mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@112733 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1778 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1778 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | 
						|
                      "http://www.w3.org/TR/html4/strict.dtd">
 | 
						|
 | 
						|
<html>
 | 
						|
<head>
 | 
						|
  <title>Kaleidoscope: Extending the Language: Control Flow</title>
 | 
						|
  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | 
						|
  <meta name="author" content="Chris Lattner">
 | 
						|
  <link rel="stylesheet" href="../llvm.css" type="text/css">
 | 
						|
</head>
 | 
						|
 | 
						|
<body>
 | 
						|
 | 
						|
<div class="doc_title">Kaleidoscope: Extending the Language: Control Flow</div>
 | 
						|
 | 
						|
<ul>
 | 
						|
<li><a href="index.html">Up to Tutorial Index</a></li>
 | 
						|
<li>Chapter 5
 | 
						|
  <ol>
 | 
						|
    <li><a href="#intro">Chapter 5 Introduction</a></li>
 | 
						|
    <li><a href="#ifthen">If/Then/Else</a>
 | 
						|
    <ol>
 | 
						|
      <li><a href="#iflexer">Lexer Extensions</a></li>
 | 
						|
      <li><a href="#ifast">AST Extensions</a></li>
 | 
						|
      <li><a href="#ifparser">Parser Extensions</a></li>
 | 
						|
      <li><a href="#ifir">LLVM IR</a></li>
 | 
						|
      <li><a href="#ifcodegen">Code Generation</a></li>
 | 
						|
    </ol>
 | 
						|
    </li>
 | 
						|
    <li><a href="#for">'for' Loop Expression</a>
 | 
						|
    <ol>
 | 
						|
      <li><a href="#forlexer">Lexer Extensions</a></li>
 | 
						|
      <li><a href="#forast">AST Extensions</a></li>
 | 
						|
      <li><a href="#forparser">Parser Extensions</a></li>
 | 
						|
      <li><a href="#forir">LLVM IR</a></li>
 | 
						|
      <li><a href="#forcodegen">Code Generation</a></li>
 | 
						|
    </ol>
 | 
						|
    </li>
 | 
						|
    <li><a href="#code">Full Code Listing</a></li>
 | 
						|
  </ol>
 | 
						|
</li>
 | 
						|
<li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language: 
 | 
						|
User-defined Operators</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<div class="doc_author">
 | 
						|
  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="intro">Chapter 5 Introduction</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language
 | 
						|
with LLVM</a>" tutorial.  Parts 1-4 described the implementation of the simple
 | 
						|
Kaleidoscope language and included support for generating LLVM IR, followed by
 | 
						|
optimizations and a JIT compiler.  Unfortunately, as presented, Kaleidoscope is
 | 
						|
mostly useless: it has no control flow other than call and return.  This means
 | 
						|
that you can't have conditional branches in the code, significantly limiting its
 | 
						|
power.  In this episode of "build that compiler", we'll extend Kaleidoscope to
 | 
						|
have an if/then/else expression plus a simple 'for' loop.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="ifthen">If/Then/Else</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
Extending Kaleidoscope to support if/then/else is quite straightforward.  It
 | 
						|
basically requires adding lexer support for this "new" concept to the lexer,
 | 
						|
parser, AST, and LLVM code emitter.  This example is nice, because it shows how
 | 
						|
easy it is to "grow" a language over time, incrementally extending it as new
 | 
						|
ideas are discovered.</p>
 | 
						|
 | 
						|
<p>Before we get going on "how" we add this extension, lets talk about "what" we
 | 
						|
want.  The basic idea is that we want to be able to write this sort of thing:
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
def fib(x)
 | 
						|
  if x < 3 then
 | 
						|
    1
 | 
						|
  else
 | 
						|
    fib(x-1)+fib(x-2);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>In Kaleidoscope, every construct is an expression: there are no statements.
 | 
						|
As such, the if/then/else expression needs to return a value like any other.
 | 
						|
Since we're using a mostly functional form, we'll have it evaluate its
 | 
						|
conditional, then return the 'then' or 'else' value based on how the condition
 | 
						|
was resolved.  This is very similar to the C "?:" expression.</p>
 | 
						|
 | 
						|
<p>The semantics of the if/then/else expression is that it evaluates the
 | 
						|
condition to a boolean equality value: 0.0 is considered to be false and
 | 
						|
everything else is considered to be true.
 | 
						|
If the condition is true, the first subexpression is evaluated and returned, if
 | 
						|
the condition is false, the second subexpression is evaluated and returned.
 | 
						|
Since Kaleidoscope allows side-effects, this behavior is important to nail down.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>Now that we know what we "want", lets break this down into its constituent
 | 
						|
pieces.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="iflexer">Lexer Extensions for
 | 
						|
If/Then/Else</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>The lexer extensions are straightforward.  First we add new enum values
 | 
						|
for the relevant tokens:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // control
 | 
						|
  tok_if = -6, tok_then = -7, tok_else = -8,
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple
 | 
						|
stuff:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
    ...
 | 
						|
    if (IdentifierStr == "def") return tok_def;
 | 
						|
    if (IdentifierStr == "extern") return tok_extern;
 | 
						|
    <b>if (IdentifierStr == "if") return tok_if;
 | 
						|
    if (IdentifierStr == "then") return tok_then;
 | 
						|
    if (IdentifierStr == "else") return tok_else;</b>
 | 
						|
    return tok_identifier;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="ifast">AST Extensions for
 | 
						|
 If/Then/Else</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>To represent the new expression we add a new AST node for it:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// IfExprAST - Expression class for if/then/else.
 | 
						|
class IfExprAST : public ExprAST {
 | 
						|
  ExprAST *Cond, *Then, *Else;
 | 
						|
public:
 | 
						|
  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | 
						|
    : Cond(cond), Then(then), Else(_else) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The AST node just has pointers to the various subexpressions.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="ifparser">Parser Extensions for
 | 
						|
If/Then/Else</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Now that we have the relevant tokens coming from the lexer and we have the
 | 
						|
AST node to build, our parsing logic is relatively straightforward.  First we
 | 
						|
define a new parsing function:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | 
						|
static ExprAST *ParseIfExpr() {
 | 
						|
  getNextToken();  // eat the if.
 | 
						|
  
 | 
						|
  // condition.
 | 
						|
  ExprAST *Cond = ParseExpression();
 | 
						|
  if (!Cond) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != tok_then)
 | 
						|
    return Error("expected then");
 | 
						|
  getNextToken();  // eat the then
 | 
						|
  
 | 
						|
  ExprAST *Then = ParseExpression();
 | 
						|
  if (Then == 0) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != tok_else)
 | 
						|
    return Error("expected else");
 | 
						|
  
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  ExprAST *Else = ParseExpression();
 | 
						|
  if (!Else) return 0;
 | 
						|
  
 | 
						|
  return new IfExprAST(Cond, Then, Else);
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Next we hook it up as a primary expression:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
static ExprAST *ParsePrimary() {
 | 
						|
  switch (CurTok) {
 | 
						|
  default: return Error("unknown token when expecting an expression");
 | 
						|
  case tok_identifier: return ParseIdentifierExpr();
 | 
						|
  case tok_number:     return ParseNumberExpr();
 | 
						|
  case '(':            return ParseParenExpr();
 | 
						|
  <b>case tok_if:         return ParseIfExpr();</b>
 | 
						|
  }
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="ifir">LLVM IR for If/Then/Else</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Now that we have it parsing and building the AST, the final piece is adding
 | 
						|
LLVM code generation support.  This is the most interesting part of the
 | 
						|
if/then/else example, because this is where it starts to introduce new concepts.
 | 
						|
All of the code above has been thoroughly described in previous chapters.
 | 
						|
</p>
 | 
						|
 | 
						|
<p>To motivate the code we want to produce, lets take a look at a simple
 | 
						|
example.  Consider:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
extern foo();
 | 
						|
extern bar();
 | 
						|
def baz(x) if x then foo() else bar();
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope
 | 
						|
looks like this:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
declare double @foo()
 | 
						|
 | 
						|
declare double @bar()
 | 
						|
 | 
						|
define double @baz(double %x) {
 | 
						|
entry:
 | 
						|
	%ifcond = fcmp one double %x, 0.000000e+00
 | 
						|
	br i1 %ifcond, label %then, label %else
 | 
						|
 | 
						|
then:		; preds = %entry
 | 
						|
	%calltmp = call double @foo()
 | 
						|
	br label %ifcont
 | 
						|
 | 
						|
else:		; preds = %entry
 | 
						|
	%calltmp1 = call double @bar()
 | 
						|
	br label %ifcont
 | 
						|
 | 
						|
ifcont:		; preds = %else, %then
 | 
						|
	%iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ]
 | 
						|
	ret double %iftmp
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>To visualize the control flow graph, you can use a nifty feature of the LLVM
 | 
						|
'<a href="http://llvm.org/cmds/opt.html">opt</a>' tool.  If you put this LLVM IR
 | 
						|
into "t.ll" and run "<tt>llvm-as < t.ll | opt -analyze -view-cfg</tt>", <a
 | 
						|
href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll
 | 
						|
see this graph:</p>
 | 
						|
 | 
						|
<div style="text-align: center"><img src="LangImpl5-cfg.png" alt="Example CFG" width="423" 
 | 
						|
height="315"></div>
 | 
						|
 | 
						|
<p>Another way to get this is to call "<tt>F->viewCFG()</tt>" or
 | 
						|
"<tt>F->viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by
 | 
						|
inserting actual calls into the code and recompiling or by calling these in the
 | 
						|
debugger.  LLVM has many nice features for visualizing various graphs.</p>
 | 
						|
 | 
						|
<p>Getting back to the generated code, it is fairly simple: the entry block 
 | 
						|
evaluates the conditional expression ("x" in our case here) and compares the
 | 
						|
result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>"
 | 
						|
instruction ('one' is "Ordered and Not Equal").  Based on the result of this
 | 
						|
expression, the code jumps to either the "then" or "else" blocks, which contain
 | 
						|
the expressions for the true/false cases.</p>
 | 
						|
 | 
						|
<p>Once the then/else blocks are finished executing, they both branch back to the
 | 
						|
'ifcont' block to execute the code that happens after the if/then/else.  In this
 | 
						|
case the only thing left to do is to return to the caller of the function.  The
 | 
						|
question then becomes: how does the code know which expression to return?</p>
 | 
						|
 | 
						|
<p>The answer to this question involves an important SSA operation: the
 | 
						|
<a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi
 | 
						|
operation</a>.  If you're not familiar with SSA, <a 
 | 
						|
href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia
 | 
						|
article</a> is a good introduction and there are various other introductions to
 | 
						|
it available on your favorite search engine.  The short version is that
 | 
						|
"execution" of the Phi operation requires "remembering" which block control came
 | 
						|
from.  The Phi operation takes on the value corresponding to the input control
 | 
						|
block.  In this case, if control comes in from the "then" block, it gets the
 | 
						|
value of "calltmp".  If control comes from the "else" block, it gets the value
 | 
						|
of "calltmp1".</p>
 | 
						|
 | 
						|
<p>At this point, you are probably starting to think "Oh no! This means my
 | 
						|
simple and elegant front-end will have to start generating SSA form in order to
 | 
						|
use LLVM!".  Fortunately, this is not the case, and we strongly advise
 | 
						|
<em>not</em> implementing an SSA construction algorithm in your front-end
 | 
						|
unless there is an amazingly good reason to do so.  In practice, there are two
 | 
						|
sorts of values that float around in code written for your average imperative
 | 
						|
programming language that might need Phi nodes:</p>
 | 
						|
 | 
						|
<ol>
 | 
						|
<li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li>
 | 
						|
<li>Values that are implicit in the structure of your AST, such as the Phi node
 | 
						|
in this case.</li>
 | 
						|
</ol>
 | 
						|
 | 
						|
<p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable 
 | 
						|
variables"), we'll talk about #1
 | 
						|
in depth.  For now, just believe me that you don't need SSA construction to
 | 
						|
handle this case.  For #2, you have the choice of using the techniques that we will 
 | 
						|
describe for #1, or you can insert Phi nodes directly, if convenient.  In this 
 | 
						|
case, it is really really easy to generate the Phi node, so we choose to do it
 | 
						|
directly.</p>
 | 
						|
 | 
						|
<p>Okay, enough of the motivation and overview, lets generate code!</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="ifcodegen">Code Generation for 
 | 
						|
If/Then/Else</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>In order to generate code for this, we implement the <tt>Codegen</tt> method
 | 
						|
for <tt>IfExprAST</tt>:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *IfExprAST::Codegen() {
 | 
						|
  Value *CondV = Cond->Codegen();
 | 
						|
  if (CondV == 0) return 0;
 | 
						|
  
 | 
						|
  // Convert condition to a bool by comparing equal to 0.0.
 | 
						|
  CondV = Builder.CreateFCmpONE(CondV, 
 | 
						|
                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | 
						|
                                "ifcond");
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This code is straightforward and similar to what we saw before.  We emit the
 | 
						|
expression for the condition, then compare that value to zero to get a truth
 | 
						|
value as a 1-bit (bool) value.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
  
 | 
						|
  // Create blocks for the then and else cases.  Insert the 'then' block at the
 | 
						|
  // end of the function.
 | 
						|
  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | 
						|
  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | 
						|
  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | 
						|
 | 
						|
  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This code creates the basic blocks that are related to the if/then/else
 | 
						|
statement, and correspond directly to the blocks in the example above.  The
 | 
						|
first line gets the current Function object that is being built.  It
 | 
						|
gets this by asking the builder for the current BasicBlock, and asking that
 | 
						|
block for its "parent" (the function it is currently embedded into).</p>
 | 
						|
 | 
						|
<p>Once it has that, it creates three blocks.  Note that it passes "TheFunction"
 | 
						|
into the constructor for the "then" block.  This causes the constructor to
 | 
						|
automatically insert the new block into the end of the specified function.  The
 | 
						|
other two blocks are created, but aren't yet inserted into the function.</p>
 | 
						|
 | 
						|
<p>Once the blocks are created, we can emit the conditional branch that chooses
 | 
						|
between them.  Note that creating new blocks does not implicitly affect the
 | 
						|
IRBuilder, so it is still inserting into the block that the condition
 | 
						|
went into.  Also note that it is creating a branch to the "then" block and the
 | 
						|
"else" block, even though the "else" block isn't inserted into the function yet.
 | 
						|
This is all ok: it is the standard way that LLVM supports forward 
 | 
						|
references.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Emit then value.
 | 
						|
  Builder.SetInsertPoint(ThenBB);
 | 
						|
  
 | 
						|
  Value *ThenV = Then->Codegen();
 | 
						|
  if (ThenV == 0) return 0;
 | 
						|
  
 | 
						|
  Builder.CreateBr(MergeBB);
 | 
						|
  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | 
						|
  ThenBB = Builder.GetInsertBlock();
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>After the conditional branch is inserted, we move the builder to start
 | 
						|
inserting into the "then" block.  Strictly speaking, this call moves the
 | 
						|
insertion point to be at the end of the specified block.  However, since the
 | 
						|
"then" block is empty, it also starts out by inserting at the beginning of the
 | 
						|
block.  :)</p>
 | 
						|
 | 
						|
<p>Once the insertion point is set, we recursively codegen the "then" expression
 | 
						|
from the AST.  To finish off the "then" block, we create an unconditional branch
 | 
						|
to the merge block.  One interesting (and very important) aspect of the LLVM IR
 | 
						|
is that it <a href="../LangRef.html#functionstructure">requires all basic blocks
 | 
						|
to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow
 | 
						|
instruction</a> such as return or branch.  This means that all control flow,
 | 
						|
<em>including fall throughs</em> must be made explicit in the LLVM IR.  If you
 | 
						|
violate this rule, the verifier will emit an error.</p>
 | 
						|
 | 
						|
<p>The final line here is quite subtle, but is very important.  The basic issue
 | 
						|
is that when we create the Phi node in the merge block, we need to set up the
 | 
						|
block/value pairs that indicate how the Phi will work.  Importantly, the Phi
 | 
						|
node expects to have an entry for each predecessor of the block in the CFG.  Why
 | 
						|
then, are we getting the current block when we just set it to ThenBB 5 lines
 | 
						|
above?  The problem is that the "Then" expression may actually itself change the
 | 
						|
block that the Builder is emitting into if, for example, it contains a nested
 | 
						|
"if/then/else" expression.  Because calling Codegen recursively could
 | 
						|
arbitrarily change the notion of the current block, we are required to get an
 | 
						|
up-to-date value for code that will set up the Phi node.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Emit else block.
 | 
						|
  TheFunction->getBasicBlockList().push_back(ElseBB);
 | 
						|
  Builder.SetInsertPoint(ElseBB);
 | 
						|
  
 | 
						|
  Value *ElseV = Else->Codegen();
 | 
						|
  if (ElseV == 0) return 0;
 | 
						|
  
 | 
						|
  Builder.CreateBr(MergeBB);
 | 
						|
  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | 
						|
  ElseBB = Builder.GetInsertBlock();
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Code generation for the 'else' block is basically identical to codegen for
 | 
						|
the 'then' block.  The only significant difference is the first line, which adds
 | 
						|
the 'else' block to the function.  Recall previously that the 'else' block was
 | 
						|
created, but not added to the function.  Now that the 'then' and 'else' blocks
 | 
						|
are emitted, we can finish up with the merge code:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Emit merge block.
 | 
						|
  TheFunction->getBasicBlockList().push_back(MergeBB);
 | 
						|
  Builder.SetInsertPoint(MergeBB);
 | 
						|
  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
 | 
						|
                                  "iftmp");
 | 
						|
  
 | 
						|
  PN->addIncoming(ThenV, ThenBB);
 | 
						|
  PN->addIncoming(ElseV, ElseBB);
 | 
						|
  return PN;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The first two lines here are now familiar: the first adds the "merge" block
 | 
						|
to the Function object (it was previously floating, like the else block above).
 | 
						|
The second block changes the insertion point so that newly created code will go
 | 
						|
into the "merge" block.  Once that is done, we need to create the PHI node and
 | 
						|
set up the block/value pairs for the PHI.</p>
 | 
						|
 | 
						|
<p>Finally, the CodeGen function returns the phi node as the value computed by
 | 
						|
the if/then/else expression.  In our example above, this returned value will 
 | 
						|
feed into the code for the top-level function, which will create the return
 | 
						|
instruction.</p>
 | 
						|
 | 
						|
<p>Overall, we now have the ability to execute conditional code in
 | 
						|
Kaleidoscope.  With this extension, Kaleidoscope is a fairly complete language
 | 
						|
that can calculate a wide variety of numeric functions.  Next up we'll add
 | 
						|
another useful expression that is familiar from non-functional languages...</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="for">'for' Loop Expression</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Now that we know how to add basic control flow constructs to the language,
 | 
						|
we have the tools to add more powerful things.  Lets add something more
 | 
						|
aggressive, a 'for' expression:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
 extern putchard(char)
 | 
						|
 def printstar(n)
 | 
						|
   for i = 1, i < n, 1.0 in
 | 
						|
     putchard(42);  # ascii 42 = '*'
 | 
						|
     
 | 
						|
 # print 100 '*' characters
 | 
						|
 printstar(100);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This expression defines a new variable ("i" in this case) which iterates from
 | 
						|
a starting value, while the condition ("i < n" in this case) is true, 
 | 
						|
incrementing by an optional step value ("1.0" in this case).  If the step value
 | 
						|
is omitted, it defaults to 1.0.  While the loop is true, it executes its 
 | 
						|
body expression.  Because we don't have anything better to return, we'll just
 | 
						|
define the loop as always returning 0.0.  In the future when we have mutable
 | 
						|
variables, it will get more useful.</p>
 | 
						|
 | 
						|
<p>As before, lets talk about the changes that we need to Kaleidoscope to
 | 
						|
support this.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="forlexer">Lexer Extensions for
 | 
						|
the 'for' Loop</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>The lexer extensions are the same sort of thing as for if/then/else:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  ... in enum Token ...
 | 
						|
  // control
 | 
						|
  tok_if = -6, tok_then = -7, tok_else = -8,
 | 
						|
<b>  tok_for = -9, tok_in = -10</b>
 | 
						|
 | 
						|
  ... in gettok ...
 | 
						|
  if (IdentifierStr == "def") return tok_def;
 | 
						|
  if (IdentifierStr == "extern") return tok_extern;
 | 
						|
  if (IdentifierStr == "if") return tok_if;
 | 
						|
  if (IdentifierStr == "then") return tok_then;
 | 
						|
  if (IdentifierStr == "else") return tok_else;
 | 
						|
  <b>if (IdentifierStr == "for") return tok_for;
 | 
						|
  if (IdentifierStr == "in") return tok_in;</b>
 | 
						|
  return tok_identifier;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="forast">AST Extensions for
 | 
						|
the 'for' Loop</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>The AST node is just as simple.  It basically boils down to capturing
 | 
						|
the variable name and the constituent expressions in the node.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// ForExprAST - Expression class for for/in.
 | 
						|
class ForExprAST : public ExprAST {
 | 
						|
  std::string VarName;
 | 
						|
  ExprAST *Start, *End, *Step, *Body;
 | 
						|
public:
 | 
						|
  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | 
						|
             ExprAST *step, ExprAST *body)
 | 
						|
    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="forparser">Parser Extensions for
 | 
						|
the 'for' Loop</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>The parser code is also fairly standard.  The only interesting thing here is
 | 
						|
handling of the optional step value.  The parser code handles it by checking to
 | 
						|
see if the second comma is present.  If not, it sets the step value to null in
 | 
						|
the AST node:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | 
						|
static ExprAST *ParseForExpr() {
 | 
						|
  getNextToken();  // eat the for.
 | 
						|
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return Error("expected identifier after for");
 | 
						|
  
 | 
						|
  std::string IdName = IdentifierStr;
 | 
						|
  getNextToken();  // eat identifier.
 | 
						|
  
 | 
						|
  if (CurTok != '=')
 | 
						|
    return Error("expected '=' after for");
 | 
						|
  getNextToken();  // eat '='.
 | 
						|
  
 | 
						|
  
 | 
						|
  ExprAST *Start = ParseExpression();
 | 
						|
  if (Start == 0) return 0;
 | 
						|
  if (CurTok != ',')
 | 
						|
    return Error("expected ',' after for start value");
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  ExprAST *End = ParseExpression();
 | 
						|
  if (End == 0) return 0;
 | 
						|
  
 | 
						|
  // The step value is optional.
 | 
						|
  ExprAST *Step = 0;
 | 
						|
  if (CurTok == ',') {
 | 
						|
    getNextToken();
 | 
						|
    Step = ParseExpression();
 | 
						|
    if (Step == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CurTok != tok_in)
 | 
						|
    return Error("expected 'in' after for");
 | 
						|
  getNextToken();  // eat 'in'.
 | 
						|
  
 | 
						|
  ExprAST *Body = ParseExpression();
 | 
						|
  if (Body == 0) return 0;
 | 
						|
 | 
						|
  return new ForExprAST(IdName, Start, End, Step, Body);
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="forir">LLVM IR for 
 | 
						|
the 'for' Loop</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>Now we get to the good part: the LLVM IR we want to generate for this thing.
 | 
						|
With the simple example above, we get this LLVM IR (note that this dump is
 | 
						|
generated with optimizations disabled for clarity):
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
declare double @putchard(double)
 | 
						|
 | 
						|
define double @printstar(double %n) {
 | 
						|
entry:
 | 
						|
        ; initial value = 1.0 (inlined into phi)
 | 
						|
	br label %loop
 | 
						|
 | 
						|
loop:		; preds = %loop, %entry
 | 
						|
	%i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ]
 | 
						|
        ; body
 | 
						|
	%calltmp = call double @putchard(double 4.200000e+01)
 | 
						|
        ; increment
 | 
						|
	%nextvar = fadd double %i, 1.000000e+00
 | 
						|
 | 
						|
        ; termination test
 | 
						|
	%cmptmp = fcmp ult double %i, %n
 | 
						|
	%booltmp = uitofp i1 %cmptmp to double
 | 
						|
	%loopcond = fcmp one double %booltmp, 0.000000e+00
 | 
						|
	br i1 %loopcond, label %loop, label %afterloop
 | 
						|
 | 
						|
afterloop:		; preds = %loop
 | 
						|
        ; loop always returns 0.0
 | 
						|
	ret double 0.000000e+00
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This loop contains all the same constructs we saw before: a phi node, several
 | 
						|
expressions, and some basic blocks.  Lets see how this fits together.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- ======================================================================= -->
 | 
						|
<div class="doc_subsubsection"><a name="forcodegen">Code Generation for 
 | 
						|
the 'for' Loop</a></div>
 | 
						|
<!-- ======================================================================= -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>The first part of Codegen is very simple: we just output the start expression
 | 
						|
for the loop value:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
Value *ForExprAST::Codegen() {
 | 
						|
  // Emit the start code first, without 'variable' in scope.
 | 
						|
  Value *StartVal = Start->Codegen();
 | 
						|
  if (StartVal == 0) return 0;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>With this out of the way, the next step is to set up the LLVM basic block
 | 
						|
for the start of the loop body.  In the case above, the whole loop body is one
 | 
						|
block, but remember that the body code itself could consist of multiple blocks
 | 
						|
(e.g. if it contains an if/then/else or a for/in expression).</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Make the new basic block for the loop header, inserting after current
 | 
						|
  // block.
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | 
						|
  
 | 
						|
  // Insert an explicit fall through from the current block to the LoopBB.
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>This code is similar to what we saw for if/then/else.  Because we will need
 | 
						|
it to create the Phi node, we remember the block that falls through into the
 | 
						|
loop.  Once we have that, we create the actual block that starts the loop and
 | 
						|
create an unconditional branch for the fall-through between the two blocks.</p>
 | 
						|
  
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Start insertion in LoopBB.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  
 | 
						|
  // Start the PHI node with an entry for Start.
 | 
						|
  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
 | 
						|
  Variable->addIncoming(StartVal, PreheaderBB);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Now that the "preheader" for the loop is set up, we switch to emitting code
 | 
						|
for the loop body.  To begin with, we move the insertion point and create the
 | 
						|
PHI node for the loop induction variable.  Since we already know the incoming
 | 
						|
value for the starting value, we add it to the Phi node.  Note that the Phi will
 | 
						|
eventually get a second value for the backedge, but we can't set it up yet
 | 
						|
(because it doesn't exist!).</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Within the loop, the variable is defined equal to the PHI node.  If it
 | 
						|
  // shadows an existing variable, we have to restore it, so save it now.
 | 
						|
  Value *OldVal = NamedValues[VarName];
 | 
						|
  NamedValues[VarName] = Variable;
 | 
						|
  
 | 
						|
  // Emit the body of the loop.  This, like any other expr, can change the
 | 
						|
  // current BB.  Note that we ignore the value computed by the body, but don't
 | 
						|
  // allow an error.
 | 
						|
  if (Body->Codegen() == 0)
 | 
						|
    return 0;
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Now the code starts to get more interesting.  Our 'for' loop introduces a new
 | 
						|
variable to the symbol table.  This means that our symbol table can now contain
 | 
						|
either function arguments or loop variables.  To handle this, before we codegen
 | 
						|
the body of the loop, we add the loop variable as the current value for its
 | 
						|
name.  Note that it is possible that there is a variable of the same name in the
 | 
						|
outer scope.  It would be easy to make this an error (emit an error and return
 | 
						|
null if there is already an entry for VarName) but we choose to allow shadowing
 | 
						|
of variables.  In order to handle this correctly, we remember the Value that
 | 
						|
we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is
 | 
						|
no shadowed variable).</p>
 | 
						|
 | 
						|
<p>Once the loop variable is set into the symbol table, the code recursively
 | 
						|
codegen's the body.  This allows the body to use the loop variable: any
 | 
						|
references to it will naturally find it in the symbol table.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Emit the step value.
 | 
						|
  Value *StepVal;
 | 
						|
  if (Step) {
 | 
						|
    StepVal = Step->Codegen();
 | 
						|
    if (StepVal == 0) return 0;
 | 
						|
  } else {
 | 
						|
    // If not specified, use 1.0.
 | 
						|
    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Now that the body is emitted, we compute the next value of the iteration
 | 
						|
variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>'
 | 
						|
will be the value of the loop variable on the next iteration of the loop.</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Compute the end condition.
 | 
						|
  Value *EndCond = End->Codegen();
 | 
						|
  if (EndCond == 0) return EndCond;
 | 
						|
  
 | 
						|
  // Convert condition to a bool by comparing equal to 0.0.
 | 
						|
  EndCond = Builder.CreateFCmpONE(EndCond, 
 | 
						|
                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | 
						|
                                  "loopcond");
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Finally, we evaluate the exit value of the loop, to determine whether the
 | 
						|
loop should exit.  This mirrors the condition evaluation for the if/then/else
 | 
						|
statement.</p>
 | 
						|
      
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Create the "after loop" block and insert it.
 | 
						|
  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | 
						|
  
 | 
						|
  // Insert the conditional branch into the end of LoopEndBB.
 | 
						|
  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | 
						|
  
 | 
						|
  // Any new code will be inserted in AfterBB.
 | 
						|
  Builder.SetInsertPoint(AfterBB);
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>With the code for the body of the loop complete, we just need to finish up
 | 
						|
the control flow for it.  This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop").  Based on the value of the
 | 
						|
exit condition, it creates a conditional branch that chooses between executing
 | 
						|
the loop again and exiting the loop.  Any future code is emitted in the
 | 
						|
"afterloop" block, so it sets the insertion position to it.</p>
 | 
						|
  
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
  // Add a new entry to the PHI node for the backedge.
 | 
						|
  Variable->addIncoming(NextVar, LoopEndBB);
 | 
						|
  
 | 
						|
  // Restore the unshadowed variable.
 | 
						|
  if (OldVal)
 | 
						|
    NamedValues[VarName] = OldVal;
 | 
						|
  else
 | 
						|
    NamedValues.erase(VarName);
 | 
						|
  
 | 
						|
  // for expr always returns 0.0.
 | 
						|
  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>The final code handles various cleanups: now that we have the "NextVar"
 | 
						|
value, we can add the incoming value to the loop PHI node.  After that, we
 | 
						|
remove the loop variable from the symbol table, so that it isn't in scope after
 | 
						|
the for loop.  Finally, code generation of the for loop always returns 0.0, so
 | 
						|
that is what we return from <tt>ForExprAST::Codegen</tt>.</p>
 | 
						|
 | 
						|
<p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of
 | 
						|
the tutorial.  In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors
 | 
						|
to know.  In the next chapter of our saga, we will get a bit crazier and add
 | 
						|
<a href="LangImpl6.html">user-defined operators</a> to our poor innocent 
 | 
						|
language.</p>
 | 
						|
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<div class="doc_section"><a name="code">Full Code Listing</a></div>
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
 | 
						|
<div class="doc_text">
 | 
						|
 | 
						|
<p>
 | 
						|
Here is the complete code listing for our running example, enhanced with the
 | 
						|
if/then/else and for expressions..  To build this example, use:
 | 
						|
</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
   # Compile
 | 
						|
   g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy
 | 
						|
   # Run
 | 
						|
   ./toy
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<p>Here is the code:</p>
 | 
						|
 | 
						|
<div class="doc_code">
 | 
						|
<pre>
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
 | 
						|
#include "llvm/ExecutionEngine/JIT.h"
 | 
						|
#include "llvm/LLVMContext.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/Analysis/Verifier.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Target/TargetSelect.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Support/IRBuilder.h"
 | 
						|
#include <cstdio>
 | 
						|
#include <string>
 | 
						|
#include <map>
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Lexer
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// The lexer returns tokens [0-255] if it is an unknown character, otherwise one
 | 
						|
// of these for known things.
 | 
						|
enum Token {
 | 
						|
  tok_eof = -1,
 | 
						|
 | 
						|
  // commands
 | 
						|
  tok_def = -2, tok_extern = -3,
 | 
						|
 | 
						|
  // primary
 | 
						|
  tok_identifier = -4, tok_number = -5,
 | 
						|
  
 | 
						|
  // control
 | 
						|
  tok_if = -6, tok_then = -7, tok_else = -8,
 | 
						|
  tok_for = -9, tok_in = -10
 | 
						|
};
 | 
						|
 | 
						|
static std::string IdentifierStr;  // Filled in if tok_identifier
 | 
						|
static double NumVal;              // Filled in if tok_number
 | 
						|
 | 
						|
/// gettok - Return the next token from standard input.
 | 
						|
static int gettok() {
 | 
						|
  static int LastChar = ' ';
 | 
						|
 | 
						|
  // Skip any whitespace.
 | 
						|
  while (isspace(LastChar))
 | 
						|
    LastChar = getchar();
 | 
						|
 | 
						|
  if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
 | 
						|
    IdentifierStr = LastChar;
 | 
						|
    while (isalnum((LastChar = getchar())))
 | 
						|
      IdentifierStr += LastChar;
 | 
						|
 | 
						|
    if (IdentifierStr == "def") return tok_def;
 | 
						|
    if (IdentifierStr == "extern") return tok_extern;
 | 
						|
    if (IdentifierStr == "if") return tok_if;
 | 
						|
    if (IdentifierStr == "then") return tok_then;
 | 
						|
    if (IdentifierStr == "else") return tok_else;
 | 
						|
    if (IdentifierStr == "for") return tok_for;
 | 
						|
    if (IdentifierStr == "in") return tok_in;
 | 
						|
    return tok_identifier;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
 | 
						|
    std::string NumStr;
 | 
						|
    do {
 | 
						|
      NumStr += LastChar;
 | 
						|
      LastChar = getchar();
 | 
						|
    } while (isdigit(LastChar) || LastChar == '.');
 | 
						|
 | 
						|
    NumVal = strtod(NumStr.c_str(), 0);
 | 
						|
    return tok_number;
 | 
						|
  }
 | 
						|
 | 
						|
  if (LastChar == '#') {
 | 
						|
    // Comment until end of line.
 | 
						|
    do LastChar = getchar();
 | 
						|
    while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
 | 
						|
    
 | 
						|
    if (LastChar != EOF)
 | 
						|
      return gettok();
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Check for end of file.  Don't eat the EOF.
 | 
						|
  if (LastChar == EOF)
 | 
						|
    return tok_eof;
 | 
						|
 | 
						|
  // Otherwise, just return the character as its ascii value.
 | 
						|
  int ThisChar = LastChar;
 | 
						|
  LastChar = getchar();
 | 
						|
  return ThisChar;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Abstract Syntax Tree (aka Parse Tree)
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// ExprAST - Base class for all expression nodes.
 | 
						|
class ExprAST {
 | 
						|
public:
 | 
						|
  virtual ~ExprAST() {}
 | 
						|
  virtual Value *Codegen() = 0;
 | 
						|
};
 | 
						|
 | 
						|
/// NumberExprAST - Expression class for numeric literals like "1.0".
 | 
						|
class NumberExprAST : public ExprAST {
 | 
						|
  double Val;
 | 
						|
public:
 | 
						|
  NumberExprAST(double val) : Val(val) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// VariableExprAST - Expression class for referencing a variable, like "a".
 | 
						|
class VariableExprAST : public ExprAST {
 | 
						|
  std::string Name;
 | 
						|
public:
 | 
						|
  VariableExprAST(const std::string &name) : Name(name) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// BinaryExprAST - Expression class for a binary operator.
 | 
						|
class BinaryExprAST : public ExprAST {
 | 
						|
  char Op;
 | 
						|
  ExprAST *LHS, *RHS;
 | 
						|
public:
 | 
						|
  BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 
 | 
						|
    : Op(op), LHS(lhs), RHS(rhs) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// CallExprAST - Expression class for function calls.
 | 
						|
class CallExprAST : public ExprAST {
 | 
						|
  std::string Callee;
 | 
						|
  std::vector<ExprAST*> Args;
 | 
						|
public:
 | 
						|
  CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
 | 
						|
    : Callee(callee), Args(args) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// IfExprAST - Expression class for if/then/else.
 | 
						|
class IfExprAST : public ExprAST {
 | 
						|
  ExprAST *Cond, *Then, *Else;
 | 
						|
public:
 | 
						|
  IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
 | 
						|
  : Cond(cond), Then(then), Else(_else) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// ForExprAST - Expression class for for/in.
 | 
						|
class ForExprAST : public ExprAST {
 | 
						|
  std::string VarName;
 | 
						|
  ExprAST *Start, *End, *Step, *Body;
 | 
						|
public:
 | 
						|
  ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
 | 
						|
             ExprAST *step, ExprAST *body)
 | 
						|
    : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
 | 
						|
  virtual Value *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// PrototypeAST - This class represents the "prototype" for a function,
 | 
						|
/// which captures its name, and its argument names (thus implicitly the number
 | 
						|
/// of arguments the function takes).
 | 
						|
class PrototypeAST {
 | 
						|
  std::string Name;
 | 
						|
  std::vector<std::string> Args;
 | 
						|
public:
 | 
						|
  PrototypeAST(const std::string &name, const std::vector<std::string> &args)
 | 
						|
    : Name(name), Args(args) {}
 | 
						|
  
 | 
						|
  Function *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
/// FunctionAST - This class represents a function definition itself.
 | 
						|
class FunctionAST {
 | 
						|
  PrototypeAST *Proto;
 | 
						|
  ExprAST *Body;
 | 
						|
public:
 | 
						|
  FunctionAST(PrototypeAST *proto, ExprAST *body)
 | 
						|
    : Proto(proto), Body(body) {}
 | 
						|
  
 | 
						|
  Function *Codegen();
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Parser
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
 | 
						|
/// token the parser is looking at.  getNextToken reads another token from the
 | 
						|
/// lexer and updates CurTok with its results.
 | 
						|
static int CurTok;
 | 
						|
static int getNextToken() {
 | 
						|
  return CurTok = gettok();
 | 
						|
}
 | 
						|
 | 
						|
/// BinopPrecedence - This holds the precedence for each binary operator that is
 | 
						|
/// defined.
 | 
						|
static std::map<char, int> BinopPrecedence;
 | 
						|
 | 
						|
/// GetTokPrecedence - Get the precedence of the pending binary operator token.
 | 
						|
static int GetTokPrecedence() {
 | 
						|
  if (!isascii(CurTok))
 | 
						|
    return -1;
 | 
						|
  
 | 
						|
  // Make sure it's a declared binop.
 | 
						|
  int TokPrec = BinopPrecedence[CurTok];
 | 
						|
  if (TokPrec <= 0) return -1;
 | 
						|
  return TokPrec;
 | 
						|
}
 | 
						|
 | 
						|
/// Error* - These are little helper functions for error handling.
 | 
						|
ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
 | 
						|
PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
 | 
						|
FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
static ExprAST *ParseExpression();
 | 
						|
 | 
						|
/// identifierexpr
 | 
						|
///   ::= identifier
 | 
						|
///   ::= identifier '(' expression* ')'
 | 
						|
static ExprAST *ParseIdentifierExpr() {
 | 
						|
  std::string IdName = IdentifierStr;
 | 
						|
  
 | 
						|
  getNextToken();  // eat identifier.
 | 
						|
  
 | 
						|
  if (CurTok != '(') // Simple variable ref.
 | 
						|
    return new VariableExprAST(IdName);
 | 
						|
  
 | 
						|
  // Call.
 | 
						|
  getNextToken();  // eat (
 | 
						|
  std::vector<ExprAST*> Args;
 | 
						|
  if (CurTok != ')') {
 | 
						|
    while (1) {
 | 
						|
      ExprAST *Arg = ParseExpression();
 | 
						|
      if (!Arg) return 0;
 | 
						|
      Args.push_back(Arg);
 | 
						|
 | 
						|
      if (CurTok == ')') break;
 | 
						|
 | 
						|
      if (CurTok != ',')
 | 
						|
        return Error("Expected ')' or ',' in argument list");
 | 
						|
      getNextToken();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Eat the ')'.
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  return new CallExprAST(IdName, Args);
 | 
						|
}
 | 
						|
 | 
						|
/// numberexpr ::= number
 | 
						|
static ExprAST *ParseNumberExpr() {
 | 
						|
  ExprAST *Result = new NumberExprAST(NumVal);
 | 
						|
  getNextToken(); // consume the number
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// parenexpr ::= '(' expression ')'
 | 
						|
static ExprAST *ParseParenExpr() {
 | 
						|
  getNextToken();  // eat (.
 | 
						|
  ExprAST *V = ParseExpression();
 | 
						|
  if (!V) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != ')')
 | 
						|
    return Error("expected ')'");
 | 
						|
  getNextToken();  // eat ).
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
 | 
						|
static ExprAST *ParseIfExpr() {
 | 
						|
  getNextToken();  // eat the if.
 | 
						|
  
 | 
						|
  // condition.
 | 
						|
  ExprAST *Cond = ParseExpression();
 | 
						|
  if (!Cond) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != tok_then)
 | 
						|
    return Error("expected then");
 | 
						|
  getNextToken();  // eat the then
 | 
						|
  
 | 
						|
  ExprAST *Then = ParseExpression();
 | 
						|
  if (Then == 0) return 0;
 | 
						|
  
 | 
						|
  if (CurTok != tok_else)
 | 
						|
    return Error("expected else");
 | 
						|
  
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  ExprAST *Else = ParseExpression();
 | 
						|
  if (!Else) return 0;
 | 
						|
  
 | 
						|
  return new IfExprAST(Cond, Then, Else);
 | 
						|
}
 | 
						|
 | 
						|
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
 | 
						|
static ExprAST *ParseForExpr() {
 | 
						|
  getNextToken();  // eat the for.
 | 
						|
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return Error("expected identifier after for");
 | 
						|
  
 | 
						|
  std::string IdName = IdentifierStr;
 | 
						|
  getNextToken();  // eat identifier.
 | 
						|
  
 | 
						|
  if (CurTok != '=')
 | 
						|
    return Error("expected '=' after for");
 | 
						|
  getNextToken();  // eat '='.
 | 
						|
  
 | 
						|
  
 | 
						|
  ExprAST *Start = ParseExpression();
 | 
						|
  if (Start == 0) return 0;
 | 
						|
  if (CurTok != ',')
 | 
						|
    return Error("expected ',' after for start value");
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  ExprAST *End = ParseExpression();
 | 
						|
  if (End == 0) return 0;
 | 
						|
  
 | 
						|
  // The step value is optional.
 | 
						|
  ExprAST *Step = 0;
 | 
						|
  if (CurTok == ',') {
 | 
						|
    getNextToken();
 | 
						|
    Step = ParseExpression();
 | 
						|
    if (Step == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (CurTok != tok_in)
 | 
						|
    return Error("expected 'in' after for");
 | 
						|
  getNextToken();  // eat 'in'.
 | 
						|
  
 | 
						|
  ExprAST *Body = ParseExpression();
 | 
						|
  if (Body == 0) return 0;
 | 
						|
 | 
						|
  return new ForExprAST(IdName, Start, End, Step, Body);
 | 
						|
}
 | 
						|
 | 
						|
/// primary
 | 
						|
///   ::= identifierexpr
 | 
						|
///   ::= numberexpr
 | 
						|
///   ::= parenexpr
 | 
						|
///   ::= ifexpr
 | 
						|
///   ::= forexpr
 | 
						|
static ExprAST *ParsePrimary() {
 | 
						|
  switch (CurTok) {
 | 
						|
  default: return Error("unknown token when expecting an expression");
 | 
						|
  case tok_identifier: return ParseIdentifierExpr();
 | 
						|
  case tok_number:     return ParseNumberExpr();
 | 
						|
  case '(':            return ParseParenExpr();
 | 
						|
  case tok_if:         return ParseIfExpr();
 | 
						|
  case tok_for:        return ParseForExpr();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// binoprhs
 | 
						|
///   ::= ('+' primary)*
 | 
						|
static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
 | 
						|
  // If this is a binop, find its precedence.
 | 
						|
  while (1) {
 | 
						|
    int TokPrec = GetTokPrecedence();
 | 
						|
    
 | 
						|
    // If this is a binop that binds at least as tightly as the current binop,
 | 
						|
    // consume it, otherwise we are done.
 | 
						|
    if (TokPrec < ExprPrec)
 | 
						|
      return LHS;
 | 
						|
    
 | 
						|
    // Okay, we know this is a binop.
 | 
						|
    int BinOp = CurTok;
 | 
						|
    getNextToken();  // eat binop
 | 
						|
    
 | 
						|
    // Parse the primary expression after the binary operator.
 | 
						|
    ExprAST *RHS = ParsePrimary();
 | 
						|
    if (!RHS) return 0;
 | 
						|
    
 | 
						|
    // If BinOp binds less tightly with RHS than the operator after RHS, let
 | 
						|
    // the pending operator take RHS as its LHS.
 | 
						|
    int NextPrec = GetTokPrecedence();
 | 
						|
    if (TokPrec < NextPrec) {
 | 
						|
      RHS = ParseBinOpRHS(TokPrec+1, RHS);
 | 
						|
      if (RHS == 0) return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Merge LHS/RHS.
 | 
						|
    LHS = new BinaryExprAST(BinOp, LHS, RHS);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// expression
 | 
						|
///   ::= primary binoprhs
 | 
						|
///
 | 
						|
static ExprAST *ParseExpression() {
 | 
						|
  ExprAST *LHS = ParsePrimary();
 | 
						|
  if (!LHS) return 0;
 | 
						|
  
 | 
						|
  return ParseBinOpRHS(0, LHS);
 | 
						|
}
 | 
						|
 | 
						|
/// prototype
 | 
						|
///   ::= id '(' id* ')'
 | 
						|
static PrototypeAST *ParsePrototype() {
 | 
						|
  if (CurTok != tok_identifier)
 | 
						|
    return ErrorP("Expected function name in prototype");
 | 
						|
 | 
						|
  std::string FnName = IdentifierStr;
 | 
						|
  getNextToken();
 | 
						|
  
 | 
						|
  if (CurTok != '(')
 | 
						|
    return ErrorP("Expected '(' in prototype");
 | 
						|
  
 | 
						|
  std::vector<std::string> ArgNames;
 | 
						|
  while (getNextToken() == tok_identifier)
 | 
						|
    ArgNames.push_back(IdentifierStr);
 | 
						|
  if (CurTok != ')')
 | 
						|
    return ErrorP("Expected ')' in prototype");
 | 
						|
  
 | 
						|
  // success.
 | 
						|
  getNextToken();  // eat ')'.
 | 
						|
  
 | 
						|
  return new PrototypeAST(FnName, ArgNames);
 | 
						|
}
 | 
						|
 | 
						|
/// definition ::= 'def' prototype expression
 | 
						|
static FunctionAST *ParseDefinition() {
 | 
						|
  getNextToken();  // eat def.
 | 
						|
  PrototypeAST *Proto = ParsePrototype();
 | 
						|
  if (Proto == 0) return 0;
 | 
						|
 | 
						|
  if (ExprAST *E = ParseExpression())
 | 
						|
    return new FunctionAST(Proto, E);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// toplevelexpr ::= expression
 | 
						|
static FunctionAST *ParseTopLevelExpr() {
 | 
						|
  if (ExprAST *E = ParseExpression()) {
 | 
						|
    // Make an anonymous proto.
 | 
						|
    PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
 | 
						|
    return new FunctionAST(Proto, E);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// external ::= 'extern' prototype
 | 
						|
static PrototypeAST *ParseExtern() {
 | 
						|
  getNextToken();  // eat extern.
 | 
						|
  return ParsePrototype();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Code Generation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static Module *TheModule;
 | 
						|
static IRBuilder<> Builder(getGlobalContext());
 | 
						|
static std::map<std::string, Value*> NamedValues;
 | 
						|
static FunctionPassManager *TheFPM;
 | 
						|
 | 
						|
Value *ErrorV(const char *Str) { Error(Str); return 0; }
 | 
						|
 | 
						|
Value *NumberExprAST::Codegen() {
 | 
						|
  return ConstantFP::get(getGlobalContext(), APFloat(Val));
 | 
						|
}
 | 
						|
 | 
						|
Value *VariableExprAST::Codegen() {
 | 
						|
  // Look this variable up in the function.
 | 
						|
  Value *V = NamedValues[Name];
 | 
						|
  return V ? V : ErrorV("Unknown variable name");
 | 
						|
}
 | 
						|
 | 
						|
Value *BinaryExprAST::Codegen() {
 | 
						|
  Value *L = LHS->Codegen();
 | 
						|
  Value *R = RHS->Codegen();
 | 
						|
  if (L == 0 || R == 0) return 0;
 | 
						|
  
 | 
						|
  switch (Op) {
 | 
						|
  case '+': return Builder.CreateFAdd(L, R, "addtmp");
 | 
						|
  case '-': return Builder.CreateFSub(L, R, "subtmp");
 | 
						|
  case '*': return Builder.CreateFMul(L, R, "multmp");
 | 
						|
  case '<':
 | 
						|
    L = Builder.CreateFCmpULT(L, R, "cmptmp");
 | 
						|
    // Convert bool 0/1 to double 0.0 or 1.0
 | 
						|
    return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()),
 | 
						|
                                "booltmp");
 | 
						|
  default: return ErrorV("invalid binary operator");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *CallExprAST::Codegen() {
 | 
						|
  // Look up the name in the global module table.
 | 
						|
  Function *CalleeF = TheModule->getFunction(Callee);
 | 
						|
  if (CalleeF == 0)
 | 
						|
    return ErrorV("Unknown function referenced");
 | 
						|
  
 | 
						|
  // If argument mismatch error.
 | 
						|
  if (CalleeF->arg_size() != Args.size())
 | 
						|
    return ErrorV("Incorrect # arguments passed");
 | 
						|
 | 
						|
  std::vector<Value*> ArgsV;
 | 
						|
  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
 | 
						|
    ArgsV.push_back(Args[i]->Codegen());
 | 
						|
    if (ArgsV.back() == 0) return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp");
 | 
						|
}
 | 
						|
 | 
						|
Value *IfExprAST::Codegen() {
 | 
						|
  Value *CondV = Cond->Codegen();
 | 
						|
  if (CondV == 0) return 0;
 | 
						|
  
 | 
						|
  // Convert condition to a bool by comparing equal to 0.0.
 | 
						|
  CondV = Builder.CreateFCmpONE(CondV, 
 | 
						|
                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | 
						|
                                "ifcond");
 | 
						|
  
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
  
 | 
						|
  // Create blocks for the then and else cases.  Insert the 'then' block at the
 | 
						|
  // end of the function.
 | 
						|
  BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction);
 | 
						|
  BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else");
 | 
						|
  BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont");
 | 
						|
  
 | 
						|
  Builder.CreateCondBr(CondV, ThenBB, ElseBB);
 | 
						|
  
 | 
						|
  // Emit then value.
 | 
						|
  Builder.SetInsertPoint(ThenBB);
 | 
						|
  
 | 
						|
  Value *ThenV = Then->Codegen();
 | 
						|
  if (ThenV == 0) return 0;
 | 
						|
  
 | 
						|
  Builder.CreateBr(MergeBB);
 | 
						|
  // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
 | 
						|
  ThenBB = Builder.GetInsertBlock();
 | 
						|
  
 | 
						|
  // Emit else block.
 | 
						|
  TheFunction->getBasicBlockList().push_back(ElseBB);
 | 
						|
  Builder.SetInsertPoint(ElseBB);
 | 
						|
  
 | 
						|
  Value *ElseV = Else->Codegen();
 | 
						|
  if (ElseV == 0) return 0;
 | 
						|
  
 | 
						|
  Builder.CreateBr(MergeBB);
 | 
						|
  // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
 | 
						|
  ElseBB = Builder.GetInsertBlock();
 | 
						|
  
 | 
						|
  // Emit merge block.
 | 
						|
  TheFunction->getBasicBlockList().push_back(MergeBB);
 | 
						|
  Builder.SetInsertPoint(MergeBB);
 | 
						|
  PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()),
 | 
						|
                                  "iftmp");
 | 
						|
  
 | 
						|
  PN->addIncoming(ThenV, ThenBB);
 | 
						|
  PN->addIncoming(ElseV, ElseBB);
 | 
						|
  return PN;
 | 
						|
}
 | 
						|
 | 
						|
Value *ForExprAST::Codegen() {
 | 
						|
  // Output this as:
 | 
						|
  //   ...
 | 
						|
  //   start = startexpr
 | 
						|
  //   goto loop
 | 
						|
  // loop: 
 | 
						|
  //   variable = phi [start, loopheader], [nextvariable, loopend]
 | 
						|
  //   ...
 | 
						|
  //   bodyexpr
 | 
						|
  //   ...
 | 
						|
  // loopend:
 | 
						|
  //   step = stepexpr
 | 
						|
  //   nextvariable = variable + step
 | 
						|
  //   endcond = endexpr
 | 
						|
  //   br endcond, loop, endloop
 | 
						|
  // outloop:
 | 
						|
  
 | 
						|
  // Emit the start code first, without 'variable' in scope.
 | 
						|
  Value *StartVal = Start->Codegen();
 | 
						|
  if (StartVal == 0) return 0;
 | 
						|
  
 | 
						|
  // Make the new basic block for the loop header, inserting after current
 | 
						|
  // block.
 | 
						|
  Function *TheFunction = Builder.GetInsertBlock()->getParent();
 | 
						|
  BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
 | 
						|
  
 | 
						|
  // Insert an explicit fall through from the current block to the LoopBB.
 | 
						|
  Builder.CreateBr(LoopBB);
 | 
						|
 | 
						|
  // Start insertion in LoopBB.
 | 
						|
  Builder.SetInsertPoint(LoopBB);
 | 
						|
  
 | 
						|
  // Start the PHI node with an entry for Start.
 | 
						|
  PHINode *Variable = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), VarName.c_str());
 | 
						|
  Variable->addIncoming(StartVal, PreheaderBB);
 | 
						|
  
 | 
						|
  // Within the loop, the variable is defined equal to the PHI node.  If it
 | 
						|
  // shadows an existing variable, we have to restore it, so save it now.
 | 
						|
  Value *OldVal = NamedValues[VarName];
 | 
						|
  NamedValues[VarName] = Variable;
 | 
						|
  
 | 
						|
  // Emit the body of the loop.  This, like any other expr, can change the
 | 
						|
  // current BB.  Note that we ignore the value computed by the body, but don't
 | 
						|
  // allow an error.
 | 
						|
  if (Body->Codegen() == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Emit the step value.
 | 
						|
  Value *StepVal;
 | 
						|
  if (Step) {
 | 
						|
    StepVal = Step->Codegen();
 | 
						|
    if (StepVal == 0) return 0;
 | 
						|
  } else {
 | 
						|
    // If not specified, use 1.0.
 | 
						|
    StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
 | 
						|
  }
 | 
						|
  
 | 
						|
  Value *NextVar = Builder.CreateFAdd(Variable, StepVal, "nextvar");
 | 
						|
 | 
						|
  // Compute the end condition.
 | 
						|
  Value *EndCond = End->Codegen();
 | 
						|
  if (EndCond == 0) return EndCond;
 | 
						|
  
 | 
						|
  // Convert condition to a bool by comparing equal to 0.0.
 | 
						|
  EndCond = Builder.CreateFCmpONE(EndCond, 
 | 
						|
                              ConstantFP::get(getGlobalContext(), APFloat(0.0)),
 | 
						|
                                  "loopcond");
 | 
						|
  
 | 
						|
  // Create the "after loop" block and insert it.
 | 
						|
  BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 | 
						|
  BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
 | 
						|
  
 | 
						|
  // Insert the conditional branch into the end of LoopEndBB.
 | 
						|
  Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
 | 
						|
  
 | 
						|
  // Any new code will be inserted in AfterBB.
 | 
						|
  Builder.SetInsertPoint(AfterBB);
 | 
						|
  
 | 
						|
  // Add a new entry to the PHI node for the backedge.
 | 
						|
  Variable->addIncoming(NextVar, LoopEndBB);
 | 
						|
  
 | 
						|
  // Restore the unshadowed variable.
 | 
						|
  if (OldVal)
 | 
						|
    NamedValues[VarName] = OldVal;
 | 
						|
  else
 | 
						|
    NamedValues.erase(VarName);
 | 
						|
 | 
						|
  
 | 
						|
  // for expr always returns 0.0.
 | 
						|
  return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
 | 
						|
}
 | 
						|
 | 
						|
Function *PrototypeAST::Codegen() {
 | 
						|
  // Make the function type:  double(double,double) etc.
 | 
						|
  std::vector<const Type*> Doubles(Args.size(),
 | 
						|
                                   Type::getDoubleTy(getGlobalContext()));
 | 
						|
  FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
 | 
						|
                                       Doubles, false);
 | 
						|
  
 | 
						|
  Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
 | 
						|
  
 | 
						|
  // If F conflicted, there was already something named 'Name'.  If it has a
 | 
						|
  // body, don't allow redefinition or reextern.
 | 
						|
  if (F->getName() != Name) {
 | 
						|
    // Delete the one we just made and get the existing one.
 | 
						|
    F->eraseFromParent();
 | 
						|
    F = TheModule->getFunction(Name);
 | 
						|
    
 | 
						|
    // If F already has a body, reject this.
 | 
						|
    if (!F->empty()) {
 | 
						|
      ErrorF("redefinition of function");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If F took a different number of args, reject.
 | 
						|
    if (F->arg_size() != Args.size()) {
 | 
						|
      ErrorF("redefinition of function with different # args");
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Set names for all arguments.
 | 
						|
  unsigned Idx = 0;
 | 
						|
  for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
 | 
						|
       ++AI, ++Idx) {
 | 
						|
    AI->setName(Args[Idx]);
 | 
						|
    
 | 
						|
    // Add arguments to variable symbol table.
 | 
						|
    NamedValues[Args[Idx]] = AI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  return F;
 | 
						|
}
 | 
						|
 | 
						|
Function *FunctionAST::Codegen() {
 | 
						|
  NamedValues.clear();
 | 
						|
  
 | 
						|
  Function *TheFunction = Proto->Codegen();
 | 
						|
  if (TheFunction == 0)
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  // Create a new basic block to start insertion into.
 | 
						|
  BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
 | 
						|
  Builder.SetInsertPoint(BB);
 | 
						|
  
 | 
						|
  if (Value *RetVal = Body->Codegen()) {
 | 
						|
    // Finish off the function.
 | 
						|
    Builder.CreateRet(RetVal);
 | 
						|
 | 
						|
    // Validate the generated code, checking for consistency.
 | 
						|
    verifyFunction(*TheFunction);
 | 
						|
 | 
						|
    // Optimize the function.
 | 
						|
    TheFPM->run(*TheFunction);
 | 
						|
    
 | 
						|
    return TheFunction;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Error reading body, remove function.
 | 
						|
  TheFunction->eraseFromParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Top-Level parsing and JIT Driver
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static ExecutionEngine *TheExecutionEngine;
 | 
						|
 | 
						|
static void HandleDefinition() {
 | 
						|
  if (FunctionAST *F = ParseDefinition()) {
 | 
						|
    if (Function *LF = F->Codegen()) {
 | 
						|
      fprintf(stderr, "Read function definition:");
 | 
						|
      LF->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void HandleExtern() {
 | 
						|
  if (PrototypeAST *P = ParseExtern()) {
 | 
						|
    if (Function *F = P->Codegen()) {
 | 
						|
      fprintf(stderr, "Read extern: ");
 | 
						|
      F->dump();
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void HandleTopLevelExpression() {
 | 
						|
  // Evaluate a top-level expression into an anonymous function.
 | 
						|
  if (FunctionAST *F = ParseTopLevelExpr()) {
 | 
						|
    if (Function *LF = F->Codegen()) {
 | 
						|
      // JIT the function, returning a function pointer.
 | 
						|
      void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
 | 
						|
      
 | 
						|
      // Cast it to the right type (takes no arguments, returns a double) so we
 | 
						|
      // can call it as a native function.
 | 
						|
      double (*FP)() = (double (*)())(intptr_t)FPtr;
 | 
						|
      fprintf(stderr, "Evaluated to %f\n", FP());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Skip token for error recovery.
 | 
						|
    getNextToken();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// top ::= definition | external | expression | ';'
 | 
						|
static void MainLoop() {
 | 
						|
  while (1) {
 | 
						|
    fprintf(stderr, "ready> ");
 | 
						|
    switch (CurTok) {
 | 
						|
    case tok_eof:    return;
 | 
						|
    case ';':        getNextToken(); break;  // ignore top-level semicolons.
 | 
						|
    case tok_def:    HandleDefinition(); break;
 | 
						|
    case tok_extern: HandleExtern(); break;
 | 
						|
    default:         HandleTopLevelExpression(); break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// "Library" functions that can be "extern'd" from user code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// putchard - putchar that takes a double and returns 0.
 | 
						|
extern "C" 
 | 
						|
double putchard(double X) {
 | 
						|
  putchar((char)X);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Main driver code.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
int main() {
 | 
						|
  InitializeNativeTarget();
 | 
						|
  LLVMContext &Context = getGlobalContext();
 | 
						|
 | 
						|
  // Install standard binary operators.
 | 
						|
  // 1 is lowest precedence.
 | 
						|
  BinopPrecedence['<'] = 10;
 | 
						|
  BinopPrecedence['+'] = 20;
 | 
						|
  BinopPrecedence['-'] = 20;
 | 
						|
  BinopPrecedence['*'] = 40;  // highest.
 | 
						|
 | 
						|
  // Prime the first token.
 | 
						|
  fprintf(stderr, "ready> ");
 | 
						|
  getNextToken();
 | 
						|
 | 
						|
  // Make the module, which holds all the code.
 | 
						|
  TheModule = new Module("my cool jit", Context);
 | 
						|
 | 
						|
  // Create the JIT.  This takes ownership of the module.
 | 
						|
  std::string ErrStr;
 | 
						|
  TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
 | 
						|
  if (!TheExecutionEngine) {
 | 
						|
    fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
 | 
						|
    exit(1);
 | 
						|
  }
 | 
						|
 | 
						|
  FunctionPassManager OurFPM(TheModule);
 | 
						|
 | 
						|
  // Set up the optimizer pipeline.  Start with registering info about how the
 | 
						|
  // target lays out data structures.
 | 
						|
  OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData()));
 | 
						|
  // Do simple "peephole" optimizations and bit-twiddling optzns.
 | 
						|
  OurFPM.add(createInstructionCombiningPass());
 | 
						|
  // Reassociate expressions.
 | 
						|
  OurFPM.add(createReassociatePass());
 | 
						|
  // Eliminate Common SubExpressions.
 | 
						|
  OurFPM.add(createGVNPass());
 | 
						|
  // Simplify the control flow graph (deleting unreachable blocks, etc).
 | 
						|
  OurFPM.add(createCFGSimplificationPass());
 | 
						|
 | 
						|
  OurFPM.doInitialization();
 | 
						|
 | 
						|
  // Set the global so the code gen can use this.
 | 
						|
  TheFPM = &OurFPM;
 | 
						|
 | 
						|
  // Run the main "interpreter loop" now.
 | 
						|
  MainLoop();
 | 
						|
 | 
						|
  TheFPM = 0;
 | 
						|
 | 
						|
  // Print out all of the generated code.
 | 
						|
  TheModule->dump();
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
</pre>
 | 
						|
</div>
 | 
						|
 | 
						|
<a href="LangImpl6.html">Next: Extending the language: user-defined operators</a>
 | 
						|
</div>
 | 
						|
 | 
						|
<!-- *********************************************************************** -->
 | 
						|
<hr>
 | 
						|
<address>
 | 
						|
  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | 
						|
  src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | 
						|
  <a href="http://validator.w3.org/check/referer"><img
 | 
						|
  src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | 
						|
 | 
						|
  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | 
						|
  <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | 
						|
  Last modified: $Date$
 | 
						|
</address>
 | 
						|
</body>
 | 
						|
</html>
 |