mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	necessary, but is no longer. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202836 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			718 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			718 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
///
 | 
						|
/// This file defines a set of templates that efficiently compute a dominator
 | 
						|
/// tree over a generic graph. This is used typically in LLVM for fast
 | 
						|
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
 | 
						|
/// graph types.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_SUPPORT_GENERIC_DOM_TREE_H
 | 
						|
#define LLVM_SUPPORT_GENERIC_DOM_TREE_H
 | 
						|
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// DominatorBase - Base class that other, more interesting dominator analyses
 | 
						|
/// inherit from.
 | 
						|
///
 | 
						|
template <class NodeT>
 | 
						|
class DominatorBase {
 | 
						|
protected:
 | 
						|
  std::vector<NodeT*> Roots;
 | 
						|
  const bool IsPostDominators;
 | 
						|
  inline explicit DominatorBase(bool isPostDom) :
 | 
						|
    Roots(), IsPostDominators(isPostDom) {}
 | 
						|
public:
 | 
						|
 | 
						|
  /// getRoots - Return the root blocks of the current CFG.  This may include
 | 
						|
  /// multiple blocks if we are computing post dominators.  For forward
 | 
						|
  /// dominators, this will always be a single block (the entry node).
 | 
						|
  ///
 | 
						|
  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
 | 
						|
 | 
						|
  /// isPostDominator - Returns true if analysis based of postdoms
 | 
						|
  ///
 | 
						|
  bool isPostDominator() const { return IsPostDominators; }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// DomTreeNodeBase - Dominator Tree Node
 | 
						|
template<class NodeT> class DominatorTreeBase;
 | 
						|
struct PostDominatorTree;
 | 
						|
 | 
						|
template <class NodeT>
 | 
						|
class DomTreeNodeBase {
 | 
						|
  NodeT *TheBB;
 | 
						|
  DomTreeNodeBase<NodeT> *IDom;
 | 
						|
  std::vector<DomTreeNodeBase<NodeT> *> Children;
 | 
						|
  mutable int DFSNumIn, DFSNumOut;
 | 
						|
 | 
						|
  template<class N> friend class DominatorTreeBase;
 | 
						|
  friend struct PostDominatorTree;
 | 
						|
public:
 | 
						|
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
 | 
						|
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
 | 
						|
                   const_iterator;
 | 
						|
 | 
						|
  iterator begin()             { return Children.begin(); }
 | 
						|
  iterator end()               { return Children.end(); }
 | 
						|
  const_iterator begin() const { return Children.begin(); }
 | 
						|
  const_iterator end()   const { return Children.end(); }
 | 
						|
 | 
						|
  NodeT *getBlock() const { return TheBB; }
 | 
						|
  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
 | 
						|
  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
 | 
						|
    return Children;
 | 
						|
  }
 | 
						|
 | 
						|
  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
 | 
						|
    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
 | 
						|
 | 
						|
  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
 | 
						|
    Children.push_back(C);
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t getNumChildren() const {
 | 
						|
    return Children.size();
 | 
						|
  }
 | 
						|
 | 
						|
  void clearAllChildren() {
 | 
						|
    Children.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  bool compare(const DomTreeNodeBase<NodeT> *Other) const {
 | 
						|
    if (getNumChildren() != Other->getNumChildren())
 | 
						|
      return true;
 | 
						|
 | 
						|
    SmallPtrSet<const NodeT *, 4> OtherChildren;
 | 
						|
    for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
 | 
						|
      const NodeT *Nd = (*I)->getBlock();
 | 
						|
      OtherChildren.insert(Nd);
 | 
						|
    }
 | 
						|
 | 
						|
    for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
      const NodeT *N = (*I)->getBlock();
 | 
						|
      if (OtherChildren.count(N) == 0)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
 | 
						|
    assert(IDom && "No immediate dominator?");
 | 
						|
    if (IDom != NewIDom) {
 | 
						|
      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
 | 
						|
                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | 
						|
      assert(I != IDom->Children.end() &&
 | 
						|
             "Not in immediate dominator children set!");
 | 
						|
      // I am no longer your child...
 | 
						|
      IDom->Children.erase(I);
 | 
						|
 | 
						|
      // Switch to new dominator
 | 
						|
      IDom = NewIDom;
 | 
						|
      IDom->Children.push_back(this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
 | 
						|
  /// not call them.
 | 
						|
  unsigned getDFSNumIn() const { return DFSNumIn; }
 | 
						|
  unsigned getDFSNumOut() const { return DFSNumOut; }
 | 
						|
private:
 | 
						|
  // Return true if this node is dominated by other. Use this only if DFS info
 | 
						|
  // is valid.
 | 
						|
  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
 | 
						|
    return this->DFSNumIn >= other->DFSNumIn &&
 | 
						|
      this->DFSNumOut <= other->DFSNumOut;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template<class NodeT>
 | 
						|
inline raw_ostream &operator<<(raw_ostream &o,
 | 
						|
                               const DomTreeNodeBase<NodeT> *Node) {
 | 
						|
  if (Node->getBlock())
 | 
						|
    Node->getBlock()->printAsOperand(o, false);
 | 
						|
  else
 | 
						|
    o << " <<exit node>>";
 | 
						|
 | 
						|
  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
 | 
						|
 | 
						|
  return o << "\n";
 | 
						|
}
 | 
						|
 | 
						|
template<class NodeT>
 | 
						|
inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
 | 
						|
                         unsigned Lev) {
 | 
						|
  o.indent(2*Lev) << "[" << Lev << "] " << N;
 | 
						|
  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
 | 
						|
       E = N->end(); I != E; ++I)
 | 
						|
    PrintDomTree<NodeT>(*I, o, Lev+1);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// DominatorTree - Calculate the immediate dominator tree for a function.
 | 
						|
///
 | 
						|
 | 
						|
template<class FuncT, class N>
 | 
						|
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
 | 
						|
               FuncT& F);
 | 
						|
 | 
						|
template<class NodeT>
 | 
						|
class DominatorTreeBase : public DominatorBase<NodeT> {
 | 
						|
  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
 | 
						|
                               const DomTreeNodeBase<NodeT> *B) const {
 | 
						|
    assert(A != B);
 | 
						|
    assert(isReachableFromEntry(B));
 | 
						|
    assert(isReachableFromEntry(A));
 | 
						|
 | 
						|
    const DomTreeNodeBase<NodeT> *IDom;
 | 
						|
    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
 | 
						|
      B = IDom;   // Walk up the tree
 | 
						|
    return IDom != 0;
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
 | 
						|
  DomTreeNodeMapType DomTreeNodes;
 | 
						|
  DomTreeNodeBase<NodeT> *RootNode;
 | 
						|
 | 
						|
  mutable bool DFSInfoValid;
 | 
						|
  mutable unsigned int SlowQueries;
 | 
						|
  // Information record used during immediate dominators computation.
 | 
						|
  struct InfoRec {
 | 
						|
    unsigned DFSNum;
 | 
						|
    unsigned Parent;
 | 
						|
    unsigned Semi;
 | 
						|
    NodeT *Label;
 | 
						|
 | 
						|
    InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {}
 | 
						|
  };
 | 
						|
 | 
						|
  DenseMap<NodeT*, NodeT*> IDoms;
 | 
						|
 | 
						|
  // Vertex - Map the DFS number to the NodeT*
 | 
						|
  std::vector<NodeT*> Vertex;
 | 
						|
 | 
						|
  // Info - Collection of information used during the computation of idoms.
 | 
						|
  DenseMap<NodeT*, InfoRec> Info;
 | 
						|
 | 
						|
  void reset() {
 | 
						|
    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(),
 | 
						|
           E = DomTreeNodes.end(); I != E; ++I)
 | 
						|
      delete I->second;
 | 
						|
    DomTreeNodes.clear();
 | 
						|
    IDoms.clear();
 | 
						|
    this->Roots.clear();
 | 
						|
    Vertex.clear();
 | 
						|
    RootNode = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // NewBB is split and now it has one successor. Update dominator tree to
 | 
						|
  // reflect this change.
 | 
						|
  template<class N, class GraphT>
 | 
						|
  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
             typename GraphT::NodeType* NewBB) {
 | 
						|
    assert(std::distance(GraphT::child_begin(NewBB),
 | 
						|
                         GraphT::child_end(NewBB)) == 1 &&
 | 
						|
           "NewBB should have a single successor!");
 | 
						|
    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
 | 
						|
 | 
						|
    std::vector<typename GraphT::NodeType*> PredBlocks;
 | 
						|
    typedef GraphTraits<Inverse<N> > InvTraits;
 | 
						|
    for (typename InvTraits::ChildIteratorType PI =
 | 
						|
         InvTraits::child_begin(NewBB),
 | 
						|
         PE = InvTraits::child_end(NewBB); PI != PE; ++PI)
 | 
						|
      PredBlocks.push_back(*PI);
 | 
						|
 | 
						|
    assert(!PredBlocks.empty() && "No predblocks?");
 | 
						|
 | 
						|
    bool NewBBDominatesNewBBSucc = true;
 | 
						|
    for (typename InvTraits::ChildIteratorType PI =
 | 
						|
         InvTraits::child_begin(NewBBSucc),
 | 
						|
         E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) {
 | 
						|
      typename InvTraits::NodeType *ND = *PI;
 | 
						|
      if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
 | 
						|
          DT.isReachableFromEntry(ND)) {
 | 
						|
        NewBBDominatesNewBBSucc = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Find NewBB's immediate dominator and create new dominator tree node for
 | 
						|
    // NewBB.
 | 
						|
    NodeT *NewBBIDom = 0;
 | 
						|
    unsigned i = 0;
 | 
						|
    for (i = 0; i < PredBlocks.size(); ++i)
 | 
						|
      if (DT.isReachableFromEntry(PredBlocks[i])) {
 | 
						|
        NewBBIDom = PredBlocks[i];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // It's possible that none of the predecessors of NewBB are reachable;
 | 
						|
    // in that case, NewBB itself is unreachable, so nothing needs to be
 | 
						|
    // changed.
 | 
						|
    if (!NewBBIDom)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (i = i + 1; i < PredBlocks.size(); ++i) {
 | 
						|
      if (DT.isReachableFromEntry(PredBlocks[i]))
 | 
						|
        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the new dominator tree node... and set the idom of NewBB.
 | 
						|
    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
 | 
						|
 | 
						|
    // If NewBB strictly dominates other blocks, then it is now the immediate
 | 
						|
    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | 
						|
    if (NewBBDominatesNewBBSucc) {
 | 
						|
      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
 | 
						|
      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  explicit DominatorTreeBase(bool isPostDom)
 | 
						|
    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
 | 
						|
  virtual ~DominatorTreeBase() { reset(); }
 | 
						|
 | 
						|
  /// compare - Return false if the other dominator tree base matches this
 | 
						|
  /// dominator tree base. Otherwise return true.
 | 
						|
  bool compare(const DominatorTreeBase &Other) const {
 | 
						|
 | 
						|
    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
 | 
						|
    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
 | 
						|
      return true;
 | 
						|
 | 
						|
    for (typename DomTreeNodeMapType::const_iterator
 | 
						|
           I = this->DomTreeNodes.begin(),
 | 
						|
           E = this->DomTreeNodes.end(); I != E; ++I) {
 | 
						|
      NodeT *BB = I->first;
 | 
						|
      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
 | 
						|
      if (OI == OtherDomTreeNodes.end())
 | 
						|
        return true;
 | 
						|
 | 
						|
      DomTreeNodeBase<NodeT>* MyNd = I->second;
 | 
						|
      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
 | 
						|
 | 
						|
      if (MyNd->compare(OtherNd))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void releaseMemory() { reset(); }
 | 
						|
 | 
						|
  /// getNode - return the (Post)DominatorTree node for the specified basic
 | 
						|
  /// block.  This is the same as using operator[] on this class.
 | 
						|
  ///
 | 
						|
  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
 | 
						|
    return DomTreeNodes.lookup(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRootNode - This returns the entry node for the CFG of the function.  If
 | 
						|
  /// this tree represents the post-dominance relations for a function, however,
 | 
						|
  /// this root may be a node with the block == NULL.  This is the case when
 | 
						|
  /// there are multiple exit nodes from a particular function.  Consumers of
 | 
						|
  /// post-dominance information must be capable of dealing with this
 | 
						|
  /// possibility.
 | 
						|
  ///
 | 
						|
  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
 | 
						|
  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
 | 
						|
 | 
						|
  /// Get all nodes dominated by R, including R itself.
 | 
						|
  void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
 | 
						|
    Result.clear();
 | 
						|
    const DomTreeNodeBase<NodeT> *RN = getNode(R);
 | 
						|
    if (RN == NULL)
 | 
						|
      return; // If R is unreachable, it will not be present in the DOM tree.
 | 
						|
    SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
 | 
						|
    WL.push_back(RN);
 | 
						|
 | 
						|
    while (!WL.empty()) {
 | 
						|
      const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
 | 
						|
      Result.push_back(N->getBlock());
 | 
						|
      WL.append(N->begin(), N->end());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// properlyDominates - Returns true iff A dominates B and A != B.
 | 
						|
  /// Note that this is not a constant time operation!
 | 
						|
  ///
 | 
						|
  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
 | 
						|
                         const DomTreeNodeBase<NodeT> *B) const {
 | 
						|
    if (A == 0 || B == 0)
 | 
						|
      return false;
 | 
						|
    if (A == B)
 | 
						|
      return false;
 | 
						|
    return dominates(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  bool properlyDominates(const NodeT *A, const NodeT *B) const;
 | 
						|
 | 
						|
  /// isReachableFromEntry - Return true if A is dominated by the entry
 | 
						|
  /// block of the function containing it.
 | 
						|
  bool isReachableFromEntry(const NodeT* A) const {
 | 
						|
    assert(!this->isPostDominator() &&
 | 
						|
           "This is not implemented for post dominators");
 | 
						|
    return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const {
 | 
						|
    return A;
 | 
						|
  }
 | 
						|
 | 
						|
  /// dominates - Returns true iff A dominates B.  Note that this is not a
 | 
						|
  /// constant time operation!
 | 
						|
  ///
 | 
						|
  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
 | 
						|
                        const DomTreeNodeBase<NodeT> *B) const {
 | 
						|
    // A node trivially dominates itself.
 | 
						|
    if (B == A)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // An unreachable node is dominated by anything.
 | 
						|
    if (!isReachableFromEntry(B))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // And dominates nothing.
 | 
						|
    if (!isReachableFromEntry(A))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Compare the result of the tree walk and the dfs numbers, if expensive
 | 
						|
    // checks are enabled.
 | 
						|
#ifdef XDEBUG
 | 
						|
    assert((!DFSInfoValid ||
 | 
						|
            (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
 | 
						|
           "Tree walk disagrees with dfs numbers!");
 | 
						|
#endif
 | 
						|
 | 
						|
    if (DFSInfoValid)
 | 
						|
      return B->DominatedBy(A);
 | 
						|
 | 
						|
    // If we end up with too many slow queries, just update the
 | 
						|
    // DFS numbers on the theory that we are going to keep querying.
 | 
						|
    SlowQueries++;
 | 
						|
    if (SlowQueries > 32) {
 | 
						|
      updateDFSNumbers();
 | 
						|
      return B->DominatedBy(A);
 | 
						|
    }
 | 
						|
 | 
						|
    return dominatedBySlowTreeWalk(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  bool dominates(const NodeT *A, const NodeT *B) const;
 | 
						|
 | 
						|
  NodeT *getRoot() const {
 | 
						|
    assert(this->Roots.size() == 1 && "Should always have entry node!");
 | 
						|
    return this->Roots[0];
 | 
						|
  }
 | 
						|
 | 
						|
  /// findNearestCommonDominator - Find nearest common dominator basic block
 | 
						|
  /// for basic block A and B. If there is no such block then return NULL.
 | 
						|
  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
 | 
						|
    assert(A->getParent() == B->getParent() &&
 | 
						|
           "Two blocks are not in same function");
 | 
						|
 | 
						|
    // If either A or B is a entry block then it is nearest common dominator
 | 
						|
    // (for forward-dominators).
 | 
						|
    if (!this->isPostDominator()) {
 | 
						|
      NodeT &Entry = A->getParent()->front();
 | 
						|
      if (A == &Entry || B == &Entry)
 | 
						|
        return &Entry;
 | 
						|
    }
 | 
						|
 | 
						|
    // If B dominates A then B is nearest common dominator.
 | 
						|
    if (dominates(B, A))
 | 
						|
      return B;
 | 
						|
 | 
						|
    // If A dominates B then A is nearest common dominator.
 | 
						|
    if (dominates(A, B))
 | 
						|
      return A;
 | 
						|
 | 
						|
    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
 | 
						|
    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
 | 
						|
 | 
						|
    // Collect NodeA dominators set.
 | 
						|
    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
 | 
						|
    NodeADoms.insert(NodeA);
 | 
						|
    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
 | 
						|
    while (IDomA) {
 | 
						|
      NodeADoms.insert(IDomA);
 | 
						|
      IDomA = IDomA->getIDom();
 | 
						|
    }
 | 
						|
 | 
						|
    // Walk NodeB immediate dominators chain and find common dominator node.
 | 
						|
    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
 | 
						|
    while (IDomB) {
 | 
						|
      if (NodeADoms.count(IDomB) != 0)
 | 
						|
        return IDomB->getBlock();
 | 
						|
 | 
						|
      IDomB = IDomB->getIDom();
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
 | 
						|
    // Cast away the const qualifiers here. This is ok since
 | 
						|
    // const is re-introduced on the return type.
 | 
						|
    return findNearestCommonDominator(const_cast<NodeT *>(A),
 | 
						|
                                      const_cast<NodeT *>(B));
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // API to update (Post)DominatorTree information based on modifications to
 | 
						|
  // the CFG...
 | 
						|
 | 
						|
  /// addNewBlock - Add a new node to the dominator tree information.  This
 | 
						|
  /// creates a new node as a child of DomBB dominator node,linking it into
 | 
						|
  /// the children list of the immediate dominator.
 | 
						|
  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
 | 
						|
    assert(getNode(BB) == 0 && "Block already in dominator tree!");
 | 
						|
    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
 | 
						|
    assert(IDomNode && "Not immediate dominator specified for block!");
 | 
						|
    DFSInfoValid = false;
 | 
						|
    return DomTreeNodes[BB] =
 | 
						|
      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
 | 
						|
  }
 | 
						|
 | 
						|
  /// changeImmediateDominator - This method is used to update the dominator
 | 
						|
  /// tree information when a node's immediate dominator changes.
 | 
						|
  ///
 | 
						|
  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
 | 
						|
                                DomTreeNodeBase<NodeT> *NewIDom) {
 | 
						|
    assert(N && NewIDom && "Cannot change null node pointers!");
 | 
						|
    DFSInfoValid = false;
 | 
						|
    N->setIDom(NewIDom);
 | 
						|
  }
 | 
						|
 | 
						|
  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
 | 
						|
    changeImmediateDominator(getNode(BB), getNode(NewBB));
 | 
						|
  }
 | 
						|
 | 
						|
  /// eraseNode - Removes a node from the dominator tree. Block must not
 | 
						|
  /// dominate any other blocks. Removes node from its immediate dominator's
 | 
						|
  /// children list. Deletes dominator node associated with basic block BB.
 | 
						|
  void eraseNode(NodeT *BB) {
 | 
						|
    DomTreeNodeBase<NodeT> *Node = getNode(BB);
 | 
						|
    assert(Node && "Removing node that isn't in dominator tree.");
 | 
						|
    assert(Node->getChildren().empty() && "Node is not a leaf node.");
 | 
						|
 | 
						|
      // Remove node from immediate dominator's children list.
 | 
						|
    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
 | 
						|
    if (IDom) {
 | 
						|
      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
 | 
						|
        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
 | 
						|
      assert(I != IDom->Children.end() &&
 | 
						|
             "Not in immediate dominator children set!");
 | 
						|
      // I am no longer your child...
 | 
						|
      IDom->Children.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    DomTreeNodes.erase(BB);
 | 
						|
    delete Node;
 | 
						|
  }
 | 
						|
 | 
						|
  /// removeNode - Removes a node from the dominator tree.  Block must not
 | 
						|
  /// dominate any other blocks.  Invalidates any node pointing to removed
 | 
						|
  /// block.
 | 
						|
  void removeNode(NodeT *BB) {
 | 
						|
    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
 | 
						|
    DomTreeNodes.erase(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// splitBlock - BB is split and now it has one successor. Update dominator
 | 
						|
  /// tree to reflect this change.
 | 
						|
  void splitBlock(NodeT* NewBB) {
 | 
						|
    if (this->IsPostDominators)
 | 
						|
      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
 | 
						|
    else
 | 
						|
      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// print - Convert to human readable form
 | 
						|
  ///
 | 
						|
  void print(raw_ostream &o) const {
 | 
						|
    o << "=============================--------------------------------\n";
 | 
						|
    if (this->isPostDominator())
 | 
						|
      o << "Inorder PostDominator Tree: ";
 | 
						|
    else
 | 
						|
      o << "Inorder Dominator Tree: ";
 | 
						|
    if (!this->DFSInfoValid)
 | 
						|
      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
 | 
						|
    o << "\n";
 | 
						|
 | 
						|
    // The postdom tree can have a null root if there are no returns.
 | 
						|
    if (getRootNode())
 | 
						|
      PrintDomTree<NodeT>(getRootNode(), o, 1);
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  template<class GraphT>
 | 
						|
  friend typename GraphT::NodeType* Eval(
 | 
						|
                               DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                                         typename GraphT::NodeType* V,
 | 
						|
                                         unsigned LastLinked);
 | 
						|
 | 
						|
  template<class GraphT>
 | 
						|
  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                          typename GraphT::NodeType* V,
 | 
						|
                          unsigned N);
 | 
						|
 | 
						|
  template<class FuncT, class N>
 | 
						|
  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
 | 
						|
                        FuncT& F);
 | 
						|
 | 
						|
  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
 | 
						|
  /// dominator tree in dfs order.
 | 
						|
  void updateDFSNumbers() const {
 | 
						|
    unsigned DFSNum = 0;
 | 
						|
 | 
						|
    SmallVector<std::pair<const DomTreeNodeBase<NodeT>*,
 | 
						|
                typename DomTreeNodeBase<NodeT>::const_iterator>, 32> WorkStack;
 | 
						|
 | 
						|
    const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
 | 
						|
 | 
						|
    if (!ThisRoot)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Even in the case of multiple exits that form the post dominator root
 | 
						|
    // nodes, do not iterate over all exits, but start from the virtual root
 | 
						|
    // node. Otherwise bbs, that are not post dominated by any exit but by the
 | 
						|
    // virtual root node, will never be assigned a DFS number.
 | 
						|
    WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
 | 
						|
    ThisRoot->DFSNumIn = DFSNum++;
 | 
						|
 | 
						|
    while (!WorkStack.empty()) {
 | 
						|
      const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
 | 
						|
      typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
 | 
						|
        WorkStack.back().second;
 | 
						|
 | 
						|
      // If we visited all of the children of this node, "recurse" back up the
 | 
						|
      // stack setting the DFOutNum.
 | 
						|
      if (ChildIt == Node->end()) {
 | 
						|
        Node->DFSNumOut = DFSNum++;
 | 
						|
        WorkStack.pop_back();
 | 
						|
      } else {
 | 
						|
        // Otherwise, recursively visit this child.
 | 
						|
        const DomTreeNodeBase<NodeT> *Child = *ChildIt;
 | 
						|
        ++WorkStack.back().second;
 | 
						|
 | 
						|
        WorkStack.push_back(std::make_pair(Child, Child->begin()));
 | 
						|
        Child->DFSNumIn = DFSNum++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    SlowQueries = 0;
 | 
						|
    DFSInfoValid = true;
 | 
						|
  }
 | 
						|
 | 
						|
  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
 | 
						|
    if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
 | 
						|
      return Node;
 | 
						|
 | 
						|
    // Haven't calculated this node yet?  Get or calculate the node for the
 | 
						|
    // immediate dominator.
 | 
						|
    NodeT *IDom = getIDom(BB);
 | 
						|
 | 
						|
    assert(IDom || this->DomTreeNodes[NULL]);
 | 
						|
    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
 | 
						|
 | 
						|
    // Add a new tree node for this NodeT, and link it as a child of
 | 
						|
    // IDomNode
 | 
						|
    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
 | 
						|
    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
 | 
						|
  }
 | 
						|
 | 
						|
  inline NodeT *getIDom(NodeT *BB) const {
 | 
						|
    return IDoms.lookup(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  inline void addRoot(NodeT* BB) {
 | 
						|
    this->Roots.push_back(BB);
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  /// recalculate - compute a dominator tree for the given function
 | 
						|
  template<class FT>
 | 
						|
  void recalculate(FT& F) {
 | 
						|
    typedef GraphTraits<FT*> TraitsTy;
 | 
						|
    reset();
 | 
						|
    this->Vertex.push_back(0);
 | 
						|
 | 
						|
    if (!this->IsPostDominators) {
 | 
						|
      // Initialize root
 | 
						|
      NodeT *entry = TraitsTy::getEntryNode(&F);
 | 
						|
      this->Roots.push_back(entry);
 | 
						|
      this->IDoms[entry] = 0;
 | 
						|
      this->DomTreeNodes[entry] = 0;
 | 
						|
 | 
						|
      Calculate<FT, NodeT*>(*this, F);
 | 
						|
    } else {
 | 
						|
      // Initialize the roots list
 | 
						|
      for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
 | 
						|
                                        E = TraitsTy::nodes_end(&F); I != E; ++I) {
 | 
						|
        if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
 | 
						|
          addRoot(I);
 | 
						|
 | 
						|
        // Prepopulate maps so that we don't get iterator invalidation issues later.
 | 
						|
        this->IDoms[I] = 0;
 | 
						|
        this->DomTreeNodes[I] = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      Calculate<FT, Inverse<NodeT*> >(*this, F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
// These two functions are declared out of line as a workaround for building
 | 
						|
// with old (< r147295) versions of clang because of pr11642.
 | 
						|
template<class NodeT>
 | 
						|
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
 | 
						|
  if (A == B)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Cast away the const qualifiers here. This is ok since
 | 
						|
  // this function doesn't actually return the values returned
 | 
						|
  // from getNode.
 | 
						|
  return dominates(getNode(const_cast<NodeT *>(A)),
 | 
						|
                   getNode(const_cast<NodeT *>(B)));
 | 
						|
}
 | 
						|
template<class NodeT>
 | 
						|
bool
 | 
						|
DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) const {
 | 
						|
  if (A == B)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Cast away the const qualifiers here. This is ok since
 | 
						|
  // this function doesn't actually return the values returned
 | 
						|
  // from getNode.
 | 
						|
  return dominates(getNode(const_cast<NodeT *>(A)),
 | 
						|
                   getNode(const_cast<NodeT *>(B)));
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |