mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
0e275dc538
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@78955 91177308-0d34-0410-b5e6-96231b3b80d8
519 lines
19 KiB
C++
519 lines
19 KiB
C++
//===-- llvm/DerivedTypes.h - Classes for handling data types ---*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the declarations of classes that represent "derived
|
|
// types". These are things like "arrays of x" or "structure of x, y, z" or
|
|
// "method returning x taking (y,z) as parameters", etc...
|
|
//
|
|
// The implementations of these classes live in the Type.cpp file.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_DERIVED_TYPES_H
|
|
#define LLVM_DERIVED_TYPES_H
|
|
|
|
#include "llvm/Type.h"
|
|
|
|
namespace llvm {
|
|
|
|
class Value;
|
|
template<class ValType, class TypeClass> class TypeMap;
|
|
class FunctionValType;
|
|
class ArrayValType;
|
|
class StructValType;
|
|
class PointerValType;
|
|
class VectorValType;
|
|
class IntegerValType;
|
|
class APInt;
|
|
class LLVMContext;
|
|
|
|
class DerivedType : public Type {
|
|
friend class Type;
|
|
|
|
protected:
|
|
explicit DerivedType(LLVMContext &C, TypeID id) : Type(C, id) {}
|
|
|
|
/// notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type
|
|
/// that the current type has transitioned from being abstract to being
|
|
/// concrete.
|
|
///
|
|
void notifyUsesThatTypeBecameConcrete();
|
|
|
|
/// dropAllTypeUses - When this (abstract) type is resolved to be equal to
|
|
/// another (more concrete) type, we must eliminate all references to other
|
|
/// types, to avoid some circular reference problems.
|
|
///
|
|
void dropAllTypeUses();
|
|
|
|
/// unlockedRefineAbstractTypeTo - Internal version of refineAbstractTypeTo
|
|
/// that performs no locking. Only used for internal recursion.
|
|
void unlockedRefineAbstractTypeTo(const Type *NewType);
|
|
|
|
public:
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Abstract Type handling methods - These types have special lifetimes, which
|
|
// are managed by (add|remove)AbstractTypeUser. See comments in
|
|
// AbstractTypeUser.h for more information.
|
|
|
|
/// refineAbstractTypeTo - This function is used to when it is discovered that
|
|
/// the 'this' abstract type is actually equivalent to the NewType specified.
|
|
/// This causes all users of 'this' to switch to reference the more concrete
|
|
/// type NewType and for 'this' to be deleted.
|
|
///
|
|
void refineAbstractTypeTo(const Type *NewType);
|
|
|
|
void dump() const { Type::dump(); }
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const DerivedType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->isDerivedType();
|
|
}
|
|
};
|
|
|
|
/// Class to represent integer types. Note that this class is also used to
|
|
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
|
|
/// Int64Ty.
|
|
/// @brief Integer representation type
|
|
class IntegerType : public DerivedType {
|
|
friend class LLVMContextImpl;
|
|
|
|
protected:
|
|
explicit IntegerType(LLVMContext &C, unsigned NumBits) :
|
|
DerivedType(C, IntegerTyID) {
|
|
setSubclassData(NumBits);
|
|
}
|
|
friend class TypeMap<IntegerValType, IntegerType>;
|
|
public:
|
|
/// This enum is just used to hold constants we need for IntegerType.
|
|
enum {
|
|
MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
|
|
MAX_INT_BITS = (1<<23)-1 ///< Maximum number of bits that can be specified
|
|
///< Note that bit width is stored in the Type classes SubclassData field
|
|
///< which has 23 bits. This yields a maximum bit width of 8,388,607 bits.
|
|
};
|
|
|
|
/// This static method is the primary way of constructing an IntegerType.
|
|
/// If an IntegerType with the same NumBits value was previously instantiated,
|
|
/// that instance will be returned. Otherwise a new one will be created. Only
|
|
/// one instance with a given NumBits value is ever created.
|
|
/// @brief Get or create an IntegerType instance.
|
|
static const IntegerType* get(LLVMContext &C, unsigned NumBits);
|
|
|
|
/// @brief Get the number of bits in this IntegerType
|
|
unsigned getBitWidth() const { return getSubclassData(); }
|
|
|
|
/// getBitMask - Return a bitmask with ones set for all of the bits
|
|
/// that can be set by an unsigned version of this type. This is 0xFF for
|
|
/// i8, 0xFFFF for i16, etc.
|
|
uint64_t getBitMask() const {
|
|
return ~uint64_t(0UL) >> (64-getBitWidth());
|
|
}
|
|
|
|
/// getSignBit - Return a uint64_t with just the most significant bit set (the
|
|
/// sign bit, if the value is treated as a signed number).
|
|
uint64_t getSignBit() const {
|
|
return 1ULL << (getBitWidth()-1);
|
|
}
|
|
|
|
/// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
|
|
/// @returns a bit mask with ones set for all the bits of this type.
|
|
/// @brief Get a bit mask for this type.
|
|
APInt getMask() const;
|
|
|
|
/// This method determines if the width of this IntegerType is a power-of-2
|
|
/// in terms of 8 bit bytes.
|
|
/// @returns true if this is a power-of-2 byte width.
|
|
/// @brief Is this a power-of-2 byte-width IntegerType ?
|
|
bool isPowerOf2ByteWidth() const;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const IntegerType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == IntegerTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// FunctionType - Class to represent function types
|
|
///
|
|
class FunctionType : public DerivedType {
|
|
friend class TypeMap<FunctionValType, FunctionType>;
|
|
bool isVarArgs;
|
|
|
|
FunctionType(const FunctionType &); // Do not implement
|
|
const FunctionType &operator=(const FunctionType &); // Do not implement
|
|
FunctionType(const Type *Result, const std::vector<const Type*> &Params,
|
|
bool IsVarArgs);
|
|
|
|
public:
|
|
/// FunctionType::get - This static method is the primary way of constructing
|
|
/// a FunctionType.
|
|
///
|
|
static FunctionType *get(
|
|
const Type *Result, ///< The result type
|
|
const std::vector<const Type*> &Params, ///< The types of the parameters
|
|
bool isVarArg ///< Whether this is a variable argument length function
|
|
);
|
|
|
|
/// FunctionType::get - Create a FunctionType taking no parameters.
|
|
///
|
|
static FunctionType *get(
|
|
const Type *Result, ///< The result type
|
|
bool isVarArg ///< Whether this is a variable argument length function
|
|
) {
|
|
return get(Result, std::vector<const Type *>(), isVarArg);
|
|
}
|
|
|
|
/// isValidReturnType - Return true if the specified type is valid as a return
|
|
/// type.
|
|
static bool isValidReturnType(const Type *RetTy);
|
|
|
|
/// isValidArgumentType - Return true if the specified type is valid as an
|
|
/// argument type.
|
|
static bool isValidArgumentType(const Type *ArgTy);
|
|
|
|
inline bool isVarArg() const { return isVarArgs; }
|
|
inline const Type *getReturnType() const { return ContainedTys[0]; }
|
|
|
|
typedef Type::subtype_iterator param_iterator;
|
|
param_iterator param_begin() const { return ContainedTys + 1; }
|
|
param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
|
|
|
|
// Parameter type accessors...
|
|
const Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
|
|
|
|
/// getNumParams - Return the number of fixed parameters this function type
|
|
/// requires. This does not consider varargs.
|
|
///
|
|
unsigned getNumParams() const { return NumContainedTys - 1; }
|
|
|
|
// Implement the AbstractTypeUser interface.
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const FunctionType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == FunctionTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// CompositeType - Common super class of ArrayType, StructType, PointerType
|
|
/// and VectorType
|
|
class CompositeType : public DerivedType {
|
|
protected:
|
|
inline explicit CompositeType(LLVMContext &C, TypeID id) :
|
|
DerivedType(C, id) { }
|
|
public:
|
|
|
|
/// getTypeAtIndex - Given an index value into the type, return the type of
|
|
/// the element.
|
|
///
|
|
virtual const Type *getTypeAtIndex(const Value *V) const = 0;
|
|
virtual const Type *getTypeAtIndex(unsigned Idx) const = 0;
|
|
virtual bool indexValid(const Value *V) const = 0;
|
|
virtual bool indexValid(unsigned Idx) const = 0;
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const CompositeType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == ArrayTyID ||
|
|
T->getTypeID() == StructTyID ||
|
|
T->getTypeID() == PointerTyID ||
|
|
T->getTypeID() == VectorTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// StructType - Class to represent struct types
|
|
///
|
|
class StructType : public CompositeType {
|
|
friend class TypeMap<StructValType, StructType>;
|
|
StructType(const StructType &); // Do not implement
|
|
const StructType &operator=(const StructType &); // Do not implement
|
|
StructType(LLVMContext &C,
|
|
const std::vector<const Type*> &Types, bool isPacked);
|
|
public:
|
|
/// StructType::get - This static method is the primary way to create a
|
|
/// StructType.
|
|
///
|
|
static StructType *get(LLVMContext &Context,
|
|
const std::vector<const Type*> &Params,
|
|
bool isPacked=false);
|
|
|
|
/// StructType::get - Create an empty structure type.
|
|
///
|
|
static StructType *get(LLVMContext &Context, bool isPacked=false) {
|
|
return get(Context, std::vector<const Type*>(), isPacked);
|
|
}
|
|
|
|
/// StructType::get - This static method is a convenience method for
|
|
/// creating structure types by specifying the elements as arguments.
|
|
/// Note that this method always returns a non-packed struct. To get
|
|
/// an empty struct, pass NULL, NULL.
|
|
static StructType *get(LLVMContext &Context,
|
|
const Type *type, ...) END_WITH_NULL;
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(const Type *ElemTy);
|
|
|
|
// Iterator access to the elements
|
|
typedef Type::subtype_iterator element_iterator;
|
|
element_iterator element_begin() const { return ContainedTys; }
|
|
element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
|
|
|
|
// Random access to the elements
|
|
unsigned getNumElements() const { return NumContainedTys; }
|
|
const Type *getElementType(unsigned N) const {
|
|
assert(N < NumContainedTys && "Element number out of range!");
|
|
return ContainedTys[N];
|
|
}
|
|
|
|
/// getTypeAtIndex - Given an index value into the type, return the type of
|
|
/// the element. For a structure type, this must be a constant value...
|
|
///
|
|
virtual const Type *getTypeAtIndex(const Value *V) const;
|
|
virtual const Type *getTypeAtIndex(unsigned Idx) const;
|
|
virtual bool indexValid(const Value *V) const;
|
|
virtual bool indexValid(unsigned Idx) const;
|
|
|
|
// Implement the AbstractTypeUser interface.
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const StructType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == StructTyID;
|
|
}
|
|
|
|
bool isPacked() const { return (0 != getSubclassData()) ? true : false; }
|
|
};
|
|
|
|
|
|
/// SequentialType - This is the superclass of the array, pointer and vector
|
|
/// type classes. All of these represent "arrays" in memory. The array type
|
|
/// represents a specifically sized array, pointer types are unsized/unknown
|
|
/// size arrays, vector types represent specifically sized arrays that
|
|
/// allow for use of SIMD instructions. SequentialType holds the common
|
|
/// features of all, which stem from the fact that all three lay their
|
|
/// components out in memory identically.
|
|
///
|
|
class SequentialType : public CompositeType {
|
|
PATypeHandle ContainedType; ///< Storage for the single contained type
|
|
SequentialType(const SequentialType &); // Do not implement!
|
|
const SequentialType &operator=(const SequentialType &); // Do not implement!
|
|
|
|
// avoiding warning: 'this' : used in base member initializer list
|
|
SequentialType* this_() { return this; }
|
|
protected:
|
|
SequentialType(TypeID TID, const Type *ElType)
|
|
: CompositeType(ElType->getContext(), TID), ContainedType(ElType, this_()) {
|
|
ContainedTys = &ContainedType;
|
|
NumContainedTys = 1;
|
|
}
|
|
|
|
public:
|
|
inline const Type *getElementType() const { return ContainedTys[0]; }
|
|
|
|
virtual bool indexValid(const Value *V) const;
|
|
virtual bool indexValid(unsigned) const {
|
|
return true;
|
|
}
|
|
|
|
/// getTypeAtIndex - Given an index value into the type, return the type of
|
|
/// the element. For sequential types, there is only one subtype...
|
|
///
|
|
virtual const Type *getTypeAtIndex(const Value *) const {
|
|
return ContainedTys[0];
|
|
}
|
|
virtual const Type *getTypeAtIndex(unsigned) const {
|
|
return ContainedTys[0];
|
|
}
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const SequentialType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == ArrayTyID ||
|
|
T->getTypeID() == PointerTyID ||
|
|
T->getTypeID() == VectorTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// ArrayType - Class to represent array types
|
|
///
|
|
class ArrayType : public SequentialType {
|
|
friend class TypeMap<ArrayValType, ArrayType>;
|
|
uint64_t NumElements;
|
|
|
|
ArrayType(const ArrayType &); // Do not implement
|
|
const ArrayType &operator=(const ArrayType &); // Do not implement
|
|
ArrayType(const Type *ElType, uint64_t NumEl);
|
|
public:
|
|
/// ArrayType::get - This static method is the primary way to construct an
|
|
/// ArrayType
|
|
///
|
|
static ArrayType *get(const Type *ElementType, uint64_t NumElements);
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(const Type *ElemTy);
|
|
|
|
inline uint64_t getNumElements() const { return NumElements; }
|
|
|
|
// Implement the AbstractTypeUser interface.
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const ArrayType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == ArrayTyID;
|
|
}
|
|
};
|
|
|
|
/// VectorType - Class to represent vector types
|
|
///
|
|
class VectorType : public SequentialType {
|
|
friend class TypeMap<VectorValType, VectorType>;
|
|
unsigned NumElements;
|
|
|
|
VectorType(const VectorType &); // Do not implement
|
|
const VectorType &operator=(const VectorType &); // Do not implement
|
|
VectorType(const Type *ElType, unsigned NumEl);
|
|
public:
|
|
/// VectorType::get - This static method is the primary way to construct an
|
|
/// VectorType
|
|
///
|
|
static VectorType *get(const Type *ElementType, unsigned NumElements);
|
|
|
|
/// VectorType::getInteger - This static method gets a VectorType with the
|
|
/// same number of elements as the input type, and the element type is an
|
|
/// integer type of the same width as the input element type.
|
|
///
|
|
static VectorType *getInteger(const VectorType *VTy) {
|
|
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
|
const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
|
|
return VectorType::get(EltTy, VTy->getNumElements());
|
|
}
|
|
|
|
/// VectorType::getExtendedElementVectorType - This static method is like
|
|
/// getInteger except that the element types are twice as wide as the
|
|
/// elements in the input type.
|
|
///
|
|
static VectorType *getExtendedElementVectorType(const VectorType *VTy) {
|
|
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
|
const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
|
|
return VectorType::get(EltTy, VTy->getNumElements());
|
|
}
|
|
|
|
/// VectorType::getTruncatedElementVectorType - This static method is like
|
|
/// getInteger except that the element types are half as wide as the
|
|
/// elements in the input type.
|
|
///
|
|
static VectorType *getTruncatedElementVectorType(const VectorType *VTy) {
|
|
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
|
assert((EltBits & 1) == 0 &&
|
|
"Cannot truncate vector element with odd bit-width");
|
|
const Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
|
|
return VectorType::get(EltTy, VTy->getNumElements());
|
|
}
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(const Type *ElemTy);
|
|
|
|
/// @brief Return the number of elements in the Vector type.
|
|
inline unsigned getNumElements() const { return NumElements; }
|
|
|
|
/// @brief Return the number of bits in the Vector type.
|
|
inline unsigned getBitWidth() const {
|
|
return NumElements * getElementType()->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
// Implement the AbstractTypeUser interface.
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
// Methods for support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const VectorType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == VectorTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// PointerType - Class to represent pointers
|
|
///
|
|
class PointerType : public SequentialType {
|
|
friend class TypeMap<PointerValType, PointerType>;
|
|
unsigned AddressSpace;
|
|
|
|
PointerType(const PointerType &); // Do not implement
|
|
const PointerType &operator=(const PointerType &); // Do not implement
|
|
explicit PointerType(const Type *ElType, unsigned AddrSpace);
|
|
public:
|
|
/// PointerType::get - This constructs a pointer to an object of the specified
|
|
/// type in a numbered address space.
|
|
static PointerType *get(const Type *ElementType, unsigned AddressSpace);
|
|
|
|
/// PointerType::getUnqual - This constructs a pointer to an object of the
|
|
/// specified type in the generic address space (address space zero).
|
|
static PointerType *getUnqual(const Type *ElementType) {
|
|
return PointerType::get(ElementType, 0);
|
|
}
|
|
|
|
/// isValidElementType - Return true if the specified type is valid as a
|
|
/// element type.
|
|
static bool isValidElementType(const Type *ElemTy);
|
|
|
|
/// @brief Return the address space of the Pointer type.
|
|
inline unsigned getAddressSpace() const { return AddressSpace; }
|
|
|
|
// Implement the AbstractTypeUser interface.
|
|
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
|
|
virtual void typeBecameConcrete(const DerivedType *AbsTy);
|
|
|
|
// Implement support type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const PointerType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == PointerTyID;
|
|
}
|
|
};
|
|
|
|
|
|
/// OpaqueType - Class to represent abstract types
|
|
///
|
|
class OpaqueType : public DerivedType {
|
|
OpaqueType(const OpaqueType &); // DO NOT IMPLEMENT
|
|
const OpaqueType &operator=(const OpaqueType &); // DO NOT IMPLEMENT
|
|
OpaqueType(LLVMContext &C);
|
|
public:
|
|
/// OpaqueType::get - Static factory method for the OpaqueType class...
|
|
///
|
|
static OpaqueType *get(LLVMContext &C) {
|
|
return new OpaqueType(C); // All opaque types are distinct
|
|
}
|
|
|
|
// Implement support for type inquiry through isa, cast, and dyn_cast:
|
|
static inline bool classof(const OpaqueType *) { return true; }
|
|
static inline bool classof(const Type *T) {
|
|
return T->getTypeID() == OpaqueTyID;
|
|
}
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|