctor - This constructor creates a copy of the given
/// MachineInstr in the given MachineFunction.
MachineInstr(MachineFunction &, const MachineInstr &);
/// MachineInstr ctor - This constructor create a MachineInstr and add the
/// implicit operands. It reserves space for number of operands specified by
/// MCInstrDesc. An explicit DebugLoc is supplied.
MachineInstr(MachineFunction &, const MCInstrDesc &MCID, DebugLoc dl,
bool NoImp = false);
// MachineInstrs are pool-allocated and owned by MachineFunction.
friend class MachineFunction;
public:
const MachineBasicBlock* getParent() const { return Parent; }
MachineBasicBlock* getParent() { return Parent; }
/// getAsmPrinterFlags - Return the asm printer flags bitvector.
///
uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
/// clearAsmPrinterFlags - clear the AsmPrinter bitvector
///
void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
/// getAsmPrinterFlag - Return whether an AsmPrinter flag is set.
///
bool getAsmPrinterFlag(CommentFlag Flag) const {
return AsmPrinterFlags & Flag;
}
/// setAsmPrinterFlag - Set a flag for the AsmPrinter.
///
void setAsmPrinterFlag(CommentFlag Flag) {
AsmPrinterFlags |= (uint8_t)Flag;
}
/// clearAsmPrinterFlag - clear specific AsmPrinter flags
///
void clearAsmPrinterFlag(CommentFlag Flag) {
AsmPrinterFlags &= ~Flag;
}
/// getFlags - Return the MI flags bitvector.
uint8_t getFlags() const {
return Flags;
}
/// getFlag - Return whether an MI flag is set.
bool getFlag(MIFlag Flag) const {
return Flags & Flag;
}
/// setFlag - Set a MI flag.
void setFlag(MIFlag Flag) {
Flags |= (uint8_t)Flag;
}
void setFlags(unsigned flags) {
// Filter out the automatically maintained flags.
unsigned Mask = BundledPred | BundledSucc;
Flags = (Flags & Mask) | (flags & ~Mask);
}
/// clearFlag - Clear a MI flag.
void clearFlag(MIFlag Flag) {
Flags &= ~((uint8_t)Flag);
}
/// isInsideBundle - Return true if MI is in a bundle (but not the first MI
/// in a bundle).
///
/// A bundle looks like this before it's finalized:
/// ----------------
/// | MI |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// In this case, the first MI starts a bundle but is not inside a bundle, the
/// next 2 MIs are considered "inside" the bundle.
///
/// After a bundle is finalized, it looks like this:
/// ----------------
/// | Bundle |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// |
/// ----------------
/// | MI * |
/// ----------------
/// The first instruction has the special opcode "BUNDLE". It's not "inside"
/// a bundle, but the next three MIs are.
bool isInsideBundle() const {
return getFlag(BundledPred);
}
/// isBundled - Return true if this instruction part of a bundle. This is true
/// if either itself or its following instruction is marked "InsideBundle".
bool isBundled() const {
return isBundledWithPred() || isBundledWithSucc();
}
/// Return true if this instruction is part of a bundle, and it is not the
/// first instruction in the bundle.
bool isBundledWithPred() const { return getFlag(BundledPred); }
/// Return true if this instruction is part of a bundle, and it is not the
/// last instruction in the bundle.
bool isBundledWithSucc() const { return getFlag(BundledSucc); }
/// Bundle this instruction with its predecessor. This can be an unbundled
/// instruction, or it can be the first instruction in a bundle.
void bundleWithPred();
/// Bundle this instruction with its successor. This can be an unbundled
/// instruction, or it can be the last instruction in a bundle.
void bundleWithSucc();
/// Break bundle above this instruction.
void unbundleFromPred();
/// Break bundle below this instruction.
void unbundleFromSucc();
/// getDebugLoc - Returns the debug location id of this MachineInstr.
///
const DebugLoc &getDebugLoc() const { return debugLoc; }
/// \brief Return the debug variable referenced by
/// this DBG_VALUE instruction.
DIVariable getDebugVariable() const {
assert(isDebugValue() && "not a DBG_VALUE");
DIVariable Var(getOperand(2).getMetadata());
assert(Var.Verify() && "not a DIVariable");
return Var;
}
/// \brief Return the complex address expression referenced by
/// this DBG_VALUE instruction.
DIExpression getDebugExpression() const {
assert(isDebugValue() && "not a DBG_VALUE");
DIExpression Expr(getOperand(3).getMetadata());
assert(Expr.Verify() && "not a DIExpression");
return Expr;
}
/// emitError - Emit an error referring to the source location of this
/// instruction. This should only be used for inline assembly that is somehow
/// impossible to compile. Other errors should have been handled much
/// earlier.
///
/// If this method returns, the caller should try to recover from the error.
///
void emitError(StringRef Msg) const;
/// getDesc - Returns the target instruction descriptor of this
/// MachineInstr.
const MCInstrDesc &getDesc() const { return *MCID; }
/// getOpcode - Returns the opcode of this MachineInstr.
///
int getOpcode() const { return MCID->Opcode; }
/// Access to explicit operands of the instruction.
///
unsigned getNumOperands() const { return NumOperands; }
const MachineOperand& getOperand(unsigned i) const {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
MachineOperand& getOperand(unsigned i) {
assert(i < getNumOperands() && "getOperand() out of range!");
return Operands[i];
}
/// getNumExplicitOperands - Returns the number of non-implicit operands.
///
unsigned getNumExplicitOperands() const;
/// iterator/begin/end - Iterate over all operands of a machine instruction.
typedef MachineOperand *mop_iterator;
typedef const MachineOperand *const_mop_iterator;
mop_iterator operands_begin() { return Operands; }
mop_iterator operands_end() { return Operands + NumOperands; }
const_mop_iterator operands_begin() const { return Operands; }
const_mop_iterator operands_end() const { return Operands + NumOperands; }
iterator_range<mop_iterator> operands() {
return iterator_range<mop_iterator>(operands_begin(), operands_end());
}
iterator_range<const_mop_iterator> operands() const {
return iterator_range<const_mop_iterator>(operands_begin(), operands_end());
}
iterator_range<mop_iterator> explicit_operands() {
return iterator_range<mop_iterator>(
operands_begin(), operands_begin() + getNumExplicitOperands());
}
iterator_range<const_mop_iterator> explicit_operands() const {
return iterator_range<const_mop_iterator>(
operands_begin(), operands_begin() + getNumExplicitOperands());
}
iterator_range<mop_iterator> implicit_operands() {
return iterator_range<mop_iterator>(explicit_operands().end(),
operands_end());
}
iterator_range<const_mop_iterator> implicit_operands() const {
return iterator_range<const_mop_iterator>(explicit_operands().end(),
operands_end());
}
iterator_range<mop_iterator> defs() {
return iterator_range<mop_iterator>(
operands_begin(), operands_begin() + getDesc().getNumDefs());
}
iterator_range<const_mop_iterator> defs() const {
return iterator_range<const_mop_iterator>(
operands_begin(), operands_begin() + getDesc().getNumDefs());
}
iterator_range<mop_iterator> uses() {
return iterator_range<mop_iterator>(
operands_begin() + getDesc().getNumDefs(), operands_end());
}
iterator_range<const_mop_iterator> uses() const {
return iterator_range<const_mop_iterator>(
operands_begin() + getDesc().getNumDefs(), operands_end());
}
/// Access to memory operands of the instruction
mmo_iterator memoperands_begin() const { return MemRefs; }
mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; }
bool memoperands_empty() const { return NumMemRefs == 0; }
iterator_range<mmo_iterator> memoperands() {
return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
}
iterator_range<mmo_iterator> memoperands() const {
return iterator_range<mmo_iterator>(memoperands_begin(), memoperands_end());
}
/// hasOneMemOperand - Return true if this instruction has exactly one
/// MachineMemOperand.
bool hasOneMemOperand() const {
return NumMemRefs == 1;
}
/// API for querying MachineInstr properties. They are the same as MCInstrDesc
/// queries but they are bundle aware.
enum QueryType {
IgnoreBundle, // Ignore bundles
AnyInBundle, // Return true if any instruction in bundle has property
AllInBundle // Return true if all instructions in bundle have property
};
/// hasProperty - Return true if the instruction (or in the case of a bundle,
/// the instructions inside the bundle) has the specified property.
/// The first argument is the property being queried.
/// The second argument indicates whether the query should look inside
/// instruction bundles.
bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
// Inline the fast path for unbundled or bundle-internal instructions.
if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
return getDesc().getFlags() & (1 << MCFlag);
// If this is the first instruction in a bundle, take the slow path.
return hasPropertyInBundle(1 << MCFlag, Type);
}
/// isVariadic - Return true if this instruction can have a variable number of
/// operands. In this case, the variable operands will be after the normal
/// operands but before the implicit definitions and uses (if any are
/// present).
bool isVariadic(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Variadic, Type);
}
/// hasOptionalDef - Set if this instruction has an optional definition, e.g.
/// ARM instructions which can set condition code if 's' bit is set.
bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::HasOptionalDef, Type);
}
/// isPseudo - Return true if this is a pseudo instruction that doesn't
/// correspond to a real machine instruction.
///
bool isPseudo(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Pseudo, Type);
}
bool isReturn(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Return, Type);
}
bool isCall(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Call, Type);
}
/// isBarrier - Returns true if the specified instruction stops control flow
/// from executing the instruction immediately following it. Examples include
/// unconditional branches and return instructions.
bool isBarrier(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Barrier, Type);
}
/// isTerminator - Returns true if this instruction part of the terminator for
/// a basic block. Typically this is things like return and branch
/// instructions.
///
/// Various passes use this to insert code into the bottom of a basic block,
/// but before control flow occurs.
bool isTerminator(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Terminator, Type);
}
/// isBranch - Returns true if this is a conditional, unconditional, or
/// indirect branch. Predicates below can be used to discriminate between
/// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
/// get more information.
bool isBranch(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::Branch, Type);
}
/// isIndirectBranch - Return true if this is an indirect branch, such as a
/// branch through a register.
bool isIndirectBranch(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::IndirectBranch, Type);
}
/// isConditionalBranch - Return true if this is a branch which may fall
/// through to the next instruction or may transfer control flow to some other
/// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
/// information about this branch.
bool isConditionalBranch(QueryType Type = AnyInBundle) const {
return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
}
/// isUnconditionalBranch - Return true if this is a branch which always
/// transfers control flow to some other block. The
/// TargetInstrInfo::AnalyzeBranch method can be used to get more information
/// about this branch.
bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
}
/// Return true if this instruction has a predicate operand that
/// controls execution. It may be set to 'always', or may be set to other
/// values. There are various methods in TargetInstrInfo that can be used to
/// control and modify the predicate in this instruction.
bool isPredicable(QueryType Type = AllInBundle) const {
// If it's a bundle than all bundled instructions must be predicable for this
// to return true.
return hasProperty(MCID::Predicable, Type);
}
/// isCompare - Return true if this instruction is a comparison.
bool isCompare(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Compare, Type);
}
/// isMoveImmediate - Return true if this instruction is a move immediate
/// (including conditional moves) instruction.
bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::MoveImm, Type);
}
/// isBitcast - Return true if this instruction is a bitcast instruction.
///
bool isBitcast(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Bitcast, Type);
}
/// isSelect - Return true if this instruction is a select instruction.
///
bool isSelect(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Select, Type);
}
/// isNotDuplicable - Return true if this instruction cannot be safely
/// duplicated. For example, if the instruction has a unique labels attached
/// to it, duplicating it would cause multiple definition errors.
bool isNotDuplicable(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::NotDuplicable, Type);
}
/// hasDelaySlot - Returns true if the specified instruction has a delay slot
/// which must be filled by the code generator.
bool hasDelaySlot(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::DelaySlot, Type);
}
/// canFoldAsLoad - Return true for instructions that can be folded as
/// memory operands in other instructions. The most common use for this
/// is instructions that are simple loads from memory that don't modify
/// the loaded value in any way, but it can also be used for instructions
/// that can be expressed as constant-pool loads, such as V_SETALLONES
/// on x86, to allow them to be folded when it is beneficial.
/// This should only be set on instructions that return a value in their
/// only virtual register definition.
bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::FoldableAsLoad, Type);
}
/// \brief Return true if this instruction behaves
/// the same way as the generic REG_SEQUENCE instructions.
/// E.g., on ARM,
/// dX VMOVDRR rY, rZ
/// is equivalent to
/// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
/// override accordingly.
bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::RegSequence, Type);
}
/// \brief Return true if this instruction behaves
/// the same way as the generic EXTRACT_SUBREG instructions.
/// E.g., on ARM,
/// rX, rY VMOVRRD dZ
/// is equivalent to two EXTRACT_SUBREG:
/// rX = EXTRACT_SUBREG dZ, ssub_0
/// rY = EXTRACT_SUBREG dZ, ssub_1
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
/// override accordingly.
bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::ExtractSubreg, Type);
}
/// \brief Return true if this instruction behaves
/// the same way as the generic INSERT_SUBREG instructions.
/// E.g., on ARM,
/// dX = VSETLNi32 dY, rZ, Imm
/// is equivalent to a INSERT_SUBREG:
/// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
///
/// Note that for the optimizers to be able to take advantage of
/// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
/// override accordingly.
bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::InsertSubreg, Type);
}
//===--------------------------------------------------------------------===//
// Side Effect Analysis
//===--------------------------------------------------------------------===//
/// mayLoad - Return true if this instruction could possibly read memory.
/// Instructions with this flag set are not necessarily simple load
/// instructions, they may load a value and modify it, for example.
bool mayLoad(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_MayLoad)
return true;
}
return hasProperty(MCID::MayLoad, Type);
}
/// mayStore - Return true if this instruction could possibly modify memory.
/// Instructions with this flag set are not necessarily simple store
/// instructions, they may store a modified value based on their operands, or
/// may not actually modify anything, for example.
bool mayStore(QueryType Type = AnyInBundle) const {
if (isInlineAsm()) {
unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_MayStore)
return true;
}
return hasProperty(MCID::MayStore, Type);
}
//===--------------------------------------------------------------------===//
// Flags that indicate whether an instruction can be modified by a method.
//===--------------------------------------------------------------------===//
/// isCommutable - Return true if this may be a 2- or 3-address
/// instruction (of the form "X = op Y, Z, ..."), which produces the same
/// result if Y and Z are exchanged. If this flag is set, then the
/// TargetInstrInfo::commuteInstruction method may be used to hack on the
/// instruction.
///
/// Note that this flag may be set on instructions that are only commutable
/// sometimes. In these cases, the call to commuteInstruction will fail.
/// Also note that some instructions require non-trivial modification to
/// commute them.
bool isCommutable(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::Commutable, Type);
}
/// isConvertibleTo3Addr - Return true if this is a 2-address instruction
/// which can be changed into a 3-address instruction if needed. Doing this
/// transformation can be profitable in the register allocator, because it
/// means that the instruction can use a 2-address form if possible, but
/// degrade into a less efficient form if the source and dest register cannot
/// be assigned to the same register. For example, this allows the x86
/// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
/// is the same speed as the shift but has bigger code size.
///
/// If this returns true, then the target must implement the
/// TargetInstrInfo::convertToThreeAddress method for this instruction, which
/// is allowed to fail if the transformation isn't valid for this specific
/// instruction (e.g. shl reg, 4 on x86).
///
bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::ConvertibleTo3Addr, Type);
}
/// usesCustomInsertionHook - Return true if this instruction requires
/// custom insertion support when the DAG scheduler is inserting it into a
/// machine basic block. If this is true for the instruction, it basically
/// means that it is a pseudo instruction used at SelectionDAG time that is
/// expanded out into magic code by the target when MachineInstrs are formed.
///
/// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
/// is used to insert this into the MachineBasicBlock.
bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::UsesCustomInserter, Type);
}
/// hasPostISelHook - Return true if this instruction requires *adjustment*
/// after instruction selection by calling a target hook. For example, this
/// can be used to fill in ARM 's' optional operand depending on whether
/// the conditional flag register is used.
bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
return hasProperty(MCID::HasPostISelHook, Type);
}
/// isRematerializable - Returns true if this instruction is a candidate for
/// remat. This flag is deprecated, please don't use it anymore. If this
/// flag is set, the isReallyTriviallyReMaterializable() method is called to
/// verify the instruction is really rematable.
bool isRematerializable(QueryType Type = AllInBundle) const {
// It's only possible to re-mat a bundle if all bundled instructions are
// re-materializable.
return hasProperty(MCID::Rematerializable, Type);
}
/// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
/// less) than a move instruction. This is useful during certain types of
/// optimizations (e.g., remat during two-address conversion or machine licm)
/// where we would like to remat or hoist the instruction, but not if it costs
/// more than moving the instruction into the appropriate register. Note, we
/// are not marking copies from and to the same register class with this flag.
bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
// Only returns true for a bundle if all bundled instructions are cheap.
return hasProperty(MCID::CheapAsAMove, Type);
}
/// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::STRD's two source registers must be an
/// even / odd pair, ARM::STM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for sources of instructions with this flag.
bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
}
/// hasExtraDefRegAllocReq - Returns true if this instruction def operands
/// have special register allocation requirements that are not captured by the
/// operand register classes. e.g. ARM::LDRD's two def registers must be an
/// even / odd pair, ARM::LDM registers have to be in ascending order.
/// Post-register allocation passes should not attempt to change allocations
/// for definitions of instructions with this flag.
bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
return hasProperty(MCID::ExtraDefRegAllocReq, Type);
}
enum MICheckType {
CheckDefs, // Check all operands for equality
CheckKillDead, // Check all operands including kill / dead markers
IgnoreDefs, // Ignore all definitions
IgnoreVRegDefs // Ignore virtual register definitions
};
/// isIdenticalTo - Return true if this instruction is identical to (same
/// opcode and same operands as) the specified instruction.
bool isIdenticalTo(const MachineInstr *Other,
MICheckType Check = CheckDefs) const;
/// Unlink 'this' from the containing basic block, and return it without
/// deleting it.
///
/// This function can not be used on bundled instructions, use
/// removeFromBundle() to remove individual instructions from a bundle.
MachineInstr *removeFromParent();
/// Unlink this instruction from its basic block and return it without
/// deleting it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle remain bundled.
MachineInstr *removeFromBundle();
/// Unlink 'this' from the containing basic block and delete it.
///
/// If this instruction is the header of a bundle, the whole bundle is erased.
/// This function can not be used for instructions inside a bundle, use
/// eraseFromBundle() to erase individual bundled instructions.
void eraseFromParent();
/// Unlink 'this' from the containing basic block and delete it.
///
/// For all definitions mark their uses in DBG_VALUE nodes
/// as undefined. Otherwise like eraseFromParent().
void eraseFromParentAndMarkDBGValuesForRemoval();
/// Unlink 'this' form its basic block and delete it.
///
/// If the instruction is part of a bundle, the other instructions in the
/// bundle remain bundled.
void eraseFromBundle();
bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
/// isLabel - Returns true if the MachineInstr represents a label.
///
bool isLabel() const { return isEHLabel() || isGCLabel(); }
bool isCFIInstruction() const {
return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
}
// True if the instruction represents a position in the function.
bool isPosition() const { return isLabel() || isCFIInstruction(); }
bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
/// A DBG_VALUE is indirect iff the first operand is a register and
/// the second operand is an immediate.
bool isIndirectDebugValue() const {
return isDebugValue()
&& getOperand(0).isReg()
&& getOperand(1).isImm();
}
bool isPHI() const { return getOpcode() == TargetOpcode::PHI; }
bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; }
bool isMSInlineAsm() const {
return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect();
}
bool isStackAligningInlineAsm() const;
InlineAsm::AsmDialect getInlineAsmDialect() const;
bool isInsertSubreg() const {
return getOpcode() == TargetOpcode::INSERT_SUBREG;
}
bool isSubregToReg() const {
return getOpcode() == TargetOpcode::SUBREG_TO_REG;
}
bool isRegSequence() const {
return getOpcode() == TargetOpcode::REG_SEQUENCE;
}
bool isBundle() const {
return getOpcode() == TargetOpcode::BUNDLE;
}
bool isCopy() const {
return getOpcode() == TargetOpcode::COPY;
}
bool isFullCopy() const {
return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
}
bool isExtractSubreg() const {
return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
}
/// isCopyLike - Return true if the instruction behaves like a copy.
/// This does not include native copy instructions.
bool isCopyLike() const {
return isCopy() || isSubregToReg();
}
/// isIdentityCopy - Return true is the instruction is an identity copy.
bool isIdentityCopy() const {
return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
getOperand(0).getSubReg() == getOperand(1).getSubReg();
}
/// isTransient - Return true if this is a transient instruction that is
/// either very likely to be eliminated during register allocation (such as
/// copy-like instructions), or if this instruction doesn't have an
/// execution-time cost.
bool isTransient() const {
switch(getOpcode()) {
default: return false;
// Copy-like instructions are usually eliminated during register allocation.
case TargetOpcode::PHI:
case TargetOpcode::COPY:
case TargetOpcode::INSERT_SUBREG:
case TargetOpcode::SUBREG_TO_REG:
case TargetOpcode::REG_SEQUENCE:
// Pseudo-instructions that don't produce any real output.
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::CFI_INSTRUCTION:
case TargetOpcode::EH_LABEL:
case TargetOpcode::GC_LABEL:
case TargetOpcode::DBG_VALUE:
return true;
}
}
/// Return the number of instructions inside the MI bundle, excluding the
/// bundle header.
///
/// This is the number of instructions that MachineBasicBlock::iterator
/// skips, 0 for unbundled instructions.
unsigned getBundleSize() const;
/// readsRegister - Return true if the MachineInstr reads the specified
/// register. If TargetRegisterInfo is passed, then it also checks if there
/// is a read of a super-register.
/// This does not count partial redefines of virtual registers as reads:
/// %reg1024:6 = OP.
bool readsRegister(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
}
/// readsVirtualRegister - Return true if the MachineInstr reads the specified
/// virtual register. Take into account that a partial define is a
/// read-modify-write operation.
bool readsVirtualRegister(unsigned Reg) const {
return readsWritesVirtualRegister(Reg).first;
}
/// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
/// indicating if this instruction reads or writes Reg. This also considers
/// partial defines.
/// If Ops is not null, all operand indices for Reg are added.
std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
SmallVectorImpl<unsigned> *Ops = nullptr) const;
/// killsRegister - Return true if the MachineInstr kills the specified
/// register. If TargetRegisterInfo is passed, then it also checks if there is
/// a kill of a super-register.
bool killsRegister(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
}
/// definesRegister - Return true if the MachineInstr fully defines the
/// specified register. If TargetRegisterInfo is passed, then it also checks
/// if there is a def of a super-register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool definesRegister(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
}
/// modifiesRegister - Return true if the MachineInstr modifies (fully define
/// or partially define) the specified register.
/// NOTE: It's ignoring subreg indices on virtual registers.
bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
}
/// registerDefIsDead - Returns true if the register is dead in this machine
/// instruction. If TargetRegisterInfo is passed, then it also checks
/// if there is a dead def of a super-register.
bool registerDefIsDead(unsigned Reg,
const TargetRegisterInfo *TRI = nullptr) const {
return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
}
/// findRegisterUseOperandIdx() - Returns the operand index that is a use of
/// the specific register or -1 if it is not found. It further tightens
/// the search criteria to a use that kills the register if isKill is true.
int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) const;
/// findRegisterUseOperand - Wrapper for findRegisterUseOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
const TargetRegisterInfo *TRI = nullptr) {
int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
return (Idx == -1) ? nullptr : &getOperand(Idx);
}
/// findRegisterDefOperandIdx() - Returns the operand index that is a def of
/// the specified register or -1 if it is not found. If isDead is true, defs
/// that are not dead are skipped. If Overlap is true, then it also looks for
/// defs that merely overlap the specified register. If TargetRegisterInfo is
/// non-null, then it also checks if there is a def of a super-register.
/// This may also return a register mask operand when Overlap is true.
int findRegisterDefOperandIdx(unsigned Reg,
bool isDead = false, bool Overlap = false,
const TargetRegisterInfo *TRI = nullptr) const;
/// findRegisterDefOperand - Wrapper for findRegisterDefOperandIdx, it returns
/// a pointer to the MachineOperand rather than an index.
MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
const TargetRegisterInfo *TRI = nullptr) {
int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
return (Idx == -1) ? nullptr : &getOperand(Idx);
}
/// findFirstPredOperandIdx() - Find the index of the first operand in the
/// operand list that is used to represent the predicate. It returns -1 if
/// none is found.
int findFirstPredOperandIdx() const;
/// findInlineAsmFlagIdx() - Find the index of the flag word operand that
/// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
/// getOperand(OpIdx) does not belong to an inline asm operand group.
///
/// If GroupNo is not NULL, it will receive the number of the operand group
/// containing OpIdx.
///
/// The flag operand is an immediate that can be decoded with methods like
/// InlineAsm::hasRegClassConstraint().
///
int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
/// getRegClassConstraint - Compute the static register class constraint for
/// operand OpIdx. For normal instructions, this is derived from the
/// MCInstrDesc. For inline assembly it is derived from the flag words.
///
/// Returns NULL if the static register classs constraint cannot be
/// determined.
///
const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const;
/// \brief Applies the constraints (def/use) implied by this MI on \p Reg to
/// the given \p CurRC.
/// If \p ExploreBundle is set and MI is part of a bundle, all the
/// instructions inside the bundle will be taken into account. In other words,
/// this method accumulates all the constrains of the operand of this MI and
/// the related bundle if MI is a bundle or inside a bundle.
///
/// Returns the register class that statisfies both \p CurRC and the
/// constraints set by MI. Returns NULL if such a register class does not
/// exist.
///
/// \pre CurRC must not be NULL.
const TargetRegisterClass *getRegClassConstraintEffectForVReg(
unsigned Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
bool ExploreBundle = false) const;
/// \brief Applies the constraints (def/use) implied by the \p OpIdx operand
/// to the given \p CurRC.
///
/// Returns the register class that statisfies both \p CurRC and the
/// constraints set by \p OpIdx MI. Returns NULL if such a register class
/// does not exist.
///
/// \pre CurRC must not be NULL.
/// \pre The operand at \p OpIdx must be a register.
const TargetRegisterClass *
getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII,
const TargetRegisterInfo *TRI) const;
/// tieOperands - Add a tie between the register operands at DefIdx and
/// UseIdx. The tie will cause the register allocator to ensure that the two
/// operands are assigned the same physical register.
///
/// Tied operands are managed automatically for explicit operands in the
/// MCInstrDesc. This method is for exceptional cases like inline asm.
void tieOperands(unsigned DefIdx, unsigned UseIdx);
/// findTiedOperandIdx - Given the index of a tied register operand, find the
/// operand it is tied to. Defs are tied to uses and vice versa. Returns the
/// index of the tied operand which must exist.
unsigned findTiedOperandIdx(unsigned OpIdx) const;
/// isRegTiedToUseOperand - Given the index of a register def operand,
/// check if the register def is tied to a source operand, due to either
/// two-address elimination or inline assembly constraints. Returns the
/// first tied use operand index by reference if UseOpIdx is not null.
bool isRegTiedToUseOperand(unsigned DefOpIdx,
unsigned *UseOpIdx = nullptr) const {
const MachineOperand &MO = getOperand(DefOpIdx);
if (!MO.isReg() || !MO.isDef() || !MO.isTied())
return false;
if (UseOpIdx)
*UseOpIdx = findTiedOperandIdx(DefOpIdx);
return true;
}
/// isRegTiedToDefOperand - Return true if the use operand of the specified
/// index is tied to a def operand. It also returns the def operand index by
/// reference if DefOpIdx is not null.
bool isRegTiedToDefOperand(unsigned UseOpIdx,
unsigned *DefOpIdx = nullptr) const {
const MachineOperand &MO = getOperand(UseOpIdx);
if (!MO.isReg() || !MO.isUse() || !MO.isTied())
return false;
if (DefOpIdx)
*DefOpIdx = findTiedOperandIdx(UseOpIdx);
return true;
}
/// clearKillInfo - Clears kill flags on all operands.
///
void clearKillInfo();
/// substituteRegister - Replace all occurrences of FromReg with ToReg:SubIdx,
/// properly composing subreg indices where necessary.
void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
const TargetRegisterInfo &RegInfo);
/// addRegisterKilled - We have determined MI kills a register. Look for the
/// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
/// add a implicit operand if it's not found. Returns true if the operand
/// exists / is added.
bool addRegisterKilled(unsigned IncomingReg,
const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// clearRegisterKills - Clear all kill flags affecting Reg. If RegInfo is
/// provided, this includes super-register kills.
void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
/// addRegisterDead - We have determined MI defined a register without a use.
/// Look for the operand that defines it and mark it as IsDead. If
/// AddIfNotFound is true, add a implicit operand if it's not found. Returns
/// true if the operand exists / is added.
bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
bool AddIfNotFound = false);
/// Clear all dead flags on operands defining register @p Reg.
void clearRegisterDeads(unsigned Reg);
/// Mark all subregister defs of register @p Reg with the undef flag.
/// This function is used when we determined to have a subregister def in an
/// otherwise undefined super register.
void addRegisterDefReadUndef(unsigned Reg);
/// addRegisterDefined - We have determined MI defines a register. Make sure
/// there is an operand defining Reg.
void addRegisterDefined(unsigned Reg,
const TargetRegisterInfo *RegInfo = nullptr);
/// setPhysRegsDeadExcept - Mark every physreg used by this instruction as
/// dead except those in the UsedRegs list.
///
/// On instructions with register mask operands, also add implicit-def
/// operands for all registers in UsedRegs.
void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
const TargetRegisterInfo &TRI);
/// isSafeToMove - Return true if it is safe to move this instruction. If
/// SawStore is set to true, it means that there is a store (or call) between
/// the instruction's location and its intended destination.
bool isSafeToMove(const TargetInstrInfo *TII, AliasAnalysis *AA,
bool &SawStore) const;
/// hasOrderedMemoryRef - Return true if this instruction may have an ordered
/// or volatile memory reference, or if the information describing the memory
/// reference is not available. Return false if it is known to have no
/// ordered or volatile memory references.
bool hasOrderedMemoryRef() const;
/// isInvariantLoad - Return true if this instruction is loading from a
/// location whose value is invariant across the function. For example,
/// loading a value from the constant pool or from the argument area of
/// a function if it does not change. This should only return true of *all*
/// loads the instruction does are invariant (if it does multiple loads).
bool isInvariantLoad(AliasAnalysis *AA) const;
/// isConstantValuePHI - If the specified instruction is a PHI that always
/// merges together the same virtual register, return the register, otherwise
/// return 0.
unsigned isConstantValuePHI() const;
/// hasUnmodeledSideEffects - Return true if this instruction has side
/// effects that are not modeled by mayLoad / mayStore, etc.
/// For all instructions, the property is encoded in MCInstrDesc::Flags
/// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
/// INLINEASM instruction, in which case the side effect property is encoded
/// in one of its operands (see InlineAsm::Extra_HasSideEffect).
///
bool hasUnmodeledSideEffects() const;
/// allDefsAreDead - Return true if all the defs of this instruction are dead.
///
bool allDefsAreDead() const;
/// copyImplicitOps - Copy implicit register operands from specified
/// instruction to this instruction.
void copyImplicitOps(MachineFunction &MF, const MachineInstr *MI);
//
// Debugging support
//
void print(raw_ostream &OS, bool SkipOpers = false) const;
void dump() const;
//===--------------------------------------------------------------------===//
// Accessors used to build up machine instructions.
/// Add the specified operand to the instruction. If it is an implicit
/// operand, it is added to the end of the operand list. If it is an
/// explicit operand it is added at the end of the explicit operand list
/// (before the first implicit operand).
///
/// MF must be the machine function that was used to allocate this
/// instruction.
///
/// MachineInstrBuilder provides a more convenient interface for creating
/// instructions and adding operands.
void addOperand(MachineFunction &MF, const MachineOperand &Op);
/// Add an operand without providing an MF reference. This only works for
/// instructions that are inserted in a basic block.
///
/// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
/// preferred.
void addOperand(const MachineOperand &Op);
/// setDesc - Replace the instruction descriptor (thus opcode) of
/// the current instruction with a new one.
///
void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
/// setDebugLoc - Replace current source information with new such.
/// Avoid using this, the constructor argument is preferable.
///
void setDebugLoc(DebugLoc dl) {
debugLoc = std::move(dl);
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
}
/// RemoveOperand - Erase an operand from an instruction, leaving it with one
/// fewer operand than it started with.
///
void RemoveOperand(unsigned i);
/// addMemOperand - Add a MachineMemOperand to the machine instruction.
/// This function should be used only occasionally. The setMemRefs function
/// is the primary method for setting up a MachineInstr's MemRefs list.
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
/// setMemRefs - Assign this MachineInstr's memory reference descriptor
/// list. This does not transfer ownership.
void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
MemRefs = NewMemRefs;
NumMemRefs = uint8_t(NewMemRefsEnd - NewMemRefs);
assert(NumMemRefs == NewMemRefsEnd - NewMemRefs && "Too many memrefs");
}
/// clearMemRefs - Clear this MachineInstr's memory reference descriptor list.
void clearMemRefs() {
MemRefs = nullptr;
NumMemRefs = 0;
}
private:
/// getRegInfo - If this instruction is embedded into a MachineFunction,
/// return the MachineRegisterInfo object for the current function, otherwise
/// return null.
MachineRegisterInfo *getRegInfo();
/// untieRegOperand - Break any tie involving OpIdx.
void untieRegOperand(unsigned OpIdx) {
MachineOperand &MO = getOperand(OpIdx);
if (MO.isReg() && MO.isTied()) {
getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
MO.TiedTo = 0;
}
}
/// addImplicitDefUseOperands - Add all implicit def and use operands to
/// this instruction.
void addImplicitDefUseOperands(MachineFunction &MF);
/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands already be on their use lists.
void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
/// AddRegOperandsToUseLists - Add all of the register operands in
/// this instruction from their respective use lists. This requires that the
/// operands not be on their use lists yet.
void AddRegOperandsToUseLists(MachineRegisterInfo&);
/// hasPropertyInBundle - Slow path for hasProperty when we're dealing with a
/// bundle.
bool hasPropertyInBundle(unsigned Mask, QueryType Type) const;
/// \brief Implements the logic of getRegClassConstraintEffectForVReg for the
/// this MI and the given operand index \p OpIdx.
/// If the related operand does not constrained Reg, this returns CurRC.
const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
};
/// MachineInstrExpressionTrait - Special DenseMapInfo traits to compare
/// MachineInstr* by *value* of the instruction rather than by pointer value.
/// The hashing and equality testing functions ignore definitions so this is
/// useful for CSE, etc.
struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
static inline MachineInstr *getEmptyKey() {
return nullptr;
}
static inline MachineInstr *getTombstoneKey() {
return reinterpret_cast<MachineInstr*>(-1);
}
static unsigned getHashValue(const MachineInstr* const &MI);
static bool isEqual(const MachineInstr* const &LHS,
const MachineInstr* const &RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
LHS == getEmptyKey() || LHS == getTombstoneKey())
return LHS == RHS;
return LHS->isIdenticalTo(RHS, MachineInstr::IgnoreVRegDefs);
}
};
//===----------------------------------------------------------------------===//
// Debugging Support
inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
MI.print(OS);
return OS;
}
} // End llvm namespace
#endif