mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	This is quiet a bit less confusing now that TargetData was renamed DataLayout. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201606 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			881 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			881 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- FastISelEmitter.cpp - Generate an instruction selector -------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This tablegen backend emits code for use by the "fast" instruction
 | 
						|
// selection algorithm. See the comments at the top of
 | 
						|
// lib/CodeGen/SelectionDAG/FastISel.cpp for background.
 | 
						|
//
 | 
						|
// This file scans through the target's tablegen instruction-info files
 | 
						|
// and extracts instructions with obvious-looking patterns, and it emits
 | 
						|
// code to look up these instructions by type and operator.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenDAGPatterns.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/TableGen/Error.h"
 | 
						|
#include "llvm/TableGen/Record.h"
 | 
						|
#include "llvm/TableGen/TableGenBackend.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
 | 
						|
/// InstructionMemo - This class holds additional information about an
 | 
						|
/// instruction needed to emit code for it.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
struct InstructionMemo {
 | 
						|
  std::string Name;
 | 
						|
  const CodeGenRegisterClass *RC;
 | 
						|
  std::string SubRegNo;
 | 
						|
  std::vector<std::string>* PhysRegs;
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
/// ImmPredicateSet - This uniques predicates (represented as a string) and
 | 
						|
/// gives them unique (small) integer ID's that start at 0.
 | 
						|
namespace {
 | 
						|
class ImmPredicateSet {
 | 
						|
  DenseMap<TreePattern *, unsigned> ImmIDs;
 | 
						|
  std::vector<TreePredicateFn> PredsByName;
 | 
						|
public:
 | 
						|
 | 
						|
  unsigned getIDFor(TreePredicateFn Pred) {
 | 
						|
    unsigned &Entry = ImmIDs[Pred.getOrigPatFragRecord()];
 | 
						|
    if (Entry == 0) {
 | 
						|
      PredsByName.push_back(Pred);
 | 
						|
      Entry = PredsByName.size();
 | 
						|
    }
 | 
						|
    return Entry-1;
 | 
						|
  }
 | 
						|
 | 
						|
  const TreePredicateFn &getPredicate(unsigned i) {
 | 
						|
    assert(i < PredsByName.size());
 | 
						|
    return PredsByName[i];
 | 
						|
  }
 | 
						|
 | 
						|
  typedef std::vector<TreePredicateFn>::const_iterator iterator;
 | 
						|
  iterator begin() const { return PredsByName.begin(); }
 | 
						|
  iterator end() const { return PredsByName.end(); }
 | 
						|
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
/// OperandsSignature - This class holds a description of a list of operand
 | 
						|
/// types. It has utility methods for emitting text based on the operands.
 | 
						|
///
 | 
						|
namespace {
 | 
						|
struct OperandsSignature {
 | 
						|
  class OpKind {
 | 
						|
    enum { OK_Reg, OK_FP, OK_Imm, OK_Invalid = -1 };
 | 
						|
    char Repr;
 | 
						|
  public:
 | 
						|
 | 
						|
    OpKind() : Repr(OK_Invalid) {}
 | 
						|
 | 
						|
    bool operator<(OpKind RHS) const { return Repr < RHS.Repr; }
 | 
						|
    bool operator==(OpKind RHS) const { return Repr == RHS.Repr; }
 | 
						|
 | 
						|
    static OpKind getReg() { OpKind K; K.Repr = OK_Reg; return K; }
 | 
						|
    static OpKind getFP()  { OpKind K; K.Repr = OK_FP; return K; }
 | 
						|
    static OpKind getImm(unsigned V) {
 | 
						|
      assert((unsigned)OK_Imm+V < 128 &&
 | 
						|
             "Too many integer predicates for the 'Repr' char");
 | 
						|
      OpKind K; K.Repr = OK_Imm+V; return K;
 | 
						|
    }
 | 
						|
 | 
						|
    bool isReg() const { return Repr == OK_Reg; }
 | 
						|
    bool isFP() const  { return Repr == OK_FP; }
 | 
						|
    bool isImm() const { return Repr >= OK_Imm; }
 | 
						|
 | 
						|
    unsigned getImmCode() const { assert(isImm()); return Repr-OK_Imm; }
 | 
						|
 | 
						|
    void printManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
 | 
						|
                             bool StripImmCodes) const {
 | 
						|
      if (isReg())
 | 
						|
        OS << 'r';
 | 
						|
      else if (isFP())
 | 
						|
        OS << 'f';
 | 
						|
      else {
 | 
						|
        OS << 'i';
 | 
						|
        if (!StripImmCodes)
 | 
						|
          if (unsigned Code = getImmCode())
 | 
						|
            OS << "_" << ImmPredicates.getPredicate(Code-1).getFnName();
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
  SmallVector<OpKind, 3> Operands;
 | 
						|
 | 
						|
  bool operator<(const OperandsSignature &O) const {
 | 
						|
    return Operands < O.Operands;
 | 
						|
  }
 | 
						|
  bool operator==(const OperandsSignature &O) const {
 | 
						|
    return Operands == O.Operands;
 | 
						|
  }
 | 
						|
 | 
						|
  bool empty() const { return Operands.empty(); }
 | 
						|
 | 
						|
  bool hasAnyImmediateCodes() const {
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
      if (Operands[i].isImm() && Operands[i].getImmCode() != 0)
 | 
						|
        return true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getWithoutImmCodes - Return a copy of this with any immediate codes forced
 | 
						|
  /// to zero.
 | 
						|
  OperandsSignature getWithoutImmCodes() const {
 | 
						|
    OperandsSignature Result;
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
      if (!Operands[i].isImm())
 | 
						|
        Result.Operands.push_back(Operands[i]);
 | 
						|
      else
 | 
						|
        Result.Operands.push_back(OpKind::getImm(0));
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
 | 
						|
  void emitImmediatePredicate(raw_ostream &OS, ImmPredicateSet &ImmPredicates) {
 | 
						|
    bool EmittedAnything = false;
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (!Operands[i].isImm()) continue;
 | 
						|
 | 
						|
      unsigned Code = Operands[i].getImmCode();
 | 
						|
      if (Code == 0) continue;
 | 
						|
 | 
						|
      if (EmittedAnything)
 | 
						|
        OS << " &&\n        ";
 | 
						|
 | 
						|
      TreePredicateFn PredFn = ImmPredicates.getPredicate(Code-1);
 | 
						|
 | 
						|
      // Emit the type check.
 | 
						|
      OS << "VT == "
 | 
						|
         << getEnumName(PredFn.getOrigPatFragRecord()->getTree(0)->getType(0))
 | 
						|
         << " && ";
 | 
						|
 | 
						|
 | 
						|
      OS << PredFn.getFnName() << "(imm" << i <<')';
 | 
						|
      EmittedAnything = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// initialize - Examine the given pattern and initialize the contents
 | 
						|
  /// of the Operands array accordingly. Return true if all the operands
 | 
						|
  /// are supported, false otherwise.
 | 
						|
  ///
 | 
						|
  bool initialize(TreePatternNode *InstPatNode, const CodeGenTarget &Target,
 | 
						|
                  MVT::SimpleValueType VT,
 | 
						|
                  ImmPredicateSet &ImmediatePredicates,
 | 
						|
                  const CodeGenRegisterClass *OrigDstRC) {
 | 
						|
    if (InstPatNode->isLeaf())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (InstPatNode->getOperator()->getName() == "imm") {
 | 
						|
      Operands.push_back(OpKind::getImm(0));
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InstPatNode->getOperator()->getName() == "fpimm") {
 | 
						|
      Operands.push_back(OpKind::getFP());
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    const CodeGenRegisterClass *DstRC = 0;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNode *Op = InstPatNode->getChild(i);
 | 
						|
 | 
						|
      // Handle imm operands specially.
 | 
						|
      if (!Op->isLeaf() && Op->getOperator()->getName() == "imm") {
 | 
						|
        unsigned PredNo = 0;
 | 
						|
        if (!Op->getPredicateFns().empty()) {
 | 
						|
          TreePredicateFn PredFn = Op->getPredicateFns()[0];
 | 
						|
          // If there is more than one predicate weighing in on this operand
 | 
						|
          // then we don't handle it.  This doesn't typically happen for
 | 
						|
          // immediates anyway.
 | 
						|
          if (Op->getPredicateFns().size() > 1 ||
 | 
						|
              !PredFn.isImmediatePattern())
 | 
						|
            return false;
 | 
						|
          // Ignore any instruction with 'FastIselShouldIgnore', these are
 | 
						|
          // not needed and just bloat the fast instruction selector.  For
 | 
						|
          // example, X86 doesn't need to generate code to match ADD16ri8 since
 | 
						|
          // ADD16ri will do just fine.
 | 
						|
          Record *Rec = PredFn.getOrigPatFragRecord()->getRecord();
 | 
						|
          if (Rec->getValueAsBit("FastIselShouldIgnore"))
 | 
						|
            return false;
 | 
						|
 | 
						|
          PredNo = ImmediatePredicates.getIDFor(PredFn)+1;
 | 
						|
        }
 | 
						|
 | 
						|
        // Handle unmatched immediate sizes here.
 | 
						|
        //if (Op->getType(0) != VT)
 | 
						|
        //  return false;
 | 
						|
 | 
						|
        Operands.push_back(OpKind::getImm(PredNo));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
 | 
						|
      // For now, filter out any operand with a predicate.
 | 
						|
      // For now, filter out any operand with multiple values.
 | 
						|
      if (!Op->getPredicateFns().empty() || Op->getNumTypes() != 1)
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (!Op->isLeaf()) {
 | 
						|
         if (Op->getOperator()->getName() == "fpimm") {
 | 
						|
          Operands.push_back(OpKind::getFP());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // For now, ignore other non-leaf nodes.
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      assert(Op->hasTypeSet(0) && "Type infererence not done?");
 | 
						|
 | 
						|
      // For now, all the operands must have the same type (if they aren't
 | 
						|
      // immediates).  Note that this causes us to reject variable sized shifts
 | 
						|
      // on X86.
 | 
						|
      if (Op->getType(0) != VT)
 | 
						|
        return false;
 | 
						|
 | 
						|
      DefInit *OpDI = dyn_cast<DefInit>(Op->getLeafValue());
 | 
						|
      if (!OpDI)
 | 
						|
        return false;
 | 
						|
      Record *OpLeafRec = OpDI->getDef();
 | 
						|
 | 
						|
      // For now, the only other thing we accept is register operands.
 | 
						|
      const CodeGenRegisterClass *RC = 0;
 | 
						|
      if (OpLeafRec->isSubClassOf("RegisterOperand"))
 | 
						|
        OpLeafRec = OpLeafRec->getValueAsDef("RegClass");
 | 
						|
      if (OpLeafRec->isSubClassOf("RegisterClass"))
 | 
						|
        RC = &Target.getRegisterClass(OpLeafRec);
 | 
						|
      else if (OpLeafRec->isSubClassOf("Register"))
 | 
						|
        RC = Target.getRegBank().getRegClassForRegister(OpLeafRec);
 | 
						|
      else if (OpLeafRec->isSubClassOf("ValueType")) {
 | 
						|
        RC = OrigDstRC;
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
 | 
						|
      // For now, this needs to be a register class of some sort.
 | 
						|
      if (!RC)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // For now, all the operands must have the same register class or be
 | 
						|
      // a strict subclass of the destination.
 | 
						|
      if (DstRC) {
 | 
						|
        if (DstRC != RC && !DstRC->hasSubClass(RC))
 | 
						|
          return false;
 | 
						|
      } else
 | 
						|
        DstRC = RC;
 | 
						|
      Operands.push_back(OpKind::getReg());
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  void PrintParameters(raw_ostream &OS) const {
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (Operands[i].isReg()) {
 | 
						|
        OS << "unsigned Op" << i << ", bool Op" << i << "IsKill";
 | 
						|
      } else if (Operands[i].isImm()) {
 | 
						|
        OS << "uint64_t imm" << i;
 | 
						|
      } else if (Operands[i].isFP()) {
 | 
						|
        OS << "const ConstantFP *f" << i;
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Unknown operand kind!");
 | 
						|
      }
 | 
						|
      if (i + 1 != e)
 | 
						|
        OS << ", ";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void PrintArguments(raw_ostream &OS,
 | 
						|
                      const std::vector<std::string> &PR) const {
 | 
						|
    assert(PR.size() == Operands.size());
 | 
						|
    bool PrintedArg = false;
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (PR[i] != "")
 | 
						|
        // Implicit physical register operand.
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (PrintedArg)
 | 
						|
        OS << ", ";
 | 
						|
      if (Operands[i].isReg()) {
 | 
						|
        OS << "Op" << i << ", Op" << i << "IsKill";
 | 
						|
        PrintedArg = true;
 | 
						|
      } else if (Operands[i].isImm()) {
 | 
						|
        OS << "imm" << i;
 | 
						|
        PrintedArg = true;
 | 
						|
      } else if (Operands[i].isFP()) {
 | 
						|
        OS << "f" << i;
 | 
						|
        PrintedArg = true;
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Unknown operand kind!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void PrintArguments(raw_ostream &OS) const {
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (Operands[i].isReg()) {
 | 
						|
        OS << "Op" << i << ", Op" << i << "IsKill";
 | 
						|
      } else if (Operands[i].isImm()) {
 | 
						|
        OS << "imm" << i;
 | 
						|
      } else if (Operands[i].isFP()) {
 | 
						|
        OS << "f" << i;
 | 
						|
      } else {
 | 
						|
        llvm_unreachable("Unknown operand kind!");
 | 
						|
      }
 | 
						|
      if (i + 1 != e)
 | 
						|
        OS << ", ";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  void PrintManglingSuffix(raw_ostream &OS, const std::vector<std::string> &PR,
 | 
						|
                           ImmPredicateSet &ImmPredicates,
 | 
						|
                           bool StripImmCodes = false) const {
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
 | 
						|
      if (PR[i] != "")
 | 
						|
        // Implicit physical register operand. e.g. Instruction::Mul expect to
 | 
						|
        // select to a binary op. On x86, mul may take a single operand with
 | 
						|
        // the other operand being implicit. We must emit something that looks
 | 
						|
        // like a binary instruction except for the very inner FastEmitInst_*
 | 
						|
        // call.
 | 
						|
        continue;
 | 
						|
      Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void PrintManglingSuffix(raw_ostream &OS, ImmPredicateSet &ImmPredicates,
 | 
						|
                           bool StripImmCodes = false) const {
 | 
						|
    for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | 
						|
      Operands[i].printManglingSuffix(OS, ImmPredicates, StripImmCodes);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
namespace {
 | 
						|
class FastISelMap {
 | 
						|
  typedef std::map<std::string, InstructionMemo> PredMap;
 | 
						|
  typedef std::map<MVT::SimpleValueType, PredMap> RetPredMap;
 | 
						|
  typedef std::map<MVT::SimpleValueType, RetPredMap> TypeRetPredMap;
 | 
						|
  typedef std::map<std::string, TypeRetPredMap> OpcodeTypeRetPredMap;
 | 
						|
  typedef std::map<OperandsSignature, OpcodeTypeRetPredMap>
 | 
						|
            OperandsOpcodeTypeRetPredMap;
 | 
						|
 | 
						|
  OperandsOpcodeTypeRetPredMap SimplePatterns;
 | 
						|
 | 
						|
  std::map<OperandsSignature, std::vector<OperandsSignature> >
 | 
						|
    SignaturesWithConstantForms;
 | 
						|
 | 
						|
  std::string InstNS;
 | 
						|
  ImmPredicateSet ImmediatePredicates;
 | 
						|
public:
 | 
						|
  explicit FastISelMap(std::string InstNS);
 | 
						|
 | 
						|
  void collectPatterns(CodeGenDAGPatterns &CGP);
 | 
						|
  void printImmediatePredicates(raw_ostream &OS);
 | 
						|
  void printFunctionDefinitions(raw_ostream &OS);
 | 
						|
};
 | 
						|
} // End anonymous namespace
 | 
						|
 | 
						|
static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
 | 
						|
  return CGP.getSDNodeInfo(Op).getEnumName();
 | 
						|
}
 | 
						|
 | 
						|
static std::string getLegalCName(std::string OpName) {
 | 
						|
  std::string::size_type pos = OpName.find("::");
 | 
						|
  if (pos != std::string::npos)
 | 
						|
    OpName.replace(pos, 2, "_");
 | 
						|
  return OpName;
 | 
						|
}
 | 
						|
 | 
						|
FastISelMap::FastISelMap(std::string instns)
 | 
						|
  : InstNS(instns) {
 | 
						|
}
 | 
						|
 | 
						|
static std::string PhyRegForNode(TreePatternNode *Op,
 | 
						|
                                 const CodeGenTarget &Target) {
 | 
						|
  std::string PhysReg;
 | 
						|
 | 
						|
  if (!Op->isLeaf())
 | 
						|
    return PhysReg;
 | 
						|
 | 
						|
  Record *OpLeafRec = cast<DefInit>(Op->getLeafValue())->getDef();
 | 
						|
  if (!OpLeafRec->isSubClassOf("Register"))
 | 
						|
    return PhysReg;
 | 
						|
 | 
						|
  PhysReg += cast<StringInit>(OpLeafRec->getValue("Namespace")->getValue())
 | 
						|
               ->getValue();
 | 
						|
  PhysReg += "::";
 | 
						|
  PhysReg += Target.getRegBank().getReg(OpLeafRec)->getName();
 | 
						|
  return PhysReg;
 | 
						|
}
 | 
						|
 | 
						|
void FastISelMap::collectPatterns(CodeGenDAGPatterns &CGP) {
 | 
						|
  const CodeGenTarget &Target = CGP.getTargetInfo();
 | 
						|
 | 
						|
  // Determine the target's namespace name.
 | 
						|
  InstNS = Target.getInstNamespace() + "::";
 | 
						|
  assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
 | 
						|
 | 
						|
  // Scan through all the patterns and record the simple ones.
 | 
						|
  for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
 | 
						|
       E = CGP.ptm_end(); I != E; ++I) {
 | 
						|
    const PatternToMatch &Pattern = *I;
 | 
						|
 | 
						|
    // For now, just look at Instructions, so that we don't have to worry
 | 
						|
    // about emitting multiple instructions for a pattern.
 | 
						|
    TreePatternNode *Dst = Pattern.getDstPattern();
 | 
						|
    if (Dst->isLeaf()) continue;
 | 
						|
    Record *Op = Dst->getOperator();
 | 
						|
    if (!Op->isSubClassOf("Instruction"))
 | 
						|
      continue;
 | 
						|
    CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
 | 
						|
    if (II.Operands.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // For now, ignore multi-instruction patterns.
 | 
						|
    bool MultiInsts = false;
 | 
						|
    for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNode *ChildOp = Dst->getChild(i);
 | 
						|
      if (ChildOp->isLeaf())
 | 
						|
        continue;
 | 
						|
      if (ChildOp->getOperator()->isSubClassOf("Instruction")) {
 | 
						|
        MultiInsts = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (MultiInsts)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // For now, ignore instructions where the first operand is not an
 | 
						|
    // output register.
 | 
						|
    const CodeGenRegisterClass *DstRC = 0;
 | 
						|
    std::string SubRegNo;
 | 
						|
    if (Op->getName() != "EXTRACT_SUBREG") {
 | 
						|
      Record *Op0Rec = II.Operands[0].Rec;
 | 
						|
      if (Op0Rec->isSubClassOf("RegisterOperand"))
 | 
						|
        Op0Rec = Op0Rec->getValueAsDef("RegClass");
 | 
						|
      if (!Op0Rec->isSubClassOf("RegisterClass"))
 | 
						|
        continue;
 | 
						|
      DstRC = &Target.getRegisterClass(Op0Rec);
 | 
						|
      if (!DstRC)
 | 
						|
        continue;
 | 
						|
    } else {
 | 
						|
      // If this isn't a leaf, then continue since the register classes are
 | 
						|
      // a bit too complicated for now.
 | 
						|
      if (!Dst->getChild(1)->isLeaf()) continue;
 | 
						|
 | 
						|
      DefInit *SR = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
 | 
						|
      if (SR)
 | 
						|
        SubRegNo = getQualifiedName(SR->getDef());
 | 
						|
      else
 | 
						|
        SubRegNo = Dst->getChild(1)->getLeafValue()->getAsString();
 | 
						|
    }
 | 
						|
 | 
						|
    // Inspect the pattern.
 | 
						|
    TreePatternNode *InstPatNode = Pattern.getSrcPattern();
 | 
						|
    if (!InstPatNode) continue;
 | 
						|
    if (InstPatNode->isLeaf()) continue;
 | 
						|
 | 
						|
    // Ignore multiple result nodes for now.
 | 
						|
    if (InstPatNode->getNumTypes() > 1) continue;
 | 
						|
 | 
						|
    Record *InstPatOp = InstPatNode->getOperator();
 | 
						|
    std::string OpcodeName = getOpcodeName(InstPatOp, CGP);
 | 
						|
    MVT::SimpleValueType RetVT = MVT::isVoid;
 | 
						|
    if (InstPatNode->getNumTypes()) RetVT = InstPatNode->getType(0);
 | 
						|
    MVT::SimpleValueType VT = RetVT;
 | 
						|
    if (InstPatNode->getNumChildren()) {
 | 
						|
      assert(InstPatNode->getChild(0)->getNumTypes() == 1);
 | 
						|
      VT = InstPatNode->getChild(0)->getType(0);
 | 
						|
    }
 | 
						|
 | 
						|
    // For now, filter out any instructions with predicates.
 | 
						|
    if (!InstPatNode->getPredicateFns().empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check all the operands.
 | 
						|
    OperandsSignature Operands;
 | 
						|
    if (!Operands.initialize(InstPatNode, Target, VT, ImmediatePredicates,
 | 
						|
                             DstRC))
 | 
						|
      continue;
 | 
						|
 | 
						|
    std::vector<std::string>* PhysRegInputs = new std::vector<std::string>();
 | 
						|
    if (InstPatNode->getOperator()->getName() == "imm" ||
 | 
						|
        InstPatNode->getOperator()->getName() == "fpimm")
 | 
						|
      PhysRegInputs->push_back("");
 | 
						|
    else {
 | 
						|
      // Compute the PhysRegs used by the given pattern, and check that
 | 
						|
      // the mapping from the src to dst patterns is simple.
 | 
						|
      bool FoundNonSimplePattern = false;
 | 
						|
      unsigned DstIndex = 0;
 | 
						|
      for (unsigned i = 0, e = InstPatNode->getNumChildren(); i != e; ++i) {
 | 
						|
        std::string PhysReg = PhyRegForNode(InstPatNode->getChild(i), Target);
 | 
						|
        if (PhysReg.empty()) {
 | 
						|
          if (DstIndex >= Dst->getNumChildren() ||
 | 
						|
              Dst->getChild(DstIndex)->getName() !=
 | 
						|
              InstPatNode->getChild(i)->getName()) {
 | 
						|
            FoundNonSimplePattern = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          ++DstIndex;
 | 
						|
        }
 | 
						|
 | 
						|
        PhysRegInputs->push_back(PhysReg);
 | 
						|
      }
 | 
						|
 | 
						|
      if (Op->getName() != "EXTRACT_SUBREG" && DstIndex < Dst->getNumChildren())
 | 
						|
        FoundNonSimplePattern = true;
 | 
						|
 | 
						|
      if (FoundNonSimplePattern)
 | 
						|
        continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Get the predicate that guards this pattern.
 | 
						|
    std::string PredicateCheck = Pattern.getPredicateCheck();
 | 
						|
 | 
						|
    // Ok, we found a pattern that we can handle. Remember it.
 | 
						|
    InstructionMemo Memo = {
 | 
						|
      Pattern.getDstPattern()->getOperator()->getName(),
 | 
						|
      DstRC,
 | 
						|
      SubRegNo,
 | 
						|
      PhysRegInputs
 | 
						|
    };
 | 
						|
 | 
						|
    if (SimplePatterns[Operands][OpcodeName][VT][RetVT].count(PredicateCheck))
 | 
						|
      PrintFatalError(Pattern.getSrcRecord()->getLoc(),
 | 
						|
                    "Duplicate record in FastISel table!");
 | 
						|
 | 
						|
    SimplePatterns[Operands][OpcodeName][VT][RetVT][PredicateCheck] = Memo;
 | 
						|
 | 
						|
    // If any of the operands were immediates with predicates on them, strip
 | 
						|
    // them down to a signature that doesn't have predicates so that we can
 | 
						|
    // associate them with the stripped predicate version.
 | 
						|
    if (Operands.hasAnyImmediateCodes()) {
 | 
						|
      SignaturesWithConstantForms[Operands.getWithoutImmCodes()]
 | 
						|
        .push_back(Operands);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void FastISelMap::printImmediatePredicates(raw_ostream &OS) {
 | 
						|
  if (ImmediatePredicates.begin() == ImmediatePredicates.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  OS << "\n// FastEmit Immediate Predicate functions.\n";
 | 
						|
  for (ImmPredicateSet::iterator I = ImmediatePredicates.begin(),
 | 
						|
       E = ImmediatePredicates.end(); I != E; ++I) {
 | 
						|
    OS << "static bool " << I->getFnName() << "(int64_t Imm) {\n";
 | 
						|
    OS << I->getImmediatePredicateCode() << "\n}\n";
 | 
						|
  }
 | 
						|
 | 
						|
  OS << "\n\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void FastISelMap::printFunctionDefinitions(raw_ostream &OS) {
 | 
						|
  // Now emit code for all the patterns that we collected.
 | 
						|
  for (OperandsOpcodeTypeRetPredMap::const_iterator OI = SimplePatterns.begin(),
 | 
						|
       OE = SimplePatterns.end(); OI != OE; ++OI) {
 | 
						|
    const OperandsSignature &Operands = OI->first;
 | 
						|
    const OpcodeTypeRetPredMap &OTM = OI->second;
 | 
						|
 | 
						|
    for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const std::string &Opcode = I->first;
 | 
						|
      const TypeRetPredMap &TM = I->second;
 | 
						|
 | 
						|
      OS << "// FastEmit functions for " << Opcode << ".\n";
 | 
						|
      OS << "\n";
 | 
						|
 | 
						|
      // Emit one function for each opcode,type pair.
 | 
						|
      for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
 | 
						|
           TI != TE; ++TI) {
 | 
						|
        MVT::SimpleValueType VT = TI->first;
 | 
						|
        const RetPredMap &RM = TI->second;
 | 
						|
        if (RM.size() != 1) {
 | 
						|
          for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
 | 
						|
               RI != RE; ++RI) {
 | 
						|
            MVT::SimpleValueType RetVT = RI->first;
 | 
						|
            const PredMap &PM = RI->second;
 | 
						|
            bool HasPred = false;
 | 
						|
 | 
						|
            OS << "unsigned FastEmit_"
 | 
						|
               << getLegalCName(Opcode)
 | 
						|
               << "_" << getLegalCName(getName(VT))
 | 
						|
               << "_" << getLegalCName(getName(RetVT)) << "_";
 | 
						|
            Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
            OS << "(";
 | 
						|
            Operands.PrintParameters(OS);
 | 
						|
            OS << ") {\n";
 | 
						|
 | 
						|
            // Emit code for each possible instruction. There may be
 | 
						|
            // multiple if there are subtarget concerns.
 | 
						|
            for (PredMap::const_iterator PI = PM.begin(), PE = PM.end();
 | 
						|
                 PI != PE; ++PI) {
 | 
						|
              std::string PredicateCheck = PI->first;
 | 
						|
              const InstructionMemo &Memo = PI->second;
 | 
						|
 | 
						|
              if (PredicateCheck.empty()) {
 | 
						|
                assert(!HasPred &&
 | 
						|
                       "Multiple instructions match, at least one has "
 | 
						|
                       "a predicate and at least one doesn't!");
 | 
						|
              } else {
 | 
						|
                OS << "  if (" + PredicateCheck + ") {\n";
 | 
						|
                OS << "  ";
 | 
						|
                HasPred = true;
 | 
						|
              }
 | 
						|
 | 
						|
              for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
 | 
						|
                if ((*Memo.PhysRegs)[i] != "")
 | 
						|
                  OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
 | 
						|
                     << "TII.get(TargetOpcode::COPY), "
 | 
						|
                     << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
 | 
						|
              }
 | 
						|
 | 
						|
              OS << "  return FastEmitInst_";
 | 
						|
              if (Memo.SubRegNo.empty()) {
 | 
						|
                Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
 | 
						|
                                             ImmediatePredicates, true);
 | 
						|
                OS << "(" << InstNS << Memo.Name << ", ";
 | 
						|
                OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
 | 
						|
                if (!Operands.empty())
 | 
						|
                  OS << ", ";
 | 
						|
                Operands.PrintArguments(OS, *Memo.PhysRegs);
 | 
						|
                OS << ");\n";
 | 
						|
              } else {
 | 
						|
                OS << "extractsubreg(" << getName(RetVT);
 | 
						|
                OS << ", Op0, Op0IsKill, " << Memo.SubRegNo << ");\n";
 | 
						|
              }
 | 
						|
 | 
						|
              if (HasPred)
 | 
						|
                OS << "  }\n";
 | 
						|
 | 
						|
            }
 | 
						|
            // Return 0 if none of the predicates were satisfied.
 | 
						|
            if (HasPred)
 | 
						|
              OS << "  return 0;\n";
 | 
						|
            OS << "}\n";
 | 
						|
            OS << "\n";
 | 
						|
          }
 | 
						|
 | 
						|
          // Emit one function for the type that demultiplexes on return type.
 | 
						|
          OS << "unsigned FastEmit_"
 | 
						|
             << getLegalCName(Opcode) << "_"
 | 
						|
             << getLegalCName(getName(VT)) << "_";
 | 
						|
          Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
          OS << "(MVT RetVT";
 | 
						|
          if (!Operands.empty())
 | 
						|
            OS << ", ";
 | 
						|
          Operands.PrintParameters(OS);
 | 
						|
          OS << ") {\nswitch (RetVT.SimpleTy) {\n";
 | 
						|
          for (RetPredMap::const_iterator RI = RM.begin(), RE = RM.end();
 | 
						|
               RI != RE; ++RI) {
 | 
						|
            MVT::SimpleValueType RetVT = RI->first;
 | 
						|
            OS << "  case " << getName(RetVT) << ": return FastEmit_"
 | 
						|
               << getLegalCName(Opcode) << "_" << getLegalCName(getName(VT))
 | 
						|
               << "_" << getLegalCName(getName(RetVT)) << "_";
 | 
						|
            Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
            OS << "(";
 | 
						|
            Operands.PrintArguments(OS);
 | 
						|
            OS << ");\n";
 | 
						|
          }
 | 
						|
          OS << "  default: return 0;\n}\n}\n\n";
 | 
						|
 | 
						|
        } else {
 | 
						|
          // Non-variadic return type.
 | 
						|
          OS << "unsigned FastEmit_"
 | 
						|
             << getLegalCName(Opcode) << "_"
 | 
						|
             << getLegalCName(getName(VT)) << "_";
 | 
						|
          Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
          OS << "(MVT RetVT";
 | 
						|
          if (!Operands.empty())
 | 
						|
            OS << ", ";
 | 
						|
          Operands.PrintParameters(OS);
 | 
						|
          OS << ") {\n";
 | 
						|
 | 
						|
          OS << "  if (RetVT.SimpleTy != " << getName(RM.begin()->first)
 | 
						|
             << ")\n    return 0;\n";
 | 
						|
 | 
						|
          const PredMap &PM = RM.begin()->second;
 | 
						|
          bool HasPred = false;
 | 
						|
 | 
						|
          // Emit code for each possible instruction. There may be
 | 
						|
          // multiple if there are subtarget concerns.
 | 
						|
          for (PredMap::const_iterator PI = PM.begin(), PE = PM.end(); PI != PE;
 | 
						|
               ++PI) {
 | 
						|
            std::string PredicateCheck = PI->first;
 | 
						|
            const InstructionMemo &Memo = PI->second;
 | 
						|
 | 
						|
            if (PredicateCheck.empty()) {
 | 
						|
              assert(!HasPred &&
 | 
						|
                     "Multiple instructions match, at least one has "
 | 
						|
                     "a predicate and at least one doesn't!");
 | 
						|
            } else {
 | 
						|
              OS << "  if (" + PredicateCheck + ") {\n";
 | 
						|
              OS << "  ";
 | 
						|
              HasPred = true;
 | 
						|
            }
 | 
						|
 | 
						|
            for (unsigned i = 0; i < Memo.PhysRegs->size(); ++i) {
 | 
						|
              if ((*Memo.PhysRegs)[i] != "")
 | 
						|
                OS << "  BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, "
 | 
						|
                   << "TII.get(TargetOpcode::COPY), "
 | 
						|
                   << (*Memo.PhysRegs)[i] << ").addReg(Op" << i << ");\n";
 | 
						|
            }
 | 
						|
 | 
						|
            OS << "  return FastEmitInst_";
 | 
						|
 | 
						|
            if (Memo.SubRegNo.empty()) {
 | 
						|
              Operands.PrintManglingSuffix(OS, *Memo.PhysRegs,
 | 
						|
                                           ImmediatePredicates, true);
 | 
						|
              OS << "(" << InstNS << Memo.Name << ", ";
 | 
						|
              OS << "&" << InstNS << Memo.RC->getName() << "RegClass";
 | 
						|
              if (!Operands.empty())
 | 
						|
                OS << ", ";
 | 
						|
              Operands.PrintArguments(OS, *Memo.PhysRegs);
 | 
						|
              OS << ");\n";
 | 
						|
            } else {
 | 
						|
              OS << "extractsubreg(RetVT, Op0, Op0IsKill, ";
 | 
						|
              OS << Memo.SubRegNo;
 | 
						|
              OS << ");\n";
 | 
						|
            }
 | 
						|
 | 
						|
             if (HasPred)
 | 
						|
               OS << "  }\n";
 | 
						|
          }
 | 
						|
 | 
						|
          // Return 0 if none of the predicates were satisfied.
 | 
						|
          if (HasPred)
 | 
						|
            OS << "  return 0;\n";
 | 
						|
          OS << "}\n";
 | 
						|
          OS << "\n";
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Emit one function for the opcode that demultiplexes based on the type.
 | 
						|
      OS << "unsigned FastEmit_"
 | 
						|
         << getLegalCName(Opcode) << "_";
 | 
						|
      Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
      OS << "(MVT VT, MVT RetVT";
 | 
						|
      if (!Operands.empty())
 | 
						|
        OS << ", ";
 | 
						|
      Operands.PrintParameters(OS);
 | 
						|
      OS << ") {\n";
 | 
						|
      OS << "  switch (VT.SimpleTy) {\n";
 | 
						|
      for (TypeRetPredMap::const_iterator TI = TM.begin(), TE = TM.end();
 | 
						|
           TI != TE; ++TI) {
 | 
						|
        MVT::SimpleValueType VT = TI->first;
 | 
						|
        std::string TypeName = getName(VT);
 | 
						|
        OS << "  case " << TypeName << ": return FastEmit_"
 | 
						|
           << getLegalCName(Opcode) << "_" << getLegalCName(TypeName) << "_";
 | 
						|
        Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
        OS << "(RetVT";
 | 
						|
        if (!Operands.empty())
 | 
						|
          OS << ", ";
 | 
						|
        Operands.PrintArguments(OS);
 | 
						|
        OS << ");\n";
 | 
						|
      }
 | 
						|
      OS << "  default: return 0;\n";
 | 
						|
      OS << "  }\n";
 | 
						|
      OS << "}\n";
 | 
						|
      OS << "\n";
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "// Top-level FastEmit function.\n";
 | 
						|
    OS << "\n";
 | 
						|
 | 
						|
    // Emit one function for the operand signature that demultiplexes based
 | 
						|
    // on opcode and type.
 | 
						|
    OS << "unsigned FastEmit_";
 | 
						|
    Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
    OS << "(MVT VT, MVT RetVT, unsigned Opcode";
 | 
						|
    if (!Operands.empty())
 | 
						|
      OS << ", ";
 | 
						|
    Operands.PrintParameters(OS);
 | 
						|
    OS << ") {\n";
 | 
						|
 | 
						|
    // If there are any forms of this signature available that operate on
 | 
						|
    // constrained forms of the immediate (e.g., 32-bit sext immediate in a
 | 
						|
    // 64-bit operand), check them first.
 | 
						|
 | 
						|
    std::map<OperandsSignature, std::vector<OperandsSignature> >::iterator MI
 | 
						|
      = SignaturesWithConstantForms.find(Operands);
 | 
						|
    if (MI != SignaturesWithConstantForms.end()) {
 | 
						|
      // Unique any duplicates out of the list.
 | 
						|
      std::sort(MI->second.begin(), MI->second.end());
 | 
						|
      MI->second.erase(std::unique(MI->second.begin(), MI->second.end()),
 | 
						|
                       MI->second.end());
 | 
						|
 | 
						|
      // Check each in order it was seen.  It would be nice to have a good
 | 
						|
      // relative ordering between them, but we're not going for optimality
 | 
						|
      // here.
 | 
						|
      for (unsigned i = 0, e = MI->second.size(); i != e; ++i) {
 | 
						|
        OS << "  if (";
 | 
						|
        MI->second[i].emitImmediatePredicate(OS, ImmediatePredicates);
 | 
						|
        OS << ")\n    if (unsigned Reg = FastEmit_";
 | 
						|
        MI->second[i].PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
        OS << "(VT, RetVT, Opcode";
 | 
						|
        if (!MI->second[i].empty())
 | 
						|
          OS << ", ";
 | 
						|
        MI->second[i].PrintArguments(OS);
 | 
						|
        OS << "))\n      return Reg;\n\n";
 | 
						|
      }
 | 
						|
 | 
						|
      // Done with this, remove it.
 | 
						|
      SignaturesWithConstantForms.erase(MI);
 | 
						|
    }
 | 
						|
 | 
						|
    OS << "  switch (Opcode) {\n";
 | 
						|
    for (OpcodeTypeRetPredMap::const_iterator I = OTM.begin(), E = OTM.end();
 | 
						|
         I != E; ++I) {
 | 
						|
      const std::string &Opcode = I->first;
 | 
						|
 | 
						|
      OS << "  case " << Opcode << ": return FastEmit_"
 | 
						|
         << getLegalCName(Opcode) << "_";
 | 
						|
      Operands.PrintManglingSuffix(OS, ImmediatePredicates);
 | 
						|
      OS << "(VT, RetVT";
 | 
						|
      if (!Operands.empty())
 | 
						|
        OS << ", ";
 | 
						|
      Operands.PrintArguments(OS);
 | 
						|
      OS << ");\n";
 | 
						|
    }
 | 
						|
    OS << "  default: return 0;\n";
 | 
						|
    OS << "  }\n";
 | 
						|
    OS << "}\n";
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: SignaturesWithConstantForms should be empty here.
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void EmitFastISel(RecordKeeper &RK, raw_ostream &OS) {
 | 
						|
  CodeGenDAGPatterns CGP(RK);
 | 
						|
  const CodeGenTarget &Target = CGP.getTargetInfo();
 | 
						|
  emitSourceFileHeader("\"Fast\" Instruction Selector for the " +
 | 
						|
                       Target.getName() + " target", OS);
 | 
						|
 | 
						|
  // Determine the target's namespace name.
 | 
						|
  std::string InstNS = Target.getInstNamespace() + "::";
 | 
						|
  assert(InstNS.size() > 2 && "Can't determine target-specific namespace!");
 | 
						|
 | 
						|
  FastISelMap F(InstNS);
 | 
						|
  F.collectPatterns(CGP);
 | 
						|
  F.printImmediatePredicates(OS);
 | 
						|
  F.printFunctionDefinitions(OS);
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 |