mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@160927 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			4672 lines
		
	
	
		
			195 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4672 lines
		
	
	
		
			195 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the X86 implementation of the TargetInstrInfo class.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86MachineFunctionInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetMachine.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/MC/MCInst.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include <limits>
 | |
| 
 | |
| #define GET_INSTRINFO_CTOR
 | |
| #include "X86GenInstrInfo.inc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFusing("disable-spill-fusing",
 | |
|          cl::desc("Disable fusing of spill code into instructions"));
 | |
| static cl::opt<bool>
 | |
| PrintFailedFusing("print-failed-fuse-candidates",
 | |
|                   cl::desc("Print instructions that the allocator wants to"
 | |
|                            " fuse, but the X86 backend currently can't"),
 | |
|                   cl::Hidden);
 | |
| static cl::opt<bool>
 | |
| ReMatPICStubLoad("remat-pic-stub-load",
 | |
|                  cl::desc("Re-materialize load from stub in PIC mode"),
 | |
|                  cl::init(false), cl::Hidden);
 | |
| 
 | |
| enum {
 | |
|   // Select which memory operand is being unfolded.
 | |
|   // (stored in bits 0 - 3)
 | |
|   TB_INDEX_0    = 0,
 | |
|   TB_INDEX_1    = 1,
 | |
|   TB_INDEX_2    = 2,
 | |
|   TB_INDEX_3    = 3,
 | |
|   TB_INDEX_MASK = 0xf,
 | |
| 
 | |
|   // Do not insert the reverse map (MemOp -> RegOp) into the table.
 | |
|   // This may be needed because there is a many -> one mapping.
 | |
|   TB_NO_REVERSE   = 1 << 4,
 | |
| 
 | |
|   // Do not insert the forward map (RegOp -> MemOp) into the table.
 | |
|   // This is needed for Native Client, which prohibits branch
 | |
|   // instructions from using a memory operand.
 | |
|   TB_NO_FORWARD   = 1 << 5,
 | |
| 
 | |
|   TB_FOLDED_LOAD  = 1 << 6,
 | |
|   TB_FOLDED_STORE = 1 << 7,
 | |
| 
 | |
|   // Minimum alignment required for load/store.
 | |
|   // Used for RegOp->MemOp conversion.
 | |
|   // (stored in bits 8 - 15)
 | |
|   TB_ALIGN_SHIFT = 8,
 | |
|   TB_ALIGN_NONE  =    0 << TB_ALIGN_SHIFT,
 | |
|   TB_ALIGN_16    =   16 << TB_ALIGN_SHIFT,
 | |
|   TB_ALIGN_32    =   32 << TB_ALIGN_SHIFT,
 | |
|   TB_ALIGN_MASK  = 0xff << TB_ALIGN_SHIFT
 | |
| };
 | |
| 
 | |
| struct X86OpTblEntry {
 | |
|   uint16_t RegOp;
 | |
|   uint16_t MemOp;
 | |
|   uint16_t Flags;
 | |
| };
 | |
| 
 | |
| X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
 | |
|   : X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
 | |
|                      ? X86::ADJCALLSTACKDOWN64
 | |
|                      : X86::ADJCALLSTACKDOWN32),
 | |
|                     (tm.getSubtarget<X86Subtarget>().is64Bit()
 | |
|                      ? X86::ADJCALLSTACKUP64
 | |
|                      : X86::ADJCALLSTACKUP32)),
 | |
|     TM(tm), RI(tm, *this) {
 | |
| 
 | |
|   static const X86OpTblEntry OpTbl2Addr[] = {
 | |
|     { X86::ADC32ri,     X86::ADC32mi,    0 },
 | |
|     { X86::ADC32ri8,    X86::ADC32mi8,   0 },
 | |
|     { X86::ADC32rr,     X86::ADC32mr,    0 },
 | |
|     { X86::ADC64ri32,   X86::ADC64mi32,  0 },
 | |
|     { X86::ADC64ri8,    X86::ADC64mi8,   0 },
 | |
|     { X86::ADC64rr,     X86::ADC64mr,    0 },
 | |
|     { X86::ADD16ri,     X86::ADD16mi,    0 },
 | |
|     { X86::ADD16ri8,    X86::ADD16mi8,   0 },
 | |
|     { X86::ADD16ri_DB,  X86::ADD16mi,    TB_NO_REVERSE },
 | |
|     { X86::ADD16ri8_DB, X86::ADD16mi8,   TB_NO_REVERSE },
 | |
|     { X86::ADD16rr,     X86::ADD16mr,    0 },
 | |
|     { X86::ADD16rr_DB,  X86::ADD16mr,    TB_NO_REVERSE },
 | |
|     { X86::ADD32ri,     X86::ADD32mi,    0 },
 | |
|     { X86::ADD32ri8,    X86::ADD32mi8,   0 },
 | |
|     { X86::ADD32ri_DB,  X86::ADD32mi,    TB_NO_REVERSE },
 | |
|     { X86::ADD32ri8_DB, X86::ADD32mi8,   TB_NO_REVERSE },
 | |
|     { X86::ADD32rr,     X86::ADD32mr,    0 },
 | |
|     { X86::ADD32rr_DB,  X86::ADD32mr,    TB_NO_REVERSE },
 | |
|     { X86::ADD64ri32,   X86::ADD64mi32,  0 },
 | |
|     { X86::ADD64ri8,    X86::ADD64mi8,   0 },
 | |
|     { X86::ADD64ri32_DB,X86::ADD64mi32,  TB_NO_REVERSE },
 | |
|     { X86::ADD64ri8_DB, X86::ADD64mi8,   TB_NO_REVERSE },
 | |
|     { X86::ADD64rr,     X86::ADD64mr,    0 },
 | |
|     { X86::ADD64rr_DB,  X86::ADD64mr,    TB_NO_REVERSE },
 | |
|     { X86::ADD8ri,      X86::ADD8mi,     0 },
 | |
|     { X86::ADD8rr,      X86::ADD8mr,     0 },
 | |
|     { X86::AND16ri,     X86::AND16mi,    0 },
 | |
|     { X86::AND16ri8,    X86::AND16mi8,   0 },
 | |
|     { X86::AND16rr,     X86::AND16mr,    0 },
 | |
|     { X86::AND32ri,     X86::AND32mi,    0 },
 | |
|     { X86::AND32ri8,    X86::AND32mi8,   0 },
 | |
|     { X86::AND32rr,     X86::AND32mr,    0 },
 | |
|     { X86::AND64ri32,   X86::AND64mi32,  0 },
 | |
|     { X86::AND64ri8,    X86::AND64mi8,   0 },
 | |
|     { X86::AND64rr,     X86::AND64mr,    0 },
 | |
|     { X86::AND8ri,      X86::AND8mi,     0 },
 | |
|     { X86::AND8rr,      X86::AND8mr,     0 },
 | |
|     { X86::DEC16r,      X86::DEC16m,     0 },
 | |
|     { X86::DEC32r,      X86::DEC32m,     0 },
 | |
|     { X86::DEC64_16r,   X86::DEC64_16m,  0 },
 | |
|     { X86::DEC64_32r,   X86::DEC64_32m,  0 },
 | |
|     { X86::DEC64r,      X86::DEC64m,     0 },
 | |
|     { X86::DEC8r,       X86::DEC8m,      0 },
 | |
|     { X86::INC16r,      X86::INC16m,     0 },
 | |
|     { X86::INC32r,      X86::INC32m,     0 },
 | |
|     { X86::INC64_16r,   X86::INC64_16m,  0 },
 | |
|     { X86::INC64_32r,   X86::INC64_32m,  0 },
 | |
|     { X86::INC64r,      X86::INC64m,     0 },
 | |
|     { X86::INC8r,       X86::INC8m,      0 },
 | |
|     { X86::NEG16r,      X86::NEG16m,     0 },
 | |
|     { X86::NEG32r,      X86::NEG32m,     0 },
 | |
|     { X86::NEG64r,      X86::NEG64m,     0 },
 | |
|     { X86::NEG8r,       X86::NEG8m,      0 },
 | |
|     { X86::NOT16r,      X86::NOT16m,     0 },
 | |
|     { X86::NOT32r,      X86::NOT32m,     0 },
 | |
|     { X86::NOT64r,      X86::NOT64m,     0 },
 | |
|     { X86::NOT8r,       X86::NOT8m,      0 },
 | |
|     { X86::OR16ri,      X86::OR16mi,     0 },
 | |
|     { X86::OR16ri8,     X86::OR16mi8,    0 },
 | |
|     { X86::OR16rr,      X86::OR16mr,     0 },
 | |
|     { X86::OR32ri,      X86::OR32mi,     0 },
 | |
|     { X86::OR32ri8,     X86::OR32mi8,    0 },
 | |
|     { X86::OR32rr,      X86::OR32mr,     0 },
 | |
|     { X86::OR64ri32,    X86::OR64mi32,   0 },
 | |
|     { X86::OR64ri8,     X86::OR64mi8,    0 },
 | |
|     { X86::OR64rr,      X86::OR64mr,     0 },
 | |
|     { X86::OR8ri,       X86::OR8mi,      0 },
 | |
|     { X86::OR8rr,       X86::OR8mr,      0 },
 | |
|     { X86::ROL16r1,     X86::ROL16m1,    0 },
 | |
|     { X86::ROL16rCL,    X86::ROL16mCL,   0 },
 | |
|     { X86::ROL16ri,     X86::ROL16mi,    0 },
 | |
|     { X86::ROL32r1,     X86::ROL32m1,    0 },
 | |
|     { X86::ROL32rCL,    X86::ROL32mCL,   0 },
 | |
|     { X86::ROL32ri,     X86::ROL32mi,    0 },
 | |
|     { X86::ROL64r1,     X86::ROL64m1,    0 },
 | |
|     { X86::ROL64rCL,    X86::ROL64mCL,   0 },
 | |
|     { X86::ROL64ri,     X86::ROL64mi,    0 },
 | |
|     { X86::ROL8r1,      X86::ROL8m1,     0 },
 | |
|     { X86::ROL8rCL,     X86::ROL8mCL,    0 },
 | |
|     { X86::ROL8ri,      X86::ROL8mi,     0 },
 | |
|     { X86::ROR16r1,     X86::ROR16m1,    0 },
 | |
|     { X86::ROR16rCL,    X86::ROR16mCL,   0 },
 | |
|     { X86::ROR16ri,     X86::ROR16mi,    0 },
 | |
|     { X86::ROR32r1,     X86::ROR32m1,    0 },
 | |
|     { X86::ROR32rCL,    X86::ROR32mCL,   0 },
 | |
|     { X86::ROR32ri,     X86::ROR32mi,    0 },
 | |
|     { X86::ROR64r1,     X86::ROR64m1,    0 },
 | |
|     { X86::ROR64rCL,    X86::ROR64mCL,   0 },
 | |
|     { X86::ROR64ri,     X86::ROR64mi,    0 },
 | |
|     { X86::ROR8r1,      X86::ROR8m1,     0 },
 | |
|     { X86::ROR8rCL,     X86::ROR8mCL,    0 },
 | |
|     { X86::ROR8ri,      X86::ROR8mi,     0 },
 | |
|     { X86::SAR16r1,     X86::SAR16m1,    0 },
 | |
|     { X86::SAR16rCL,    X86::SAR16mCL,   0 },
 | |
|     { X86::SAR16ri,     X86::SAR16mi,    0 },
 | |
|     { X86::SAR32r1,     X86::SAR32m1,    0 },
 | |
|     { X86::SAR32rCL,    X86::SAR32mCL,   0 },
 | |
|     { X86::SAR32ri,     X86::SAR32mi,    0 },
 | |
|     { X86::SAR64r1,     X86::SAR64m1,    0 },
 | |
|     { X86::SAR64rCL,    X86::SAR64mCL,   0 },
 | |
|     { X86::SAR64ri,     X86::SAR64mi,    0 },
 | |
|     { X86::SAR8r1,      X86::SAR8m1,     0 },
 | |
|     { X86::SAR8rCL,     X86::SAR8mCL,    0 },
 | |
|     { X86::SAR8ri,      X86::SAR8mi,     0 },
 | |
|     { X86::SBB32ri,     X86::SBB32mi,    0 },
 | |
|     { X86::SBB32ri8,    X86::SBB32mi8,   0 },
 | |
|     { X86::SBB32rr,     X86::SBB32mr,    0 },
 | |
|     { X86::SBB64ri32,   X86::SBB64mi32,  0 },
 | |
|     { X86::SBB64ri8,    X86::SBB64mi8,   0 },
 | |
|     { X86::SBB64rr,     X86::SBB64mr,    0 },
 | |
|     { X86::SHL16rCL,    X86::SHL16mCL,   0 },
 | |
|     { X86::SHL16ri,     X86::SHL16mi,    0 },
 | |
|     { X86::SHL32rCL,    X86::SHL32mCL,   0 },
 | |
|     { X86::SHL32ri,     X86::SHL32mi,    0 },
 | |
|     { X86::SHL64rCL,    X86::SHL64mCL,   0 },
 | |
|     { X86::SHL64ri,     X86::SHL64mi,    0 },
 | |
|     { X86::SHL8rCL,     X86::SHL8mCL,    0 },
 | |
|     { X86::SHL8ri,      X86::SHL8mi,     0 },
 | |
|     { X86::SHLD16rrCL,  X86::SHLD16mrCL, 0 },
 | |
|     { X86::SHLD16rri8,  X86::SHLD16mri8, 0 },
 | |
|     { X86::SHLD32rrCL,  X86::SHLD32mrCL, 0 },
 | |
|     { X86::SHLD32rri8,  X86::SHLD32mri8, 0 },
 | |
|     { X86::SHLD64rrCL,  X86::SHLD64mrCL, 0 },
 | |
|     { X86::SHLD64rri8,  X86::SHLD64mri8, 0 },
 | |
|     { X86::SHR16r1,     X86::SHR16m1,    0 },
 | |
|     { X86::SHR16rCL,    X86::SHR16mCL,   0 },
 | |
|     { X86::SHR16ri,     X86::SHR16mi,    0 },
 | |
|     { X86::SHR32r1,     X86::SHR32m1,    0 },
 | |
|     { X86::SHR32rCL,    X86::SHR32mCL,   0 },
 | |
|     { X86::SHR32ri,     X86::SHR32mi,    0 },
 | |
|     { X86::SHR64r1,     X86::SHR64m1,    0 },
 | |
|     { X86::SHR64rCL,    X86::SHR64mCL,   0 },
 | |
|     { X86::SHR64ri,     X86::SHR64mi,    0 },
 | |
|     { X86::SHR8r1,      X86::SHR8m1,     0 },
 | |
|     { X86::SHR8rCL,     X86::SHR8mCL,    0 },
 | |
|     { X86::SHR8ri,      X86::SHR8mi,     0 },
 | |
|     { X86::SHRD16rrCL,  X86::SHRD16mrCL, 0 },
 | |
|     { X86::SHRD16rri8,  X86::SHRD16mri8, 0 },
 | |
|     { X86::SHRD32rrCL,  X86::SHRD32mrCL, 0 },
 | |
|     { X86::SHRD32rri8,  X86::SHRD32mri8, 0 },
 | |
|     { X86::SHRD64rrCL,  X86::SHRD64mrCL, 0 },
 | |
|     { X86::SHRD64rri8,  X86::SHRD64mri8, 0 },
 | |
|     { X86::SUB16ri,     X86::SUB16mi,    0 },
 | |
|     { X86::SUB16ri8,    X86::SUB16mi8,   0 },
 | |
|     { X86::SUB16rr,     X86::SUB16mr,    0 },
 | |
|     { X86::SUB32ri,     X86::SUB32mi,    0 },
 | |
|     { X86::SUB32ri8,    X86::SUB32mi8,   0 },
 | |
|     { X86::SUB32rr,     X86::SUB32mr,    0 },
 | |
|     { X86::SUB64ri32,   X86::SUB64mi32,  0 },
 | |
|     { X86::SUB64ri8,    X86::SUB64mi8,   0 },
 | |
|     { X86::SUB64rr,     X86::SUB64mr,    0 },
 | |
|     { X86::SUB8ri,      X86::SUB8mi,     0 },
 | |
|     { X86::SUB8rr,      X86::SUB8mr,     0 },
 | |
|     { X86::XOR16ri,     X86::XOR16mi,    0 },
 | |
|     { X86::XOR16ri8,    X86::XOR16mi8,   0 },
 | |
|     { X86::XOR16rr,     X86::XOR16mr,    0 },
 | |
|     { X86::XOR32ri,     X86::XOR32mi,    0 },
 | |
|     { X86::XOR32ri8,    X86::XOR32mi8,   0 },
 | |
|     { X86::XOR32rr,     X86::XOR32mr,    0 },
 | |
|     { X86::XOR64ri32,   X86::XOR64mi32,  0 },
 | |
|     { X86::XOR64ri8,    X86::XOR64mi8,   0 },
 | |
|     { X86::XOR64rr,     X86::XOR64mr,    0 },
 | |
|     { X86::XOR8ri,      X86::XOR8mi,     0 },
 | |
|     { X86::XOR8rr,      X86::XOR8mr,     0 }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl2Addr[i].RegOp;
 | |
|     unsigned MemOp = OpTbl2Addr[i].MemOp;
 | |
|     unsigned Flags = OpTbl2Addr[i].Flags;
 | |
|     AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
 | |
|                   RegOp, MemOp,
 | |
|                   // Index 0, folded load and store, no alignment requirement.
 | |
|                   Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
 | |
|   }
 | |
| 
 | |
|   static const X86OpTblEntry OpTbl0[] = {
 | |
|     { X86::BT16ri8,     X86::BT16mi8,       TB_FOLDED_LOAD },
 | |
|     { X86::BT32ri8,     X86::BT32mi8,       TB_FOLDED_LOAD },
 | |
|     { X86::BT64ri8,     X86::BT64mi8,       TB_FOLDED_LOAD },
 | |
|     { X86::CALL32r,     X86::CALL32m,       TB_FOLDED_LOAD },
 | |
|     { X86::CALL64r,     X86::CALL64m,       TB_FOLDED_LOAD },
 | |
|     { X86::CMP16ri,     X86::CMP16mi,       TB_FOLDED_LOAD },
 | |
|     { X86::CMP16ri8,    X86::CMP16mi8,      TB_FOLDED_LOAD },
 | |
|     { X86::CMP16rr,     X86::CMP16mr,       TB_FOLDED_LOAD },
 | |
|     { X86::CMP32ri,     X86::CMP32mi,       TB_FOLDED_LOAD },
 | |
|     { X86::CMP32ri8,    X86::CMP32mi8,      TB_FOLDED_LOAD },
 | |
|     { X86::CMP32rr,     X86::CMP32mr,       TB_FOLDED_LOAD },
 | |
|     { X86::CMP64ri32,   X86::CMP64mi32,     TB_FOLDED_LOAD },
 | |
|     { X86::CMP64ri8,    X86::CMP64mi8,      TB_FOLDED_LOAD },
 | |
|     { X86::CMP64rr,     X86::CMP64mr,       TB_FOLDED_LOAD },
 | |
|     { X86::CMP8ri,      X86::CMP8mi,        TB_FOLDED_LOAD },
 | |
|     { X86::CMP8rr,      X86::CMP8mr,        TB_FOLDED_LOAD },
 | |
|     { X86::DIV16r,      X86::DIV16m,        TB_FOLDED_LOAD },
 | |
|     { X86::DIV32r,      X86::DIV32m,        TB_FOLDED_LOAD },
 | |
|     { X86::DIV64r,      X86::DIV64m,        TB_FOLDED_LOAD },
 | |
|     { X86::DIV8r,       X86::DIV8m,         TB_FOLDED_LOAD },
 | |
|     { X86::EXTRACTPSrr, X86::EXTRACTPSmr,   TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::FsMOVAPDrr,  X86::MOVSDmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
 | |
|     { X86::FsMOVAPSrr,  X86::MOVSSmr,       TB_FOLDED_STORE | TB_NO_REVERSE },
 | |
|     { X86::IDIV16r,     X86::IDIV16m,       TB_FOLDED_LOAD },
 | |
|     { X86::IDIV32r,     X86::IDIV32m,       TB_FOLDED_LOAD },
 | |
|     { X86::IDIV64r,     X86::IDIV64m,       TB_FOLDED_LOAD },
 | |
|     { X86::IDIV8r,      X86::IDIV8m,        TB_FOLDED_LOAD },
 | |
|     { X86::IMUL16r,     X86::IMUL16m,       TB_FOLDED_LOAD },
 | |
|     { X86::IMUL32r,     X86::IMUL32m,       TB_FOLDED_LOAD },
 | |
|     { X86::IMUL64r,     X86::IMUL64m,       TB_FOLDED_LOAD },
 | |
|     { X86::IMUL8r,      X86::IMUL8m,        TB_FOLDED_LOAD },
 | |
|     { X86::JMP32r,      X86::JMP32m,        TB_FOLDED_LOAD },
 | |
|     { X86::JMP64r,      X86::JMP64m,        TB_FOLDED_LOAD },
 | |
|     { X86::MOV16ri,     X86::MOV16mi,       TB_FOLDED_STORE },
 | |
|     { X86::MOV16rr,     X86::MOV16mr,       TB_FOLDED_STORE },
 | |
|     { X86::MOV32ri,     X86::MOV32mi,       TB_FOLDED_STORE },
 | |
|     { X86::MOV32rr,     X86::MOV32mr,       TB_FOLDED_STORE },
 | |
|     { X86::MOV64ri32,   X86::MOV64mi32,     TB_FOLDED_STORE },
 | |
|     { X86::MOV64rr,     X86::MOV64mr,       TB_FOLDED_STORE },
 | |
|     { X86::MOV8ri,      X86::MOV8mi,        TB_FOLDED_STORE },
 | |
|     { X86::MOV8rr,      X86::MOV8mr,        TB_FOLDED_STORE },
 | |
|     { X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
 | |
|     { X86::MOVAPDrr,    X86::MOVAPDmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::MOVAPSrr,    X86::MOVAPSmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::MOVDQArr,    X86::MOVDQAmr,      TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::MOVPDI2DIrr, X86::MOVPDI2DImr,   TB_FOLDED_STORE },
 | |
|     { X86::MOVPQIto64rr,X86::MOVPQI2QImr,   TB_FOLDED_STORE },
 | |
|     { X86::MOVSDto64rr, X86::MOVSDto64mr,   TB_FOLDED_STORE },
 | |
|     { X86::MOVSS2DIrr,  X86::MOVSS2DImr,    TB_FOLDED_STORE },
 | |
|     { X86::MOVUPDrr,    X86::MOVUPDmr,      TB_FOLDED_STORE },
 | |
|     { X86::MOVUPSrr,    X86::MOVUPSmr,      TB_FOLDED_STORE },
 | |
|     { X86::MUL16r,      X86::MUL16m,        TB_FOLDED_LOAD },
 | |
|     { X86::MUL32r,      X86::MUL32m,        TB_FOLDED_LOAD },
 | |
|     { X86::MUL64r,      X86::MUL64m,        TB_FOLDED_LOAD },
 | |
|     { X86::MUL8r,       X86::MUL8m,         TB_FOLDED_LOAD },
 | |
|     { X86::SETAEr,      X86::SETAEm,        TB_FOLDED_STORE },
 | |
|     { X86::SETAr,       X86::SETAm,         TB_FOLDED_STORE },
 | |
|     { X86::SETBEr,      X86::SETBEm,        TB_FOLDED_STORE },
 | |
|     { X86::SETBr,       X86::SETBm,         TB_FOLDED_STORE },
 | |
|     { X86::SETEr,       X86::SETEm,         TB_FOLDED_STORE },
 | |
|     { X86::SETGEr,      X86::SETGEm,        TB_FOLDED_STORE },
 | |
|     { X86::SETGr,       X86::SETGm,         TB_FOLDED_STORE },
 | |
|     { X86::SETLEr,      X86::SETLEm,        TB_FOLDED_STORE },
 | |
|     { X86::SETLr,       X86::SETLm,         TB_FOLDED_STORE },
 | |
|     { X86::SETNEr,      X86::SETNEm,        TB_FOLDED_STORE },
 | |
|     { X86::SETNOr,      X86::SETNOm,        TB_FOLDED_STORE },
 | |
|     { X86::SETNPr,      X86::SETNPm,        TB_FOLDED_STORE },
 | |
|     { X86::SETNSr,      X86::SETNSm,        TB_FOLDED_STORE },
 | |
|     { X86::SETOr,       X86::SETOm,         TB_FOLDED_STORE },
 | |
|     { X86::SETPr,       X86::SETPm,         TB_FOLDED_STORE },
 | |
|     { X86::SETSr,       X86::SETSm,         TB_FOLDED_STORE },
 | |
|     { X86::TAILJMPr,    X86::TAILJMPm,      TB_FOLDED_LOAD },
 | |
|     { X86::TAILJMPr64,  X86::TAILJMPm64,    TB_FOLDED_LOAD },
 | |
|     { X86::TEST16ri,    X86::TEST16mi,      TB_FOLDED_LOAD },
 | |
|     { X86::TEST32ri,    X86::TEST32mi,      TB_FOLDED_LOAD },
 | |
|     { X86::TEST64ri32,  X86::TEST64mi32,    TB_FOLDED_LOAD },
 | |
|     { X86::TEST8ri,     X86::TEST8mi,       TB_FOLDED_LOAD },
 | |
|     // AVX 128-bit versions of foldable instructions
 | |
|     { X86::VEXTRACTPSrr,X86::VEXTRACTPSmr,  TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::FsVMOVAPDrr, X86::VMOVSDmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
 | |
|     { X86::FsVMOVAPSrr, X86::VMOVSSmr,      TB_FOLDED_STORE | TB_NO_REVERSE },
 | |
|     { X86::VEXTRACTF128rr, X86::VEXTRACTF128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::VMOVAPDrr,   X86::VMOVAPDmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::VMOVAPSrr,   X86::VMOVAPSmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::VMOVDQArr,   X86::VMOVDQAmr,     TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr,  TB_FOLDED_STORE },
 | |
|     { X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
 | |
|     { X86::VMOVSDto64rr,X86::VMOVSDto64mr,  TB_FOLDED_STORE },
 | |
|     { X86::VMOVSS2DIrr, X86::VMOVSS2DImr,   TB_FOLDED_STORE },
 | |
|     { X86::VMOVUPDrr,   X86::VMOVUPDmr,     TB_FOLDED_STORE },
 | |
|     { X86::VMOVUPSrr,   X86::VMOVUPSmr,     TB_FOLDED_STORE },
 | |
|     // AVX 256-bit foldable instructions
 | |
|     { X86::VEXTRACTI128rr, X86::VEXTRACTI128mr, TB_FOLDED_STORE | TB_ALIGN_16 },
 | |
|     { X86::VMOVAPDYrr,  X86::VMOVAPDYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
 | |
|     { X86::VMOVAPSYrr,  X86::VMOVAPSYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
 | |
|     { X86::VMOVDQAYrr,  X86::VMOVDQAYmr,    TB_FOLDED_STORE | TB_ALIGN_32 },
 | |
|     { X86::VMOVUPDYrr,  X86::VMOVUPDYmr,    TB_FOLDED_STORE },
 | |
|     { X86::VMOVUPSYrr,  X86::VMOVUPSYmr,    TB_FOLDED_STORE }
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
 | |
|     unsigned RegOp      = OpTbl0[i].RegOp;
 | |
|     unsigned MemOp      = OpTbl0[i].MemOp;
 | |
|     unsigned Flags      = OpTbl0[i].Flags;
 | |
|     AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
 | |
|                   RegOp, MemOp, TB_INDEX_0 | Flags);
 | |
|   }
 | |
| 
 | |
|   static const X86OpTblEntry OpTbl1[] = {
 | |
|     { X86::CMP16rr,         X86::CMP16rm,             0 },
 | |
|     { X86::CMP32rr,         X86::CMP32rm,             0 },
 | |
|     { X86::CMP64rr,         X86::CMP64rm,             0 },
 | |
|     { X86::CMP8rr,          X86::CMP8rm,              0 },
 | |
|     { X86::CVTSD2SSrr,      X86::CVTSD2SSrm,          0 },
 | |
|     { X86::CVTSI2SD64rr,    X86::CVTSI2SD64rm,        0 },
 | |
|     { X86::CVTSI2SDrr,      X86::CVTSI2SDrm,          0 },
 | |
|     { X86::CVTSI2SS64rr,    X86::CVTSI2SS64rm,        0 },
 | |
|     { X86::CVTSI2SSrr,      X86::CVTSI2SSrm,          0 },
 | |
|     { X86::CVTSS2SDrr,      X86::CVTSS2SDrm,          0 },
 | |
|     { X86::CVTTSD2SI64rr,   X86::CVTTSD2SI64rm,       0 },
 | |
|     { X86::CVTTSD2SIrr,     X86::CVTTSD2SIrm,         0 },
 | |
|     { X86::CVTTSS2SI64rr,   X86::CVTTSS2SI64rm,       0 },
 | |
|     { X86::CVTTSS2SIrr,     X86::CVTTSS2SIrm,         0 },
 | |
|     { X86::FsMOVAPDrr,      X86::MOVSDrm,             TB_NO_REVERSE },
 | |
|     { X86::FsMOVAPSrr,      X86::MOVSSrm,             TB_NO_REVERSE },
 | |
|     { X86::IMUL16rri,       X86::IMUL16rmi,           0 },
 | |
|     { X86::IMUL16rri8,      X86::IMUL16rmi8,          0 },
 | |
|     { X86::IMUL32rri,       X86::IMUL32rmi,           0 },
 | |
|     { X86::IMUL32rri8,      X86::IMUL32rmi8,          0 },
 | |
|     { X86::IMUL64rri32,     X86::IMUL64rmi32,         0 },
 | |
|     { X86::IMUL64rri8,      X86::IMUL64rmi8,          0 },
 | |
|     { X86::Int_COMISDrr,    X86::Int_COMISDrm,        0 },
 | |
|     { X86::Int_COMISSrr,    X86::Int_COMISSrm,        0 },
 | |
|     { X86::CVTSD2SI64rr,    X86::CVTSD2SI64rm,        0 },
 | |
|     { X86::CVTSD2SIrr,      X86::CVTSD2SIrm,          0 },
 | |
|     { X86::CVTSS2SI64rr,    X86::CVTSS2SI64rm,        0 },
 | |
|     { X86::CVTSS2SIrr,      X86::CVTSS2SIrm,          0 },
 | |
|     { X86::Int_CVTSD2SSrr,  X86::Int_CVTSD2SSrm,      0 },
 | |
|     { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm,    0 },
 | |
|     { X86::Int_CVTSI2SDrr,  X86::Int_CVTSI2SDrm,      0 },
 | |
|     { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm,    0 },
 | |
|     { X86::Int_CVTSI2SSrr,  X86::Int_CVTSI2SSrm,      0 },
 | |
|     { X86::Int_CVTSS2SDrr,  X86::Int_CVTSS2SDrm,      0 },
 | |
|     { X86::CVTTPD2DQrr,     X86::CVTTPD2DQrm,         TB_ALIGN_16 },
 | |
|     { X86::CVTTPS2DQrr,     X86::CVTTPS2DQrm,         TB_ALIGN_16 },
 | |
|     { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm,  0 },
 | |
|     { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm,     0 },
 | |
|     { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm,  0 },
 | |
|     { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm,     0 },
 | |
|     { X86::Int_UCOMISDrr,   X86::Int_UCOMISDrm,       0 },
 | |
|     { X86::Int_UCOMISSrr,   X86::Int_UCOMISSrm,       0 },
 | |
|     { X86::MOV16rr,         X86::MOV16rm,             0 },
 | |
|     { X86::MOV32rr,         X86::MOV32rm,             0 },
 | |
|     { X86::MOV64rr,         X86::MOV64rm,             0 },
 | |
|     { X86::MOV64toPQIrr,    X86::MOVQI2PQIrm,         0 },
 | |
|     { X86::MOV64toSDrr,     X86::MOV64toSDrm,         0 },
 | |
|     { X86::MOV8rr,          X86::MOV8rm,              0 },
 | |
|     { X86::MOVAPDrr,        X86::MOVAPDrm,            TB_ALIGN_16 },
 | |
|     { X86::MOVAPSrr,        X86::MOVAPSrm,            TB_ALIGN_16 },
 | |
|     { X86::MOVDDUPrr,       X86::MOVDDUPrm,           0 },
 | |
|     { X86::MOVDI2PDIrr,     X86::MOVDI2PDIrm,         0 },
 | |
|     { X86::MOVDI2SSrr,      X86::MOVDI2SSrm,          0 },
 | |
|     { X86::MOVDQArr,        X86::MOVDQArm,            TB_ALIGN_16 },
 | |
|     { X86::MOVSHDUPrr,      X86::MOVSHDUPrm,          TB_ALIGN_16 },
 | |
|     { X86::MOVSLDUPrr,      X86::MOVSLDUPrm,          TB_ALIGN_16 },
 | |
|     { X86::MOVSX16rr8,      X86::MOVSX16rm8,          0 },
 | |
|     { X86::MOVSX32rr16,     X86::MOVSX32rm16,         0 },
 | |
|     { X86::MOVSX32rr8,      X86::MOVSX32rm8,          0 },
 | |
|     { X86::MOVSX64rr16,     X86::MOVSX64rm16,         0 },
 | |
|     { X86::MOVSX64rr32,     X86::MOVSX64rm32,         0 },
 | |
|     { X86::MOVSX64rr8,      X86::MOVSX64rm8,          0 },
 | |
|     { X86::MOVUPDrr,        X86::MOVUPDrm,            TB_ALIGN_16 },
 | |
|     { X86::MOVUPSrr,        X86::MOVUPSrm,            0 },
 | |
|     { X86::MOVZDI2PDIrr,    X86::MOVZDI2PDIrm,        0 },
 | |
|     { X86::MOVZQI2PQIrr,    X86::MOVZQI2PQIrm,        0 },
 | |
|     { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm,     TB_ALIGN_16 },
 | |
|     { X86::MOVZX16rr8,      X86::MOVZX16rm8,          0 },
 | |
|     { X86::MOVZX32rr16,     X86::MOVZX32rm16,         0 },
 | |
|     { X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8,   0 },
 | |
|     { X86::MOVZX32rr8,      X86::MOVZX32rm8,          0 },
 | |
|     { X86::MOVZX64rr16,     X86::MOVZX64rm16,         0 },
 | |
|     { X86::MOVZX64rr32,     X86::MOVZX64rm32,         0 },
 | |
|     { X86::MOVZX64rr8,      X86::MOVZX64rm8,          0 },
 | |
|     { X86::PABSBrr128,      X86::PABSBrm128,          TB_ALIGN_16 },
 | |
|     { X86::PABSDrr128,      X86::PABSDrm128,          TB_ALIGN_16 },
 | |
|     { X86::PABSWrr128,      X86::PABSWrm128,          TB_ALIGN_16 },
 | |
|     { X86::PSHUFDri,        X86::PSHUFDmi,            TB_ALIGN_16 },
 | |
|     { X86::PSHUFHWri,       X86::PSHUFHWmi,           TB_ALIGN_16 },
 | |
|     { X86::PSHUFLWri,       X86::PSHUFLWmi,           TB_ALIGN_16 },
 | |
|     { X86::RCPPSr,          X86::RCPPSm,              TB_ALIGN_16 },
 | |
|     { X86::RCPPSr_Int,      X86::RCPPSm_Int,          TB_ALIGN_16 },
 | |
|     { X86::RSQRTPSr,        X86::RSQRTPSm,            TB_ALIGN_16 },
 | |
|     { X86::RSQRTPSr_Int,    X86::RSQRTPSm_Int,        TB_ALIGN_16 },
 | |
|     { X86::RSQRTSSr,        X86::RSQRTSSm,            0 },
 | |
|     { X86::RSQRTSSr_Int,    X86::RSQRTSSm_Int,        0 },
 | |
|     { X86::SQRTPDr,         X86::SQRTPDm,             TB_ALIGN_16 },
 | |
|     { X86::SQRTPDr_Int,     X86::SQRTPDm_Int,         TB_ALIGN_16 },
 | |
|     { X86::SQRTPSr,         X86::SQRTPSm,             TB_ALIGN_16 },
 | |
|     { X86::SQRTPSr_Int,     X86::SQRTPSm_Int,         TB_ALIGN_16 },
 | |
|     { X86::SQRTSDr,         X86::SQRTSDm,             0 },
 | |
|     { X86::SQRTSDr_Int,     X86::SQRTSDm_Int,         0 },
 | |
|     { X86::SQRTSSr,         X86::SQRTSSm,             0 },
 | |
|     { X86::SQRTSSr_Int,     X86::SQRTSSm_Int,         0 },
 | |
|     { X86::TEST16rr,        X86::TEST16rm,            0 },
 | |
|     { X86::TEST32rr,        X86::TEST32rm,            0 },
 | |
|     { X86::TEST64rr,        X86::TEST64rm,            0 },
 | |
|     { X86::TEST8rr,         X86::TEST8rm,             0 },
 | |
|     // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
 | |
|     { X86::UCOMISDrr,       X86::UCOMISDrm,           0 },
 | |
|     { X86::UCOMISSrr,       X86::UCOMISSrm,           0 },
 | |
|     // AVX 128-bit versions of foldable instructions
 | |
|     { X86::Int_VCOMISDrr,   X86::Int_VCOMISDrm,       0 },
 | |
|     { X86::Int_VCOMISSrr,   X86::Int_VCOMISSrm,       0 },
 | |
|     { X86::Int_VUCOMISDrr,  X86::Int_VUCOMISDrm,      0 },
 | |
|     { X86::Int_VUCOMISSrr,  X86::Int_VUCOMISSrm,      0 },
 | |
|     { X86::VCVTTSD2SI64rr,  X86::VCVTTSD2SI64rm,      0 },
 | |
|     { X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm,0 },
 | |
|     { X86::VCVTTSD2SIrr,    X86::VCVTTSD2SIrm,        0 },
 | |
|     { X86::Int_VCVTTSD2SIrr,X86::Int_VCVTTSD2SIrm,    0 },
 | |
|     { X86::VCVTTSS2SI64rr,  X86::VCVTTSS2SI64rm,      0 },
 | |
|     { X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm,0 },
 | |
|     { X86::VCVTTSS2SIrr,    X86::VCVTTSS2SIrm,        0 },
 | |
|     { X86::Int_VCVTTSS2SIrr,X86::Int_VCVTTSS2SIrm,    0 },
 | |
|     { X86::VCVTSD2SI64rr,   X86::VCVTSD2SI64rm,       0 },
 | |
|     { X86::VCVTSD2SIrr,     X86::VCVTSD2SIrm,         0 },
 | |
|     { X86::VCVTSS2SI64rr,   X86::VCVTSS2SI64rm,       0 },
 | |
|     { X86::VCVTSS2SIrr,     X86::VCVTSS2SIrm,         0 },
 | |
|     { X86::FsVMOVAPDrr,     X86::VMOVSDrm,            TB_NO_REVERSE },
 | |
|     { X86::FsVMOVAPSrr,     X86::VMOVSSrm,            TB_NO_REVERSE },
 | |
|     { X86::VMOV64toPQIrr,   X86::VMOVQI2PQIrm,        0 },
 | |
|     { X86::VMOV64toSDrr,    X86::VMOV64toSDrm,        0 },
 | |
|     { X86::VMOVAPDrr,       X86::VMOVAPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VMOVAPSrr,       X86::VMOVAPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VMOVDDUPrr,      X86::VMOVDDUPrm,          0 },
 | |
|     { X86::VMOVDI2PDIrr,    X86::VMOVDI2PDIrm,        0 },
 | |
|     { X86::VMOVDI2SSrr,     X86::VMOVDI2SSrm,         0 },
 | |
|     { X86::VMOVDQArr,       X86::VMOVDQArm,           TB_ALIGN_16 },
 | |
|     { X86::VMOVSLDUPrr,     X86::VMOVSLDUPrm,         TB_ALIGN_16 },
 | |
|     { X86::VMOVSHDUPrr,     X86::VMOVSHDUPrm,         TB_ALIGN_16 },
 | |
|     { X86::VMOVUPDrr,       X86::VMOVUPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VMOVUPSrr,       X86::VMOVUPSrm,           0 },
 | |
|     { X86::VMOVZDI2PDIrr,   X86::VMOVZDI2PDIrm,       0 },
 | |
|     { X86::VMOVZQI2PQIrr,   X86::VMOVZQI2PQIrm,       0 },
 | |
|     { X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm,    TB_ALIGN_16 },
 | |
|     { X86::VPABSBrr128,     X86::VPABSBrm128,         TB_ALIGN_16 },
 | |
|     { X86::VPABSDrr128,     X86::VPABSDrm128,         TB_ALIGN_16 },
 | |
|     { X86::VPABSWrr128,     X86::VPABSWrm128,         TB_ALIGN_16 },
 | |
|     { X86::VPERMILPDri,     X86::VPERMILPDmi,         TB_ALIGN_16 },
 | |
|     { X86::VPERMILPSri,     X86::VPERMILPSmi,         TB_ALIGN_16 },
 | |
|     { X86::VPSHUFDri,       X86::VPSHUFDmi,           TB_ALIGN_16 },
 | |
|     { X86::VPSHUFHWri,      X86::VPSHUFHWmi,          TB_ALIGN_16 },
 | |
|     { X86::VPSHUFLWri,      X86::VPSHUFLWmi,          TB_ALIGN_16 },
 | |
|     { X86::VRCPPSr,         X86::VRCPPSm,             TB_ALIGN_16 },
 | |
|     { X86::VRCPPSr_Int,     X86::VRCPPSm_Int,         TB_ALIGN_16 },
 | |
|     { X86::VRSQRTPSr,       X86::VRSQRTPSm,           TB_ALIGN_16 },
 | |
|     { X86::VRSQRTPSr_Int,   X86::VRSQRTPSm_Int,       TB_ALIGN_16 },
 | |
|     { X86::VSQRTPDr,        X86::VSQRTPDm,            TB_ALIGN_16 },
 | |
|     { X86::VSQRTPDr_Int,    X86::VSQRTPDm_Int,        TB_ALIGN_16 },
 | |
|     { X86::VSQRTPSr,        X86::VSQRTPSm,            TB_ALIGN_16 },
 | |
|     { X86::VSQRTPSr_Int,    X86::VSQRTPSm_Int,        TB_ALIGN_16 },
 | |
|     { X86::VUCOMISDrr,      X86::VUCOMISDrm,          0 },
 | |
|     { X86::VUCOMISSrr,      X86::VUCOMISSrm,          0 },
 | |
|     { X86::VBROADCASTSSrr,  X86::VBROADCASTSSrm,      TB_NO_REVERSE },
 | |
| 
 | |
|     // AVX 256-bit foldable instructions
 | |
|     { X86::VMOVAPDYrr,      X86::VMOVAPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMOVAPSYrr,      X86::VMOVAPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMOVDQAYrr,      X86::VMOVDQAYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMOVUPDYrr,      X86::VMOVUPDYrm,          0 },
 | |
|     { X86::VMOVUPSYrr,      X86::VMOVUPSYrm,          0 },
 | |
|     { X86::VPERMILPDYri,    X86::VPERMILPDYmi,        TB_ALIGN_32 },
 | |
|     { X86::VPERMILPSYri,    X86::VPERMILPSYmi,        TB_ALIGN_32 },
 | |
| 
 | |
|     // AVX2 foldable instructions
 | |
|     { X86::VPABSBrr256,     X86::VPABSBrm256,         TB_ALIGN_32 },
 | |
|     { X86::VPABSDrr256,     X86::VPABSDrm256,         TB_ALIGN_32 },
 | |
|     { X86::VPABSWrr256,     X86::VPABSWrm256,         TB_ALIGN_32 },
 | |
|     { X86::VPSHUFDYri,      X86::VPSHUFDYmi,          TB_ALIGN_32 },
 | |
|     { X86::VPSHUFHWYri,     X86::VPSHUFHWYmi,         TB_ALIGN_32 },
 | |
|     { X86::VPSHUFLWYri,     X86::VPSHUFLWYmi,         TB_ALIGN_32 },
 | |
|     { X86::VRCPPSYr,        X86::VRCPPSYm,            TB_ALIGN_32 },
 | |
|     { X86::VRCPPSYr_Int,    X86::VRCPPSYm_Int,        TB_ALIGN_32 },
 | |
|     { X86::VRSQRTPSYr,      X86::VRSQRTPSYm,          TB_ALIGN_32 },
 | |
|     { X86::VRSQRTPSYr_Int,  X86::VRSQRTPSYm_Int,      TB_ALIGN_32 },
 | |
|     { X86::VSQRTPDYr,       X86::VSQRTPDYm,           TB_ALIGN_32 },
 | |
|     { X86::VSQRTPDYr_Int,   X86::VSQRTPDYm_Int,       TB_ALIGN_32 },
 | |
|     { X86::VSQRTPSYr,       X86::VSQRTPSYm,           TB_ALIGN_32 },
 | |
|     { X86::VSQRTPSYr_Int,   X86::VSQRTPSYm_Int,       TB_ALIGN_32 },
 | |
|     { X86::VBROADCASTSSYrr, X86::VBROADCASTSSYrm,     TB_NO_REVERSE },
 | |
|     { X86::VBROADCASTSDYrr, X86::VBROADCASTSDYrm,     TB_NO_REVERSE },
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl1[i].RegOp;
 | |
|     unsigned MemOp = OpTbl1[i].MemOp;
 | |
|     unsigned Flags = OpTbl1[i].Flags;
 | |
|     AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
 | |
|                   RegOp, MemOp,
 | |
|                   // Index 1, folded load
 | |
|                   Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
 | |
|   }
 | |
| 
 | |
|   static const X86OpTblEntry OpTbl2[] = {
 | |
|     { X86::ADC32rr,         X86::ADC32rm,       0 },
 | |
|     { X86::ADC64rr,         X86::ADC64rm,       0 },
 | |
|     { X86::ADD16rr,         X86::ADD16rm,       0 },
 | |
|     { X86::ADD16rr_DB,      X86::ADD16rm,       TB_NO_REVERSE },
 | |
|     { X86::ADD32rr,         X86::ADD32rm,       0 },
 | |
|     { X86::ADD32rr_DB,      X86::ADD32rm,       TB_NO_REVERSE },
 | |
|     { X86::ADD64rr,         X86::ADD64rm,       0 },
 | |
|     { X86::ADD64rr_DB,      X86::ADD64rm,       TB_NO_REVERSE },
 | |
|     { X86::ADD8rr,          X86::ADD8rm,        0 },
 | |
|     { X86::ADDPDrr,         X86::ADDPDrm,       TB_ALIGN_16 },
 | |
|     { X86::ADDPSrr,         X86::ADDPSrm,       TB_ALIGN_16 },
 | |
|     { X86::ADDSDrr,         X86::ADDSDrm,       0 },
 | |
|     { X86::ADDSSrr,         X86::ADDSSrm,       0 },
 | |
|     { X86::ADDSUBPDrr,      X86::ADDSUBPDrm,    TB_ALIGN_16 },
 | |
|     { X86::ADDSUBPSrr,      X86::ADDSUBPSrm,    TB_ALIGN_16 },
 | |
|     { X86::AND16rr,         X86::AND16rm,       0 },
 | |
|     { X86::AND32rr,         X86::AND32rm,       0 },
 | |
|     { X86::AND64rr,         X86::AND64rm,       0 },
 | |
|     { X86::AND8rr,          X86::AND8rm,        0 },
 | |
|     { X86::ANDNPDrr,        X86::ANDNPDrm,      TB_ALIGN_16 },
 | |
|     { X86::ANDNPSrr,        X86::ANDNPSrm,      TB_ALIGN_16 },
 | |
|     { X86::ANDPDrr,         X86::ANDPDrm,       TB_ALIGN_16 },
 | |
|     { X86::ANDPSrr,         X86::ANDPSrm,       TB_ALIGN_16 },
 | |
|     { X86::BLENDPDrri,      X86::BLENDPDrmi,    TB_ALIGN_16 },
 | |
|     { X86::BLENDPSrri,      X86::BLENDPSrmi,    TB_ALIGN_16 },
 | |
|     { X86::BLENDVPDrr0,     X86::BLENDVPDrm0,   TB_ALIGN_16 },
 | |
|     { X86::BLENDVPSrr0,     X86::BLENDVPSrm0,   TB_ALIGN_16 },
 | |
|     { X86::CMOVA16rr,       X86::CMOVA16rm,     0 },
 | |
|     { X86::CMOVA32rr,       X86::CMOVA32rm,     0 },
 | |
|     { X86::CMOVA64rr,       X86::CMOVA64rm,     0 },
 | |
|     { X86::CMOVAE16rr,      X86::CMOVAE16rm,    0 },
 | |
|     { X86::CMOVAE32rr,      X86::CMOVAE32rm,    0 },
 | |
|     { X86::CMOVAE64rr,      X86::CMOVAE64rm,    0 },
 | |
|     { X86::CMOVB16rr,       X86::CMOVB16rm,     0 },
 | |
|     { X86::CMOVB32rr,       X86::CMOVB32rm,     0 },
 | |
|     { X86::CMOVB64rr,       X86::CMOVB64rm,     0 },
 | |
|     { X86::CMOVBE16rr,      X86::CMOVBE16rm,    0 },
 | |
|     { X86::CMOVBE32rr,      X86::CMOVBE32rm,    0 },
 | |
|     { X86::CMOVBE64rr,      X86::CMOVBE64rm,    0 },
 | |
|     { X86::CMOVE16rr,       X86::CMOVE16rm,     0 },
 | |
|     { X86::CMOVE32rr,       X86::CMOVE32rm,     0 },
 | |
|     { X86::CMOVE64rr,       X86::CMOVE64rm,     0 },
 | |
|     { X86::CMOVG16rr,       X86::CMOVG16rm,     0 },
 | |
|     { X86::CMOVG32rr,       X86::CMOVG32rm,     0 },
 | |
|     { X86::CMOVG64rr,       X86::CMOVG64rm,     0 },
 | |
|     { X86::CMOVGE16rr,      X86::CMOVGE16rm,    0 },
 | |
|     { X86::CMOVGE32rr,      X86::CMOVGE32rm,    0 },
 | |
|     { X86::CMOVGE64rr,      X86::CMOVGE64rm,    0 },
 | |
|     { X86::CMOVL16rr,       X86::CMOVL16rm,     0 },
 | |
|     { X86::CMOVL32rr,       X86::CMOVL32rm,     0 },
 | |
|     { X86::CMOVL64rr,       X86::CMOVL64rm,     0 },
 | |
|     { X86::CMOVLE16rr,      X86::CMOVLE16rm,    0 },
 | |
|     { X86::CMOVLE32rr,      X86::CMOVLE32rm,    0 },
 | |
|     { X86::CMOVLE64rr,      X86::CMOVLE64rm,    0 },
 | |
|     { X86::CMOVNE16rr,      X86::CMOVNE16rm,    0 },
 | |
|     { X86::CMOVNE32rr,      X86::CMOVNE32rm,    0 },
 | |
|     { X86::CMOVNE64rr,      X86::CMOVNE64rm,    0 },
 | |
|     { X86::CMOVNO16rr,      X86::CMOVNO16rm,    0 },
 | |
|     { X86::CMOVNO32rr,      X86::CMOVNO32rm,    0 },
 | |
|     { X86::CMOVNO64rr,      X86::CMOVNO64rm,    0 },
 | |
|     { X86::CMOVNP16rr,      X86::CMOVNP16rm,    0 },
 | |
|     { X86::CMOVNP32rr,      X86::CMOVNP32rm,    0 },
 | |
|     { X86::CMOVNP64rr,      X86::CMOVNP64rm,    0 },
 | |
|     { X86::CMOVNS16rr,      X86::CMOVNS16rm,    0 },
 | |
|     { X86::CMOVNS32rr,      X86::CMOVNS32rm,    0 },
 | |
|     { X86::CMOVNS64rr,      X86::CMOVNS64rm,    0 },
 | |
|     { X86::CMOVO16rr,       X86::CMOVO16rm,     0 },
 | |
|     { X86::CMOVO32rr,       X86::CMOVO32rm,     0 },
 | |
|     { X86::CMOVO64rr,       X86::CMOVO64rm,     0 },
 | |
|     { X86::CMOVP16rr,       X86::CMOVP16rm,     0 },
 | |
|     { X86::CMOVP32rr,       X86::CMOVP32rm,     0 },
 | |
|     { X86::CMOVP64rr,       X86::CMOVP64rm,     0 },
 | |
|     { X86::CMOVS16rr,       X86::CMOVS16rm,     0 },
 | |
|     { X86::CMOVS32rr,       X86::CMOVS32rm,     0 },
 | |
|     { X86::CMOVS64rr,       X86::CMOVS64rm,     0 },
 | |
|     { X86::CMPPDrri,        X86::CMPPDrmi,      TB_ALIGN_16 },
 | |
|     { X86::CMPPSrri,        X86::CMPPSrmi,      TB_ALIGN_16 },
 | |
|     { X86::CMPSDrr,         X86::CMPSDrm,       0 },
 | |
|     { X86::CMPSSrr,         X86::CMPSSrm,       0 },
 | |
|     { X86::DIVPDrr,         X86::DIVPDrm,       TB_ALIGN_16 },
 | |
|     { X86::DIVPSrr,         X86::DIVPSrm,       TB_ALIGN_16 },
 | |
|     { X86::DIVSDrr,         X86::DIVSDrm,       0 },
 | |
|     { X86::DIVSSrr,         X86::DIVSSrm,       0 },
 | |
|     { X86::FsANDNPDrr,      X86::FsANDNPDrm,    TB_ALIGN_16 },
 | |
|     { X86::FsANDNPSrr,      X86::FsANDNPSrm,    TB_ALIGN_16 },
 | |
|     { X86::FsANDPDrr,       X86::FsANDPDrm,     TB_ALIGN_16 },
 | |
|     { X86::FsANDPSrr,       X86::FsANDPSrm,     TB_ALIGN_16 },
 | |
|     { X86::FsORPDrr,        X86::FsORPDrm,      TB_ALIGN_16 },
 | |
|     { X86::FsORPSrr,        X86::FsORPSrm,      TB_ALIGN_16 },
 | |
|     { X86::FsXORPDrr,       X86::FsXORPDrm,     TB_ALIGN_16 },
 | |
|     { X86::FsXORPSrr,       X86::FsXORPSrm,     TB_ALIGN_16 },
 | |
|     { X86::HADDPDrr,        X86::HADDPDrm,      TB_ALIGN_16 },
 | |
|     { X86::HADDPSrr,        X86::HADDPSrm,      TB_ALIGN_16 },
 | |
|     { X86::HSUBPDrr,        X86::HSUBPDrm,      TB_ALIGN_16 },
 | |
|     { X86::HSUBPSrr,        X86::HSUBPSrm,      TB_ALIGN_16 },
 | |
|     { X86::IMUL16rr,        X86::IMUL16rm,      0 },
 | |
|     { X86::IMUL32rr,        X86::IMUL32rm,      0 },
 | |
|     { X86::IMUL64rr,        X86::IMUL64rm,      0 },
 | |
|     { X86::Int_CMPSDrr,     X86::Int_CMPSDrm,   0 },
 | |
|     { X86::Int_CMPSSrr,     X86::Int_CMPSSrm,   0 },
 | |
|     { X86::MAXPDrr,         X86::MAXPDrm,       TB_ALIGN_16 },
 | |
|     { X86::MAXPDrr_Int,     X86::MAXPDrm_Int,   TB_ALIGN_16 },
 | |
|     { X86::MAXPSrr,         X86::MAXPSrm,       TB_ALIGN_16 },
 | |
|     { X86::MAXPSrr_Int,     X86::MAXPSrm_Int,   TB_ALIGN_16 },
 | |
|     { X86::MAXSDrr,         X86::MAXSDrm,       0 },
 | |
|     { X86::MAXSDrr_Int,     X86::MAXSDrm_Int,   0 },
 | |
|     { X86::MAXSSrr,         X86::MAXSSrm,       0 },
 | |
|     { X86::MAXSSrr_Int,     X86::MAXSSrm_Int,   0 },
 | |
|     { X86::MINPDrr,         X86::MINPDrm,       TB_ALIGN_16 },
 | |
|     { X86::MINPDrr_Int,     X86::MINPDrm_Int,   TB_ALIGN_16 },
 | |
|     { X86::MINPSrr,         X86::MINPSrm,       TB_ALIGN_16 },
 | |
|     { X86::MINPSrr_Int,     X86::MINPSrm_Int,   TB_ALIGN_16 },
 | |
|     { X86::MINSDrr,         X86::MINSDrm,       0 },
 | |
|     { X86::MINSDrr_Int,     X86::MINSDrm_Int,   0 },
 | |
|     { X86::MINSSrr,         X86::MINSSrm,       0 },
 | |
|     { X86::MINSSrr_Int,     X86::MINSSrm_Int,   0 },
 | |
|     { X86::MPSADBWrri,      X86::MPSADBWrmi,    TB_ALIGN_16 },
 | |
|     { X86::MULPDrr,         X86::MULPDrm,       TB_ALIGN_16 },
 | |
|     { X86::MULPSrr,         X86::MULPSrm,       TB_ALIGN_16 },
 | |
|     { X86::MULSDrr,         X86::MULSDrm,       0 },
 | |
|     { X86::MULSSrr,         X86::MULSSrm,       0 },
 | |
|     { X86::OR16rr,          X86::OR16rm,        0 },
 | |
|     { X86::OR32rr,          X86::OR32rm,        0 },
 | |
|     { X86::OR64rr,          X86::OR64rm,        0 },
 | |
|     { X86::OR8rr,           X86::OR8rm,         0 },
 | |
|     { X86::ORPDrr,          X86::ORPDrm,        TB_ALIGN_16 },
 | |
|     { X86::ORPSrr,          X86::ORPSrm,        TB_ALIGN_16 },
 | |
|     { X86::PACKSSDWrr,      X86::PACKSSDWrm,    TB_ALIGN_16 },
 | |
|     { X86::PACKSSWBrr,      X86::PACKSSWBrm,    TB_ALIGN_16 },
 | |
|     { X86::PACKUSDWrr,      X86::PACKUSDWrm,    TB_ALIGN_16 },
 | |
|     { X86::PACKUSWBrr,      X86::PACKUSWBrm,    TB_ALIGN_16 },
 | |
|     { X86::PADDBrr,         X86::PADDBrm,       TB_ALIGN_16 },
 | |
|     { X86::PADDDrr,         X86::PADDDrm,       TB_ALIGN_16 },
 | |
|     { X86::PADDQrr,         X86::PADDQrm,       TB_ALIGN_16 },
 | |
|     { X86::PADDSBrr,        X86::PADDSBrm,      TB_ALIGN_16 },
 | |
|     { X86::PADDSWrr,        X86::PADDSWrm,      TB_ALIGN_16 },
 | |
|     { X86::PADDUSBrr,       X86::PADDUSBrm,     TB_ALIGN_16 },
 | |
|     { X86::PADDUSWrr,       X86::PADDUSWrm,     TB_ALIGN_16 },
 | |
|     { X86::PADDWrr,         X86::PADDWrm,       TB_ALIGN_16 },
 | |
|     { X86::PALIGNR128rr,    X86::PALIGNR128rm,  TB_ALIGN_16 },
 | |
|     { X86::PANDNrr,         X86::PANDNrm,       TB_ALIGN_16 },
 | |
|     { X86::PANDrr,          X86::PANDrm,        TB_ALIGN_16 },
 | |
|     { X86::PAVGBrr,         X86::PAVGBrm,       TB_ALIGN_16 },
 | |
|     { X86::PAVGWrr,         X86::PAVGWrm,       TB_ALIGN_16 },
 | |
|     { X86::PBLENDWrri,      X86::PBLENDWrmi,    TB_ALIGN_16 },
 | |
|     { X86::PCMPEQBrr,       X86::PCMPEQBrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPEQDrr,       X86::PCMPEQDrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPEQQrr,       X86::PCMPEQQrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPEQWrr,       X86::PCMPEQWrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPGTBrr,       X86::PCMPGTBrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPGTDrr,       X86::PCMPGTDrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPGTQrr,       X86::PCMPGTQrm,     TB_ALIGN_16 },
 | |
|     { X86::PCMPGTWrr,       X86::PCMPGTWrm,     TB_ALIGN_16 },
 | |
|     { X86::PHADDDrr,        X86::PHADDDrm,      TB_ALIGN_16 },
 | |
|     { X86::PHADDWrr,        X86::PHADDWrm,      TB_ALIGN_16 },
 | |
|     { X86::PHADDSWrr128,    X86::PHADDSWrm128,  TB_ALIGN_16 },
 | |
|     { X86::PHSUBDrr,        X86::PHSUBDrm,      TB_ALIGN_16 },
 | |
|     { X86::PHSUBSWrr128,    X86::PHSUBSWrm128,  TB_ALIGN_16 },
 | |
|     { X86::PHSUBWrr,        X86::PHSUBWrm,      TB_ALIGN_16 },
 | |
|     { X86::PINSRWrri,       X86::PINSRWrmi,     TB_ALIGN_16 },
 | |
|     { X86::PMADDUBSWrr128,  X86::PMADDUBSWrm128, TB_ALIGN_16 },
 | |
|     { X86::PMADDWDrr,       X86::PMADDWDrm,     TB_ALIGN_16 },
 | |
|     { X86::PMAXSWrr,        X86::PMAXSWrm,      TB_ALIGN_16 },
 | |
|     { X86::PMAXUBrr,        X86::PMAXUBrm,      TB_ALIGN_16 },
 | |
|     { X86::PMINSWrr,        X86::PMINSWrm,      TB_ALIGN_16 },
 | |
|     { X86::PMINUBrr,        X86::PMINUBrm,      TB_ALIGN_16 },
 | |
|     { X86::PMULDQrr,        X86::PMULDQrm,      TB_ALIGN_16 },
 | |
|     { X86::PMULHRSWrr128,   X86::PMULHRSWrm128, TB_ALIGN_16 },
 | |
|     { X86::PMULHUWrr,       X86::PMULHUWrm,     TB_ALIGN_16 },
 | |
|     { X86::PMULHWrr,        X86::PMULHWrm,      TB_ALIGN_16 },
 | |
|     { X86::PMULLDrr,        X86::PMULLDrm,      TB_ALIGN_16 },
 | |
|     { X86::PMULLWrr,        X86::PMULLWrm,      TB_ALIGN_16 },
 | |
|     { X86::PMULUDQrr,       X86::PMULUDQrm,     TB_ALIGN_16 },
 | |
|     { X86::PORrr,           X86::PORrm,         TB_ALIGN_16 },
 | |
|     { X86::PSADBWrr,        X86::PSADBWrm,      TB_ALIGN_16 },
 | |
|     { X86::PSHUFBrr,        X86::PSHUFBrm,      TB_ALIGN_16 },
 | |
|     { X86::PSIGNBrr,        X86::PSIGNBrm,      TB_ALIGN_16 },
 | |
|     { X86::PSIGNWrr,        X86::PSIGNWrm,      TB_ALIGN_16 },
 | |
|     { X86::PSIGNDrr,        X86::PSIGNDrm,      TB_ALIGN_16 },
 | |
|     { X86::PSLLDrr,         X86::PSLLDrm,       TB_ALIGN_16 },
 | |
|     { X86::PSLLQrr,         X86::PSLLQrm,       TB_ALIGN_16 },
 | |
|     { X86::PSLLWrr,         X86::PSLLWrm,       TB_ALIGN_16 },
 | |
|     { X86::PSRADrr,         X86::PSRADrm,       TB_ALIGN_16 },
 | |
|     { X86::PSRAWrr,         X86::PSRAWrm,       TB_ALIGN_16 },
 | |
|     { X86::PSRLDrr,         X86::PSRLDrm,       TB_ALIGN_16 },
 | |
|     { X86::PSRLQrr,         X86::PSRLQrm,       TB_ALIGN_16 },
 | |
|     { X86::PSRLWrr,         X86::PSRLWrm,       TB_ALIGN_16 },
 | |
|     { X86::PSUBBrr,         X86::PSUBBrm,       TB_ALIGN_16 },
 | |
|     { X86::PSUBDrr,         X86::PSUBDrm,       TB_ALIGN_16 },
 | |
|     { X86::PSUBSBrr,        X86::PSUBSBrm,      TB_ALIGN_16 },
 | |
|     { X86::PSUBSWrr,        X86::PSUBSWrm,      TB_ALIGN_16 },
 | |
|     { X86::PSUBWrr,         X86::PSUBWrm,       TB_ALIGN_16 },
 | |
|     { X86::PUNPCKHBWrr,     X86::PUNPCKHBWrm,   TB_ALIGN_16 },
 | |
|     { X86::PUNPCKHDQrr,     X86::PUNPCKHDQrm,   TB_ALIGN_16 },
 | |
|     { X86::PUNPCKHQDQrr,    X86::PUNPCKHQDQrm,  TB_ALIGN_16 },
 | |
|     { X86::PUNPCKHWDrr,     X86::PUNPCKHWDrm,   TB_ALIGN_16 },
 | |
|     { X86::PUNPCKLBWrr,     X86::PUNPCKLBWrm,   TB_ALIGN_16 },
 | |
|     { X86::PUNPCKLDQrr,     X86::PUNPCKLDQrm,   TB_ALIGN_16 },
 | |
|     { X86::PUNPCKLQDQrr,    X86::PUNPCKLQDQrm,  TB_ALIGN_16 },
 | |
|     { X86::PUNPCKLWDrr,     X86::PUNPCKLWDrm,   TB_ALIGN_16 },
 | |
|     { X86::PXORrr,          X86::PXORrm,        TB_ALIGN_16 },
 | |
|     { X86::SBB32rr,         X86::SBB32rm,       0 },
 | |
|     { X86::SBB64rr,         X86::SBB64rm,       0 },
 | |
|     { X86::SHUFPDrri,       X86::SHUFPDrmi,     TB_ALIGN_16 },
 | |
|     { X86::SHUFPSrri,       X86::SHUFPSrmi,     TB_ALIGN_16 },
 | |
|     { X86::SUB16rr,         X86::SUB16rm,       0 },
 | |
|     { X86::SUB32rr,         X86::SUB32rm,       0 },
 | |
|     { X86::SUB64rr,         X86::SUB64rm,       0 },
 | |
|     { X86::SUB8rr,          X86::SUB8rm,        0 },
 | |
|     { X86::SUBPDrr,         X86::SUBPDrm,       TB_ALIGN_16 },
 | |
|     { X86::SUBPSrr,         X86::SUBPSrm,       TB_ALIGN_16 },
 | |
|     { X86::SUBSDrr,         X86::SUBSDrm,       0 },
 | |
|     { X86::SUBSSrr,         X86::SUBSSrm,       0 },
 | |
|     // FIXME: TEST*rr -> swapped operand of TEST*mr.
 | |
|     { X86::UNPCKHPDrr,      X86::UNPCKHPDrm,    TB_ALIGN_16 },
 | |
|     { X86::UNPCKHPSrr,      X86::UNPCKHPSrm,    TB_ALIGN_16 },
 | |
|     { X86::UNPCKLPDrr,      X86::UNPCKLPDrm,    TB_ALIGN_16 },
 | |
|     { X86::UNPCKLPSrr,      X86::UNPCKLPSrm,    TB_ALIGN_16 },
 | |
|     { X86::XOR16rr,         X86::XOR16rm,       0 },
 | |
|     { X86::XOR32rr,         X86::XOR32rm,       0 },
 | |
|     { X86::XOR64rr,         X86::XOR64rm,       0 },
 | |
|     { X86::XOR8rr,          X86::XOR8rm,        0 },
 | |
|     { X86::XORPDrr,         X86::XORPDrm,       TB_ALIGN_16 },
 | |
|     { X86::XORPSrr,         X86::XORPSrm,       TB_ALIGN_16 },
 | |
|     // AVX 128-bit versions of foldable instructions
 | |
|     { X86::VCVTSD2SSrr,       X86::VCVTSD2SSrm,        0 },
 | |
|     { X86::Int_VCVTSD2SSrr,   X86::Int_VCVTSD2SSrm,    0 },
 | |
|     { X86::VCVTSI2SD64rr,     X86::VCVTSI2SD64rm,      0 },
 | |
|     { X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm,  0 },
 | |
|     { X86::VCVTSI2SDrr,       X86::VCVTSI2SDrm,        0 },
 | |
|     { X86::Int_VCVTSI2SDrr,   X86::Int_VCVTSI2SDrm,    0 },
 | |
|     { X86::VCVTSI2SS64rr,     X86::VCVTSI2SS64rm,      0 },
 | |
|     { X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm,  0 },
 | |
|     { X86::VCVTSI2SSrr,       X86::VCVTSI2SSrm,        0 },
 | |
|     { X86::Int_VCVTSI2SSrr,   X86::Int_VCVTSI2SSrm,    0 },
 | |
|     { X86::VCVTSS2SDrr,       X86::VCVTSS2SDrm,        0 },
 | |
|     { X86::Int_VCVTSS2SDrr,   X86::Int_VCVTSS2SDrm,    0 },
 | |
|     { X86::VCVTTPD2DQrr,      X86::VCVTTPD2DQXrm,      TB_ALIGN_16 },
 | |
|     { X86::VCVTTPS2DQrr,      X86::VCVTTPS2DQrm,       TB_ALIGN_16 },
 | |
|     { X86::VRSQRTSSr,         X86::VRSQRTSSm,          0 },
 | |
|     { X86::VSQRTSDr,          X86::VSQRTSDm,           0 },
 | |
|     { X86::VSQRTSSr,          X86::VSQRTSSm,           0 },
 | |
|     { X86::VADDPDrr,          X86::VADDPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VADDPSrr,          X86::VADDPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VADDSDrr,          X86::VADDSDrm,           0 },
 | |
|     { X86::VADDSSrr,          X86::VADDSSrm,           0 },
 | |
|     { X86::VADDSUBPDrr,       X86::VADDSUBPDrm,        TB_ALIGN_16 },
 | |
|     { X86::VADDSUBPSrr,       X86::VADDSUBPSrm,        TB_ALIGN_16 },
 | |
|     { X86::VANDNPDrr,         X86::VANDNPDrm,          TB_ALIGN_16 },
 | |
|     { X86::VANDNPSrr,         X86::VANDNPSrm,          TB_ALIGN_16 },
 | |
|     { X86::VANDPDrr,          X86::VANDPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VANDPSrr,          X86::VANDPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VBLENDPDrri,       X86::VBLENDPDrmi,        TB_ALIGN_16 },
 | |
|     { X86::VBLENDPSrri,       X86::VBLENDPSrmi,        TB_ALIGN_16 },
 | |
|     { X86::VBLENDVPDrr,       X86::VBLENDVPDrm,        TB_ALIGN_16 },
 | |
|     { X86::VBLENDVPSrr,       X86::VBLENDVPSrm,        TB_ALIGN_16 },
 | |
|     { X86::VCMPPDrri,         X86::VCMPPDrmi,          TB_ALIGN_16 },
 | |
|     { X86::VCMPPSrri,         X86::VCMPPSrmi,          TB_ALIGN_16 },
 | |
|     { X86::VCMPSDrr,          X86::VCMPSDrm,           0 },
 | |
|     { X86::VCMPSSrr,          X86::VCMPSSrm,           0 },
 | |
|     { X86::VDIVPDrr,          X86::VDIVPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VDIVPSrr,          X86::VDIVPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VDIVSDrr,          X86::VDIVSDrm,           0 },
 | |
|     { X86::VDIVSSrr,          X86::VDIVSSrm,           0 },
 | |
|     { X86::VFsANDNPDrr,       X86::VFsANDNPDrm,        TB_ALIGN_16 },
 | |
|     { X86::VFsANDNPSrr,       X86::VFsANDNPSrm,        TB_ALIGN_16 },
 | |
|     { X86::VFsANDPDrr,        X86::VFsANDPDrm,         TB_ALIGN_16 },
 | |
|     { X86::VFsANDPSrr,        X86::VFsANDPSrm,         TB_ALIGN_16 },
 | |
|     { X86::VFsORPDrr,         X86::VFsORPDrm,          TB_ALIGN_16 },
 | |
|     { X86::VFsORPSrr,         X86::VFsORPSrm,          TB_ALIGN_16 },
 | |
|     { X86::VFsXORPDrr,        X86::VFsXORPDrm,         TB_ALIGN_16 },
 | |
|     { X86::VFsXORPSrr,        X86::VFsXORPSrm,         TB_ALIGN_16 },
 | |
|     { X86::VHADDPDrr,         X86::VHADDPDrm,          TB_ALIGN_16 },
 | |
|     { X86::VHADDPSrr,         X86::VHADDPSrm,          TB_ALIGN_16 },
 | |
|     { X86::VHSUBPDrr,         X86::VHSUBPDrm,          TB_ALIGN_16 },
 | |
|     { X86::VHSUBPSrr,         X86::VHSUBPSrm,          TB_ALIGN_16 },
 | |
|     { X86::Int_VCMPSDrr,      X86::Int_VCMPSDrm,       0 },
 | |
|     { X86::Int_VCMPSSrr,      X86::Int_VCMPSSrm,       0 },
 | |
|     { X86::VMAXPDrr,          X86::VMAXPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VMAXPDrr_Int,      X86::VMAXPDrm_Int,       TB_ALIGN_16 },
 | |
|     { X86::VMAXPSrr,          X86::VMAXPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VMAXPSrr_Int,      X86::VMAXPSrm_Int,       TB_ALIGN_16 },
 | |
|     { X86::VMAXSDrr,          X86::VMAXSDrm,           0 },
 | |
|     { X86::VMAXSDrr_Int,      X86::VMAXSDrm_Int,       0 },
 | |
|     { X86::VMAXSSrr,          X86::VMAXSSrm,           0 },
 | |
|     { X86::VMAXSSrr_Int,      X86::VMAXSSrm_Int,       0 },
 | |
|     { X86::VMINPDrr,          X86::VMINPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VMINPDrr_Int,      X86::VMINPDrm_Int,       TB_ALIGN_16 },
 | |
|     { X86::VMINPSrr,          X86::VMINPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VMINPSrr_Int,      X86::VMINPSrm_Int,       TB_ALIGN_16 },
 | |
|     { X86::VMINSDrr,          X86::VMINSDrm,           0 },
 | |
|     { X86::VMINSDrr_Int,      X86::VMINSDrm_Int,       0 },
 | |
|     { X86::VMINSSrr,          X86::VMINSSrm,           0 },
 | |
|     { X86::VMINSSrr_Int,      X86::VMINSSrm_Int,       0 },
 | |
|     { X86::VMPSADBWrri,       X86::VMPSADBWrmi,        TB_ALIGN_16 },
 | |
|     { X86::VMULPDrr,          X86::VMULPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VMULPSrr,          X86::VMULPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VMULSDrr,          X86::VMULSDrm,           0 },
 | |
|     { X86::VMULSSrr,          X86::VMULSSrm,           0 },
 | |
|     { X86::VORPDrr,           X86::VORPDrm,            TB_ALIGN_16 },
 | |
|     { X86::VORPSrr,           X86::VORPSrm,            TB_ALIGN_16 },
 | |
|     { X86::VPACKSSDWrr,       X86::VPACKSSDWrm,        TB_ALIGN_16 },
 | |
|     { X86::VPACKSSWBrr,       X86::VPACKSSWBrm,        TB_ALIGN_16 },
 | |
|     { X86::VPACKUSDWrr,       X86::VPACKUSDWrm,        TB_ALIGN_16 },
 | |
|     { X86::VPACKUSWBrr,       X86::VPACKUSWBrm,        TB_ALIGN_16 },
 | |
|     { X86::VPADDBrr,          X86::VPADDBrm,           TB_ALIGN_16 },
 | |
|     { X86::VPADDDrr,          X86::VPADDDrm,           TB_ALIGN_16 },
 | |
|     { X86::VPADDQrr,          X86::VPADDQrm,           TB_ALIGN_16 },
 | |
|     { X86::VPADDSBrr,         X86::VPADDSBrm,          TB_ALIGN_16 },
 | |
|     { X86::VPADDSWrr,         X86::VPADDSWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPADDUSBrr,        X86::VPADDUSBrm,         TB_ALIGN_16 },
 | |
|     { X86::VPADDUSWrr,        X86::VPADDUSWrm,         TB_ALIGN_16 },
 | |
|     { X86::VPADDWrr,          X86::VPADDWrm,           TB_ALIGN_16 },
 | |
|     { X86::VPALIGNR128rr,     X86::VPALIGNR128rm,      TB_ALIGN_16 },
 | |
|     { X86::VPANDNrr,          X86::VPANDNrm,           TB_ALIGN_16 },
 | |
|     { X86::VPANDrr,           X86::VPANDrm,            TB_ALIGN_16 },
 | |
|     { X86::VPAVGBrr,          X86::VPAVGBrm,           TB_ALIGN_16 },
 | |
|     { X86::VPAVGWrr,          X86::VPAVGWrm,           TB_ALIGN_16 },
 | |
|     { X86::VPBLENDWrri,       X86::VPBLENDWrmi,        TB_ALIGN_16 },
 | |
|     { X86::VPCMPEQBrr,        X86::VPCMPEQBrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPEQDrr,        X86::VPCMPEQDrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPEQQrr,        X86::VPCMPEQQrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPEQWrr,        X86::VPCMPEQWrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPGTBrr,        X86::VPCMPGTBrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPGTDrr,        X86::VPCMPGTDrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPGTQrr,        X86::VPCMPGTQrm,         TB_ALIGN_16 },
 | |
|     { X86::VPCMPGTWrr,        X86::VPCMPGTWrm,         TB_ALIGN_16 },
 | |
|     { X86::VPHADDDrr,         X86::VPHADDDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPHADDSWrr128,     X86::VPHADDSWrm128,      TB_ALIGN_16 },
 | |
|     { X86::VPHADDWrr,         X86::VPHADDWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPHSUBDrr,         X86::VPHSUBDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPHSUBSWrr128,     X86::VPHSUBSWrm128,      TB_ALIGN_16 },
 | |
|     { X86::VPHSUBWrr,         X86::VPHSUBWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPERMILPDrr,       X86::VPERMILPDrm,        TB_ALIGN_16 },
 | |
|     { X86::VPERMILPSrr,       X86::VPERMILPSrm,        TB_ALIGN_16 },
 | |
|     { X86::VPINSRWrri,        X86::VPINSRWrmi,         TB_ALIGN_16 },
 | |
|     { X86::VPMADDUBSWrr128,   X86::VPMADDUBSWrm128,    TB_ALIGN_16 },
 | |
|     { X86::VPMADDWDrr,        X86::VPMADDWDrm,         TB_ALIGN_16 },
 | |
|     { X86::VPMAXSWrr,         X86::VPMAXSWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMAXUBrr,         X86::VPMAXUBrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMINSWrr,         X86::VPMINSWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMINUBrr,         X86::VPMINUBrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMULDQrr,         X86::VPMULDQrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMULHRSWrr128,    X86::VPMULHRSWrm128,     TB_ALIGN_16 },
 | |
|     { X86::VPMULHUWrr,        X86::VPMULHUWrm,         TB_ALIGN_16 },
 | |
|     { X86::VPMULHWrr,         X86::VPMULHWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMULLDrr,         X86::VPMULLDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMULLWrr,         X86::VPMULLWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPMULUDQrr,        X86::VPMULUDQrm,         TB_ALIGN_16 },
 | |
|     { X86::VPORrr,            X86::VPORrm,             TB_ALIGN_16 },
 | |
|     { X86::VPSADBWrr,         X86::VPSADBWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSHUFBrr,         X86::VPSHUFBrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSIGNBrr,         X86::VPSIGNBrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSIGNWrr,         X86::VPSIGNWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSIGNDrr,         X86::VPSIGNDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSLLDrr,          X86::VPSLLDrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSLLQrr,          X86::VPSLLQrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSLLWrr,          X86::VPSLLWrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSRADrr,          X86::VPSRADrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSRAWrr,          X86::VPSRAWrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSRLDrr,          X86::VPSRLDrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSRLQrr,          X86::VPSRLQrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSRLWrr,          X86::VPSRLWrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSUBBrr,          X86::VPSUBBrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSUBDrr,          X86::VPSUBDrm,           TB_ALIGN_16 },
 | |
|     { X86::VPSUBSBrr,         X86::VPSUBSBrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSUBSWrr,         X86::VPSUBSWrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSUBWrr,          X86::VPSUBWrm,           TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKHBWrr,      X86::VPUNPCKHBWrm,       TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKHDQrr,      X86::VPUNPCKHDQrm,       TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKHQDQrr,     X86::VPUNPCKHQDQrm,      TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKHWDrr,      X86::VPUNPCKHWDrm,       TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKLBWrr,      X86::VPUNPCKLBWrm,       TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKLDQrr,      X86::VPUNPCKLDQrm,       TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKLQDQrr,     X86::VPUNPCKLQDQrm,      TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKLWDrr,      X86::VPUNPCKLWDrm,       TB_ALIGN_16 },
 | |
|     { X86::VPXORrr,           X86::VPXORrm,            TB_ALIGN_16 },
 | |
|     { X86::VSHUFPDrri,        X86::VSHUFPDrmi,         TB_ALIGN_16 },
 | |
|     { X86::VSHUFPSrri,        X86::VSHUFPSrmi,         TB_ALIGN_16 },
 | |
|     { X86::VSUBPDrr,          X86::VSUBPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VSUBPSrr,          X86::VSUBPSrm,           TB_ALIGN_16 },
 | |
|     { X86::VSUBSDrr,          X86::VSUBSDrm,           0 },
 | |
|     { X86::VSUBSSrr,          X86::VSUBSSrm,           0 },
 | |
|     { X86::VUNPCKHPDrr,       X86::VUNPCKHPDrm,        TB_ALIGN_16 },
 | |
|     { X86::VUNPCKHPSrr,       X86::VUNPCKHPSrm,        TB_ALIGN_16 },
 | |
|     { X86::VUNPCKLPDrr,       X86::VUNPCKLPDrm,        TB_ALIGN_16 },
 | |
|     { X86::VUNPCKLPSrr,       X86::VUNPCKLPSrm,        TB_ALIGN_16 },
 | |
|     { X86::VXORPDrr,          X86::VXORPDrm,           TB_ALIGN_16 },
 | |
|     { X86::VXORPSrr,          X86::VXORPSrm,           TB_ALIGN_16 },
 | |
|     // AVX 256-bit foldable instructions
 | |
|     { X86::VADDPDYrr,         X86::VADDPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VADDPSYrr,         X86::VADDPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VADDSUBPDYrr,      X86::VADDSUBPDYrm,       TB_ALIGN_32 },
 | |
|     { X86::VADDSUBPSYrr,      X86::VADDSUBPSYrm,       TB_ALIGN_32 },
 | |
|     { X86::VANDNPDYrr,        X86::VANDNPDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VANDNPSYrr,        X86::VANDNPSYrm,         TB_ALIGN_32 },
 | |
|     { X86::VANDPDYrr,         X86::VANDPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VANDPSYrr,         X86::VANDPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VBLENDPDYrri,      X86::VBLENDPDYrmi,       TB_ALIGN_32 },
 | |
|     { X86::VBLENDPSYrri,      X86::VBLENDPSYrmi,       TB_ALIGN_32 },
 | |
|     { X86::VBLENDVPDYrr,      X86::VBLENDVPDYrm,       TB_ALIGN_32 },
 | |
|     { X86::VBLENDVPSYrr,      X86::VBLENDVPSYrm,       TB_ALIGN_32 },
 | |
|     { X86::VCMPPDYrri,        X86::VCMPPDYrmi,         TB_ALIGN_32 },
 | |
|     { X86::VCMPPSYrri,        X86::VCMPPSYrmi,         TB_ALIGN_32 },
 | |
|     { X86::VDIVPDYrr,         X86::VDIVPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VDIVPSYrr,         X86::VDIVPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VHADDPDYrr,        X86::VHADDPDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VHADDPSYrr,        X86::VHADDPSYrm,         TB_ALIGN_32 },
 | |
|     { X86::VHSUBPDYrr,        X86::VHSUBPDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VHSUBPSYrr,        X86::VHSUBPSYrm,         TB_ALIGN_32 },
 | |
|     { X86::VINSERTF128rr,     X86::VINSERTF128rm,      TB_ALIGN_32 },
 | |
|     { X86::VMAXPDYrr,         X86::VMAXPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMAXPDYrr_Int,     X86::VMAXPDYrm_Int,      TB_ALIGN_32 },
 | |
|     { X86::VMAXPSYrr,         X86::VMAXPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMAXPSYrr_Int,     X86::VMAXPSYrm_Int,      TB_ALIGN_32 },
 | |
|     { X86::VMINPDYrr,         X86::VMINPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMINPDYrr_Int,     X86::VMINPDYrm_Int,      TB_ALIGN_32 },
 | |
|     { X86::VMINPSYrr,         X86::VMINPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMINPSYrr_Int,     X86::VMINPSYrm_Int,      TB_ALIGN_32 },
 | |
|     { X86::VMULPDYrr,         X86::VMULPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VMULPSYrr,         X86::VMULPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VORPDYrr,          X86::VORPDYrm,           TB_ALIGN_32 },
 | |
|     { X86::VORPSYrr,          X86::VORPSYrm,           TB_ALIGN_32 },
 | |
|     { X86::VPERM2F128rr,      X86::VPERM2F128rm,       TB_ALIGN_32 },
 | |
|     { X86::VPERMILPDYrr,      X86::VPERMILPDYrm,       TB_ALIGN_32 },
 | |
|     { X86::VPERMILPSYrr,      X86::VPERMILPSYrm,       TB_ALIGN_32 },
 | |
|     { X86::VSHUFPDYrri,       X86::VSHUFPDYrmi,        TB_ALIGN_32 },
 | |
|     { X86::VSHUFPSYrri,       X86::VSHUFPSYrmi,        TB_ALIGN_32 },
 | |
|     { X86::VSUBPDYrr,         X86::VSUBPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VSUBPSYrr,         X86::VSUBPSYrm,          TB_ALIGN_32 },
 | |
|     { X86::VUNPCKHPDYrr,      X86::VUNPCKHPDYrm,       TB_ALIGN_32 },
 | |
|     { X86::VUNPCKHPSYrr,      X86::VUNPCKHPSYrm,       TB_ALIGN_32 },
 | |
|     { X86::VUNPCKLPDYrr,      X86::VUNPCKLPDYrm,       TB_ALIGN_32 },
 | |
|     { X86::VUNPCKLPSYrr,      X86::VUNPCKLPSYrm,       TB_ALIGN_32 },
 | |
|     { X86::VXORPDYrr,         X86::VXORPDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VXORPSYrr,         X86::VXORPSYrm,          TB_ALIGN_32 },
 | |
|     // AVX2 foldable instructions
 | |
|     { X86::VINSERTI128rr,     X86::VINSERTI128rm,      TB_ALIGN_16 },
 | |
|     { X86::VPACKSSDWYrr,      X86::VPACKSSDWYrm,       TB_ALIGN_32 },
 | |
|     { X86::VPACKSSWBYrr,      X86::VPACKSSWBYrm,       TB_ALIGN_32 },
 | |
|     { X86::VPACKUSDWYrr,      X86::VPACKUSDWYrm,       TB_ALIGN_32 },
 | |
|     { X86::VPACKUSWBYrr,      X86::VPACKUSWBYrm,       TB_ALIGN_32 },
 | |
|     { X86::VPADDBYrr,         X86::VPADDBYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPADDDYrr,         X86::VPADDDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPADDQYrr,         X86::VPADDQYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPADDSBYrr,        X86::VPADDSBYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPADDSWYrr,        X86::VPADDSWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPADDUSBYrr,       X86::VPADDUSBYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPADDUSWYrr,       X86::VPADDUSWYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPADDWYrr,         X86::VPADDWYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPALIGNR256rr,     X86::VPALIGNR256rm,      TB_ALIGN_32 },
 | |
|     { X86::VPANDNYrr,         X86::VPANDNYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPANDYrr,          X86::VPANDYrm,           TB_ALIGN_32 },
 | |
|     { X86::VPAVGBYrr,         X86::VPAVGBYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPAVGWYrr,         X86::VPAVGWYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPBLENDDrri,       X86::VPBLENDDrmi,        TB_ALIGN_32 },
 | |
|     { X86::VPBLENDDYrri,      X86::VPBLENDDYrmi,       TB_ALIGN_32 },
 | |
|     { X86::VPBLENDWYrri,      X86::VPBLENDWYrmi,       TB_ALIGN_32 },
 | |
|     { X86::VPCMPEQBYrr,       X86::VPCMPEQBYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPEQDYrr,       X86::VPCMPEQDYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPEQQYrr,       X86::VPCMPEQQYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPEQWYrr,       X86::VPCMPEQWYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPGTBYrr,       X86::VPCMPGTBYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPGTDYrr,       X86::VPCMPGTDYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPGTQYrr,       X86::VPCMPGTQYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPCMPGTWYrr,       X86::VPCMPGTWYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPERM2I128rr,      X86::VPERM2I128rm,       TB_ALIGN_32 },
 | |
|     { X86::VPERMDYrr,         X86::VPERMDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPERMPDYri,        X86::VPERMPDYmi,         TB_ALIGN_32 },
 | |
|     { X86::VPERMPSYrr,        X86::VPERMPSYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPERMQYri,         X86::VPERMQYmi,          TB_ALIGN_32 },
 | |
|     { X86::VPHADDDYrr,        X86::VPHADDDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPHADDSWrr256,     X86::VPHADDSWrm256,      TB_ALIGN_32 },
 | |
|     { X86::VPHADDWYrr,        X86::VPHADDWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPHSUBDYrr,        X86::VPHSUBDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPHSUBSWrr256,     X86::VPHSUBSWrm256,      TB_ALIGN_32 },
 | |
|     { X86::VPHSUBWYrr,        X86::VPHSUBWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMADDUBSWrr256,   X86::VPMADDUBSWrm256,    TB_ALIGN_32 },
 | |
|     { X86::VPMADDWDYrr,       X86::VPMADDWDYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPMAXSWYrr,        X86::VPMAXSWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMAXUBYrr,        X86::VPMAXUBYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMINSWYrr,        X86::VPMINSWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMINUBYrr,        X86::VPMINUBYrm,         TB_ALIGN_32 },
 | |
|     { X86::VMPSADBWYrri,      X86::VMPSADBWYrmi,       TB_ALIGN_32 },
 | |
|     { X86::VPMULDQYrr,        X86::VPMULDQYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMULHRSWrr256,    X86::VPMULHRSWrm256,     TB_ALIGN_32 },
 | |
|     { X86::VPMULHUWYrr,       X86::VPMULHUWYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPMULHWYrr,        X86::VPMULHWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMULLDYrr,        X86::VPMULLDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMULLWYrr,        X86::VPMULLWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPMULUDQYrr,       X86::VPMULUDQYrm,        TB_ALIGN_32 },
 | |
|     { X86::VPORYrr,           X86::VPORYrm,            TB_ALIGN_32 },
 | |
|     { X86::VPSADBWYrr,        X86::VPSADBWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSHUFBYrr,        X86::VPSHUFBYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSIGNBYrr,        X86::VPSIGNBYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSIGNWYrr,        X86::VPSIGNWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSIGNDYrr,        X86::VPSIGNDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSLLDYrr,         X86::VPSLLDYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSLLQYrr,         X86::VPSLLQYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSLLWYrr,         X86::VPSLLWYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSLLVDrr,         X86::VPSLLVDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSLLVDYrr,        X86::VPSLLVDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSLLVQrr,         X86::VPSLLVQrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSLLVQYrr,        X86::VPSLLVQYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSRADYrr,         X86::VPSRADYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRAWYrr,         X86::VPSRAWYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRAVDrr,         X86::VPSRAVDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRAVDYrr,        X86::VPSRAVDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSRLDYrr,         X86::VPSRLDYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRLQYrr,         X86::VPSRLQYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRLWYrr,         X86::VPSRLWYrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRLVDrr,         X86::VPSRLVDrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRLVDYrr,        X86::VPSRLVDYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSRLVQrr,         X86::VPSRLVQrm,          TB_ALIGN_16 },
 | |
|     { X86::VPSRLVQYrr,        X86::VPSRLVQYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSUBBYrr,         X86::VPSUBBYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPSUBDYrr,         X86::VPSUBDYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPSUBSBYrr,        X86::VPSUBSBYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSUBSWYrr,        X86::VPSUBSWYrm,         TB_ALIGN_32 },
 | |
|     { X86::VPSUBWYrr,         X86::VPSUBWYrm,          TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKHBWYrr,     X86::VPUNPCKHBWYrm,      TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKHDQYrr,     X86::VPUNPCKHDQYrm,      TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKHQDQYrr,    X86::VPUNPCKHQDQYrm,     TB_ALIGN_16 },
 | |
|     { X86::VPUNPCKHWDYrr,     X86::VPUNPCKHWDYrm,      TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKLBWYrr,     X86::VPUNPCKLBWYrm,      TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKLDQYrr,     X86::VPUNPCKLDQYrm,      TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKLQDQYrr,    X86::VPUNPCKLQDQYrm,     TB_ALIGN_32 },
 | |
|     { X86::VPUNPCKLWDYrr,     X86::VPUNPCKLWDYrm,      TB_ALIGN_32 },
 | |
|     { X86::VPXORYrr,          X86::VPXORYrm,           TB_ALIGN_32 },
 | |
|     // FIXME: add AVX 256-bit foldable instructions
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl2[i].RegOp;
 | |
|     unsigned MemOp = OpTbl2[i].MemOp;
 | |
|     unsigned Flags = OpTbl2[i].Flags;
 | |
|     AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
 | |
|                   RegOp, MemOp,
 | |
|                   // Index 2, folded load
 | |
|                   Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
 | |
|   }
 | |
| 
 | |
|   static const X86OpTblEntry OpTbl3[] = {
 | |
|     // FMA foldable instructions
 | |
|     { X86::VFMADDSSr231r,         X86::VFMADDSSr231m,         0 },
 | |
|     { X86::VFMADDSDr231r,         X86::VFMADDSDr231m,         0 },
 | |
|     { X86::VFMADDSSr132r,         X86::VFMADDSSr132m,         0 },
 | |
|     { X86::VFMADDSDr132r,         X86::VFMADDSDr132m,         0 },
 | |
|     { X86::VFMADDSSr213r,         X86::VFMADDSSr213m,         0 },
 | |
|     { X86::VFMADDSDr213r,         X86::VFMADDSDr213m,         0 },
 | |
|     { X86::VFMADDSSr132r_Int,     X86::VFMADDSSr132m_Int,     0 },
 | |
|     { X86::VFMADDSDr132r_Int,     X86::VFMADDSDr132m_Int,     0 },
 | |
| 
 | |
|     { X86::VFMADDPSr231r,         X86::VFMADDPSr231m,         TB_ALIGN_16 },
 | |
|     { X86::VFMADDPDr231r,         X86::VFMADDPDr231m,         TB_ALIGN_16 },
 | |
|     { X86::VFMADDPSr132r,         X86::VFMADDPSr132m,         TB_ALIGN_16 },
 | |
|     { X86::VFMADDPDr132r,         X86::VFMADDPDr132m,         TB_ALIGN_16 },
 | |
|     { X86::VFMADDPSr213r,         X86::VFMADDPSr213m,         TB_ALIGN_16 },
 | |
|     { X86::VFMADDPDr213r,         X86::VFMADDPDr213m,         TB_ALIGN_16 },
 | |
|     { X86::VFMADDPSr231rY,        X86::VFMADDPSr231mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMADDPDr231rY,        X86::VFMADDPDr231mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMADDPSr132rY,        X86::VFMADDPSr132mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMADDPDr132rY,        X86::VFMADDPDr132mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMADDPSr213rY,        X86::VFMADDPSr213mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMADDPDr213rY,        X86::VFMADDPDr213mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMADDPSr132r_Int,     X86::VFMADDPSr132m_Int,     TB_ALIGN_16 },
 | |
|     { X86::VFMADDPDr132r_Int,     X86::VFMADDPDr132m_Int,     TB_ALIGN_16 },
 | |
|     { X86::VFMADDPSr132rY_Int,    X86::VFMADDPSr132mY_Int,    TB_ALIGN_32 },
 | |
|     { X86::VFMADDPDr132rY_Int,    X86::VFMADDPDr132mY_Int,    TB_ALIGN_32 },
 | |
| 
 | |
|     { X86::VFNMADDSSr231r,        X86::VFNMADDSSr231m,        0 },
 | |
|     { X86::VFNMADDSDr231r,        X86::VFNMADDSDr231m,        0 },
 | |
|     { X86::VFNMADDSSr132r,        X86::VFNMADDSSr132m,        0 },
 | |
|     { X86::VFNMADDSDr132r,        X86::VFNMADDSDr132m,        0 },
 | |
|     { X86::VFNMADDSSr213r,        X86::VFNMADDSSr213m,        0 },
 | |
|     { X86::VFNMADDSDr213r,        X86::VFNMADDSDr213m,        0 },
 | |
|     { X86::VFNMADDSSr132r_Int,    X86::VFNMADDSSr132m_Int,    0 },
 | |
|     { X86::VFNMADDSDr132r_Int,    X86::VFNMADDSDr132m_Int,    0 },
 | |
| 
 | |
|     { X86::VFNMADDPSr231r,        X86::VFNMADDPSr231m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPDr231r,        X86::VFNMADDPDr231m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPSr132r,        X86::VFNMADDPSr132m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPDr132r,        X86::VFNMADDPDr132m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPSr213r,        X86::VFNMADDPSr213m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPDr213r,        X86::VFNMADDPDr213m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPSr231rY,       X86::VFNMADDPSr231mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPDr231rY,       X86::VFNMADDPDr231mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPSr132rY,       X86::VFNMADDPSr132mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPDr132rY,       X86::VFNMADDPDr132mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPSr213rY,       X86::VFNMADDPSr213mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPDr213rY,       X86::VFNMADDPDr213mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPSr132r_Int,    X86::VFNMADDPSr132m_Int,    TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPDr132r_Int,    X86::VFNMADDPDr132m_Int,    TB_ALIGN_16 },
 | |
|     { X86::VFNMADDPSr132rY_Int,   X86::VFNMADDPSr132mY_Int,   TB_ALIGN_32 },
 | |
|     { X86::VFNMADDPDr132rY_Int,   X86::VFNMADDPDr132mY_Int,   TB_ALIGN_32 },
 | |
| 
 | |
|     { X86::VFMSUBSSr231r,         X86::VFMSUBSSr231m,         0 },
 | |
|     { X86::VFMSUBSDr231r,         X86::VFMSUBSDr231m,         0 },
 | |
|     { X86::VFMSUBSSr132r,         X86::VFMSUBSSr132m,         0 },
 | |
|     { X86::VFMSUBSDr132r,         X86::VFMSUBSDr132m,         0 },
 | |
|     { X86::VFMSUBSSr213r,         X86::VFMSUBSSr213m,         0 },
 | |
|     { X86::VFMSUBSDr213r,         X86::VFMSUBSDr213m,         0 },
 | |
|     { X86::VFMSUBSSr132r_Int,     X86::VFMSUBSSr132m_Int,     0 },
 | |
|     { X86::VFMSUBSDr132r_Int,     X86::VFMSUBSDr132m_Int,     0 },
 | |
| 
 | |
|     { X86::VFMSUBPSr231r,         X86::VFMSUBPSr231m,         TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPDr231r,         X86::VFMSUBPDr231m,         TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPSr132r,         X86::VFMSUBPSr132m,         TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPDr132r,         X86::VFMSUBPDr132m,         TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPSr213r,         X86::VFMSUBPSr213m,         TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPDr213r,         X86::VFMSUBPDr213m,         TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPSr231rY,        X86::VFMSUBPSr231mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPDr231rY,        X86::VFMSUBPDr231mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPSr132rY,        X86::VFMSUBPSr132mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPDr132rY,        X86::VFMSUBPDr132mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPSr213rY,        X86::VFMSUBPSr213mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPDr213rY,        X86::VFMSUBPDr213mY,        TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPSr132r_Int,     X86::VFMSUBPSr132m_Int,     TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPDr132r_Int,     X86::VFMSUBPDr132m_Int,     TB_ALIGN_16 },
 | |
|     { X86::VFMSUBPSr132rY_Int,    X86::VFMSUBPSr132mY_Int,    TB_ALIGN_32 },
 | |
|     { X86::VFMSUBPDr132rY_Int,    X86::VFMSUBPDr132mY_Int,    TB_ALIGN_32 },
 | |
| 
 | |
|     { X86::VFNMSUBSSr231r,        X86::VFNMSUBSSr231m,        0 },
 | |
|     { X86::VFNMSUBSDr231r,        X86::VFNMSUBSDr231m,        0 },
 | |
|     { X86::VFNMSUBSSr132r,        X86::VFNMSUBSSr132m,        0 },
 | |
|     { X86::VFNMSUBSDr132r,        X86::VFNMSUBSDr132m,        0 },
 | |
|     { X86::VFNMSUBSSr213r,        X86::VFNMSUBSSr213m,        0 },
 | |
|     { X86::VFNMSUBSDr213r,        X86::VFNMSUBSDr213m,        0 },
 | |
|     { X86::VFNMSUBSSr132r_Int,    X86::VFNMSUBSSr132m_Int,    0 },
 | |
|     { X86::VFNMSUBSDr132r_Int,    X86::VFNMSUBSDr132m_Int,    0 },
 | |
| 
 | |
|     { X86::VFNMSUBPSr231r,        X86::VFNMSUBPSr231m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPDr231r,        X86::VFNMSUBPDr231m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPSr132r,        X86::VFNMSUBPSr132m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPDr132r,        X86::VFNMSUBPDr132m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPSr213r,        X86::VFNMSUBPSr213m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPDr213r,        X86::VFNMSUBPDr213m,        TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPSr231rY,       X86::VFNMSUBPSr231mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPDr231rY,       X86::VFNMSUBPDr231mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPSr132rY,       X86::VFNMSUBPSr132mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPDr132rY,       X86::VFNMSUBPDr132mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPSr213rY,       X86::VFNMSUBPSr213mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPDr213rY,       X86::VFNMSUBPDr213mY,       TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPSr132r_Int,    X86::VFNMSUBPSr132m_Int,    TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPDr132r_Int,    X86::VFNMSUBPDr132m_Int,    TB_ALIGN_16 },
 | |
|     { X86::VFNMSUBPSr132rY_Int,   X86::VFNMSUBPSr132mY_Int,   TB_ALIGN_32 },
 | |
|     { X86::VFNMSUBPDr132rY_Int,   X86::VFNMSUBPDr132mY_Int,   TB_ALIGN_32 },
 | |
| 
 | |
|     { X86::VFMADDSUBPSr231r,      X86::VFMADDSUBPSr231m,      TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPDr231r,      X86::VFMADDSUBPDr231m,      TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPSr132r,      X86::VFMADDSUBPSr132m,      TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPDr132r,      X86::VFMADDSUBPDr132m,      TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPSr213r,      X86::VFMADDSUBPSr213m,      TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPDr213r,      X86::VFMADDSUBPDr213m,      TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPSr231rY,     X86::VFMADDSUBPSr231mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPDr231rY,     X86::VFMADDSUBPDr231mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPSr132rY,     X86::VFMADDSUBPSr132mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPDr132rY,     X86::VFMADDSUBPDr132mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPSr213rY,     X86::VFMADDSUBPSr213mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPDr213rY,     X86::VFMADDSUBPDr213mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPSr132r_Int,  X86::VFMADDSUBPSr132m_Int,  TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPDr132r_Int,  X86::VFMADDSUBPDr132m_Int,  TB_ALIGN_16 },
 | |
|     { X86::VFMADDSUBPSr132rY_Int, X86::VFMADDSUBPSr132mY_Int, TB_ALIGN_32 },
 | |
|     { X86::VFMADDSUBPDr132rY_Int, X86::VFMADDSUBPDr132mY_Int, TB_ALIGN_32 },
 | |
| 
 | |
|     { X86::VFMSUBADDPSr231r,      X86::VFMSUBADDPSr231m,      TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPDr231r,      X86::VFMSUBADDPDr231m,      TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPSr132r,      X86::VFMSUBADDPSr132m,      TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPDr132r,      X86::VFMSUBADDPDr132m,      TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPSr213r,      X86::VFMSUBADDPSr213m,      TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPDr213r,      X86::VFMSUBADDPDr213m,      TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPSr231rY,     X86::VFMSUBADDPSr231mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPDr231rY,     X86::VFMSUBADDPDr231mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPSr132rY,     X86::VFMSUBADDPSr132mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPDr132rY,     X86::VFMSUBADDPDr132mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPSr213rY,     X86::VFMSUBADDPSr213mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPDr213rY,     X86::VFMSUBADDPDr213mY,     TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPSr132r_Int,  X86::VFMSUBADDPSr132m_Int,  TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPDr132r_Int,  X86::VFMSUBADDPDr132m_Int,  TB_ALIGN_16 },
 | |
|     { X86::VFMSUBADDPSr132rY_Int, X86::VFMSUBADDPSr132mY_Int, TB_ALIGN_32 },
 | |
|     { X86::VFMSUBADDPDr132rY_Int, X86::VFMSUBADDPDr132mY_Int, TB_ALIGN_32 },
 | |
|   };
 | |
| 
 | |
|   for (unsigned i = 0, e = array_lengthof(OpTbl3); i != e; ++i) {
 | |
|     unsigned RegOp = OpTbl3[i].RegOp;
 | |
|     unsigned MemOp = OpTbl3[i].MemOp;
 | |
|     unsigned Flags = OpTbl3[i].Flags;
 | |
|     AddTableEntry(RegOp2MemOpTable3, MemOp2RegOpTable,
 | |
|                   RegOp, MemOp,
 | |
|                   // Index 3, folded load
 | |
|                   Flags | TB_INDEX_3 | TB_FOLDED_LOAD);
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
| X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
 | |
|                             MemOp2RegOpTableType &M2RTable,
 | |
|                             unsigned RegOp, unsigned MemOp, unsigned Flags) {
 | |
|     if ((Flags & TB_NO_FORWARD) == 0) {
 | |
|       assert(!R2MTable.count(RegOp) && "Duplicate entry!");
 | |
|       R2MTable[RegOp] = std::make_pair(MemOp, Flags);
 | |
|     }
 | |
|     if ((Flags & TB_NO_REVERSE) == 0) {
 | |
|       assert(!M2RTable.count(MemOp) &&
 | |
|            "Duplicated entries in unfolding maps?");
 | |
|       M2RTable[MemOp] = std::make_pair(RegOp, Flags);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
 | |
|                                     unsigned &SrcReg, unsigned &DstReg,
 | |
|                                     unsigned &SubIdx) const {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::MOVSX16rr8:
 | |
|   case X86::MOVZX16rr8:
 | |
|   case X86::MOVSX32rr8:
 | |
|   case X86::MOVZX32rr8:
 | |
|   case X86::MOVSX64rr8:
 | |
|   case X86::MOVZX64rr8:
 | |
|     if (!TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       // It's not always legal to reference the low 8-bit of the larger
 | |
|       // register in 32-bit mode.
 | |
|       return false;
 | |
|   case X86::MOVSX32rr16:
 | |
|   case X86::MOVZX32rr16:
 | |
|   case X86::MOVSX64rr16:
 | |
|   case X86::MOVZX64rr16:
 | |
|   case X86::MOVSX64rr32:
 | |
|   case X86::MOVZX64rr32: {
 | |
|     if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
 | |
|       // Be conservative.
 | |
|       return false;
 | |
|     SrcReg = MI.getOperand(1).getReg();
 | |
|     DstReg = MI.getOperand(0).getReg();
 | |
|     switch (MI.getOpcode()) {
 | |
|     default:
 | |
|       llvm_unreachable(0);
 | |
|     case X86::MOVSX16rr8:
 | |
|     case X86::MOVZX16rr8:
 | |
|     case X86::MOVSX32rr8:
 | |
|     case X86::MOVZX32rr8:
 | |
|     case X86::MOVSX64rr8:
 | |
|     case X86::MOVZX64rr8:
 | |
|       SubIdx = X86::sub_8bit;
 | |
|       break;
 | |
|     case X86::MOVSX32rr16:
 | |
|     case X86::MOVZX32rr16:
 | |
|     case X86::MOVSX64rr16:
 | |
|     case X86::MOVZX64rr16:
 | |
|       SubIdx = X86::sub_16bit;
 | |
|       break;
 | |
|     case X86::MOVSX64rr32:
 | |
|     case X86::MOVZX64rr32:
 | |
|       SubIdx = X86::sub_32bit;
 | |
|       break;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isFrameOperand - Return true and the FrameIndex if the specified
 | |
| /// operand and follow operands form a reference to the stack frame.
 | |
| bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
 | |
|                                   int &FrameIndex) const {
 | |
|   if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
 | |
|       MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
 | |
|       MI->getOperand(Op+1).getImm() == 1 &&
 | |
|       MI->getOperand(Op+2).getReg() == 0 &&
 | |
|       MI->getOperand(Op+3).getImm() == 0) {
 | |
|     FrameIndex = MI->getOperand(Op).getIndex();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isFrameLoadOpcode(int Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::VMOVSSrm:
 | |
|   case X86::VMOVSDrm:
 | |
|   case X86::VMOVAPSrm:
 | |
|   case X86::VMOVAPDrm:
 | |
|   case X86::VMOVDQArm:
 | |
|   case X86::VMOVAPSYrm:
 | |
|   case X86::VMOVAPDYrm:
 | |
|   case X86::VMOVDQAYrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isFrameStoreOpcode(int Opcode) {
 | |
|   switch (Opcode) {
 | |
|   default: break;
 | |
|   case X86::MOV8mr:
 | |
|   case X86::MOV16mr:
 | |
|   case X86::MOV32mr:
 | |
|   case X86::MOV64mr:
 | |
|   case X86::ST_FpP64m:
 | |
|   case X86::MOVSSmr:
 | |
|   case X86::MOVSDmr:
 | |
|   case X86::MOVAPSmr:
 | |
|   case X86::MOVAPDmr:
 | |
|   case X86::MOVDQAmr:
 | |
|   case X86::VMOVSSmr:
 | |
|   case X86::VMOVSDmr:
 | |
|   case X86::VMOVAPSmr:
 | |
|   case X86::VMOVAPDmr:
 | |
|   case X86::VMOVDQAmr:
 | |
|   case X86::VMOVAPSYmr:
 | |
|   case X86::VMOVAPDYmr:
 | |
|   case X86::VMOVDQAYmr:
 | |
|   case X86::MMX_MOVD64mr:
 | |
|   case X86::MMX_MOVQ64mr:
 | |
|   case X86::MMX_MOVNTQmr:
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
 | |
|                                            int &FrameIndex) const {
 | |
|   if (isFrameLoadOpcode(MI->getOpcode()))
 | |
|     if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
 | |
|       return MI->getOperand(0).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
 | |
|                                                  int &FrameIndex) const {
 | |
|   if (isFrameLoadOpcode(MI->getOpcode())) {
 | |
|     unsigned Reg;
 | |
|     if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
 | |
|       return Reg;
 | |
|     // Check for post-frame index elimination operations
 | |
|     const MachineMemOperand *Dummy;
 | |
|     return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
 | |
|                                           int &FrameIndex) const {
 | |
|   if (isFrameStoreOpcode(MI->getOpcode()))
 | |
|     if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
 | |
|         isFrameOperand(MI, 0, FrameIndex))
 | |
|       return MI->getOperand(X86::AddrNumOperands).getReg();
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
 | |
|                                                 int &FrameIndex) const {
 | |
|   if (isFrameStoreOpcode(MI->getOpcode())) {
 | |
|     unsigned Reg;
 | |
|     if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
 | |
|       return Reg;
 | |
|     // Check for post-frame index elimination operations
 | |
|     const MachineMemOperand *Dummy;
 | |
|     return hasStoreToStackSlot(MI, Dummy, FrameIndex);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// regIsPICBase - Return true if register is PIC base (i.e.g defined by
 | |
| /// X86::MOVPC32r.
 | |
| static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
 | |
|   bool isPICBase = false;
 | |
|   for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | |
|          E = MRI.def_end(); I != E; ++I) {
 | |
|     MachineInstr *DefMI = I.getOperand().getParent();
 | |
|     if (DefMI->getOpcode() != X86::MOVPC32r)
 | |
|       return false;
 | |
|     assert(!isPICBase && "More than one PIC base?");
 | |
|     isPICBase = true;
 | |
|   }
 | |
|   return isPICBase;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
 | |
|                                                 AliasAnalysis *AA) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|     case X86::MOV8rm:
 | |
|     case X86::MOV16rm:
 | |
|     case X86::MOV32rm:
 | |
|     case X86::MOV64rm:
 | |
|     case X86::LD_Fp64m:
 | |
|     case X86::MOVSSrm:
 | |
|     case X86::MOVSDrm:
 | |
|     case X86::MOVAPSrm:
 | |
|     case X86::MOVUPSrm:
 | |
|     case X86::MOVAPDrm:
 | |
|     case X86::MOVDQArm:
 | |
|     case X86::VMOVSSrm:
 | |
|     case X86::VMOVSDrm:
 | |
|     case X86::VMOVAPSrm:
 | |
|     case X86::VMOVUPSrm:
 | |
|     case X86::VMOVAPDrm:
 | |
|     case X86::VMOVDQArm:
 | |
|     case X86::VMOVAPSYrm:
 | |
|     case X86::VMOVUPSYrm:
 | |
|     case X86::VMOVAPDYrm:
 | |
|     case X86::VMOVDQAYrm:
 | |
|     case X86::MMX_MOVD64rm:
 | |
|     case X86::MMX_MOVQ64rm:
 | |
|     case X86::FsVMOVAPSrm:
 | |
|     case X86::FsVMOVAPDrm:
 | |
|     case X86::FsMOVAPSrm:
 | |
|     case X86::FsMOVAPDrm: {
 | |
|       // Loads from constant pools are trivially rematerializable.
 | |
|       if (MI->getOperand(1).isReg() &&
 | |
|           MI->getOperand(2).isImm() &&
 | |
|           MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | |
|           MI->isInvariantLoad(AA)) {
 | |
|         unsigned BaseReg = MI->getOperand(1).getReg();
 | |
|         if (BaseReg == 0 || BaseReg == X86::RIP)
 | |
|           return true;
 | |
|         // Allow re-materialization of PIC load.
 | |
|         if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
 | |
|           return false;
 | |
|         const MachineFunction &MF = *MI->getParent()->getParent();
 | |
|         const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|         bool isPICBase = false;
 | |
|         for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
 | |
|                E = MRI.def_end(); I != E; ++I) {
 | |
|           MachineInstr *DefMI = I.getOperand().getParent();
 | |
|           if (DefMI->getOpcode() != X86::MOVPC32r)
 | |
|             return false;
 | |
|           assert(!isPICBase && "More than one PIC base?");
 | |
|           isPICBase = true;
 | |
|         }
 | |
|         return isPICBase;
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|      case X86::LEA32r:
 | |
|      case X86::LEA64r: {
 | |
|        if (MI->getOperand(2).isImm() &&
 | |
|            MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
 | |
|            !MI->getOperand(4).isReg()) {
 | |
|          // lea fi#, lea GV, etc. are all rematerializable.
 | |
|          if (!MI->getOperand(1).isReg())
 | |
|            return true;
 | |
|          unsigned BaseReg = MI->getOperand(1).getReg();
 | |
|          if (BaseReg == 0)
 | |
|            return true;
 | |
|          // Allow re-materialization of lea PICBase + x.
 | |
|          const MachineFunction &MF = *MI->getParent()->getParent();
 | |
|          const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
|          return regIsPICBase(BaseReg, MRI);
 | |
|        }
 | |
|        return false;
 | |
|      }
 | |
|   }
 | |
| 
 | |
|   // All other instructions marked M_REMATERIALIZABLE are always trivially
 | |
|   // rematerializable.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
 | |
| /// would clobber the EFLAGS condition register. Note the result may be
 | |
| /// conservative. If it cannot definitely determine the safety after visiting
 | |
| /// a few instructions in each direction it assumes it's not safe.
 | |
| static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator I) {
 | |
|   MachineBasicBlock::iterator E = MBB.end();
 | |
| 
 | |
|   // For compile time consideration, if we are not able to determine the
 | |
|   // safety after visiting 4 instructions in each direction, we will assume
 | |
|   // it's not safe.
 | |
|   MachineBasicBlock::iterator Iter = I;
 | |
|   for (unsigned i = 0; Iter != E && i < 4; ++i) {
 | |
|     bool SeenDef = false;
 | |
|     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
 | |
|       MachineOperand &MO = Iter->getOperand(j);
 | |
|       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
 | |
|         SeenDef = true;
 | |
|       if (!MO.isReg())
 | |
|         continue;
 | |
|       if (MO.getReg() == X86::EFLAGS) {
 | |
|         if (MO.isUse())
 | |
|           return false;
 | |
|         SeenDef = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SeenDef)
 | |
|       // This instruction defines EFLAGS, no need to look any further.
 | |
|       return true;
 | |
|     ++Iter;
 | |
|     // Skip over DBG_VALUE.
 | |
|     while (Iter != E && Iter->isDebugValue())
 | |
|       ++Iter;
 | |
|   }
 | |
| 
 | |
|   // It is safe to clobber EFLAGS at the end of a block of no successor has it
 | |
|   // live in.
 | |
|   if (Iter == E) {
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
 | |
|            SE = MBB.succ_end(); SI != SE; ++SI)
 | |
|       if ((*SI)->isLiveIn(X86::EFLAGS))
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock::iterator B = MBB.begin();
 | |
|   Iter = I;
 | |
|   for (unsigned i = 0; i < 4; ++i) {
 | |
|     // If we make it to the beginning of the block, it's safe to clobber
 | |
|     // EFLAGS iff EFLAGS is not live-in.
 | |
|     if (Iter == B)
 | |
|       return !MBB.isLiveIn(X86::EFLAGS);
 | |
| 
 | |
|     --Iter;
 | |
|     // Skip over DBG_VALUE.
 | |
|     while (Iter != B && Iter->isDebugValue())
 | |
|       --Iter;
 | |
| 
 | |
|     bool SawKill = false;
 | |
|     for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
 | |
|       MachineOperand &MO = Iter->getOperand(j);
 | |
|       // A register mask may clobber EFLAGS, but we should still look for a
 | |
|       // live EFLAGS def.
 | |
|       if (MO.isRegMask() && MO.clobbersPhysReg(X86::EFLAGS))
 | |
|         SawKill = true;
 | |
|       if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
 | |
|         if (MO.isDef()) return MO.isDead();
 | |
|         if (MO.isKill()) SawKill = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SawKill)
 | |
|       // This instruction kills EFLAGS and doesn't redefine it, so
 | |
|       // there's no need to look further.
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Conservative answer.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator I,
 | |
|                                  unsigned DestReg, unsigned SubIdx,
 | |
|                                  const MachineInstr *Orig,
 | |
|                                  const TargetRegisterInfo &TRI) const {
 | |
|   DebugLoc DL = Orig->getDebugLoc();
 | |
| 
 | |
|   // MOV32r0 etc. are implemented with xor which clobbers condition code.
 | |
|   // Re-materialize them as movri instructions to avoid side effects.
 | |
|   bool Clone = true;
 | |
|   unsigned Opc = Orig->getOpcode();
 | |
|   switch (Opc) {
 | |
|   default: break;
 | |
|   case X86::MOV8r0:
 | |
|   case X86::MOV16r0:
 | |
|   case X86::MOV32r0:
 | |
|   case X86::MOV64r0: {
 | |
|     if (!isSafeToClobberEFLAGS(MBB, I)) {
 | |
|       switch (Opc) {
 | |
|       default: break;
 | |
|       case X86::MOV8r0:  Opc = X86::MOV8ri;  break;
 | |
|       case X86::MOV16r0: Opc = X86::MOV16ri; break;
 | |
|       case X86::MOV32r0: Opc = X86::MOV32ri; break;
 | |
|       case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
 | |
|       }
 | |
|       Clone = false;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (Clone) {
 | |
|     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
 | |
|     MBB.insert(I, MI);
 | |
|   } else {
 | |
|     BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI = prior(I);
 | |
|   NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
 | |
| }
 | |
| 
 | |
| /// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
 | |
| /// is not marked dead.
 | |
| static bool hasLiveCondCodeDef(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isDef() &&
 | |
|         MO.getReg() == X86::EFLAGS && !MO.isDead()) {
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
 | |
| /// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
 | |
| /// to a 32-bit superregister and then truncating back down to a 16-bit
 | |
| /// subregister.
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
 | |
|                                            MachineFunction::iterator &MFI,
 | |
|                                            MachineBasicBlock::iterator &MBBI,
 | |
|                                            LiveVariables *LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
|   bool isDead = MI->getOperand(0).isDead();
 | |
|   bool isKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|   unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
 | |
|     ? X86::LEA64_32r : X86::LEA32r;
 | |
|   MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
 | |
|   unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
 | |
|   unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | |
| 
 | |
|   // Build and insert into an implicit UNDEF value. This is OK because
 | |
|   // well be shifting and then extracting the lower 16-bits.
 | |
|   // This has the potential to cause partial register stall. e.g.
 | |
|   //   movw    (%rbp,%rcx,2), %dx
 | |
|   //   leal    -65(%rdx), %esi
 | |
|   // But testing has shown this *does* help performance in 64-bit mode (at
 | |
|   // least on modern x86 machines).
 | |
|   BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
 | |
|   MachineInstr *InsMI =
 | |
|     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
 | |
|     .addReg(leaInReg, RegState::Define, X86::sub_16bit)
 | |
|     .addReg(Src, getKillRegState(isKill));
 | |
| 
 | |
|   MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
 | |
|                                     get(Opc), leaOutReg);
 | |
|   switch (MIOpc) {
 | |
|   default:
 | |
|     llvm_unreachable(0);
 | |
|   case X86::SHL16ri: {
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     MIB.addReg(0).addImm(1 << ShAmt)
 | |
|        .addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::INC16r:
 | |
|   case X86::INC64_16r:
 | |
|     addRegOffset(MIB, leaInReg, true, 1);
 | |
|     break;
 | |
|   case X86::DEC16r:
 | |
|   case X86::DEC64_16r:
 | |
|     addRegOffset(MIB, leaInReg, true, -1);
 | |
|     break;
 | |
|   case X86::ADD16ri:
 | |
|   case X86::ADD16ri8:
 | |
|   case X86::ADD16ri_DB:
 | |
|   case X86::ADD16ri8_DB:
 | |
|     addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
 | |
|     break;
 | |
|   case X86::ADD16rr:
 | |
|   case X86::ADD16rr_DB: {
 | |
|     unsigned Src2 = MI->getOperand(2).getReg();
 | |
|     bool isKill2 = MI->getOperand(2).isKill();
 | |
|     unsigned leaInReg2 = 0;
 | |
|     MachineInstr *InsMI2 = 0;
 | |
|     if (Src == Src2) {
 | |
|       // ADD16rr %reg1028<kill>, %reg1028
 | |
|       // just a single insert_subreg.
 | |
|       addRegReg(MIB, leaInReg, true, leaInReg, false);
 | |
|     } else {
 | |
|       leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
 | |
|       // Build and insert into an implicit UNDEF value. This is OK because
 | |
|       // well be shifting and then extracting the lower 16-bits.
 | |
|       BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
 | |
|       InsMI2 =
 | |
|         BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
 | |
|         .addReg(leaInReg2, RegState::Define, X86::sub_16bit)
 | |
|         .addReg(Src2, getKillRegState(isKill2));
 | |
|       addRegReg(MIB, leaInReg, true, leaInReg2, true);
 | |
|     }
 | |
|     if (LV && isKill2 && InsMI2)
 | |
|       LV->replaceKillInstruction(Src2, MI, InsMI2);
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   MachineInstr *NewMI = MIB;
 | |
|   MachineInstr *ExtMI =
 | |
|     BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
 | |
|     .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|     .addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
 | |
| 
 | |
|   if (LV) {
 | |
|     // Update live variables
 | |
|     LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
 | |
|     LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
 | |
|     if (isKill)
 | |
|       LV->replaceKillInstruction(Src, MI, InsMI);
 | |
|     if (isDead)
 | |
|       LV->replaceKillInstruction(Dest, MI, ExtMI);
 | |
|   }
 | |
| 
 | |
|   return ExtMI;
 | |
| }
 | |
| 
 | |
| /// convertToThreeAddress - This method must be implemented by targets that
 | |
| /// set the M_CONVERTIBLE_TO_3_ADDR flag.  When this flag is set, the target
 | |
| /// may be able to convert a two-address instruction into a true
 | |
| /// three-address instruction on demand.  This allows the X86 target (for
 | |
| /// example) to convert ADD and SHL instructions into LEA instructions if they
 | |
| /// would require register copies due to two-addressness.
 | |
| ///
 | |
| /// This method returns a null pointer if the transformation cannot be
 | |
| /// performed, otherwise it returns the new instruction.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
 | |
|                                     MachineBasicBlock::iterator &MBBI,
 | |
|                                     LiveVariables *LV) const {
 | |
|   MachineInstr *MI = MBBI;
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   // All instructions input are two-addr instructions.  Get the known operands.
 | |
|   unsigned Dest = MI->getOperand(0).getReg();
 | |
|   unsigned Src = MI->getOperand(1).getReg();
 | |
|   bool isDead = MI->getOperand(0).isDead();
 | |
|   bool isKill = MI->getOperand(1).isKill();
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's.  When
 | |
|   // we have better subtarget support, enable the 16-bit LEA generation here.
 | |
|   // 16-bit LEA is also slow on Core2.
 | |
|   bool DisableLEA16 = true;
 | |
|   bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
 | |
| 
 | |
|   unsigned MIOpc = MI->getOpcode();
 | |
|   switch (MIOpc) {
 | |
|   case X86::SHUFPSrri: {
 | |
|     assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
 | |
|     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
 | |
| 
 | |
|     unsigned B = MI->getOperand(1).getReg();
 | |
|     unsigned C = MI->getOperand(2).getReg();
 | |
|     if (B != C) return 0;
 | |
|     unsigned A = MI->getOperand(0).getReg();
 | |
|     unsigned M = MI->getOperand(3).getImm();
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
 | |
|       .addReg(A, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(B, getKillRegState(isKill)).addImm(M);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHUFPDrri: {
 | |
|     assert(MI->getNumOperands() == 4 && "Unknown shufpd instruction!");
 | |
|     if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
 | |
| 
 | |
|     unsigned B = MI->getOperand(1).getReg();
 | |
|     unsigned C = MI->getOperand(2).getReg();
 | |
|     if (B != C) return 0;
 | |
|     unsigned A = MI->getOperand(0).getReg();
 | |
|     unsigned M = MI->getOperand(3).getImm();
 | |
| 
 | |
|     // Convert to PSHUFD mask.
 | |
|     M = ((M & 1) << 1) | ((M & 1) << 3) | ((M & 2) << 4) | ((M & 2) << 6)| 0x44;
 | |
| 
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
 | |
|       .addReg(A, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(B, getKillRegState(isKill)).addImm(M);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL64ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     // LEA can't handle RSP.
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|         !MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
 | |
|       return 0;
 | |
| 
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill))
 | |
|       .addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL32ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     // LEA can't handle ESP.
 | |
|     if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|         !MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
 | |
|       return 0;
 | |
| 
 | |
|     unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   case X86::SHL16ri: {
 | |
|     assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
 | |
|     // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
 | |
|     // the flags produced by a shift yet, so this is safe.
 | |
|     unsigned ShAmt = MI->getOperand(2).getImm();
 | |
|     if (ShAmt == 0 || ShAmt >= 4) return 0;
 | |
| 
 | |
|     if (DisableLEA16)
 | |
|       return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|     NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|       .addReg(Dest, RegState::Define | getDeadRegState(isDead))
 | |
|       .addReg(0).addImm(1 << ShAmt)
 | |
|       .addReg(Src, getKillRegState(isKill))
 | |
|       .addImm(0).addReg(0);
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     // The following opcodes also sets the condition code register(s). Only
 | |
|     // convert them to equivalent lea if the condition code register def's
 | |
|     // are dead!
 | |
|     if (hasLiveCondCodeDef(MI))
 | |
|       return 0;
 | |
| 
 | |
|     switch (MIOpc) {
 | |
|     default: return 0;
 | |
|     case X86::INC64r:
 | |
|     case X86::INC32r:
 | |
|     case X86::INC64_32r: {
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | |
|       unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
|       const TargetRegisterClass *RC = MIOpc == X86::INC64r ?
 | |
|         (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
 | |
|         (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
 | |
| 
 | |
|       // LEA can't handle RSP.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|           !MF.getRegInfo().constrainRegClass(Src, RC))
 | |
|         return 0;
 | |
| 
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, 1);
 | |
|       break;
 | |
|     }
 | |
|     case X86::INC16r:
 | |
|     case X86::INC64_16r:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                            .addReg(Dest, RegState::Define |
 | |
|                                    getDeadRegState(isDead)),
 | |
|                            Src, isKill, 1);
 | |
|       break;
 | |
|     case X86::DEC64r:
 | |
|     case X86::DEC32r:
 | |
|     case X86::DEC64_32r: {
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | |
|       unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
 | |
|         : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
 | |
|       const TargetRegisterClass *RC = MIOpc == X86::DEC64r ?
 | |
|         (const TargetRegisterClass*)&X86::GR64_NOSPRegClass :
 | |
|         (const TargetRegisterClass*)&X86::GR32_NOSPRegClass;
 | |
|       // LEA can't handle RSP.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Src) &&
 | |
|           !MF.getRegInfo().constrainRegClass(Src, RC))
 | |
|         return 0;
 | |
| 
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, -1);
 | |
|       break;
 | |
|     }
 | |
|     case X86::DEC16r:
 | |
|     case X86::DEC64_16r:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                            .addReg(Dest, RegState::Define |
 | |
|                                    getDeadRegState(isDead)),
 | |
|                            Src, isKill, -1);
 | |
|       break;
 | |
|     case X86::ADD64rr:
 | |
|     case X86::ADD64rr_DB:
 | |
|     case X86::ADD32rr:
 | |
|     case X86::ADD32rr_DB: {
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Opc;
 | |
|       const TargetRegisterClass *RC;
 | |
|       if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
 | |
|         Opc = X86::LEA64r;
 | |
|         RC = &X86::GR64_NOSPRegClass;
 | |
|       } else {
 | |
|         Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|         RC = &X86::GR32_NOSPRegClass;
 | |
|       }
 | |
| 
 | |
| 
 | |
|       unsigned Src2 = MI->getOperand(2).getReg();
 | |
|       bool isKill2 = MI->getOperand(2).isKill();
 | |
| 
 | |
|       // LEA can't handle RSP.
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Src2) &&
 | |
|           !MF.getRegInfo().constrainRegClass(Src2, RC))
 | |
|         return 0;
 | |
| 
 | |
|       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                         .addReg(Dest, RegState::Define |
 | |
|                                 getDeadRegState(isDead)),
 | |
|                         Src, isKill, Src2, isKill2);
 | |
| 
 | |
|       // Preserve undefness of the operands.
 | |
|       bool isUndef = MI->getOperand(1).isUndef();
 | |
|       bool isUndef2 = MI->getOperand(2).isUndef();
 | |
|       NewMI->getOperand(1).setIsUndef(isUndef);
 | |
|       NewMI->getOperand(3).setIsUndef(isUndef2);
 | |
| 
 | |
|       if (LV && isKill2)
 | |
|         LV->replaceKillInstruction(Src2, MI, NewMI);
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD16rr:
 | |
|     case X86::ADD16rr_DB: {
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Src2 = MI->getOperand(2).getReg();
 | |
|       bool isKill2 = MI->getOperand(2).isKill();
 | |
|       NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                         .addReg(Dest, RegState::Define |
 | |
|                                 getDeadRegState(isDead)),
 | |
|                         Src, isKill, Src2, isKill2);
 | |
|       if (LV && isKill2)
 | |
|         LV->replaceKillInstruction(Src2, MI, NewMI);
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD64ri32:
 | |
|     case X86::ADD64ri8:
 | |
|     case X86::ADD64ri32_DB:
 | |
|     case X86::ADD64ri8_DB:
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     case X86::ADD32ri:
 | |
|     case X86::ADD32ri8:
 | |
|     case X86::ADD32ri_DB:
 | |
|     case X86::ADD32ri8_DB: {
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                                 Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     }
 | |
|     case X86::ADD16ri:
 | |
|     case X86::ADD16ri8:
 | |
|     case X86::ADD16ri_DB:
 | |
|     case X86::ADD16ri8_DB:
 | |
|       if (DisableLEA16)
 | |
|         return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
 | |
|       assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
 | |
|       NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
 | |
|                               .addReg(Dest, RegState::Define |
 | |
|                                       getDeadRegState(isDead)),
 | |
|                               Src, isKill, MI->getOperand(2).getImm());
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   if (!NewMI) return 0;
 | |
| 
 | |
|   if (LV) {  // Update live variables
 | |
|     if (isKill)
 | |
|       LV->replaceKillInstruction(Src, MI, NewMI);
 | |
|     if (isDead)
 | |
|       LV->replaceKillInstruction(Dest, MI, NewMI);
 | |
|   }
 | |
| 
 | |
|   MFI->insert(MBBI, NewMI);          // Insert the new inst
 | |
|   return NewMI;
 | |
| }
 | |
| 
 | |
| /// commuteInstruction - We have a few instructions that must be hacked on to
 | |
| /// commute them.
 | |
| ///
 | |
| MachineInstr *
 | |
| X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
 | |
|   case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
 | |
|   case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
 | |
|   case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
 | |
|   case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
 | |
|   case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
 | |
|     unsigned Opc;
 | |
|     unsigned Size;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: llvm_unreachable("Unreachable!");
 | |
|     case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
 | |
|     case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
 | |
|     case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
 | |
|     case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
 | |
|     case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
 | |
|     case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
 | |
|     }
 | |
|     unsigned Amt = MI->getOperand(3).getImm();
 | |
|     if (NewMI) {
 | |
|       MachineFunction &MF = *MI->getParent()->getParent();
 | |
|       MI = MF.CloneMachineInstr(MI);
 | |
|       NewMI = false;
 | |
|     }
 | |
|     MI->setDesc(get(Opc));
 | |
|     MI->getOperand(3).setImm(Size-Amt);
 | |
|     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | |
|   }
 | |
|   case X86::CMOVB16rr:
 | |
|   case X86::CMOVB32rr:
 | |
|   case X86::CMOVB64rr:
 | |
|   case X86::CMOVAE16rr:
 | |
|   case X86::CMOVAE32rr:
 | |
|   case X86::CMOVAE64rr:
 | |
|   case X86::CMOVE16rr:
 | |
|   case X86::CMOVE32rr:
 | |
|   case X86::CMOVE64rr:
 | |
|   case X86::CMOVNE16rr:
 | |
|   case X86::CMOVNE32rr:
 | |
|   case X86::CMOVNE64rr:
 | |
|   case X86::CMOVBE16rr:
 | |
|   case X86::CMOVBE32rr:
 | |
|   case X86::CMOVBE64rr:
 | |
|   case X86::CMOVA16rr:
 | |
|   case X86::CMOVA32rr:
 | |
|   case X86::CMOVA64rr:
 | |
|   case X86::CMOVL16rr:
 | |
|   case X86::CMOVL32rr:
 | |
|   case X86::CMOVL64rr:
 | |
|   case X86::CMOVGE16rr:
 | |
|   case X86::CMOVGE32rr:
 | |
|   case X86::CMOVGE64rr:
 | |
|   case X86::CMOVLE16rr:
 | |
|   case X86::CMOVLE32rr:
 | |
|   case X86::CMOVLE64rr:
 | |
|   case X86::CMOVG16rr:
 | |
|   case X86::CMOVG32rr:
 | |
|   case X86::CMOVG64rr:
 | |
|   case X86::CMOVS16rr:
 | |
|   case X86::CMOVS32rr:
 | |
|   case X86::CMOVS64rr:
 | |
|   case X86::CMOVNS16rr:
 | |
|   case X86::CMOVNS32rr:
 | |
|   case X86::CMOVNS64rr:
 | |
|   case X86::CMOVP16rr:
 | |
|   case X86::CMOVP32rr:
 | |
|   case X86::CMOVP64rr:
 | |
|   case X86::CMOVNP16rr:
 | |
|   case X86::CMOVNP32rr:
 | |
|   case X86::CMOVNP64rr:
 | |
|   case X86::CMOVO16rr:
 | |
|   case X86::CMOVO32rr:
 | |
|   case X86::CMOVO64rr:
 | |
|   case X86::CMOVNO16rr:
 | |
|   case X86::CMOVNO32rr:
 | |
|   case X86::CMOVNO64rr: {
 | |
|     unsigned Opc = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: break;
 | |
|     case X86::CMOVB16rr:  Opc = X86::CMOVAE16rr; break;
 | |
|     case X86::CMOVB32rr:  Opc = X86::CMOVAE32rr; break;
 | |
|     case X86::CMOVB64rr:  Opc = X86::CMOVAE64rr; break;
 | |
|     case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
 | |
|     case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
 | |
|     case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
 | |
|     case X86::CMOVE16rr:  Opc = X86::CMOVNE16rr; break;
 | |
|     case X86::CMOVE32rr:  Opc = X86::CMOVNE32rr; break;
 | |
|     case X86::CMOVE64rr:  Opc = X86::CMOVNE64rr; break;
 | |
|     case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
 | |
|     case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
 | |
|     case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
 | |
|     case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
 | |
|     case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
 | |
|     case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
 | |
|     case X86::CMOVA16rr:  Opc = X86::CMOVBE16rr; break;
 | |
|     case X86::CMOVA32rr:  Opc = X86::CMOVBE32rr; break;
 | |
|     case X86::CMOVA64rr:  Opc = X86::CMOVBE64rr; break;
 | |
|     case X86::CMOVL16rr:  Opc = X86::CMOVGE16rr; break;
 | |
|     case X86::CMOVL32rr:  Opc = X86::CMOVGE32rr; break;
 | |
|     case X86::CMOVL64rr:  Opc = X86::CMOVGE64rr; break;
 | |
|     case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
 | |
|     case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
 | |
|     case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
 | |
|     case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
 | |
|     case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
 | |
|     case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
 | |
|     case X86::CMOVG16rr:  Opc = X86::CMOVLE16rr; break;
 | |
|     case X86::CMOVG32rr:  Opc = X86::CMOVLE32rr; break;
 | |
|     case X86::CMOVG64rr:  Opc = X86::CMOVLE64rr; break;
 | |
|     case X86::CMOVS16rr:  Opc = X86::CMOVNS16rr; break;
 | |
|     case X86::CMOVS32rr:  Opc = X86::CMOVNS32rr; break;
 | |
|     case X86::CMOVS64rr:  Opc = X86::CMOVNS64rr; break;
 | |
|     case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
 | |
|     case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
 | |
|     case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
 | |
|     case X86::CMOVP16rr:  Opc = X86::CMOVNP16rr; break;
 | |
|     case X86::CMOVP32rr:  Opc = X86::CMOVNP32rr; break;
 | |
|     case X86::CMOVP64rr:  Opc = X86::CMOVNP64rr; break;
 | |
|     case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
 | |
|     case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
 | |
|     case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
 | |
|     case X86::CMOVO16rr:  Opc = X86::CMOVNO16rr; break;
 | |
|     case X86::CMOVO32rr:  Opc = X86::CMOVNO32rr; break;
 | |
|     case X86::CMOVO64rr:  Opc = X86::CMOVNO64rr; break;
 | |
|     case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
 | |
|     case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
 | |
|     case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
 | |
|     }
 | |
|     if (NewMI) {
 | |
|       MachineFunction &MF = *MI->getParent()->getParent();
 | |
|       MI = MF.CloneMachineInstr(MI);
 | |
|       NewMI = false;
 | |
|     }
 | |
|     MI->setDesc(get(Opc));
 | |
|     // Fallthrough intended.
 | |
|   }
 | |
|   default:
 | |
|     return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static X86::CondCode getCondFromBranchOpc(unsigned BrOpc) {
 | |
|   switch (BrOpc) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::JE_4:  return X86::COND_E;
 | |
|   case X86::JNE_4: return X86::COND_NE;
 | |
|   case X86::JL_4:  return X86::COND_L;
 | |
|   case X86::JLE_4: return X86::COND_LE;
 | |
|   case X86::JG_4:  return X86::COND_G;
 | |
|   case X86::JGE_4: return X86::COND_GE;
 | |
|   case X86::JB_4:  return X86::COND_B;
 | |
|   case X86::JBE_4: return X86::COND_BE;
 | |
|   case X86::JA_4:  return X86::COND_A;
 | |
|   case X86::JAE_4: return X86::COND_AE;
 | |
|   case X86::JS_4:  return X86::COND_S;
 | |
|   case X86::JNS_4: return X86::COND_NS;
 | |
|   case X86::JP_4:  return X86::COND_P;
 | |
|   case X86::JNP_4: return X86::COND_NP;
 | |
|   case X86::JO_4:  return X86::COND_O;
 | |
|   case X86::JNO_4: return X86::COND_NO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCondFromSETOpc - return condition code of a SET opcode.
 | |
| static X86::CondCode getCondFromSETOpc(unsigned Opc) {
 | |
|   switch (Opc) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::SETAr:  case X86::SETAm:  return X86::COND_A;
 | |
|   case X86::SETAEr: case X86::SETAEm: return X86::COND_AE;
 | |
|   case X86::SETBr:  case X86::SETBm:  return X86::COND_B;
 | |
|   case X86::SETBEr: case X86::SETBEm: return X86::COND_BE;
 | |
|   case X86::SETEr:  case X86::SETEm:  return X86::COND_E;
 | |
|   case X86::SETGr:  case X86::SETGm:  return X86::COND_G;
 | |
|   case X86::SETGEr: case X86::SETGEm: return X86::COND_GE;
 | |
|   case X86::SETLr:  case X86::SETLm:  return X86::COND_L;
 | |
|   case X86::SETLEr: case X86::SETLEm: return X86::COND_LE;
 | |
|   case X86::SETNEr: case X86::SETNEm: return X86::COND_NE;
 | |
|   case X86::SETNOr: case X86::SETNOm: return X86::COND_NO;
 | |
|   case X86::SETNPr: case X86::SETNPm: return X86::COND_NP;
 | |
|   case X86::SETNSr: case X86::SETNSm: return X86::COND_NS;
 | |
|   case X86::SETOr:  case X86::SETOm:  return X86::COND_O;
 | |
|   case X86::SETPr:  case X86::SETPm:  return X86::COND_P;
 | |
|   case X86::SETSr:  case X86::SETSm:  return X86::COND_S;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getCondFromCmovOpc - return condition code of a CMov opcode.
 | |
| static X86::CondCode getCondFromCMovOpc(unsigned Opc) {
 | |
|   switch (Opc) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::CMOVA16rm:  case X86::CMOVA16rr:  case X86::CMOVA32rm:
 | |
|   case X86::CMOVA32rr:  case X86::CMOVA64rm:  case X86::CMOVA64rr:
 | |
|     return X86::COND_A;
 | |
|   case X86::CMOVAE16rm: case X86::CMOVAE16rr: case X86::CMOVAE32rm:
 | |
|   case X86::CMOVAE32rr: case X86::CMOVAE64rm: case X86::CMOVAE64rr:
 | |
|     return X86::COND_AE;
 | |
|   case X86::CMOVB16rm:  case X86::CMOVB16rr:  case X86::CMOVB32rm:
 | |
|   case X86::CMOVB32rr:  case X86::CMOVB64rm:  case X86::CMOVB64rr:
 | |
|     return X86::COND_B;
 | |
|   case X86::CMOVBE16rm: case X86::CMOVBE16rr: case X86::CMOVBE32rm:
 | |
|   case X86::CMOVBE32rr: case X86::CMOVBE64rm: case X86::CMOVBE64rr:
 | |
|     return X86::COND_BE;
 | |
|   case X86::CMOVE16rm:  case X86::CMOVE16rr:  case X86::CMOVE32rm:
 | |
|   case X86::CMOVE32rr:  case X86::CMOVE64rm:  case X86::CMOVE64rr:
 | |
|     return X86::COND_E;
 | |
|   case X86::CMOVG16rm:  case X86::CMOVG16rr:  case X86::CMOVG32rm:
 | |
|   case X86::CMOVG32rr:  case X86::CMOVG64rm:  case X86::CMOVG64rr:
 | |
|     return X86::COND_G;
 | |
|   case X86::CMOVGE16rm: case X86::CMOVGE16rr: case X86::CMOVGE32rm:
 | |
|   case X86::CMOVGE32rr: case X86::CMOVGE64rm: case X86::CMOVGE64rr:
 | |
|     return X86::COND_GE;
 | |
|   case X86::CMOVL16rm:  case X86::CMOVL16rr:  case X86::CMOVL32rm:
 | |
|   case X86::CMOVL32rr:  case X86::CMOVL64rm:  case X86::CMOVL64rr:
 | |
|     return X86::COND_L;
 | |
|   case X86::CMOVLE16rm: case X86::CMOVLE16rr: case X86::CMOVLE32rm:
 | |
|   case X86::CMOVLE32rr: case X86::CMOVLE64rm: case X86::CMOVLE64rr:
 | |
|     return X86::COND_LE;
 | |
|   case X86::CMOVNE16rm: case X86::CMOVNE16rr: case X86::CMOVNE32rm:
 | |
|   case X86::CMOVNE32rr: case X86::CMOVNE64rm: case X86::CMOVNE64rr:
 | |
|     return X86::COND_NE;
 | |
|   case X86::CMOVNO16rm: case X86::CMOVNO16rr: case X86::CMOVNO32rm:
 | |
|   case X86::CMOVNO32rr: case X86::CMOVNO64rm: case X86::CMOVNO64rr:
 | |
|     return X86::COND_NO;
 | |
|   case X86::CMOVNP16rm: case X86::CMOVNP16rr: case X86::CMOVNP32rm:
 | |
|   case X86::CMOVNP32rr: case X86::CMOVNP64rm: case X86::CMOVNP64rr:
 | |
|     return X86::COND_NP;
 | |
|   case X86::CMOVNS16rm: case X86::CMOVNS16rr: case X86::CMOVNS32rm:
 | |
|   case X86::CMOVNS32rr: case X86::CMOVNS64rm: case X86::CMOVNS64rr:
 | |
|     return X86::COND_NS;
 | |
|   case X86::CMOVO16rm:  case X86::CMOVO16rr:  case X86::CMOVO32rm:
 | |
|   case X86::CMOVO32rr:  case X86::CMOVO64rm:  case X86::CMOVO64rr:
 | |
|     return X86::COND_O;
 | |
|   case X86::CMOVP16rm:  case X86::CMOVP16rr:  case X86::CMOVP32rm:
 | |
|   case X86::CMOVP32rr:  case X86::CMOVP64rm:  case X86::CMOVP64rr:
 | |
|     return X86::COND_P;
 | |
|   case X86::CMOVS16rm:  case X86::CMOVS16rr:  case X86::CMOVS32rm:
 | |
|   case X86::CMOVS32rr:  case X86::CMOVS64rm:  case X86::CMOVS64rr:
 | |
|     return X86::COND_S;
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::JE_4;
 | |
|   case X86::COND_NE: return X86::JNE_4;
 | |
|   case X86::COND_L:  return X86::JL_4;
 | |
|   case X86::COND_LE: return X86::JLE_4;
 | |
|   case X86::COND_G:  return X86::JG_4;
 | |
|   case X86::COND_GE: return X86::JGE_4;
 | |
|   case X86::COND_B:  return X86::JB_4;
 | |
|   case X86::COND_BE: return X86::JBE_4;
 | |
|   case X86::COND_A:  return X86::JA_4;
 | |
|   case X86::COND_AE: return X86::JAE_4;
 | |
|   case X86::COND_S:  return X86::JS_4;
 | |
|   case X86::COND_NS: return X86::JNS_4;
 | |
|   case X86::COND_P:  return X86::JP_4;
 | |
|   case X86::COND_NP: return X86::JNP_4;
 | |
|   case X86::COND_O:  return X86::JO_4;
 | |
|   case X86::COND_NO: return X86::JNO_4;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// GetOppositeBranchCondition - Return the inverse of the specified condition,
 | |
| /// e.g. turning COND_E to COND_NE.
 | |
| X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: llvm_unreachable("Illegal condition code!");
 | |
|   case X86::COND_E:  return X86::COND_NE;
 | |
|   case X86::COND_NE: return X86::COND_E;
 | |
|   case X86::COND_L:  return X86::COND_GE;
 | |
|   case X86::COND_LE: return X86::COND_G;
 | |
|   case X86::COND_G:  return X86::COND_LE;
 | |
|   case X86::COND_GE: return X86::COND_L;
 | |
|   case X86::COND_B:  return X86::COND_AE;
 | |
|   case X86::COND_BE: return X86::COND_A;
 | |
|   case X86::COND_A:  return X86::COND_BE;
 | |
|   case X86::COND_AE: return X86::COND_B;
 | |
|   case X86::COND_S:  return X86::COND_NS;
 | |
|   case X86::COND_NS: return X86::COND_S;
 | |
|   case X86::COND_P:  return X86::COND_NP;
 | |
|   case X86::COND_NP: return X86::COND_P;
 | |
|   case X86::COND_O:  return X86::COND_NO;
 | |
|   case X86::COND_NO: return X86::COND_O;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSwappedCondition - assume the flags are set by MI(a,b), return
 | |
| /// the condition code if we modify the instructions such that flags are
 | |
| /// set by MI(b,a).
 | |
| static X86::CondCode getSwappedCondition(X86::CondCode CC) {
 | |
|   switch (CC) {
 | |
|   default: return X86::COND_INVALID;
 | |
|   case X86::COND_E:  return X86::COND_E;
 | |
|   case X86::COND_NE: return X86::COND_NE;
 | |
|   case X86::COND_L:  return X86::COND_G;
 | |
|   case X86::COND_LE: return X86::COND_GE;
 | |
|   case X86::COND_G:  return X86::COND_L;
 | |
|   case X86::COND_GE: return X86::COND_LE;
 | |
|   case X86::COND_B:  return X86::COND_A;
 | |
|   case X86::COND_BE: return X86::COND_AE;
 | |
|   case X86::COND_A:  return X86::COND_B;
 | |
|   case X86::COND_AE: return X86::COND_BE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getSETFromCond - Return a set opcode for the given condition and
 | |
| /// whether it has memory operand.
 | |
| static unsigned getSETFromCond(X86::CondCode CC,
 | |
|                                bool HasMemoryOperand) {
 | |
|   static const unsigned Opc[16][2] = {
 | |
|     { X86::SETAr,  X86::SETAm  },
 | |
|     { X86::SETAEr, X86::SETAEm },
 | |
|     { X86::SETBr,  X86::SETBm  },
 | |
|     { X86::SETBEr, X86::SETBEm },
 | |
|     { X86::SETEr,  X86::SETEm  },
 | |
|     { X86::SETGr,  X86::SETGm  },
 | |
|     { X86::SETGEr, X86::SETGEm },
 | |
|     { X86::SETLr,  X86::SETLm  },
 | |
|     { X86::SETLEr, X86::SETLEm },
 | |
|     { X86::SETNEr, X86::SETNEm },
 | |
|     { X86::SETNOr, X86::SETNOm },
 | |
|     { X86::SETNPr, X86::SETNPm },
 | |
|     { X86::SETNSr, X86::SETNSm },
 | |
|     { X86::SETOr,  X86::SETOm  },
 | |
|     { X86::SETPr,  X86::SETPm  },
 | |
|     { X86::SETSr,  X86::SETSm  }
 | |
|   };
 | |
| 
 | |
|   assert(CC < 16 && "Can only handle standard cond codes");
 | |
|   return Opc[CC][HasMemoryOperand ? 1 : 0];
 | |
| }
 | |
| 
 | |
| /// getCMovFromCond - Return a cmov opcode for the given condition,
 | |
| /// register size in bytes, and operand type.
 | |
| static unsigned getCMovFromCond(X86::CondCode CC, unsigned RegBytes,
 | |
|                                 bool HasMemoryOperand) {
 | |
|   static const unsigned Opc[32][3] = {
 | |
|     { X86::CMOVA16rr,  X86::CMOVA32rr,  X86::CMOVA64rr  },
 | |
|     { X86::CMOVAE16rr, X86::CMOVAE32rr, X86::CMOVAE64rr },
 | |
|     { X86::CMOVB16rr,  X86::CMOVB32rr,  X86::CMOVB64rr  },
 | |
|     { X86::CMOVBE16rr, X86::CMOVBE32rr, X86::CMOVBE64rr },
 | |
|     { X86::CMOVE16rr,  X86::CMOVE32rr,  X86::CMOVE64rr  },
 | |
|     { X86::CMOVG16rr,  X86::CMOVG32rr,  X86::CMOVG64rr  },
 | |
|     { X86::CMOVGE16rr, X86::CMOVGE32rr, X86::CMOVGE64rr },
 | |
|     { X86::CMOVL16rr,  X86::CMOVL32rr,  X86::CMOVL64rr  },
 | |
|     { X86::CMOVLE16rr, X86::CMOVLE32rr, X86::CMOVLE64rr },
 | |
|     { X86::CMOVNE16rr, X86::CMOVNE32rr, X86::CMOVNE64rr },
 | |
|     { X86::CMOVNO16rr, X86::CMOVNO32rr, X86::CMOVNO64rr },
 | |
|     { X86::CMOVNP16rr, X86::CMOVNP32rr, X86::CMOVNP64rr },
 | |
|     { X86::CMOVNS16rr, X86::CMOVNS32rr, X86::CMOVNS64rr },
 | |
|     { X86::CMOVO16rr,  X86::CMOVO32rr,  X86::CMOVO64rr  },
 | |
|     { X86::CMOVP16rr,  X86::CMOVP32rr,  X86::CMOVP64rr  },
 | |
|     { X86::CMOVS16rr,  X86::CMOVS32rr,  X86::CMOVS64rr  },
 | |
|     { X86::CMOVA16rm,  X86::CMOVA32rm,  X86::CMOVA64rm  },
 | |
|     { X86::CMOVAE16rm, X86::CMOVAE32rm, X86::CMOVAE64rm },
 | |
|     { X86::CMOVB16rm,  X86::CMOVB32rm,  X86::CMOVB64rm  },
 | |
|     { X86::CMOVBE16rm, X86::CMOVBE32rm, X86::CMOVBE64rm },
 | |
|     { X86::CMOVE16rm,  X86::CMOVE32rm,  X86::CMOVE64rm  },
 | |
|     { X86::CMOVG16rm,  X86::CMOVG32rm,  X86::CMOVG64rm  },
 | |
|     { X86::CMOVGE16rm, X86::CMOVGE32rm, X86::CMOVGE64rm },
 | |
|     { X86::CMOVL16rm,  X86::CMOVL32rm,  X86::CMOVL64rm  },
 | |
|     { X86::CMOVLE16rm, X86::CMOVLE32rm, X86::CMOVLE64rm },
 | |
|     { X86::CMOVNE16rm, X86::CMOVNE32rm, X86::CMOVNE64rm },
 | |
|     { X86::CMOVNO16rm, X86::CMOVNO32rm, X86::CMOVNO64rm },
 | |
|     { X86::CMOVNP16rm, X86::CMOVNP32rm, X86::CMOVNP64rm },
 | |
|     { X86::CMOVNS16rm, X86::CMOVNS32rm, X86::CMOVNS64rm },
 | |
|     { X86::CMOVO16rm,  X86::CMOVO32rm,  X86::CMOVO64rm  },
 | |
|     { X86::CMOVP16rm,  X86::CMOVP32rm,  X86::CMOVP64rm  },
 | |
|     { X86::CMOVS16rm,  X86::CMOVS32rm,  X86::CMOVS64rm  }
 | |
|   };
 | |
| 
 | |
|   assert(CC < 16 && "Can only handle standard cond codes");
 | |
|   unsigned Idx = HasMemoryOperand ? 16+CC : CC;
 | |
|   switch(RegBytes) {
 | |
|   default: llvm_unreachable("Illegal register size!");
 | |
|   case 2: return Opc[Idx][0];
 | |
|   case 4: return Opc[Idx][1];
 | |
|   case 8: return Opc[Idx][2];
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
 | |
|   if (!MI->isTerminator()) return false;
 | |
| 
 | |
|   // Conditional branch is a special case.
 | |
|   if (MI->isBranch() && !MI->isBarrier())
 | |
|     return true;
 | |
|   if (!MI->isPredicable())
 | |
|     return true;
 | |
|   return !isPredicated(MI);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock *&TBB,
 | |
|                                  MachineBasicBlock *&FBB,
 | |
|                                  SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                  bool AllowModify) const {
 | |
|   // Start from the bottom of the block and work up, examining the
 | |
|   // terminator instructions.
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   MachineBasicBlock::iterator UnCondBrIter = MBB.end();
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->isDebugValue())
 | |
|       continue;
 | |
| 
 | |
|     // Working from the bottom, when we see a non-terminator instruction, we're
 | |
|     // done.
 | |
|     if (!isUnpredicatedTerminator(I))
 | |
|       break;
 | |
| 
 | |
|     // A terminator that isn't a branch can't easily be handled by this
 | |
|     // analysis.
 | |
|     if (!I->isBranch())
 | |
|       return true;
 | |
| 
 | |
|     // Handle unconditional branches.
 | |
|     if (I->getOpcode() == X86::JMP_4) {
 | |
|       UnCondBrIter = I;
 | |
| 
 | |
|       if (!AllowModify) {
 | |
|         TBB = I->getOperand(0).getMBB();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If the block has any instructions after a JMP, delete them.
 | |
|       while (llvm::next(I) != MBB.end())
 | |
|         llvm::next(I)->eraseFromParent();
 | |
| 
 | |
|       Cond.clear();
 | |
|       FBB = 0;
 | |
| 
 | |
|       // Delete the JMP if it's equivalent to a fall-through.
 | |
|       if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
 | |
|         TBB = 0;
 | |
|         I->eraseFromParent();
 | |
|         I = MBB.end();
 | |
|         UnCondBrIter = MBB.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // TBB is used to indicate the unconditional destination.
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle conditional branches.
 | |
|     X86::CondCode BranchCode = getCondFromBranchOpc(I->getOpcode());
 | |
|     if (BranchCode == X86::COND_INVALID)
 | |
|       return true;  // Can't handle indirect branch.
 | |
| 
 | |
|     // Working from the bottom, handle the first conditional branch.
 | |
|     if (Cond.empty()) {
 | |
|       MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
 | |
|       if (AllowModify && UnCondBrIter != MBB.end() &&
 | |
|           MBB.isLayoutSuccessor(TargetBB)) {
 | |
|         // If we can modify the code and it ends in something like:
 | |
|         //
 | |
|         //     jCC L1
 | |
|         //     jmp L2
 | |
|         //   L1:
 | |
|         //     ...
 | |
|         //   L2:
 | |
|         //
 | |
|         // Then we can change this to:
 | |
|         //
 | |
|         //     jnCC L2
 | |
|         //   L1:
 | |
|         //     ...
 | |
|         //   L2:
 | |
|         //
 | |
|         // Which is a bit more efficient.
 | |
|         // We conditionally jump to the fall-through block.
 | |
|         BranchCode = GetOppositeBranchCondition(BranchCode);
 | |
|         unsigned JNCC = GetCondBranchFromCond(BranchCode);
 | |
|         MachineBasicBlock::iterator OldInst = I;
 | |
| 
 | |
|         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
 | |
|           .addMBB(UnCondBrIter->getOperand(0).getMBB());
 | |
|         BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
 | |
|           .addMBB(TargetBB);
 | |
| 
 | |
|         OldInst->eraseFromParent();
 | |
|         UnCondBrIter->eraseFromParent();
 | |
| 
 | |
|         // Restart the analysis.
 | |
|         UnCondBrIter = MBB.end();
 | |
|         I = MBB.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       FBB = TBB;
 | |
|       TBB = I->getOperand(0).getMBB();
 | |
|       Cond.push_back(MachineOperand::CreateImm(BranchCode));
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Handle subsequent conditional branches. Only handle the case where all
 | |
|     // conditional branches branch to the same destination and their condition
 | |
|     // opcodes fit one of the special multi-branch idioms.
 | |
|     assert(Cond.size() == 1);
 | |
|     assert(TBB);
 | |
| 
 | |
|     // Only handle the case where all conditional branches branch to the same
 | |
|     // destination.
 | |
|     if (TBB != I->getOperand(0).getMBB())
 | |
|       return true;
 | |
| 
 | |
|     // If the conditions are the same, we can leave them alone.
 | |
|     X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
 | |
|     if (OldBranchCode == BranchCode)
 | |
|       continue;
 | |
| 
 | |
|     // If they differ, see if they fit one of the known patterns. Theoretically,
 | |
|     // we could handle more patterns here, but we shouldn't expect to see them
 | |
|     // if instruction selection has done a reasonable job.
 | |
|     if ((OldBranchCode == X86::COND_NP &&
 | |
|          BranchCode == X86::COND_E) ||
 | |
|         (OldBranchCode == X86::COND_E &&
 | |
|          BranchCode == X86::COND_NP))
 | |
|       BranchCode = X86::COND_NP_OR_E;
 | |
|     else if ((OldBranchCode == X86::COND_P &&
 | |
|               BranchCode == X86::COND_NE) ||
 | |
|              (OldBranchCode == X86::COND_NE &&
 | |
|               BranchCode == X86::COND_P))
 | |
|       BranchCode = X86::COND_NE_OR_P;
 | |
|     else
 | |
|       return true;
 | |
| 
 | |
|     // Update the MachineOperand.
 | |
|     Cond[0].setImm(BranchCode);
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
 | |
|   MachineBasicBlock::iterator I = MBB.end();
 | |
|   unsigned Count = 0;
 | |
| 
 | |
|   while (I != MBB.begin()) {
 | |
|     --I;
 | |
|     if (I->isDebugValue())
 | |
|       continue;
 | |
|     if (I->getOpcode() != X86::JMP_4 &&
 | |
|         getCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
 | |
|       break;
 | |
|     // Remove the branch.
 | |
|     I->eraseFromParent();
 | |
|     I = MBB.end();
 | |
|     ++Count;
 | |
|   }
 | |
| 
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
 | |
|                            MachineBasicBlock *FBB,
 | |
|                            const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                            DebugLoc DL) const {
 | |
|   // Shouldn't be a fall through.
 | |
|   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 | |
|   assert((Cond.size() == 1 || Cond.size() == 0) &&
 | |
|          "X86 branch conditions have one component!");
 | |
| 
 | |
|   if (Cond.empty()) {
 | |
|     // Unconditional branch?
 | |
|     assert(!FBB && "Unconditional branch with multiple successors!");
 | |
|     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   // Conditional branch.
 | |
|   unsigned Count = 0;
 | |
|   X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
 | |
|   switch (CC) {
 | |
|   case X86::COND_NP_OR_E:
 | |
|     // Synthesize NP_OR_E with two branches.
 | |
|     BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     break;
 | |
|   case X86::COND_NE_OR_P:
 | |
|     // Synthesize NE_OR_P with two branches.
 | |
|     BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
 | |
|     ++Count;
 | |
|     break;
 | |
|   default: {
 | |
|     unsigned Opc = GetCondBranchFromCond(CC);
 | |
|     BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   }
 | |
|   if (FBB) {
 | |
|     // Two-way Conditional branch. Insert the second branch.
 | |
|     BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
 | |
|     ++Count;
 | |
|   }
 | |
|   return Count;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| canInsertSelect(const MachineBasicBlock &MBB,
 | |
|                 const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                 unsigned TrueReg, unsigned FalseReg,
 | |
|                 int &CondCycles, int &TrueCycles, int &FalseCycles) const {
 | |
|   // Not all subtargets have cmov instructions.
 | |
|   if (!TM.getSubtarget<X86Subtarget>().hasCMov())
 | |
|     return false;
 | |
|   if (Cond.size() != 1)
 | |
|     return false;
 | |
|   // We cannot do the composite conditions, at least not in SSA form.
 | |
|   if ((X86::CondCode)Cond[0].getImm() > X86::COND_S)
 | |
|     return false;
 | |
| 
 | |
|   // Check register classes.
 | |
|   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|   const TargetRegisterClass *RC =
 | |
|     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
 | |
|   if (!RC)
 | |
|     return false;
 | |
| 
 | |
|   // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
 | |
|   if (X86::GR16RegClass.hasSubClassEq(RC) ||
 | |
|       X86::GR32RegClass.hasSubClassEq(RC) ||
 | |
|       X86::GR64RegClass.hasSubClassEq(RC)) {
 | |
|     // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
 | |
|     // Bridge. Probably Ivy Bridge as well.
 | |
|     CondCycles = 2;
 | |
|     TrueCycles = 2;
 | |
|     FalseCycles = 2;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Can't do vectors.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::insertSelect(MachineBasicBlock &MBB,
 | |
|                                 MachineBasicBlock::iterator I, DebugLoc DL,
 | |
|                                 unsigned DstReg,
 | |
|                                 const SmallVectorImpl<MachineOperand> &Cond,
 | |
|                                 unsigned TrueReg, unsigned FalseReg) const {
 | |
|    MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
 | |
|    assert(Cond.size() == 1 && "Invalid Cond array");
 | |
|    unsigned Opc = getCMovFromCond((X86::CondCode)Cond[0].getImm(),
 | |
|                                   MRI.getRegClass(DstReg)->getSize(),
 | |
|                                   false/*HasMemoryOperand*/);
 | |
|    BuildMI(MBB, I, DL, get(Opc), DstReg).addReg(FalseReg).addReg(TrueReg);
 | |
| }
 | |
| 
 | |
| /// isHReg - Test if the given register is a physical h register.
 | |
| static bool isHReg(unsigned Reg) {
 | |
|   return X86::GR8_ABCD_HRegClass.contains(Reg);
 | |
| }
 | |
| 
 | |
| // Try and copy between VR128/VR64 and GR64 registers.
 | |
| static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
 | |
|                                         bool HasAVX) {
 | |
|   // SrcReg(VR128) -> DestReg(GR64)
 | |
|   // SrcReg(VR64)  -> DestReg(GR64)
 | |
|   // SrcReg(GR64)  -> DestReg(VR128)
 | |
|   // SrcReg(GR64)  -> DestReg(VR64)
 | |
| 
 | |
|   if (X86::GR64RegClass.contains(DestReg)) {
 | |
|     if (X86::VR128RegClass.contains(SrcReg)) {
 | |
|       // Copy from a VR128 register to a GR64 register.
 | |
|       return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
 | |
|     } else if (X86::VR64RegClass.contains(SrcReg)) {
 | |
|       // Copy from a VR64 register to a GR64 register.
 | |
|       return X86::MOVSDto64rr;
 | |
|     }
 | |
|   } else if (X86::GR64RegClass.contains(SrcReg)) {
 | |
|     // Copy from a GR64 register to a VR128 register.
 | |
|     if (X86::VR128RegClass.contains(DestReg))
 | |
|       return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
 | |
|     // Copy from a GR64 register to a VR64 register.
 | |
|     else if (X86::VR64RegClass.contains(DestReg))
 | |
|       return X86::MOV64toSDrr;
 | |
|   }
 | |
| 
 | |
|   // SrcReg(FR32) -> DestReg(GR32)
 | |
|   // SrcReg(GR32) -> DestReg(FR32)
 | |
| 
 | |
|   if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
 | |
|       // Copy from a FR32 register to a GR32 register.
 | |
|       return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
 | |
| 
 | |
|   if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
 | |
|       // Copy from a GR32 register to a FR32 register.
 | |
|       return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
 | |
|                                MachineBasicBlock::iterator MI, DebugLoc DL,
 | |
|                                unsigned DestReg, unsigned SrcReg,
 | |
|                                bool KillSrc) const {
 | |
|   // First deal with the normal symmetric copies.
 | |
|   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
 | |
|   unsigned Opc = 0;
 | |
|   if (X86::GR64RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOV64rr;
 | |
|   else if (X86::GR32RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOV32rr;
 | |
|   else if (X86::GR16RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MOV16rr;
 | |
|   else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
 | |
|     // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|     // move.  Otherwise use a normal move.
 | |
|     if ((isHReg(DestReg) || isHReg(SrcReg)) &&
 | |
|         TM.getSubtarget<X86Subtarget>().is64Bit()) {
 | |
|       Opc = X86::MOV8rr_NOREX;
 | |
|       // Both operands must be encodable without an REX prefix.
 | |
|       assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
 | |
|              "8-bit H register can not be copied outside GR8_NOREX");
 | |
|     } else
 | |
|       Opc = X86::MOV8rr;
 | |
|   } else if (X86::VR128RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
 | |
|   else if (X86::VR256RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::VMOVAPSYrr;
 | |
|   else if (X86::VR64RegClass.contains(DestReg, SrcReg))
 | |
|     Opc = X86::MMX_MOVQ64rr;
 | |
|   else
 | |
|     Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
 | |
| 
 | |
|   if (Opc) {
 | |
|     BuildMI(MBB, MI, DL, get(Opc), DestReg)
 | |
|       .addReg(SrcReg, getKillRegState(KillSrc));
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Moving EFLAGS to / from another register requires a push and a pop.
 | |
|   if (SrcReg == X86::EFLAGS) {
 | |
|     if (X86::GR64RegClass.contains(DestReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSHF64));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
 | |
|       return;
 | |
|     } else if (X86::GR32RegClass.contains(DestReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSHF32));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   if (DestReg == X86::EFLAGS) {
 | |
|     if (X86::GR64RegClass.contains(SrcReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSH64r))
 | |
|         .addReg(SrcReg, getKillRegState(KillSrc));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POPF64));
 | |
|       return;
 | |
|     } else if (X86::GR32RegClass.contains(SrcReg)) {
 | |
|       BuildMI(MBB, MI, DL, get(X86::PUSH32r))
 | |
|         .addReg(SrcReg, getKillRegState(KillSrc));
 | |
|       BuildMI(MBB, MI, DL, get(X86::POPF32));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
 | |
|                << " to " << RI.getName(DestReg) << '\n');
 | |
|   llvm_unreachable("Cannot emit physreg copy instruction");
 | |
| }
 | |
| 
 | |
| static unsigned getLoadStoreRegOpcode(unsigned Reg,
 | |
|                                       const TargetRegisterClass *RC,
 | |
|                                       bool isStackAligned,
 | |
|                                       const TargetMachine &TM,
 | |
|                                       bool load) {
 | |
|   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
 | |
|   switch (RC->getSize()) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown spill size");
 | |
|   case 1:
 | |
|     assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
 | |
|     if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|       // Copying to or from a physical H register on x86-64 requires a NOREX
 | |
|       // move.  Otherwise use a normal move.
 | |
|       if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
 | |
|         return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
 | |
|     return load ? X86::MOV8rm : X86::MOV8mr;
 | |
|   case 2:
 | |
|     assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
 | |
|     return load ? X86::MOV16rm : X86::MOV16mr;
 | |
|   case 4:
 | |
|     if (X86::GR32RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MOV32rm : X86::MOV32mr;
 | |
|     if (X86::FR32RegClass.hasSubClassEq(RC))
 | |
|       return load ?
 | |
|         (HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
 | |
|         (HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
 | |
|     if (X86::RFP32RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::LD_Fp32m : X86::ST_Fp32m;
 | |
|     llvm_unreachable("Unknown 4-byte regclass");
 | |
|   case 8:
 | |
|     if (X86::GR64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MOV64rm : X86::MOV64mr;
 | |
|     if (X86::FR64RegClass.hasSubClassEq(RC))
 | |
|       return load ?
 | |
|         (HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
 | |
|         (HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
 | |
|     if (X86::VR64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
 | |
|     if (X86::RFP64RegClass.hasSubClassEq(RC))
 | |
|       return load ? X86::LD_Fp64m : X86::ST_Fp64m;
 | |
|     llvm_unreachable("Unknown 8-byte regclass");
 | |
|   case 10:
 | |
|     assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
 | |
|     return load ? X86::LD_Fp80m : X86::ST_FpP80m;
 | |
|   case 16: {
 | |
|     assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
 | |
|     // If stack is realigned we can use aligned stores.
 | |
|     if (isStackAligned)
 | |
|       return load ?
 | |
|         (HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
 | |
|         (HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
 | |
|     else
 | |
|       return load ?
 | |
|         (HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
 | |
|         (HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
 | |
|   }
 | |
|   case 32:
 | |
|     assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
 | |
|     // If stack is realigned we can use aligned stores.
 | |
|     if (isStackAligned)
 | |
|       return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
 | |
|     else
 | |
|       return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getStoreRegOpcode(unsigned SrcReg,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   bool isStackAligned,
 | |
|                                   TargetMachine &TM) {
 | |
|   return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
 | |
| }
 | |
| 
 | |
| 
 | |
| static unsigned getLoadRegOpcode(unsigned DestReg,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  bool isStackAligned,
 | |
|                                  const TargetMachine &TM) {
 | |
|   return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
 | |
|                                        MachineBasicBlock::iterator MI,
 | |
|                                        unsigned SrcReg, bool isKill, int FrameIdx,
 | |
|                                        const TargetRegisterClass *RC,
 | |
|                                        const TargetRegisterInfo *TRI) const {
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
 | |
|          "Stack slot too small for store");
 | |
|   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
 | |
|   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
 | |
|     RI.canRealignStack(MF);
 | |
|   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
|   addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
 | |
|     .addReg(SrcReg, getKillRegState(isKill));
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
 | |
|                                   bool isKill,
 | |
|                                   SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                   const TargetRegisterClass *RC,
 | |
|                                   MachineInstr::mmo_iterator MMOBegin,
 | |
|                                   MachineInstr::mmo_iterator MMOEnd,
 | |
|                                   SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
 | |
|   bool isAligned = MMOBegin != MMOEnd &&
 | |
|                    (*MMOBegin)->getAlignment() >= Alignment;
 | |
|   unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
 | |
|   DebugLoc DL;
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
 | |
|   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | |
|     MIB.addOperand(Addr[i]);
 | |
|   MIB.addReg(SrcReg, getKillRegState(isKill));
 | |
|   (*MIB).setMemRefs(MMOBegin, MMOEnd);
 | |
|   NewMIs.push_back(MIB);
 | |
| }
 | |
| 
 | |
| 
 | |
| void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
 | |
|                                         MachineBasicBlock::iterator MI,
 | |
|                                         unsigned DestReg, int FrameIdx,
 | |
|                                         const TargetRegisterClass *RC,
 | |
|                                         const TargetRegisterInfo *TRI) const {
 | |
|   const MachineFunction &MF = *MBB.getParent();
 | |
|   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
 | |
|   bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
 | |
|     RI.canRealignStack(MF);
 | |
|   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
 | |
|   DebugLoc DL = MBB.findDebugLoc(MI);
 | |
|   addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
 | |
|                                  SmallVectorImpl<MachineOperand> &Addr,
 | |
|                                  const TargetRegisterClass *RC,
 | |
|                                  MachineInstr::mmo_iterator MMOBegin,
 | |
|                                  MachineInstr::mmo_iterator MMOEnd,
 | |
|                                  SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
 | |
|   bool isAligned = MMOBegin != MMOEnd &&
 | |
|                    (*MMOBegin)->getAlignment() >= Alignment;
 | |
|   unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
 | |
|   DebugLoc DL;
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
 | |
|   for (unsigned i = 0, e = Addr.size(); i != e; ++i)
 | |
|     MIB.addOperand(Addr[i]);
 | |
|   (*MIB).setMemRefs(MMOBegin, MMOEnd);
 | |
|   NewMIs.push_back(MIB);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| analyzeCompare(const MachineInstr *MI, unsigned &SrcReg, unsigned &SrcReg2,
 | |
|                int &CmpMask, int &CmpValue) const {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::CMP64ri32:
 | |
|   case X86::CMP64ri8:
 | |
|   case X86::CMP32ri:
 | |
|   case X86::CMP32ri8:
 | |
|   case X86::CMP16ri:
 | |
|   case X86::CMP16ri8:
 | |
|   case X86::CMP8ri:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     SrcReg2 = 0;
 | |
|     CmpMask = ~0;
 | |
|     CmpValue = MI->getOperand(1).getImm();
 | |
|     return true;
 | |
|   case X86::CMP64rr:
 | |
|   case X86::CMP32rr:
 | |
|   case X86::CMP16rr:
 | |
|   case X86::CMP8rr:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     SrcReg2 = MI->getOperand(1).getReg();
 | |
|     CmpMask = ~0;
 | |
|     CmpValue = 0;
 | |
|     return true;
 | |
|   case X86::TEST8rr:
 | |
|   case X86::TEST16rr:
 | |
|   case X86::TEST32rr:
 | |
|   case X86::TEST64rr:
 | |
|     SrcReg = MI->getOperand(0).getReg();
 | |
|     if (MI->getOperand(1).getReg() != SrcReg) return false;
 | |
|     // Compare against zero.
 | |
|     SrcReg2 = 0;
 | |
|     CmpMask = ~0;
 | |
|     CmpValue = 0;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isRedundantFlagInstr - check whether the first instruction, whose only
 | |
| /// purpose is to update flags, can be made redundant.
 | |
| /// CMPrr can be made redundant by SUBrr if the operands are the same.
 | |
| /// This function can be extended later on.
 | |
| /// SrcReg, SrcRegs: register operands for FlagI.
 | |
| /// ImmValue: immediate for FlagI if it takes an immediate.
 | |
| inline static bool isRedundantFlagInstr(MachineInstr *FlagI, unsigned SrcReg,
 | |
|                                         unsigned SrcReg2, int ImmValue,
 | |
|                                         MachineInstr *OI) {
 | |
|   if (((FlagI->getOpcode() == X86::CMP64rr &&
 | |
|         OI->getOpcode() == X86::SUB64rr) ||
 | |
|        (FlagI->getOpcode() == X86::CMP32rr &&
 | |
|         OI->getOpcode() == X86::SUB32rr)||
 | |
|        (FlagI->getOpcode() == X86::CMP16rr &&
 | |
|         OI->getOpcode() == X86::SUB16rr)||
 | |
|        (FlagI->getOpcode() == X86::CMP8rr &&
 | |
|         OI->getOpcode() == X86::SUB8rr)) &&
 | |
|       ((OI->getOperand(1).getReg() == SrcReg &&
 | |
|         OI->getOperand(2).getReg() == SrcReg2) ||
 | |
|        (OI->getOperand(1).getReg() == SrcReg2 &&
 | |
|         OI->getOperand(2).getReg() == SrcReg)))
 | |
|     return true;
 | |
| 
 | |
|   if (((FlagI->getOpcode() == X86::CMP64ri32 &&
 | |
|         OI->getOpcode() == X86::SUB64ri32) ||
 | |
|        (FlagI->getOpcode() == X86::CMP64ri8 &&
 | |
|         OI->getOpcode() == X86::SUB64ri8) ||
 | |
|        (FlagI->getOpcode() == X86::CMP32ri &&
 | |
|         OI->getOpcode() == X86::SUB32ri) ||
 | |
|        (FlagI->getOpcode() == X86::CMP32ri8 &&
 | |
|         OI->getOpcode() == X86::SUB32ri8) ||
 | |
|        (FlagI->getOpcode() == X86::CMP16ri &&
 | |
|         OI->getOpcode() == X86::SUB16ri) ||
 | |
|        (FlagI->getOpcode() == X86::CMP16ri8 &&
 | |
|         OI->getOpcode() == X86::SUB16ri8) ||
 | |
|        (FlagI->getOpcode() == X86::CMP8ri &&
 | |
|         OI->getOpcode() == X86::SUB8ri)) &&
 | |
|       OI->getOperand(1).getReg() == SrcReg &&
 | |
|       OI->getOperand(2).getImm() == ImmValue)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isDefConvertible - check whether the definition can be converted
 | |
| /// to remove a comparison against zero.
 | |
| inline static bool isDefConvertible(MachineInstr *MI) {
 | |
|   switch (MI->getOpcode()) {
 | |
|   default: return false;
 | |
|   case X86::SUB64ri32: case X86::SUB64ri8: case X86::SUB32ri:
 | |
|   case X86::SUB32ri8:  case X86::SUB16ri:  case X86::SUB16ri8:
 | |
|   case X86::SUB8ri:    case X86::SUB64rr:  case X86::SUB32rr:
 | |
|   case X86::SUB16rr:   case X86::SUB8rr:   case X86::SUB64rm:
 | |
|   case X86::SUB32rm:   case X86::SUB16rm:  case X86::SUB8rm:
 | |
|   case X86::ADD64ri32: case X86::ADD64ri8: case X86::ADD32ri:
 | |
|   case X86::ADD32ri8:  case X86::ADD16ri:  case X86::ADD16ri8:
 | |
|   case X86::ADD8ri:    case X86::ADD64rr:  case X86::ADD32rr:
 | |
|   case X86::ADD16rr:   case X86::ADD8rr:   case X86::ADD64rm:
 | |
|   case X86::ADD32rm:   case X86::ADD16rm:  case X86::ADD8rm:
 | |
|   case X86::AND64ri32: case X86::AND64ri8: case X86::AND32ri:
 | |
|   case X86::AND32ri8:  case X86::AND16ri:  case X86::AND16ri8:
 | |
|   case X86::AND8ri:    case X86::AND64rr:  case X86::AND32rr:
 | |
|   case X86::AND16rr:   case X86::AND8rr:   case X86::AND64rm:
 | |
|   case X86::AND32rm:   case X86::AND16rm:  case X86::AND8rm:
 | |
|   case X86::XOR64ri32: case X86::XOR64ri8: case X86::XOR32ri:
 | |
|   case X86::XOR32ri8:  case X86::XOR16ri:  case X86::XOR16ri8:
 | |
|   case X86::XOR8ri:    case X86::XOR64rr:  case X86::XOR32rr:
 | |
|   case X86::XOR16rr:   case X86::XOR8rr:   case X86::XOR64rm:
 | |
|   case X86::XOR32rm:   case X86::XOR16rm:  case X86::XOR8rm:
 | |
|   case X86::OR64ri32:  case X86::OR64ri8:  case X86::OR32ri:
 | |
|   case X86::OR32ri8:   case X86::OR16ri:   case X86::OR16ri8:
 | |
|   case X86::OR8ri:     case X86::OR64rr:   case X86::OR32rr:
 | |
|   case X86::OR16rr:    case X86::OR8rr:    case X86::OR64rm:
 | |
|   case X86::OR32rm:    case X86::OR16rm:   case X86::OR8rm:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// optimizeCompareInstr - Check if there exists an earlier instruction that
 | |
| /// operates on the same source operands and sets flags in the same way as
 | |
| /// Compare; remove Compare if possible.
 | |
| bool X86InstrInfo::
 | |
| optimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, unsigned SrcReg2,
 | |
|                      int CmpMask, int CmpValue,
 | |
|                      const MachineRegisterInfo *MRI) const {
 | |
|   // Get the unique definition of SrcReg.
 | |
|   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
 | |
|   if (!MI) return false;
 | |
| 
 | |
|   // CmpInstr is the first instruction of the BB.
 | |
|   MachineBasicBlock::iterator I = CmpInstr, Def = MI;
 | |
| 
 | |
|   // If we are comparing against zero, check whether we can use MI to update
 | |
|   // EFLAGS. If MI is not in the same BB as CmpInstr, do not optimize.
 | |
|   bool IsCmpZero = (SrcReg2 == 0 && CmpValue == 0);
 | |
|   if (IsCmpZero && (MI->getParent() != CmpInstr->getParent() ||
 | |
|       !isDefConvertible(MI)))
 | |
|     return false;
 | |
| 
 | |
|   // We are searching for an earlier instruction that can make CmpInstr
 | |
|   // redundant and that instruction will be saved in Sub.
 | |
|   MachineInstr *Sub = NULL;
 | |
|   const TargetRegisterInfo *TRI = &getRegisterInfo();
 | |
| 
 | |
|   // We iterate backward, starting from the instruction before CmpInstr and
 | |
|   // stop when reaching the definition of a source register or done with the BB.
 | |
|   // RI points to the instruction before CmpInstr.
 | |
|   // If the definition is in this basic block, RE points to the definition;
 | |
|   // otherwise, RE is the rend of the basic block.
 | |
|   MachineBasicBlock::reverse_iterator
 | |
|       RI = MachineBasicBlock::reverse_iterator(I),
 | |
|       RE = CmpInstr->getParent() == MI->getParent() ?
 | |
|            MachineBasicBlock::reverse_iterator(++Def) /* points to MI */ :
 | |
|            CmpInstr->getParent()->rend();
 | |
|   MachineInstr *Movr0Inst = 0;
 | |
|   for (; RI != RE; ++RI) {
 | |
|     MachineInstr *Instr = &*RI;
 | |
|     // Check whether CmpInstr can be made redundant by the current instruction.
 | |
|     if (!IsCmpZero &&
 | |
|         isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpValue, Instr)) {
 | |
|       Sub = Instr;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (Instr->modifiesRegister(X86::EFLAGS, TRI) ||
 | |
|         Instr->readsRegister(X86::EFLAGS, TRI)) {
 | |
|       // This instruction modifies or uses EFLAGS.
 | |
| 
 | |
|       // MOV32r0 etc. are implemented with xor which clobbers condition code.
 | |
|       // They are safe to move up, if the definition to EFLAGS is dead and
 | |
|       // earlier instructions do not read or write EFLAGS.
 | |
|       if (!Movr0Inst && (Instr->getOpcode() == X86::MOV8r0 ||
 | |
|            Instr->getOpcode() == X86::MOV16r0 ||
 | |
|            Instr->getOpcode() == X86::MOV32r0 ||
 | |
|            Instr->getOpcode() == X86::MOV64r0) &&
 | |
|           Instr->registerDefIsDead(X86::EFLAGS, TRI)) {
 | |
|         Movr0Inst = Instr;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We can't remove CmpInstr.
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Return false if no candidates exist.
 | |
|   if (!IsCmpZero && !Sub)
 | |
|     return false;
 | |
| 
 | |
|   bool IsSwapped = (SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
 | |
|                     Sub->getOperand(2).getReg() == SrcReg);
 | |
| 
 | |
|   // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
 | |
|   // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
 | |
|   // If we are done with the basic block, we need to check whether EFLAGS is
 | |
|   // live-out.
 | |
|   bool IsSafe = false;
 | |
|   SmallVector<std::pair<MachineInstr*, unsigned /*NewOpc*/>, 4> OpsToUpdate;
 | |
|   MachineBasicBlock::iterator E = CmpInstr->getParent()->end();
 | |
|   for (++I; I != E; ++I) {
 | |
|     const MachineInstr &Instr = *I;
 | |
|     bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI);
 | |
|     bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI);
 | |
|     // We should check the usage if this instruction uses and updates EFLAGS.
 | |
|     if (!UseEFLAGS && ModifyEFLAGS) {
 | |
|       // It is safe to remove CmpInstr if EFLAGS is updated again.
 | |
|       IsSafe = true;
 | |
|       break;
 | |
|     }
 | |
|     if (!UseEFLAGS && !ModifyEFLAGS)
 | |
|       continue;
 | |
| 
 | |
|     // EFLAGS is used by this instruction.
 | |
|     X86::CondCode OldCC;
 | |
|     bool OpcIsSET = false;
 | |
|     if (IsCmpZero || IsSwapped) {
 | |
|       // We decode the condition code from opcode.
 | |
|       if (Instr.isBranch())
 | |
|         OldCC = getCondFromBranchOpc(Instr.getOpcode());
 | |
|       else {
 | |
|         OldCC = getCondFromSETOpc(Instr.getOpcode());
 | |
|         if (OldCC != X86::COND_INVALID)
 | |
|           OpcIsSET = true;
 | |
|         else
 | |
|           OldCC = getCondFromCMovOpc(Instr.getOpcode());
 | |
|       }
 | |
|       if (OldCC == X86::COND_INVALID) return false;
 | |
|     }
 | |
|     if (IsCmpZero) {
 | |
|       switch (OldCC) {
 | |
|       default: break;
 | |
|       case X86::COND_A: case X86::COND_AE:
 | |
|       case X86::COND_B: case X86::COND_BE:
 | |
|       case X86::COND_G: case X86::COND_GE:
 | |
|       case X86::COND_L: case X86::COND_LE:
 | |
|       case X86::COND_O: case X86::COND_NO:
 | |
|         // CF and OF are used, we can't perform this optimization.
 | |
|         return false;
 | |
|       }
 | |
|     } else if (IsSwapped) {
 | |
|       // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
 | |
|       // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
 | |
|       // We swap the condition code and synthesize the new opcode.
 | |
|       X86::CondCode NewCC = getSwappedCondition(OldCC);
 | |
|       if (NewCC == X86::COND_INVALID) return false;
 | |
| 
 | |
|       // Synthesize the new opcode.
 | |
|       bool HasMemoryOperand = Instr.hasOneMemOperand();
 | |
|       unsigned NewOpc;
 | |
|       if (Instr.isBranch())
 | |
|         NewOpc = GetCondBranchFromCond(NewCC);
 | |
|       else if(OpcIsSET)
 | |
|         NewOpc = getSETFromCond(NewCC, HasMemoryOperand);
 | |
|       else {
 | |
|         unsigned DstReg = Instr.getOperand(0).getReg();
 | |
|         NewOpc = getCMovFromCond(NewCC, MRI->getRegClass(DstReg)->getSize(),
 | |
|                                  HasMemoryOperand);
 | |
|       }
 | |
| 
 | |
|       // Push the MachineInstr to OpsToUpdate.
 | |
|       // If it is safe to remove CmpInstr, the condition code of these
 | |
|       // instructions will be modified.
 | |
|       OpsToUpdate.push_back(std::make_pair(&*I, NewOpc));
 | |
|     }
 | |
|     if (ModifyEFLAGS || Instr.killsRegister(X86::EFLAGS, TRI)) {
 | |
|       // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
 | |
|       IsSafe = true;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If EFLAGS is not killed nor re-defined, we should check whether it is
 | |
|   // live-out. If it is live-out, do not optimize.
 | |
|   if ((IsCmpZero || IsSwapped) && !IsSafe) {
 | |
|     MachineBasicBlock *MBB = CmpInstr->getParent();
 | |
|     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
 | |
|              SE = MBB->succ_end(); SI != SE; ++SI)
 | |
|       if ((*SI)->isLiveIn(X86::EFLAGS))
 | |
|         return false;
 | |
|   }
 | |
| 
 | |
|   // The instruction to be updated is either Sub or MI.
 | |
|   Sub = IsCmpZero ? MI : Sub;
 | |
|   // Move Movr0Inst to the place right before Sub.
 | |
|   if (Movr0Inst) {
 | |
|     Sub->getParent()->remove(Movr0Inst);
 | |
|     Sub->getParent()->insert(MachineBasicBlock::iterator(Sub), Movr0Inst);
 | |
|   }
 | |
| 
 | |
|   // Make sure Sub instruction defines EFLAGS.
 | |
|   assert(Sub->getNumOperands() >= 2 &&
 | |
|          Sub->getOperand(Sub->getNumOperands()-1).isReg() &&
 | |
|          Sub->getOperand(Sub->getNumOperands()-1).getReg() == X86::EFLAGS &&
 | |
|          "EFLAGS should be the last operand of SUB, ADD, OR, XOR, AND");
 | |
|   Sub->getOperand(Sub->getNumOperands()-1).setIsDef(true);
 | |
|   CmpInstr->eraseFromParent();
 | |
| 
 | |
|   // Modify the condition code of instructions in OpsToUpdate.
 | |
|   for (unsigned i = 0, e = OpsToUpdate.size(); i < e; i++)
 | |
|     OpsToUpdate[i].first->setDesc(get(OpsToUpdate[i].second));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
 | |
| /// instruction with two undef reads of the register being defined.  This is
 | |
| /// used for mapping:
 | |
| ///   %xmm4 = V_SET0
 | |
| /// to:
 | |
| ///   %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
 | |
| ///
 | |
| static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
 | |
|   assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
 | |
|   unsigned Reg = MI->getOperand(0).getReg();
 | |
|   MI->setDesc(Desc);
 | |
| 
 | |
|   // MachineInstr::addOperand() will insert explicit operands before any
 | |
|   // implicit operands.
 | |
|   MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
 | |
|                          .addReg(Reg, RegState::Undef);
 | |
|   // But we don't trust that.
 | |
|   assert(MI->getOperand(1).getReg() == Reg &&
 | |
|          MI->getOperand(2).getReg() == Reg && "Misplaced operand");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
 | |
|   bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::V_SET0:
 | |
|   case X86::FsFLD0SS:
 | |
|   case X86::FsFLD0SD:
 | |
|     return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
 | |
|   case X86::TEST8ri_NOREX:
 | |
|     MI->setDesc(get(X86::TEST8ri));
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| MachineInstr*
 | |
| X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
 | |
|                                        int FrameIx, uint64_t Offset,
 | |
|                                        const MDNode *MDPtr,
 | |
|                                        DebugLoc DL) const {
 | |
|   X86AddressMode AM;
 | |
|   AM.BaseType = X86AddressMode::FrameIndexBase;
 | |
|   AM.Base.FrameIndex = FrameIx;
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
 | |
|   addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
 | |
|   return &*MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
 | |
|                                      const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                      MachineInstr *MI,
 | |
|                                      const TargetInstrInfo &TII) {
 | |
|   // Create the base instruction with the memory operand as the first part.
 | |
|   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
 | |
|                                               MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(NewMI);
 | |
|   unsigned NumAddrOps = MOs.size();
 | |
|   for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|     MIB.addOperand(MOs[i]);
 | |
|   if (NumAddrOps < 4)  // FrameIndex only
 | |
|     addOffset(MIB, 0);
 | |
| 
 | |
|   // Loop over the rest of the ri operands, converting them over.
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands()-2;
 | |
|   for (unsigned i = 0; i != NumOps; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i+2);
 | |
|     MIB.addOperand(MO);
 | |
|   }
 | |
|   for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     MIB.addOperand(MO);
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *FuseInst(MachineFunction &MF,
 | |
|                               unsigned Opcode, unsigned OpNo,
 | |
|                               const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                               MachineInstr *MI, const TargetInstrInfo &TII) {
 | |
|   MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
 | |
|                                               MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(NewMI);
 | |
| 
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (i == OpNo) {
 | |
|       assert(MO.isReg() && "Expected to fold into reg operand!");
 | |
|       unsigned NumAddrOps = MOs.size();
 | |
|       for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|         MIB.addOperand(MOs[i]);
 | |
|       if (NumAddrOps < 4)  // FrameIndex only
 | |
|         addOffset(MIB, 0);
 | |
|     } else {
 | |
|       MIB.addOperand(MO);
 | |
|     }
 | |
|   }
 | |
|   return MIB;
 | |
| }
 | |
| 
 | |
| static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
 | |
|                                 const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                 MachineInstr *MI) {
 | |
|   MachineFunction &MF = *MI->getParent()->getParent();
 | |
|   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
 | |
| 
 | |
|   unsigned NumAddrOps = MOs.size();
 | |
|   for (unsigned i = 0; i != NumAddrOps; ++i)
 | |
|     MIB.addOperand(MOs[i]);
 | |
|   if (NumAddrOps < 4)  // FrameIndex only
 | |
|     addOffset(MIB, 0);
 | |
|   return MIB.addImm(0);
 | |
| }
 | |
| 
 | |
| MachineInstr*
 | |
| X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                     MachineInstr *MI, unsigned i,
 | |
|                                     const SmallVectorImpl<MachineOperand> &MOs,
 | |
|                                     unsigned Size, unsigned Align) const {
 | |
|   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
 | |
|   bool isTwoAddrFold = false;
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
 | |
| 
 | |
|   // FIXME: AsmPrinter doesn't know how to handle
 | |
|   // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
 | |
|   if (MI->getOpcode() == X86::ADD32ri &&
 | |
|       MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
 | |
|     return NULL;
 | |
| 
 | |
|   MachineInstr *NewMI = NULL;
 | |
|   // Folding a memory location into the two-address part of a two-address
 | |
|   // instruction is different than folding it other places.  It requires
 | |
|   // replacing the *two* registers with the memory location.
 | |
|   if (isTwoAddr && NumOps >= 2 && i < 2 &&
 | |
|       MI->getOperand(0).isReg() &&
 | |
|       MI->getOperand(1).isReg() &&
 | |
|       MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | |
|     isTwoAddrFold = true;
 | |
|   } else if (i == 0) { // If operand 0
 | |
|     if (MI->getOpcode() == X86::MOV64r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV32r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV16r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
 | |
|     else if (MI->getOpcode() == X86::MOV8r0)
 | |
|       NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
 | |
|     if (NewMI)
 | |
|       return NewMI;
 | |
| 
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable0;
 | |
|   } else if (i == 1) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable1;
 | |
|   } else if (i == 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2;
 | |
|   }
 | |
| 
 | |
|   // If table selected...
 | |
|   if (OpcodeTablePtr) {
 | |
|     // Find the Opcode to fuse
 | |
|     DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|       OpcodeTablePtr->find(MI->getOpcode());
 | |
|     if (I != OpcodeTablePtr->end()) {
 | |
|       unsigned Opcode = I->second.first;
 | |
|       unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
 | |
|       if (Align < MinAlign)
 | |
|         return NULL;
 | |
|       bool NarrowToMOV32rm = false;
 | |
|       if (Size) {
 | |
|         unsigned RCSize = getRegClass(MI->getDesc(), i, &RI, MF)->getSize();
 | |
|         if (Size < RCSize) {
 | |
|           // Check if it's safe to fold the load. If the size of the object is
 | |
|           // narrower than the load width, then it's not.
 | |
|           if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
 | |
|             return NULL;
 | |
|           // If this is a 64-bit load, but the spill slot is 32, then we can do
 | |
|           // a 32-bit load which is implicitly zero-extended. This likely is due
 | |
|           // to liveintervalanalysis remat'ing a load from stack slot.
 | |
|           if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
 | |
|             return NULL;
 | |
|           Opcode = X86::MOV32rm;
 | |
|           NarrowToMOV32rm = true;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (isTwoAddrFold)
 | |
|         NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
 | |
|       else
 | |
|         NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
 | |
| 
 | |
|       if (NarrowToMOV32rm) {
 | |
|         // If this is the special case where we use a MOV32rm to load a 32-bit
 | |
|         // value and zero-extend the top bits. Change the destination register
 | |
|         // to a 32-bit one.
 | |
|         unsigned DstReg = NewMI->getOperand(0).getReg();
 | |
|         if (TargetRegisterInfo::isPhysicalRegister(DstReg))
 | |
|           NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
 | |
|                                                    X86::sub_32bit));
 | |
|         else
 | |
|           NewMI->getOperand(0).setSubReg(X86::sub_32bit);
 | |
|       }
 | |
|       return NewMI;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No fusion
 | |
|   if (PrintFailedFusing && !MI->isCopy())
 | |
|     dbgs() << "We failed to fuse operand " << i << " in " << *MI;
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| /// hasPartialRegUpdate - Return true for all instructions that only update
 | |
| /// the first 32 or 64-bits of the destination register and leave the rest
 | |
| /// unmodified. This can be used to avoid folding loads if the instructions
 | |
| /// only update part of the destination register, and the non-updated part is
 | |
| /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
 | |
| /// instructions breaks the partial register dependency and it can improve
 | |
| /// performance. e.g.:
 | |
| ///
 | |
| ///   movss (%rdi), %xmm0
 | |
| ///   cvtss2sd %xmm0, %xmm0
 | |
| ///
 | |
| /// Instead of
 | |
| ///   cvtss2sd (%rdi), %xmm0
 | |
| ///
 | |
| /// FIXME: This should be turned into a TSFlags.
 | |
| ///
 | |
| static bool hasPartialRegUpdate(unsigned Opcode) {
 | |
|   switch (Opcode) {
 | |
|   case X86::CVTSI2SSrr:
 | |
|   case X86::CVTSI2SS64rr:
 | |
|   case X86::CVTSI2SDrr:
 | |
|   case X86::CVTSI2SD64rr:
 | |
|   case X86::CVTSD2SSrr:
 | |
|   case X86::Int_CVTSD2SSrr:
 | |
|   case X86::CVTSS2SDrr:
 | |
|   case X86::Int_CVTSS2SDrr:
 | |
|   case X86::RCPSSr:
 | |
|   case X86::RCPSSr_Int:
 | |
|   case X86::ROUNDSDr:
 | |
|   case X86::ROUNDSDr_Int:
 | |
|   case X86::ROUNDSSr:
 | |
|   case X86::ROUNDSSr_Int:
 | |
|   case X86::RSQRTSSr:
 | |
|   case X86::RSQRTSSr_Int:
 | |
|   case X86::SQRTSSr:
 | |
|   case X86::SQRTSSr_Int:
 | |
|   // AVX encoded versions
 | |
|   case X86::VCVTSD2SSrr:
 | |
|   case X86::Int_VCVTSD2SSrr:
 | |
|   case X86::VCVTSS2SDrr:
 | |
|   case X86::Int_VCVTSS2SDrr:
 | |
|   case X86::VRCPSSr:
 | |
|   case X86::VROUNDSDr:
 | |
|   case X86::VROUNDSDr_Int:
 | |
|   case X86::VROUNDSSr:
 | |
|   case X86::VROUNDSSr_Int:
 | |
|   case X86::VRSQRTSSr:
 | |
|   case X86::VSQRTSSr:
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
 | |
| /// instructions we would like before a partial register update.
 | |
| unsigned X86InstrInfo::
 | |
| getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
 | |
|                              const TargetRegisterInfo *TRI) const {
 | |
|   if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
 | |
|     return 0;
 | |
| 
 | |
|   // If MI is marked as reading Reg, the partial register update is wanted.
 | |
|   const MachineOperand &MO = MI->getOperand(0);
 | |
|   unsigned Reg = MO.getReg();
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     if (MO.readsReg() || MI->readsVirtualRegister(Reg))
 | |
|       return 0;
 | |
|   } else {
 | |
|     if (MI->readsRegister(Reg, TRI))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // If any of the preceding 16 instructions are reading Reg, insert a
 | |
|   // dependency breaking instruction.  The magic number is based on a few
 | |
|   // Nehalem experiments.
 | |
|   return 16;
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::
 | |
| breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
 | |
|                           const TargetRegisterInfo *TRI) const {
 | |
|   unsigned Reg = MI->getOperand(OpNum).getReg();
 | |
|   if (X86::VR128RegClass.contains(Reg)) {
 | |
|     // These instructions are all floating point domain, so xorps is the best
 | |
|     // choice.
 | |
|     bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
 | |
|     unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
 | |
|     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
 | |
|       .addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
 | |
|   } else if (X86::VR256RegClass.contains(Reg)) {
 | |
|     // Use vxorps to clear the full ymm register.
 | |
|     // It wants to read and write the xmm sub-register.
 | |
|     unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
 | |
|     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
 | |
|       .addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
 | |
|       .addReg(Reg, RegState::ImplicitDefine);
 | |
|   } else
 | |
|     return;
 | |
|   MI->addRegisterKilled(Reg, TRI, true);
 | |
| }
 | |
| 
 | |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                   MachineInstr *MI,
 | |
|                                            const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                   int FrameIndex) const {
 | |
|   // Check switch flag
 | |
|   if (NoFusing) return NULL;
 | |
| 
 | |
|   // Unless optimizing for size, don't fold to avoid partial
 | |
|   // register update stalls
 | |
|   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
 | |
|       hasPartialRegUpdate(MI->getOpcode()))
 | |
|     return 0;
 | |
| 
 | |
|   const MachineFrameInfo *MFI = MF.getFrameInfo();
 | |
|   unsigned Size = MFI->getObjectSize(FrameIndex);
 | |
|   unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     unsigned NewOpc = 0;
 | |
|     unsigned RCSize = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return NULL;
 | |
|     case X86::TEST8rr:  NewOpc = X86::CMP8ri; RCSize = 1; break;
 | |
|     case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
 | |
|     case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
 | |
|     case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
 | |
|     }
 | |
|     // Check if it's safe to fold the load. If the size of the object is
 | |
|     // narrower than the load width, then it's not.
 | |
|     if (Size < RCSize)
 | |
|       return NULL;
 | |
|     // Change to CMPXXri r, 0 first.
 | |
|     MI->setDesc(get(NewOpc));
 | |
|     MI->getOperand(1).ChangeToImmediate(0);
 | |
|   } else if (Ops.size() != 1)
 | |
|     return NULL;
 | |
| 
 | |
|   SmallVector<MachineOperand,4> MOs;
 | |
|   MOs.push_back(MachineOperand::CreateFI(FrameIndex));
 | |
|   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
 | |
| }
 | |
| 
 | |
| MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
 | |
|                                                   MachineInstr *MI,
 | |
|                                            const SmallVectorImpl<unsigned> &Ops,
 | |
|                                                   MachineInstr *LoadMI) const {
 | |
|   // Check switch flag
 | |
|   if (NoFusing) return NULL;
 | |
| 
 | |
|   // Unless optimizing for size, don't fold to avoid partial
 | |
|   // register update stalls
 | |
|   if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
 | |
|       hasPartialRegUpdate(MI->getOpcode()))
 | |
|     return 0;
 | |
| 
 | |
|   // Determine the alignment of the load.
 | |
|   unsigned Alignment = 0;
 | |
|   if (LoadMI->hasOneMemOperand())
 | |
|     Alignment = (*LoadMI->memoperands_begin())->getAlignment();
 | |
|   else
 | |
|     switch (LoadMI->getOpcode()) {
 | |
|     case X86::AVX_SET0PSY:
 | |
|     case X86::AVX_SET0PDY:
 | |
|     case X86::AVX2_SETALLONES:
 | |
|     case X86::AVX2_SET0:
 | |
|       Alignment = 32;
 | |
|       break;
 | |
|     case X86::V_SET0:
 | |
|     case X86::V_SETALLONES:
 | |
|     case X86::AVX_SETALLONES:
 | |
|       Alignment = 16;
 | |
|       break;
 | |
|     case X86::FsFLD0SD:
 | |
|       Alignment = 8;
 | |
|       break;
 | |
|     case X86::FsFLD0SS:
 | |
|       Alignment = 4;
 | |
|       break;
 | |
|     default:
 | |
|       return 0;
 | |
|     }
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     unsigned NewOpc = 0;
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return NULL;
 | |
|     case X86::TEST8rr:  NewOpc = X86::CMP8ri; break;
 | |
|     case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
 | |
|     case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
 | |
|     case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
 | |
|     }
 | |
|     // Change to CMPXXri r, 0 first.
 | |
|     MI->setDesc(get(NewOpc));
 | |
|     MI->getOperand(1).ChangeToImmediate(0);
 | |
|   } else if (Ops.size() != 1)
 | |
|     return NULL;
 | |
| 
 | |
|   // Make sure the subregisters match.
 | |
|   // Otherwise we risk changing the size of the load.
 | |
|   if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
 | |
|     return NULL;
 | |
| 
 | |
|   SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
 | |
|   switch (LoadMI->getOpcode()) {
 | |
|   case X86::V_SET0:
 | |
|   case X86::V_SETALLONES:
 | |
|   case X86::AVX_SET0PSY:
 | |
|   case X86::AVX_SET0PDY:
 | |
|   case X86::AVX_SETALLONES:
 | |
|   case X86::AVX2_SETALLONES:
 | |
|   case X86::AVX2_SET0:
 | |
|   case X86::FsFLD0SD:
 | |
|   case X86::FsFLD0SS: {
 | |
|     // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
 | |
|     // Create a constant-pool entry and operands to load from it.
 | |
| 
 | |
|     // Medium and large mode can't fold loads this way.
 | |
|     if (TM.getCodeModel() != CodeModel::Small &&
 | |
|         TM.getCodeModel() != CodeModel::Kernel)
 | |
|       return NULL;
 | |
| 
 | |
|     // x86-32 PIC requires a PIC base register for constant pools.
 | |
|     unsigned PICBase = 0;
 | |
|     if (TM.getRelocationModel() == Reloc::PIC_) {
 | |
|       if (TM.getSubtarget<X86Subtarget>().is64Bit())
 | |
|         PICBase = X86::RIP;
 | |
|       else
 | |
|         // FIXME: PICBase = getGlobalBaseReg(&MF);
 | |
|         // This doesn't work for several reasons.
 | |
|         // 1. GlobalBaseReg may have been spilled.
 | |
|         // 2. It may not be live at MI.
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     // Create a constant-pool entry.
 | |
|     MachineConstantPool &MCP = *MF.getConstantPool();
 | |
|     Type *Ty;
 | |
|     unsigned Opc = LoadMI->getOpcode();
 | |
|     if (Opc == X86::FsFLD0SS)
 | |
|       Ty = Type::getFloatTy(MF.getFunction()->getContext());
 | |
|     else if (Opc == X86::FsFLD0SD)
 | |
|       Ty = Type::getDoubleTy(MF.getFunction()->getContext());
 | |
|     else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
 | |
|       Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
 | |
|     else if (Opc == X86::AVX2_SETALLONES || Opc == X86::AVX2_SET0)
 | |
|       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 8);
 | |
|     else
 | |
|       Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
 | |
| 
 | |
|     bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
 | |
|                       Opc == X86::AVX2_SETALLONES);
 | |
|     const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
 | |
|                                     Constant::getNullValue(Ty);
 | |
|     unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
 | |
| 
 | |
|     // Create operands to load from the constant pool entry.
 | |
|     MOs.push_back(MachineOperand::CreateReg(PICBase, false));
 | |
|     MOs.push_back(MachineOperand::CreateImm(1));
 | |
|     MOs.push_back(MachineOperand::CreateReg(0, false));
 | |
|     MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
 | |
|     MOs.push_back(MachineOperand::CreateReg(0, false));
 | |
|     break;
 | |
|   }
 | |
|   default: {
 | |
|     // Folding a normal load. Just copy the load's address operands.
 | |
|     unsigned NumOps = LoadMI->getDesc().getNumOperands();
 | |
|     for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
 | |
|       MOs.push_back(LoadMI->getOperand(i));
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
|   return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
 | |
|                                   const SmallVectorImpl<unsigned> &Ops) const {
 | |
|   // Check switch flag
 | |
|   if (NoFusing) return 0;
 | |
| 
 | |
|   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
 | |
|     switch (MI->getOpcode()) {
 | |
|     default: return false;
 | |
|     case X86::TEST8rr:
 | |
|     case X86::TEST16rr:
 | |
|     case X86::TEST32rr:
 | |
|     case X86::TEST64rr:
 | |
|       return true;
 | |
|     case X86::ADD32ri:
 | |
|       // FIXME: AsmPrinter doesn't know how to handle
 | |
|       // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
 | |
|       if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
 | |
|         return false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() != 1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned OpNum = Ops[0];
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   unsigned NumOps = MI->getDesc().getNumOperands();
 | |
|   bool isTwoAddr = NumOps > 1 &&
 | |
|     MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
 | |
| 
 | |
|   // Folding a memory location into the two-address part of a two-address
 | |
|   // instruction is different than folding it other places.  It requires
 | |
|   // replacing the *two* registers with the memory location.
 | |
|   const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
 | |
|   if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2Addr;
 | |
|   } else if (OpNum == 0) { // If operand 0
 | |
|     switch (Opc) {
 | |
|     case X86::MOV8r0:
 | |
|     case X86::MOV16r0:
 | |
|     case X86::MOV32r0:
 | |
|     case X86::MOV64r0: return true;
 | |
|     default: break;
 | |
|     }
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable0;
 | |
|   } else if (OpNum == 1) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable1;
 | |
|   } else if (OpNum == 2) {
 | |
|     OpcodeTablePtr = &RegOp2MemOpTable2;
 | |
|   }
 | |
| 
 | |
|   if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
 | |
|     return true;
 | |
|   return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
 | |
|                                 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
 | |
|                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
 | |
|   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find(MI->getOpcode());
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return false;
 | |
|   unsigned Opc = I->second.first;
 | |
|   unsigned Index = I->second.second & TB_INDEX_MASK;
 | |
|   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
 | |
|   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
 | |
|   if (UnfoldLoad && !FoldedLoad)
 | |
|     return false;
 | |
|   UnfoldLoad &= FoldedLoad;
 | |
|   if (UnfoldStore && !FoldedStore)
 | |
|     return false;
 | |
|   UnfoldStore &= FoldedStore;
 | |
| 
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
 | |
|   if (!MI->hasOneMemOperand() &&
 | |
|       RC == &X86::VR128RegClass &&
 | |
|       !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
 | |
|     // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
 | |
|     // conservatively assume the address is unaligned. That's bad for
 | |
|     // performance.
 | |
|     return false;
 | |
|   SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
 | |
|   SmallVector<MachineOperand,2> BeforeOps;
 | |
|   SmallVector<MachineOperand,2> AfterOps;
 | |
|   SmallVector<MachineOperand,4> ImpOps;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &Op = MI->getOperand(i);
 | |
|     if (i >= Index && i < Index + X86::AddrNumOperands)
 | |
|       AddrOps.push_back(Op);
 | |
|     else if (Op.isReg() && Op.isImplicit())
 | |
|       ImpOps.push_back(Op);
 | |
|     else if (i < Index)
 | |
|       BeforeOps.push_back(Op);
 | |
|     else if (i > Index)
 | |
|       AfterOps.push_back(Op);
 | |
|   }
 | |
| 
 | |
|   // Emit the load instruction.
 | |
|   if (UnfoldLoad) {
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractLoadMemRefs(MI->memoperands_begin(),
 | |
|                             MI->memoperands_end());
 | |
|     loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
 | |
|     if (UnfoldStore) {
 | |
|       // Address operands cannot be marked isKill.
 | |
|       for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
 | |
|         MachineOperand &MO = NewMIs[0]->getOperand(i);
 | |
|         if (MO.isReg())
 | |
|           MO.setIsKill(false);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Emit the data processing instruction.
 | |
|   MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
 | |
|   MachineInstrBuilder MIB(DataMI);
 | |
| 
 | |
|   if (FoldedStore)
 | |
|     MIB.addReg(Reg, RegState::Define);
 | |
|   for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
 | |
|     MIB.addOperand(BeforeOps[i]);
 | |
|   if (FoldedLoad)
 | |
|     MIB.addReg(Reg);
 | |
|   for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
 | |
|     MIB.addOperand(AfterOps[i]);
 | |
|   for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
 | |
|     MachineOperand &MO = ImpOps[i];
 | |
|     MIB.addReg(MO.getReg(),
 | |
|                getDefRegState(MO.isDef()) |
 | |
|                RegState::Implicit |
 | |
|                getKillRegState(MO.isKill()) |
 | |
|                getDeadRegState(MO.isDead()) |
 | |
|                getUndefRegState(MO.isUndef()));
 | |
|   }
 | |
|   // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
 | |
|   unsigned NewOpc = 0;
 | |
|   switch (DataMI->getOpcode()) {
 | |
|   default: break;
 | |
|   case X86::CMP64ri32:
 | |
|   case X86::CMP64ri8:
 | |
|   case X86::CMP32ri:
 | |
|   case X86::CMP32ri8:
 | |
|   case X86::CMP16ri:
 | |
|   case X86::CMP16ri8:
 | |
|   case X86::CMP8ri: {
 | |
|     MachineOperand &MO0 = DataMI->getOperand(0);
 | |
|     MachineOperand &MO1 = DataMI->getOperand(1);
 | |
|     if (MO1.getImm() == 0) {
 | |
|       switch (DataMI->getOpcode()) {
 | |
|       default: break;
 | |
|       case X86::CMP64ri8:
 | |
|       case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
 | |
|       case X86::CMP32ri8:
 | |
|       case X86::CMP32ri:   NewOpc = X86::TEST32rr; break;
 | |
|       case X86::CMP16ri8:
 | |
|       case X86::CMP16ri:   NewOpc = X86::TEST16rr; break;
 | |
|       case X86::CMP8ri:    NewOpc = X86::TEST8rr; break;
 | |
|       }
 | |
|       DataMI->setDesc(get(NewOpc));
 | |
|       MO1.ChangeToRegister(MO0.getReg(), false);
 | |
|     }
 | |
|   }
 | |
|   }
 | |
|   NewMIs.push_back(DataMI);
 | |
| 
 | |
|   // Emit the store instruction.
 | |
|   if (UnfoldStore) {
 | |
|     const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF);
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractStoreMemRefs(MI->memoperands_begin(),
 | |
|                              MI->memoperands_end());
 | |
|     storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
 | |
|                                   SmallVectorImpl<SDNode*> &NewNodes) const {
 | |
|   if (!N->isMachineOpcode())
 | |
|     return false;
 | |
| 
 | |
|   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find(N->getMachineOpcode());
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return false;
 | |
|   unsigned Opc = I->second.first;
 | |
|   unsigned Index = I->second.second & TB_INDEX_MASK;
 | |
|   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
 | |
|   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
 | |
|   const MCInstrDesc &MCID = get(Opc);
 | |
|   MachineFunction &MF = DAG.getMachineFunction();
 | |
|   const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF);
 | |
|   unsigned NumDefs = MCID.NumDefs;
 | |
|   std::vector<SDValue> AddrOps;
 | |
|   std::vector<SDValue> BeforeOps;
 | |
|   std::vector<SDValue> AfterOps;
 | |
|   DebugLoc dl = N->getDebugLoc();
 | |
|   unsigned NumOps = N->getNumOperands();
 | |
|   for (unsigned i = 0; i != NumOps-1; ++i) {
 | |
|     SDValue Op = N->getOperand(i);
 | |
|     if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
 | |
|       AddrOps.push_back(Op);
 | |
|     else if (i < Index-NumDefs)
 | |
|       BeforeOps.push_back(Op);
 | |
|     else if (i > Index-NumDefs)
 | |
|       AfterOps.push_back(Op);
 | |
|   }
 | |
|   SDValue Chain = N->getOperand(NumOps-1);
 | |
|   AddrOps.push_back(Chain);
 | |
| 
 | |
|   // Emit the load instruction.
 | |
|   SDNode *Load = 0;
 | |
|   if (FoldedLoad) {
 | |
|     EVT VT = *RC->vt_begin();
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
 | |
|                             cast<MachineSDNode>(N)->memoperands_end());
 | |
|     if (!(*MMOs.first) &&
 | |
|         RC == &X86::VR128RegClass &&
 | |
|         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
 | |
|       // Do not introduce a slow unaligned load.
 | |
|       return false;
 | |
|     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
 | |
|     bool isAligned = (*MMOs.first) &&
 | |
|                      (*MMOs.first)->getAlignment() >= Alignment;
 | |
|     Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
 | |
|                               VT, MVT::Other, &AddrOps[0], AddrOps.size());
 | |
|     NewNodes.push_back(Load);
 | |
| 
 | |
|     // Preserve memory reference information.
 | |
|     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
 | |
|   }
 | |
| 
 | |
|   // Emit the data processing instruction.
 | |
|   std::vector<EVT> VTs;
 | |
|   const TargetRegisterClass *DstRC = 0;
 | |
|   if (MCID.getNumDefs() > 0) {
 | |
|     DstRC = getRegClass(MCID, 0, &RI, MF);
 | |
|     VTs.push_back(*DstRC->vt_begin());
 | |
|   }
 | |
|   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
 | |
|     EVT VT = N->getValueType(i);
 | |
|     if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
 | |
|       VTs.push_back(VT);
 | |
|   }
 | |
|   if (Load)
 | |
|     BeforeOps.push_back(SDValue(Load, 0));
 | |
|   std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
 | |
|   SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
 | |
|                                       BeforeOps.size());
 | |
|   NewNodes.push_back(NewNode);
 | |
| 
 | |
|   // Emit the store instruction.
 | |
|   if (FoldedStore) {
 | |
|     AddrOps.pop_back();
 | |
|     AddrOps.push_back(SDValue(NewNode, 0));
 | |
|     AddrOps.push_back(Chain);
 | |
|     std::pair<MachineInstr::mmo_iterator,
 | |
|               MachineInstr::mmo_iterator> MMOs =
 | |
|       MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
 | |
|                              cast<MachineSDNode>(N)->memoperands_end());
 | |
|     if (!(*MMOs.first) &&
 | |
|         RC == &X86::VR128RegClass &&
 | |
|         !TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
 | |
|       // Do not introduce a slow unaligned store.
 | |
|       return false;
 | |
|     unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
 | |
|     bool isAligned = (*MMOs.first) &&
 | |
|                      (*MMOs.first)->getAlignment() >= Alignment;
 | |
|     SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
 | |
|                                                          isAligned, TM),
 | |
|                                        dl, MVT::Other,
 | |
|                                        &AddrOps[0], AddrOps.size());
 | |
|     NewNodes.push_back(Store);
 | |
| 
 | |
|     // Preserve memory reference information.
 | |
|     cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
 | |
|                                       bool UnfoldLoad, bool UnfoldStore,
 | |
|                                       unsigned *LoadRegIndex) const {
 | |
|   DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
 | |
|     MemOp2RegOpTable.find(Opc);
 | |
|   if (I == MemOp2RegOpTable.end())
 | |
|     return 0;
 | |
|   bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
 | |
|   bool FoldedStore = I->second.second & TB_FOLDED_STORE;
 | |
|   if (UnfoldLoad && !FoldedLoad)
 | |
|     return 0;
 | |
|   if (UnfoldStore && !FoldedStore)
 | |
|     return 0;
 | |
|   if (LoadRegIndex)
 | |
|     *LoadRegIndex = I->second.second & TB_INDEX_MASK;
 | |
|   return I->second.first;
 | |
| }
 | |
| 
 | |
| bool
 | |
| X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
 | |
|                                      int64_t &Offset1, int64_t &Offset2) const {
 | |
|   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
 | |
|     return false;
 | |
|   unsigned Opc1 = Load1->getMachineOpcode();
 | |
|   unsigned Opc2 = Load2->getMachineOpcode();
 | |
|   switch (Opc1) {
 | |
|   default: return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|   case X86::FsMOVAPSrm:
 | |
|   case X86::FsMOVAPDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVUPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MOVDQUrm:
 | |
|   // AVX load instructions
 | |
|   case X86::VMOVSSrm:
 | |
|   case X86::VMOVSDrm:
 | |
|   case X86::FsVMOVAPSrm:
 | |
|   case X86::FsVMOVAPDrm:
 | |
|   case X86::VMOVAPSrm:
 | |
|   case X86::VMOVUPSrm:
 | |
|   case X86::VMOVAPDrm:
 | |
|   case X86::VMOVDQArm:
 | |
|   case X86::VMOVDQUrm:
 | |
|   case X86::VMOVAPSYrm:
 | |
|   case X86::VMOVUPSYrm:
 | |
|   case X86::VMOVAPDYrm:
 | |
|   case X86::VMOVDQAYrm:
 | |
|   case X86::VMOVDQUYrm:
 | |
|     break;
 | |
|   }
 | |
|   switch (Opc2) {
 | |
|   default: return false;
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MOVSSrm:
 | |
|   case X86::MOVSDrm:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|   case X86::FsMOVAPSrm:
 | |
|   case X86::FsMOVAPDrm:
 | |
|   case X86::MOVAPSrm:
 | |
|   case X86::MOVUPSrm:
 | |
|   case X86::MOVAPDrm:
 | |
|   case X86::MOVDQArm:
 | |
|   case X86::MOVDQUrm:
 | |
|   // AVX load instructions
 | |
|   case X86::VMOVSSrm:
 | |
|   case X86::VMOVSDrm:
 | |
|   case X86::FsVMOVAPSrm:
 | |
|   case X86::FsVMOVAPDrm:
 | |
|   case X86::VMOVAPSrm:
 | |
|   case X86::VMOVUPSrm:
 | |
|   case X86::VMOVAPDrm:
 | |
|   case X86::VMOVDQArm:
 | |
|   case X86::VMOVDQUrm:
 | |
|   case X86::VMOVAPSYrm:
 | |
|   case X86::VMOVUPSYrm:
 | |
|   case X86::VMOVAPDYrm:
 | |
|   case X86::VMOVDQAYrm:
 | |
|   case X86::VMOVDQUYrm:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Check if chain operands and base addresses match.
 | |
|   if (Load1->getOperand(0) != Load2->getOperand(0) ||
 | |
|       Load1->getOperand(5) != Load2->getOperand(5))
 | |
|     return false;
 | |
|   // Segment operands should match as well.
 | |
|   if (Load1->getOperand(4) != Load2->getOperand(4))
 | |
|     return false;
 | |
|   // Scale should be 1, Index should be Reg0.
 | |
|   if (Load1->getOperand(1) == Load2->getOperand(1) &&
 | |
|       Load1->getOperand(2) == Load2->getOperand(2)) {
 | |
|     if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
 | |
|       return false;
 | |
| 
 | |
|     // Now let's examine the displacements.
 | |
|     if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
 | |
|         isa<ConstantSDNode>(Load2->getOperand(3))) {
 | |
|       Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
 | |
|       Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
 | |
|                                            int64_t Offset1, int64_t Offset2,
 | |
|                                            unsigned NumLoads) const {
 | |
|   assert(Offset2 > Offset1);
 | |
|   if ((Offset2 - Offset1) / 8 > 64)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Opc1 = Load1->getMachineOpcode();
 | |
|   unsigned Opc2 = Load2->getMachineOpcode();
 | |
|   if (Opc1 != Opc2)
 | |
|     return false;  // FIXME: overly conservative?
 | |
| 
 | |
|   switch (Opc1) {
 | |
|   default: break;
 | |
|   case X86::LD_Fp32m:
 | |
|   case X86::LD_Fp64m:
 | |
|   case X86::LD_Fp80m:
 | |
|   case X86::MMX_MOVD64rm:
 | |
|   case X86::MMX_MOVQ64rm:
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   EVT VT = Load1->getValueType(0);
 | |
|   switch (VT.getSimpleVT().SimpleTy) {
 | |
|   default:
 | |
|     // XMM registers. In 64-bit mode we can be a bit more aggressive since we
 | |
|     // have 16 of them to play with.
 | |
|     if (TM.getSubtargetImpl()->is64Bit()) {
 | |
|       if (NumLoads >= 3)
 | |
|         return false;
 | |
|     } else if (NumLoads) {
 | |
|       return false;
 | |
|     }
 | |
|     break;
 | |
|   case MVT::i8:
 | |
|   case MVT::i16:
 | |
|   case MVT::i32:
 | |
|   case MVT::i64:
 | |
|   case MVT::f32:
 | |
|   case MVT::f64:
 | |
|     if (NumLoads)
 | |
|       return false;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
 | |
|   assert(Cond.size() == 1 && "Invalid X86 branch condition!");
 | |
|   X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
 | |
|   if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
 | |
|     return true;
 | |
|   Cond[0].setImm(GetOppositeBranchCondition(CC));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
 | |
|   // FIXME: Return false for x87 stack register classes for now. We can't
 | |
|   // allow any loads of these registers before FpGet_ST0_80.
 | |
|   return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
 | |
|            RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
 | |
| }
 | |
| 
 | |
| /// getGlobalBaseReg - Return a virtual register initialized with the
 | |
| /// the global base register value. Output instructions required to
 | |
| /// initialize the register in the function entry block, if necessary.
 | |
| ///
 | |
| /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
 | |
| ///
 | |
| unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
 | |
|   assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
 | |
|          "X86-64 PIC uses RIP relative addressing");
 | |
| 
 | |
|   X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
 | |
|   unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
 | |
|   if (GlobalBaseReg != 0)
 | |
|     return GlobalBaseReg;
 | |
| 
 | |
|   // Create the register. The code to initialize it is inserted
 | |
|   // later, by the CGBR pass (below).
 | |
|   MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | |
|   GlobalBaseReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
 | |
|   X86FI->setGlobalBaseReg(GlobalBaseReg);
 | |
|   return GlobalBaseReg;
 | |
| }
 | |
| 
 | |
| // These are the replaceable SSE instructions. Some of these have Int variants
 | |
| // that we don't include here. We don't want to replace instructions selected
 | |
| // by intrinsics.
 | |
| static const uint16_t ReplaceableInstrs[][3] = {
 | |
|   //PackedSingle     PackedDouble    PackedInt
 | |
|   { X86::MOVAPSmr,   X86::MOVAPDmr,  X86::MOVDQAmr  },
 | |
|   { X86::MOVAPSrm,   X86::MOVAPDrm,  X86::MOVDQArm  },
 | |
|   { X86::MOVAPSrr,   X86::MOVAPDrr,  X86::MOVDQArr  },
 | |
|   { X86::MOVUPSmr,   X86::MOVUPDmr,  X86::MOVDQUmr  },
 | |
|   { X86::MOVUPSrm,   X86::MOVUPDrm,  X86::MOVDQUrm  },
 | |
|   { X86::MOVNTPSmr,  X86::MOVNTPDmr, X86::MOVNTDQmr },
 | |
|   { X86::ANDNPSrm,   X86::ANDNPDrm,  X86::PANDNrm   },
 | |
|   { X86::ANDNPSrr,   X86::ANDNPDrr,  X86::PANDNrr   },
 | |
|   { X86::ANDPSrm,    X86::ANDPDrm,   X86::PANDrm    },
 | |
|   { X86::ANDPSrr,    X86::ANDPDrr,   X86::PANDrr    },
 | |
|   { X86::ORPSrm,     X86::ORPDrm,    X86::PORrm     },
 | |
|   { X86::ORPSrr,     X86::ORPDrr,    X86::PORrr     },
 | |
|   { X86::XORPSrm,    X86::XORPDrm,   X86::PXORrm    },
 | |
|   { X86::XORPSrr,    X86::XORPDrr,   X86::PXORrr    },
 | |
|   // AVX 128-bit support
 | |
|   { X86::VMOVAPSmr,  X86::VMOVAPDmr,  X86::VMOVDQAmr  },
 | |
|   { X86::VMOVAPSrm,  X86::VMOVAPDrm,  X86::VMOVDQArm  },
 | |
|   { X86::VMOVAPSrr,  X86::VMOVAPDrr,  X86::VMOVDQArr  },
 | |
|   { X86::VMOVUPSmr,  X86::VMOVUPDmr,  X86::VMOVDQUmr  },
 | |
|   { X86::VMOVUPSrm,  X86::VMOVUPDrm,  X86::VMOVDQUrm  },
 | |
|   { X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
 | |
|   { X86::VANDNPSrm,  X86::VANDNPDrm,  X86::VPANDNrm   },
 | |
|   { X86::VANDNPSrr,  X86::VANDNPDrr,  X86::VPANDNrr   },
 | |
|   { X86::VANDPSrm,   X86::VANDPDrm,   X86::VPANDrm    },
 | |
|   { X86::VANDPSrr,   X86::VANDPDrr,   X86::VPANDrr    },
 | |
|   { X86::VORPSrm,    X86::VORPDrm,    X86::VPORrm     },
 | |
|   { X86::VORPSrr,    X86::VORPDrr,    X86::VPORrr     },
 | |
|   { X86::VXORPSrm,   X86::VXORPDrm,   X86::VPXORrm    },
 | |
|   { X86::VXORPSrr,   X86::VXORPDrr,   X86::VPXORrr    },
 | |
|   // AVX 256-bit support
 | |
|   { X86::VMOVAPSYmr,   X86::VMOVAPDYmr,   X86::VMOVDQAYmr  },
 | |
|   { X86::VMOVAPSYrm,   X86::VMOVAPDYrm,   X86::VMOVDQAYrm  },
 | |
|   { X86::VMOVAPSYrr,   X86::VMOVAPDYrr,   X86::VMOVDQAYrr  },
 | |
|   { X86::VMOVUPSYmr,   X86::VMOVUPDYmr,   X86::VMOVDQUYmr  },
 | |
|   { X86::VMOVUPSYrm,   X86::VMOVUPDYrm,   X86::VMOVDQUYrm  },
 | |
|   { X86::VMOVNTPSYmr,  X86::VMOVNTPDYmr,  X86::VMOVNTDQYmr }
 | |
| };
 | |
| 
 | |
| static const uint16_t ReplaceableInstrsAVX2[][3] = {
 | |
|   //PackedSingle       PackedDouble       PackedInt
 | |
|   { X86::VANDNPSYrm,   X86::VANDNPDYrm,   X86::VPANDNYrm   },
 | |
|   { X86::VANDNPSYrr,   X86::VANDNPDYrr,   X86::VPANDNYrr   },
 | |
|   { X86::VANDPSYrm,    X86::VANDPDYrm,    X86::VPANDYrm    },
 | |
|   { X86::VANDPSYrr,    X86::VANDPDYrr,    X86::VPANDYrr    },
 | |
|   { X86::VORPSYrm,     X86::VORPDYrm,     X86::VPORYrm     },
 | |
|   { X86::VORPSYrr,     X86::VORPDYrr,     X86::VPORYrr     },
 | |
|   { X86::VXORPSYrm,    X86::VXORPDYrm,    X86::VPXORYrm    },
 | |
|   { X86::VXORPSYrr,    X86::VXORPDYrr,    X86::VPXORYrr    },
 | |
|   { X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
 | |
|   { X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
 | |
|   { X86::VINSERTF128rm,  X86::VINSERTF128rm,  X86::VINSERTI128rm },
 | |
|   { X86::VINSERTF128rr,  X86::VINSERTF128rr,  X86::VINSERTI128rr },
 | |
|   { X86::VPERM2F128rm,   X86::VPERM2F128rm,   X86::VPERM2I128rm },
 | |
|   { X86::VPERM2F128rr,   X86::VPERM2F128rr,   X86::VPERM2I128rr }
 | |
| };
 | |
| 
 | |
| // FIXME: Some shuffle and unpack instructions have equivalents in different
 | |
| // domains, but they require a bit more work than just switching opcodes.
 | |
| 
 | |
| static const uint16_t *lookup(unsigned opcode, unsigned domain) {
 | |
|   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
 | |
|     if (ReplaceableInstrs[i][domain-1] == opcode)
 | |
|       return ReplaceableInstrs[i];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| static const uint16_t *lookupAVX2(unsigned opcode, unsigned domain) {
 | |
|   for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
 | |
|     if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
 | |
|       return ReplaceableInstrsAVX2[i];
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| std::pair<uint16_t, uint16_t>
 | |
| X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
 | |
|   uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
 | |
|   bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
 | |
|   uint16_t validDomains = 0;
 | |
|   if (domain && lookup(MI->getOpcode(), domain))
 | |
|     validDomains = 0xe;
 | |
|   else if (domain && lookupAVX2(MI->getOpcode(), domain))
 | |
|     validDomains = hasAVX2 ? 0xe : 0x6;
 | |
|   return std::make_pair(domain, validDomains);
 | |
| }
 | |
| 
 | |
| void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
 | |
|   assert(Domain>0 && Domain<4 && "Invalid execution domain");
 | |
|   uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
 | |
|   assert(dom && "Not an SSE instruction");
 | |
|   const uint16_t *table = lookup(MI->getOpcode(), dom);
 | |
|   if (!table) { // try the other table
 | |
|     assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
 | |
|            "256-bit vector operations only available in AVX2");
 | |
|     table = lookupAVX2(MI->getOpcode(), dom);
 | |
|   }
 | |
|   assert(table && "Cannot change domain");
 | |
|   MI->setDesc(get(table[Domain-1]));
 | |
| }
 | |
| 
 | |
| /// getNoopForMachoTarget - Return the noop instruction to use for a noop.
 | |
| void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
 | |
|   NopInst.setOpcode(X86::NOOP);
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::isHighLatencyDef(int opc) const {
 | |
|   switch (opc) {
 | |
|   default: return false;
 | |
|   case X86::DIVSDrm:
 | |
|   case X86::DIVSDrm_Int:
 | |
|   case X86::DIVSDrr:
 | |
|   case X86::DIVSDrr_Int:
 | |
|   case X86::DIVSSrm:
 | |
|   case X86::DIVSSrm_Int:
 | |
|   case X86::DIVSSrr:
 | |
|   case X86::DIVSSrr_Int:
 | |
|   case X86::SQRTPDm:
 | |
|   case X86::SQRTPDm_Int:
 | |
|   case X86::SQRTPDr:
 | |
|   case X86::SQRTPDr_Int:
 | |
|   case X86::SQRTPSm:
 | |
|   case X86::SQRTPSm_Int:
 | |
|   case X86::SQRTPSr:
 | |
|   case X86::SQRTPSr_Int:
 | |
|   case X86::SQRTSDm:
 | |
|   case X86::SQRTSDm_Int:
 | |
|   case X86::SQRTSDr:
 | |
|   case X86::SQRTSDr_Int:
 | |
|   case X86::SQRTSSm:
 | |
|   case X86::SQRTSSm_Int:
 | |
|   case X86::SQRTSSr:
 | |
|   case X86::SQRTSSr_Int:
 | |
|   // AVX instructions with high latency
 | |
|   case X86::VDIVSDrm:
 | |
|   case X86::VDIVSDrm_Int:
 | |
|   case X86::VDIVSDrr:
 | |
|   case X86::VDIVSDrr_Int:
 | |
|   case X86::VDIVSSrm:
 | |
|   case X86::VDIVSSrm_Int:
 | |
|   case X86::VDIVSSrr:
 | |
|   case X86::VDIVSSrr_Int:
 | |
|   case X86::VSQRTPDm:
 | |
|   case X86::VSQRTPDm_Int:
 | |
|   case X86::VSQRTPDr:
 | |
|   case X86::VSQRTPDr_Int:
 | |
|   case X86::VSQRTPSm:
 | |
|   case X86::VSQRTPSm_Int:
 | |
|   case X86::VSQRTPSr:
 | |
|   case X86::VSQRTPSr_Int:
 | |
|   case X86::VSQRTSDm:
 | |
|   case X86::VSQRTSDm_Int:
 | |
|   case X86::VSQRTSDr:
 | |
|   case X86::VSQRTSSm:
 | |
|   case X86::VSQRTSSm_Int:
 | |
|   case X86::VSQRTSSr:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86InstrInfo::
 | |
| hasHighOperandLatency(const InstrItineraryData *ItinData,
 | |
|                       const MachineRegisterInfo *MRI,
 | |
|                       const MachineInstr *DefMI, unsigned DefIdx,
 | |
|                       const MachineInstr *UseMI, unsigned UseIdx) const {
 | |
|   return isHighLatencyDef(DefMI->getOpcode());
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   /// CGBR - Create Global Base Reg pass. This initializes the PIC
 | |
|   /// global base register for x86-32.
 | |
|   struct CGBR : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     CGBR() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF) {
 | |
|       const X86TargetMachine *TM =
 | |
|         static_cast<const X86TargetMachine *>(&MF.getTarget());
 | |
| 
 | |
|       assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
 | |
|              "X86-64 PIC uses RIP relative addressing");
 | |
| 
 | |
|       // Only emit a global base reg in PIC mode.
 | |
|       if (TM->getRelocationModel() != Reloc::PIC_)
 | |
|         return false;
 | |
| 
 | |
|       X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|       unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
 | |
| 
 | |
|       // If we didn't need a GlobalBaseReg, don't insert code.
 | |
|       if (GlobalBaseReg == 0)
 | |
|         return false;
 | |
| 
 | |
|       // Insert the set of GlobalBaseReg into the first MBB of the function
 | |
|       MachineBasicBlock &FirstMBB = MF.front();
 | |
|       MachineBasicBlock::iterator MBBI = FirstMBB.begin();
 | |
|       DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
 | |
|       MachineRegisterInfo &RegInfo = MF.getRegInfo();
 | |
|       const X86InstrInfo *TII = TM->getInstrInfo();
 | |
| 
 | |
|       unsigned PC;
 | |
|       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
 | |
|         PC = RegInfo.createVirtualRegister(&X86::GR32RegClass);
 | |
|       else
 | |
|         PC = GlobalBaseReg;
 | |
| 
 | |
|       // Operand of MovePCtoStack is completely ignored by asm printer. It's
 | |
|       // only used in JIT code emission as displacement to pc.
 | |
|       BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
 | |
| 
 | |
|       // If we're using vanilla 'GOT' PIC style, we should use relative addressing
 | |
|       // not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
 | |
|       if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
 | |
|         // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
 | |
|         BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
 | |
|           .addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
 | |
|                                         X86II::MO_GOT_ABSOLUTE_ADDRESS);
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 PIC Global Base Reg Initialization";
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char CGBR::ID = 0;
 | |
| FunctionPass*
 | |
| llvm::createGlobalBaseRegPass() { return new CGBR(); }
 | |
| 
 | |
| namespace {
 | |
|   struct LDTLSCleanup : public MachineFunctionPass {
 | |
|     static char ID;
 | |
|     LDTLSCleanup() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF) {
 | |
|       X86MachineFunctionInfo* MFI = MF.getInfo<X86MachineFunctionInfo>();
 | |
|       if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
 | |
|         // No point folding accesses if there isn't at least two.
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
 | |
|       return VisitNode(DT->getRootNode(), 0);
 | |
|     }
 | |
| 
 | |
|     // Visit the dominator subtree rooted at Node in pre-order.
 | |
|     // If TLSBaseAddrReg is non-null, then use that to replace any
 | |
|     // TLS_base_addr instructions. Otherwise, create the register
 | |
|     // when the first such instruction is seen, and then use it
 | |
|     // as we encounter more instructions.
 | |
|     bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
 | |
|       MachineBasicBlock *BB = Node->getBlock();
 | |
|       bool Changed = false;
 | |
| 
 | |
|       // Traverse the current block.
 | |
|       for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
 | |
|            ++I) {
 | |
|         switch (I->getOpcode()) {
 | |
|           case X86::TLS_base_addr32:
 | |
|           case X86::TLS_base_addr64:
 | |
|             if (TLSBaseAddrReg)
 | |
|               I = ReplaceTLSBaseAddrCall(I, TLSBaseAddrReg);
 | |
|             else
 | |
|               I = SetRegister(I, &TLSBaseAddrReg);
 | |
|             Changed = true;
 | |
|             break;
 | |
|           default:
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Visit the children of this block in the dominator tree.
 | |
|       for (MachineDomTreeNode::iterator I = Node->begin(), E = Node->end();
 | |
|            I != E; ++I) {
 | |
|         Changed |= VisitNode(*I, TLSBaseAddrReg);
 | |
|       }
 | |
| 
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     // Replace the TLS_base_addr instruction I with a copy from
 | |
|     // TLSBaseAddrReg, returning the new instruction.
 | |
|     MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr *I,
 | |
|                                          unsigned TLSBaseAddrReg) {
 | |
|       MachineFunction *MF = I->getParent()->getParent();
 | |
|       const X86TargetMachine *TM =
 | |
|           static_cast<const X86TargetMachine *>(&MF->getTarget());
 | |
|       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
 | |
|       const X86InstrInfo *TII = TM->getInstrInfo();
 | |
| 
 | |
|       // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
 | |
|       MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
 | |
|                                    TII->get(TargetOpcode::COPY),
 | |
|                                    is64Bit ? X86::RAX : X86::EAX)
 | |
|                                    .addReg(TLSBaseAddrReg);
 | |
| 
 | |
|       // Erase the TLS_base_addr instruction.
 | |
|       I->eraseFromParent();
 | |
| 
 | |
|       return Copy;
 | |
|     }
 | |
| 
 | |
|     // Create a virtal register in *TLSBaseAddrReg, and populate it by
 | |
|     // inserting a copy instruction after I. Returns the new instruction.
 | |
|     MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
 | |
|       MachineFunction *MF = I->getParent()->getParent();
 | |
|       const X86TargetMachine *TM =
 | |
|           static_cast<const X86TargetMachine *>(&MF->getTarget());
 | |
|       const bool is64Bit = TM->getSubtarget<X86Subtarget>().is64Bit();
 | |
|       const X86InstrInfo *TII = TM->getInstrInfo();
 | |
| 
 | |
|       // Create a virtual register for the TLS base address.
 | |
|       MachineRegisterInfo &RegInfo = MF->getRegInfo();
 | |
|       *TLSBaseAddrReg = RegInfo.createVirtualRegister(is64Bit
 | |
|                                                       ? &X86::GR64RegClass
 | |
|                                                       : &X86::GR32RegClass);
 | |
| 
 | |
|       // Insert a copy from RAX/EAX to TLSBaseAddrReg.
 | |
|       MachineInstr *Next = I->getNextNode();
 | |
|       MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
 | |
|                                    TII->get(TargetOpcode::COPY),
 | |
|                                    *TLSBaseAddrReg)
 | |
|                                    .addReg(is64Bit ? X86::RAX : X86::EAX);
 | |
| 
 | |
|       return Copy;
 | |
|     }
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "Local Dynamic TLS Access Clean-up";
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| char LDTLSCleanup::ID = 0;
 | |
| FunctionPass*
 | |
| llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
 |