mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	libraries. It is now always 1 in LLVM builds. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202580 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1890 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1890 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| ///
 | |
| /// \file
 | |
| /// \brief This file implements a class to represent arbitrary precision
 | |
| /// integral constant values and operations on them.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_APINT_H
 | |
| #define LLVM_ADT_APINT_H
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| 
 | |
| namespace llvm {
 | |
| class Deserializer;
 | |
| class FoldingSetNodeID;
 | |
| class Serializer;
 | |
| class StringRef;
 | |
| class hash_code;
 | |
| class raw_ostream;
 | |
| 
 | |
| template <typename T> class SmallVectorImpl;
 | |
| 
 | |
| // An unsigned host type used as a single part of a multi-part
 | |
| // bignum.
 | |
| typedef uint64_t integerPart;
 | |
| 
 | |
| const unsigned int host_char_bit = 8;
 | |
| const unsigned int integerPartWidth =
 | |
|     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              APInt Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// \brief Class for arbitrary precision integers.
 | |
| ///
 | |
| /// APInt is a functional replacement for common case unsigned integer type like
 | |
| /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
 | |
| /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
 | |
| /// than 64-bits of precision. APInt provides a variety of arithmetic operators
 | |
| /// and methods to manipulate integer values of any bit-width. It supports both
 | |
| /// the typical integer arithmetic and comparison operations as well as bitwise
 | |
| /// manipulation.
 | |
| ///
 | |
| /// The class has several invariants worth noting:
 | |
| ///   * All bit, byte, and word positions are zero-based.
 | |
| ///   * Once the bit width is set, it doesn't change except by the Truncate,
 | |
| ///     SignExtend, or ZeroExtend operations.
 | |
| ///   * All binary operators must be on APInt instances of the same bit width.
 | |
| ///     Attempting to use these operators on instances with different bit
 | |
| ///     widths will yield an assertion.
 | |
| ///   * The value is stored canonically as an unsigned value. For operations
 | |
| ///     where it makes a difference, there are both signed and unsigned variants
 | |
| ///     of the operation. For example, sdiv and udiv. However, because the bit
 | |
| ///     widths must be the same, operations such as Mul and Add produce the same
 | |
| ///     results regardless of whether the values are interpreted as signed or
 | |
| ///     not.
 | |
| ///   * In general, the class tries to follow the style of computation that LLVM
 | |
| ///     uses in its IR. This simplifies its use for LLVM.
 | |
| ///
 | |
| class APInt {
 | |
|   unsigned BitWidth; ///< The number of bits in this APInt.
 | |
| 
 | |
|   /// This union is used to store the integer value. When the
 | |
|   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
 | |
|   union {
 | |
|     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
 | |
|     uint64_t *pVal; ///< Used to store the >64 bits integer value.
 | |
|   };
 | |
| 
 | |
|   /// This enum is used to hold the constants we needed for APInt.
 | |
|   enum {
 | |
|     /// Bits in a word
 | |
|     APINT_BITS_PER_WORD =
 | |
|         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
 | |
|     /// Byte size of a word
 | |
|     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
 | |
|   };
 | |
| 
 | |
|   /// \brief Fast internal constructor
 | |
|   ///
 | |
|   /// This constructor is used only internally for speed of construction of
 | |
|   /// temporaries. It is unsafe for general use so it is not public.
 | |
|   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
 | |
| 
 | |
|   /// \brief Determine if this APInt just has one word to store value.
 | |
|   ///
 | |
|   /// \returns true if the number of bits <= 64, false otherwise.
 | |
|   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
 | |
| 
 | |
|   /// \brief Determine which word a bit is in.
 | |
|   ///
 | |
|   /// \returns the word position for the specified bit position.
 | |
|   static unsigned whichWord(unsigned bitPosition) {
 | |
|     return bitPosition / APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine which bit in a word a bit is in.
 | |
|   ///
 | |
|   /// \returns the bit position in a word for the specified bit position
 | |
|   /// in the APInt.
 | |
|   static unsigned whichBit(unsigned bitPosition) {
 | |
|     return bitPosition % APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get a single bit mask.
 | |
|   ///
 | |
|   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
 | |
|   /// This method generates and returns a uint64_t (word) mask for a single
 | |
|   /// bit at a specific bit position. This is used to mask the bit in the
 | |
|   /// corresponding word.
 | |
|   static uint64_t maskBit(unsigned bitPosition) {
 | |
|     return 1ULL << whichBit(bitPosition);
 | |
|   }
 | |
| 
 | |
|   /// \brief Clear unused high order bits
 | |
|   ///
 | |
|   /// This method is used internally to clear the to "N" bits in the high order
 | |
|   /// word that are not used by the APInt. This is needed after the most
 | |
|   /// significant word is assigned a value to ensure that those bits are
 | |
|   /// zero'd out.
 | |
|   APInt &clearUnusedBits() {
 | |
|     // Compute how many bits are used in the final word
 | |
|     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
 | |
|     if (wordBits == 0)
 | |
|       // If all bits are used, we want to leave the value alone. This also
 | |
|       // avoids the undefined behavior of >> when the shift is the same size as
 | |
|       // the word size (64).
 | |
|       return *this;
 | |
| 
 | |
|     // Mask out the high bits.
 | |
|     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
 | |
|     if (isSingleWord())
 | |
|       VAL &= mask;
 | |
|     else
 | |
|       pVal[getNumWords() - 1] &= mask;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the word corresponding to a bit position
 | |
|   /// \returns the corresponding word for the specified bit position.
 | |
|   uint64_t getWord(unsigned bitPosition) const {
 | |
|     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
 | |
|   }
 | |
| 
 | |
|   /// \brief Convert a char array into an APInt
 | |
|   ///
 | |
|   /// \param radix 2, 8, 10, 16, or 36
 | |
|   /// Converts a string into a number.  The string must be non-empty
 | |
|   /// and well-formed as a number of the given base. The bit-width
 | |
|   /// must be sufficient to hold the result.
 | |
|   ///
 | |
|   /// This is used by the constructors that take string arguments.
 | |
|   ///
 | |
|   /// StringRef::getAsInteger is superficially similar but (1) does
 | |
|   /// not assume that the string is well-formed and (2) grows the
 | |
|   /// result to hold the input.
 | |
|   void fromString(unsigned numBits, StringRef str, uint8_t radix);
 | |
| 
 | |
|   /// \brief An internal division function for dividing APInts.
 | |
|   ///
 | |
|   /// This is used by the toString method to divide by the radix. It simply
 | |
|   /// provides a more convenient form of divide for internal use since KnuthDiv
 | |
|   /// has specific constraints on its inputs. If those constraints are not met
 | |
|   /// then it provides a simpler form of divide.
 | |
|   static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
 | |
|                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
 | |
| 
 | |
|   /// out-of-line slow case for inline constructor
 | |
|   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
 | |
| 
 | |
|   /// shared code between two array constructors
 | |
|   void initFromArray(ArrayRef<uint64_t> array);
 | |
| 
 | |
|   /// out-of-line slow case for inline copy constructor
 | |
|   void initSlowCase(const APInt &that);
 | |
| 
 | |
|   /// out-of-line slow case for shl
 | |
|   APInt shlSlowCase(unsigned shiftAmt) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator&
 | |
|   APInt AndSlowCase(const APInt &RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator|
 | |
|   APInt OrSlowCase(const APInt &RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator^
 | |
|   APInt XorSlowCase(const APInt &RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator=
 | |
|   APInt &AssignSlowCase(const APInt &RHS);
 | |
| 
 | |
|   /// out-of-line slow case for operator==
 | |
|   bool EqualSlowCase(const APInt &RHS) const;
 | |
| 
 | |
|   /// out-of-line slow case for operator==
 | |
|   bool EqualSlowCase(uint64_t Val) const;
 | |
| 
 | |
|   /// out-of-line slow case for countLeadingZeros
 | |
|   unsigned countLeadingZerosSlowCase() const;
 | |
| 
 | |
|   /// out-of-line slow case for countTrailingOnes
 | |
|   unsigned countTrailingOnesSlowCase() const;
 | |
| 
 | |
|   /// out-of-line slow case for countPopulation
 | |
|   unsigned countPopulationSlowCase() const;
 | |
| 
 | |
| public:
 | |
|   /// \name Constructors
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Create a new APInt of numBits width, initialized as val.
 | |
|   ///
 | |
|   /// If isSigned is true then val is treated as if it were a signed value
 | |
|   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
 | |
|   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
 | |
|   /// the range of val are zero filled).
 | |
|   ///
 | |
|   /// \param numBits the bit width of the constructed APInt
 | |
|   /// \param val the initial value of the APInt
 | |
|   /// \param isSigned how to treat signedness of val
 | |
|   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
 | |
|       : BitWidth(numBits), VAL(0) {
 | |
|     assert(BitWidth && "bitwidth too small");
 | |
|     if (isSingleWord())
 | |
|       VAL = val;
 | |
|     else
 | |
|       initSlowCase(numBits, val, isSigned);
 | |
|     clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
 | |
|   ///
 | |
|   /// Note that bigVal.size() can be smaller or larger than the corresponding
 | |
|   /// bit width but any extraneous bits will be dropped.
 | |
|   ///
 | |
|   /// \param numBits the bit width of the constructed APInt
 | |
|   /// \param bigVal a sequence of words to form the initial value of the APInt
 | |
|   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
 | |
| 
 | |
|   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
 | |
|   /// deprecated because this constructor is prone to ambiguity with the
 | |
|   /// APInt(unsigned, uint64_t, bool) constructor.
 | |
|   ///
 | |
|   /// If this overload is ever deleted, care should be taken to prevent calls
 | |
|   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
 | |
|   /// constructor.
 | |
|   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
 | |
| 
 | |
|   /// \brief Construct an APInt from a string representation.
 | |
|   ///
 | |
|   /// This constructor interprets the string \p str in the given radix. The
 | |
|   /// interpretation stops when the first character that is not suitable for the
 | |
|   /// radix is encountered, or the end of the string. Acceptable radix values
 | |
|   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
 | |
|   /// string to require more bits than numBits.
 | |
|   ///
 | |
|   /// \param numBits the bit width of the constructed APInt
 | |
|   /// \param str the string to be interpreted
 | |
|   /// \param radix the radix to use for the conversion
 | |
|   APInt(unsigned numBits, StringRef str, uint8_t radix);
 | |
| 
 | |
|   /// Simply makes *this a copy of that.
 | |
|   /// @brief Copy Constructor.
 | |
|   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
 | |
|     assert(BitWidth && "bitwidth too small");
 | |
|     if (isSingleWord())
 | |
|       VAL = that.VAL;
 | |
|     else
 | |
|       initSlowCase(that);
 | |
|   }
 | |
| 
 | |
|   /// \brief Move Constructor.
 | |
|   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
 | |
|     that.BitWidth = 0;
 | |
|   }
 | |
| 
 | |
|   /// \brief Destructor.
 | |
|   ~APInt() {
 | |
|     if (needsCleanup())
 | |
|       delete[] pVal;
 | |
|   }
 | |
| 
 | |
|   /// \brief Default constructor that creates an uninitialized APInt.
 | |
|   ///
 | |
|   /// This is useful for object deserialization (pair this with the static
 | |
|   ///  method Read).
 | |
|   explicit APInt() : BitWidth(1) {}
 | |
| 
 | |
|   /// \brief Returns whether this instance allocated memory.
 | |
|   bool needsCleanup() const { return !isSingleWord(); }
 | |
| 
 | |
|   /// Used to insert APInt objects, or objects that contain APInt objects, into
 | |
|   ///  FoldingSets.
 | |
|   void Profile(FoldingSetNodeID &id) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Value Tests
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Determine sign of this APInt.
 | |
|   ///
 | |
|   /// This tests the high bit of this APInt to determine if it is set.
 | |
|   ///
 | |
|   /// \returns true if this APInt is negative, false otherwise
 | |
|   bool isNegative() const { return (*this)[BitWidth - 1]; }
 | |
| 
 | |
|   /// \brief Determine if this APInt Value is non-negative (>= 0)
 | |
|   ///
 | |
|   /// This tests the high bit of the APInt to determine if it is unset.
 | |
|   bool isNonNegative() const { return !isNegative(); }
 | |
| 
 | |
|   /// \brief Determine if this APInt Value is positive.
 | |
|   ///
 | |
|   /// This tests if the value of this APInt is positive (> 0). Note
 | |
|   /// that 0 is not a positive value.
 | |
|   ///
 | |
|   /// \returns true if this APInt is positive.
 | |
|   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
 | |
| 
 | |
|   /// \brief Determine if all bits are set
 | |
|   ///
 | |
|   /// This checks to see if the value has all bits of the APInt are set or not.
 | |
|   bool isAllOnesValue() const {
 | |
|     if (isSingleWord())
 | |
|       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
 | |
|     return countPopulationSlowCase() == BitWidth;
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine if this is the largest unsigned value.
 | |
|   ///
 | |
|   /// This checks to see if the value of this APInt is the maximum unsigned
 | |
|   /// value for the APInt's bit width.
 | |
|   bool isMaxValue() const { return isAllOnesValue(); }
 | |
| 
 | |
|   /// \brief Determine if this is the largest signed value.
 | |
|   ///
 | |
|   /// This checks to see if the value of this APInt is the maximum signed
 | |
|   /// value for the APInt's bit width.
 | |
|   bool isMaxSignedValue() const {
 | |
|     return BitWidth == 1 ? VAL == 0
 | |
|                          : !isNegative() && countPopulation() == BitWidth - 1;
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine if this is the smallest unsigned value.
 | |
|   ///
 | |
|   /// This checks to see if the value of this APInt is the minimum unsigned
 | |
|   /// value for the APInt's bit width.
 | |
|   bool isMinValue() const { return !*this; }
 | |
| 
 | |
|   /// \brief Determine if this is the smallest signed value.
 | |
|   ///
 | |
|   /// This checks to see if the value of this APInt is the minimum signed
 | |
|   /// value for the APInt's bit width.
 | |
|   bool isMinSignedValue() const {
 | |
|     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if this APInt has an N-bits unsigned integer value.
 | |
|   bool isIntN(unsigned N) const {
 | |
|     assert(N && "N == 0 ???");
 | |
|     return getActiveBits() <= N;
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if this APInt has an N-bits signed integer value.
 | |
|   bool isSignedIntN(unsigned N) const {
 | |
|     assert(N && "N == 0 ???");
 | |
|     return getMinSignedBits() <= N;
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if this APInt's value is a power of two greater than zero.
 | |
|   ///
 | |
|   /// \returns true if the argument APInt value is a power of two > 0.
 | |
|   bool isPowerOf2() const {
 | |
|     if (isSingleWord())
 | |
|       return isPowerOf2_64(VAL);
 | |
|     return countPopulationSlowCase() == 1;
 | |
|   }
 | |
| 
 | |
|   /// \brief Check if the APInt's value is returned by getSignBit.
 | |
|   ///
 | |
|   /// \returns true if this is the value returned by getSignBit.
 | |
|   bool isSignBit() const { return isMinSignedValue(); }
 | |
| 
 | |
|   /// \brief Convert APInt to a boolean value.
 | |
|   ///
 | |
|   /// This converts the APInt to a boolean value as a test against zero.
 | |
|   bool getBoolValue() const { return !!*this; }
 | |
| 
 | |
|   /// If this value is smaller than the specified limit, return it, otherwise
 | |
|   /// return the limit value.  This causes the value to saturate to the limit.
 | |
|   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
 | |
|     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
 | |
|                                                             : getZExtValue();
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Value Generators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Gets maximum unsigned value of APInt for specific bit width.
 | |
|   static APInt getMaxValue(unsigned numBits) {
 | |
|     return getAllOnesValue(numBits);
 | |
|   }
 | |
| 
 | |
|   /// \brief Gets maximum signed value of APInt for a specific bit width.
 | |
|   static APInt getSignedMaxValue(unsigned numBits) {
 | |
|     APInt API = getAllOnesValue(numBits);
 | |
|     API.clearBit(numBits - 1);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
 | |
|   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
 | |
| 
 | |
|   /// \brief Gets minimum signed value of APInt for a specific bit width.
 | |
|   static APInt getSignedMinValue(unsigned numBits) {
 | |
|     APInt API(numBits, 0);
 | |
|     API.setBit(numBits - 1);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the SignBit for a specific bit width.
 | |
|   ///
 | |
|   /// This is just a wrapper function of getSignedMinValue(), and it helps code
 | |
|   /// readability when we want to get a SignBit.
 | |
|   static APInt getSignBit(unsigned BitWidth) {
 | |
|     return getSignedMinValue(BitWidth);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the all-ones value.
 | |
|   ///
 | |
|   /// \returns the all-ones value for an APInt of the specified bit-width.
 | |
|   static APInt getAllOnesValue(unsigned numBits) {
 | |
|     return APInt(numBits, UINT64_MAX, true);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the '0' value.
 | |
|   ///
 | |
|   /// \returns the '0' value for an APInt of the specified bit-width.
 | |
|   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
 | |
| 
 | |
|   /// \brief Compute an APInt containing numBits highbits from this APInt.
 | |
|   ///
 | |
|   /// Get an APInt with the same BitWidth as this APInt, just zero mask
 | |
|   /// the low bits and right shift to the least significant bit.
 | |
|   ///
 | |
|   /// \returns the high "numBits" bits of this APInt.
 | |
|   APInt getHiBits(unsigned numBits) const;
 | |
| 
 | |
|   /// \brief Compute an APInt containing numBits lowbits from this APInt.
 | |
|   ///
 | |
|   /// Get an APInt with the same BitWidth as this APInt, just zero mask
 | |
|   /// the high bits.
 | |
|   ///
 | |
|   /// \returns the low "numBits" bits of this APInt.
 | |
|   APInt getLoBits(unsigned numBits) const;
 | |
| 
 | |
|   /// \brief Return an APInt with exactly one bit set in the result.
 | |
|   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
 | |
|     APInt Res(numBits, 0);
 | |
|     Res.setBit(BitNo);
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get a value with a block of bits set.
 | |
|   ///
 | |
|   /// Constructs an APInt value that has a contiguous range of bits set. The
 | |
|   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
 | |
|   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
 | |
|   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
 | |
|   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
 | |
|   ///
 | |
|   /// \param numBits the intended bit width of the result
 | |
|   /// \param loBit the index of the lowest bit set.
 | |
|   /// \param hiBit the index of the highest bit set.
 | |
|   ///
 | |
|   /// \returns An APInt value with the requested bits set.
 | |
|   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
 | |
|     assert(hiBit <= numBits && "hiBit out of range");
 | |
|     assert(loBit < numBits && "loBit out of range");
 | |
|     if (hiBit < loBit)
 | |
|       return getLowBitsSet(numBits, hiBit) |
 | |
|              getHighBitsSet(numBits, numBits - loBit);
 | |
|     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get a value with high bits set
 | |
|   ///
 | |
|   /// Constructs an APInt value that has the top hiBitsSet bits set.
 | |
|   ///
 | |
|   /// \param numBits the bitwidth of the result
 | |
|   /// \param hiBitsSet the number of high-order bits set in the result.
 | |
|   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
 | |
|     assert(hiBitsSet <= numBits && "Too many bits to set!");
 | |
|     // Handle a degenerate case, to avoid shifting by word size
 | |
|     if (hiBitsSet == 0)
 | |
|       return APInt(numBits, 0);
 | |
|     unsigned shiftAmt = numBits - hiBitsSet;
 | |
|     // For small values, return quickly
 | |
|     if (numBits <= APINT_BITS_PER_WORD)
 | |
|       return APInt(numBits, ~0ULL << shiftAmt);
 | |
|     return getAllOnesValue(numBits).shl(shiftAmt);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get a value with low bits set
 | |
|   ///
 | |
|   /// Constructs an APInt value that has the bottom loBitsSet bits set.
 | |
|   ///
 | |
|   /// \param numBits the bitwidth of the result
 | |
|   /// \param loBitsSet the number of low-order bits set in the result.
 | |
|   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
 | |
|     assert(loBitsSet <= numBits && "Too many bits to set!");
 | |
|     // Handle a degenerate case, to avoid shifting by word size
 | |
|     if (loBitsSet == 0)
 | |
|       return APInt(numBits, 0);
 | |
|     if (loBitsSet == APINT_BITS_PER_WORD)
 | |
|       return APInt(numBits, UINT64_MAX);
 | |
|     // For small values, return quickly.
 | |
|     if (loBitsSet <= APINT_BITS_PER_WORD)
 | |
|       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
 | |
|     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
 | |
|   }
 | |
| 
 | |
|   /// \brief Return a value containing V broadcasted over NewLen bits.
 | |
|   static APInt getSplat(unsigned NewLen, const APInt &V) {
 | |
|     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
 | |
| 
 | |
|     APInt Val = V.zextOrSelf(NewLen);
 | |
|     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
 | |
|       Val |= Val << I;
 | |
| 
 | |
|     return Val;
 | |
|   }
 | |
| 
 | |
|   /// \brief Determine if two APInts have the same value, after zero-extending
 | |
|   /// one of them (if needed!) to ensure that the bit-widths match.
 | |
|   static bool isSameValue(const APInt &I1, const APInt &I2) {
 | |
|     if (I1.getBitWidth() == I2.getBitWidth())
 | |
|       return I1 == I2;
 | |
| 
 | |
|     if (I1.getBitWidth() > I2.getBitWidth())
 | |
|       return I1 == I2.zext(I1.getBitWidth());
 | |
| 
 | |
|     return I1.zext(I2.getBitWidth()) == I2;
 | |
|   }
 | |
| 
 | |
|   /// \brief Overload to compute a hash_code for an APInt value.
 | |
|   friend hash_code hash_value(const APInt &Arg);
 | |
| 
 | |
|   /// This function returns a pointer to the internal storage of the APInt.
 | |
|   /// This is useful for writing out the APInt in binary form without any
 | |
|   /// conversions.
 | |
|   const uint64_t *getRawData() const {
 | |
|     if (isSingleWord())
 | |
|       return &VAL;
 | |
|     return &pVal[0];
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Unary Operators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Postfix increment operator.
 | |
|   ///
 | |
|   /// \returns a new APInt value representing *this incremented by one
 | |
|   const APInt operator++(int) {
 | |
|     APInt API(*this);
 | |
|     ++(*this);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// \brief Prefix increment operator.
 | |
|   ///
 | |
|   /// \returns *this incremented by one
 | |
|   APInt &operator++();
 | |
| 
 | |
|   /// \brief Postfix decrement operator.
 | |
|   ///
 | |
|   /// \returns a new APInt representing *this decremented by one.
 | |
|   const APInt operator--(int) {
 | |
|     APInt API(*this);
 | |
|     --(*this);
 | |
|     return API;
 | |
|   }
 | |
| 
 | |
|   /// \brief Prefix decrement operator.
 | |
|   ///
 | |
|   /// \returns *this decremented by one.
 | |
|   APInt &operator--();
 | |
| 
 | |
|   /// \brief Unary bitwise complement operator.
 | |
|   ///
 | |
|   /// Performs a bitwise complement operation on this APInt.
 | |
|   ///
 | |
|   /// \returns an APInt that is the bitwise complement of *this
 | |
|   APInt operator~() const {
 | |
|     APInt Result(*this);
 | |
|     Result.flipAllBits();
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// \brief Unary negation operator
 | |
|   ///
 | |
|   /// Negates *this using two's complement logic.
 | |
|   ///
 | |
|   /// \returns An APInt value representing the negation of *this.
 | |
|   APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
 | |
| 
 | |
|   /// \brief Logical negation operator.
 | |
|   ///
 | |
|   /// Performs logical negation operation on this APInt.
 | |
|   ///
 | |
|   /// \returns true if *this is zero, false otherwise.
 | |
|   bool operator!() const {
 | |
|     if (isSingleWord())
 | |
|       return !VAL;
 | |
| 
 | |
|     for (unsigned i = 0; i != getNumWords(); ++i)
 | |
|       if (pVal[i])
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Assignment Operators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Copy assignment operator.
 | |
|   ///
 | |
|   /// \returns *this after assignment of RHS.
 | |
|   APInt &operator=(const APInt &RHS) {
 | |
|     // If the bitwidths are the same, we can avoid mucking with memory
 | |
|     if (isSingleWord() && RHS.isSingleWord()) {
 | |
|       VAL = RHS.VAL;
 | |
|       BitWidth = RHS.BitWidth;
 | |
|       return clearUnusedBits();
 | |
|     }
 | |
| 
 | |
|     return AssignSlowCase(RHS);
 | |
|   }
 | |
| 
 | |
|   /// @brief Move assignment operator.
 | |
|   APInt &operator=(APInt &&that) {
 | |
|     if (!isSingleWord())
 | |
|       delete[] pVal;
 | |
| 
 | |
|     BitWidth = that.BitWidth;
 | |
|     VAL = that.VAL;
 | |
| 
 | |
|     that.BitWidth = 0;
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// \brief Assignment operator.
 | |
|   ///
 | |
|   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
 | |
|   /// the bit width, the excess bits are truncated. If the bit width is larger
 | |
|   /// than 64, the value is zero filled in the unspecified high order bits.
 | |
|   ///
 | |
|   /// \returns *this after assignment of RHS value.
 | |
|   APInt &operator=(uint64_t RHS);
 | |
| 
 | |
|   /// \brief Bitwise AND assignment operator.
 | |
|   ///
 | |
|   /// Performs a bitwise AND operation on this APInt and RHS. The result is
 | |
|   /// assigned to *this.
 | |
|   ///
 | |
|   /// \returns *this after ANDing with RHS.
 | |
|   APInt &operator&=(const APInt &RHS);
 | |
| 
 | |
|   /// \brief Bitwise OR assignment operator.
 | |
|   ///
 | |
|   /// Performs a bitwise OR operation on this APInt and RHS. The result is
 | |
|   /// assigned *this;
 | |
|   ///
 | |
|   /// \returns *this after ORing with RHS.
 | |
|   APInt &operator|=(const APInt &RHS);
 | |
| 
 | |
|   /// \brief Bitwise OR assignment operator.
 | |
|   ///
 | |
|   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
 | |
|   /// logically zero-extended or truncated to match the bit-width of
 | |
|   /// the LHS.
 | |
|   APInt &operator|=(uint64_t RHS) {
 | |
|     if (isSingleWord()) {
 | |
|       VAL |= RHS;
 | |
|       clearUnusedBits();
 | |
|     } else {
 | |
|       pVal[0] |= RHS;
 | |
|     }
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// \brief Bitwise XOR assignment operator.
 | |
|   ///
 | |
|   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
 | |
|   /// assigned to *this.
 | |
|   ///
 | |
|   /// \returns *this after XORing with RHS.
 | |
|   APInt &operator^=(const APInt &RHS);
 | |
| 
 | |
|   /// \brief Multiplication assignment operator.
 | |
|   ///
 | |
|   /// Multiplies this APInt by RHS and assigns the result to *this.
 | |
|   ///
 | |
|   /// \returns *this
 | |
|   APInt &operator*=(const APInt &RHS);
 | |
| 
 | |
|   /// \brief Addition assignment operator.
 | |
|   ///
 | |
|   /// Adds RHS to *this and assigns the result to *this.
 | |
|   ///
 | |
|   /// \returns *this
 | |
|   APInt &operator+=(const APInt &RHS);
 | |
| 
 | |
|   /// \brief Subtraction assignment operator.
 | |
|   ///
 | |
|   /// Subtracts RHS from *this and assigns the result to *this.
 | |
|   ///
 | |
|   /// \returns *this
 | |
|   APInt &operator-=(const APInt &RHS);
 | |
| 
 | |
|   /// \brief Left-shift assignment function.
 | |
|   ///
 | |
|   /// Shifts *this left by shiftAmt and assigns the result to *this.
 | |
|   ///
 | |
|   /// \returns *this after shifting left by shiftAmt
 | |
|   APInt &operator<<=(unsigned shiftAmt) {
 | |
|     *this = shl(shiftAmt);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Binary Operators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Bitwise AND operator.
 | |
|   ///
 | |
|   /// Performs a bitwise AND operation on *this and RHS.
 | |
|   ///
 | |
|   /// \returns An APInt value representing the bitwise AND of *this and RHS.
 | |
|   APInt operator&(const APInt &RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|     if (isSingleWord())
 | |
|       return APInt(getBitWidth(), VAL & RHS.VAL);
 | |
|     return AndSlowCase(RHS);
 | |
|   }
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
 | |
|     return this->operator&(RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Bitwise OR operator.
 | |
|   ///
 | |
|   /// Performs a bitwise OR operation on *this and RHS.
 | |
|   ///
 | |
|   /// \returns An APInt value representing the bitwise OR of *this and RHS.
 | |
|   APInt operator|(const APInt &RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|     if (isSingleWord())
 | |
|       return APInt(getBitWidth(), VAL | RHS.VAL);
 | |
|     return OrSlowCase(RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Bitwise OR function.
 | |
|   ///
 | |
|   /// Performs a bitwise or on *this and RHS. This is implemented bny simply
 | |
|   /// calling operator|.
 | |
|   ///
 | |
|   /// \returns An APInt value representing the bitwise OR of *this and RHS.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
 | |
|     return this->operator|(RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Bitwise XOR operator.
 | |
|   ///
 | |
|   /// Performs a bitwise XOR operation on *this and RHS.
 | |
|   ///
 | |
|   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
 | |
|   APInt operator^(const APInt &RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
 | |
|     if (isSingleWord())
 | |
|       return APInt(BitWidth, VAL ^ RHS.VAL);
 | |
|     return XorSlowCase(RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Bitwise XOR function.
 | |
|   ///
 | |
|   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
 | |
|   /// through the usage of operator^.
 | |
|   ///
 | |
|   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
 | |
|     return this->operator^(RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Multiplication operator.
 | |
|   ///
 | |
|   /// Multiplies this APInt by RHS and returns the result.
 | |
|   APInt operator*(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Addition operator.
 | |
|   ///
 | |
|   /// Adds RHS to this APInt and returns the result.
 | |
|   APInt operator+(const APInt &RHS) const;
 | |
|   APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
 | |
| 
 | |
|   /// \brief Subtraction operator.
 | |
|   ///
 | |
|   /// Subtracts RHS from this APInt and returns the result.
 | |
|   APInt operator-(const APInt &RHS) const;
 | |
|   APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
 | |
| 
 | |
|   /// \brief Left logical shift operator.
 | |
|   ///
 | |
|   /// Shifts this APInt left by \p Bits and returns the result.
 | |
|   APInt operator<<(unsigned Bits) const { return shl(Bits); }
 | |
| 
 | |
|   /// \brief Left logical shift operator.
 | |
|   ///
 | |
|   /// Shifts this APInt left by \p Bits and returns the result.
 | |
|   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
 | |
| 
 | |
|   /// \brief Arithmetic right-shift function.
 | |
|   ///
 | |
|   /// Arithmetic right-shift this APInt by shiftAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
 | |
| 
 | |
|   /// \brief Logical right-shift function.
 | |
|   ///
 | |
|   /// Logical right-shift this APInt by shiftAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
 | |
| 
 | |
|   /// \brief Left-shift function.
 | |
|   ///
 | |
|   /// Left-shift this APInt by shiftAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
 | |
|     assert(shiftAmt <= BitWidth && "Invalid shift amount");
 | |
|     if (isSingleWord()) {
 | |
|       if (shiftAmt >= BitWidth)
 | |
|         return APInt(BitWidth, 0); // avoid undefined shift results
 | |
|       return APInt(BitWidth, VAL << shiftAmt);
 | |
|     }
 | |
|     return shlSlowCase(shiftAmt);
 | |
|   }
 | |
| 
 | |
|   /// \brief Rotate left by rotateAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
 | |
| 
 | |
|   /// \brief Rotate right by rotateAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
 | |
| 
 | |
|   /// \brief Arithmetic right-shift function.
 | |
|   ///
 | |
|   /// Arithmetic right-shift this APInt by shiftAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
 | |
| 
 | |
|   /// \brief Logical right-shift function.
 | |
|   ///
 | |
|   /// Logical right-shift this APInt by shiftAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
 | |
| 
 | |
|   /// \brief Left-shift function.
 | |
|   ///
 | |
|   /// Left-shift this APInt by shiftAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
 | |
| 
 | |
|   /// \brief Rotate left by rotateAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
 | |
| 
 | |
|   /// \brief Rotate right by rotateAmt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
 | |
| 
 | |
|   /// \brief Unsigned division operation.
 | |
|   ///
 | |
|   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
 | |
|   /// RHS are treated as unsigned quantities for purposes of this division.
 | |
|   ///
 | |
|   /// \returns a new APInt value containing the division result
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Signed division function for APInt.
 | |
|   ///
 | |
|   /// Signed divide this APInt by APInt RHS.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Unsigned remainder operation.
 | |
|   ///
 | |
|   /// Perform an unsigned remainder operation on this APInt with RHS being the
 | |
|   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
 | |
|   /// of this operation. Note that this is a true remainder operation and not a
 | |
|   /// modulo operation because the sign follows the sign of the dividend which
 | |
|   /// is *this.
 | |
|   ///
 | |
|   /// \returns a new APInt value containing the remainder result
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Function for signed remainder operation.
 | |
|   ///
 | |
|   /// Signed remainder operation on APInt.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Dual division/remainder interface.
 | |
|   ///
 | |
|   /// Sometimes it is convenient to divide two APInt values and obtain both the
 | |
|   /// quotient and remainder. This function does both operations in the same
 | |
|   /// computation making it a little more efficient. The pair of input arguments
 | |
|   /// may overlap with the pair of output arguments. It is safe to call
 | |
|   /// udivrem(X, Y, X, Y), for example.
 | |
|   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
 | |
|                       APInt &Remainder);
 | |
| 
 | |
|   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
 | |
|                       APInt &Remainder);
 | |
| 
 | |
|   // Operations that return overflow indicators.
 | |
|   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
 | |
|   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
 | |
| 
 | |
|   /// \brief Array-indexing support.
 | |
|   ///
 | |
|   /// \returns the bit value at bitPosition
 | |
|   bool operator[](unsigned bitPosition) const {
 | |
|     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
 | |
|     return (maskBit(bitPosition) &
 | |
|             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
 | |
|            0;
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Comparison Operators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Equality operator.
 | |
|   ///
 | |
|   /// Compares this APInt with RHS for the validity of the equality
 | |
|   /// relationship.
 | |
|   bool operator==(const APInt &RHS) const {
 | |
|     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
 | |
|     if (isSingleWord())
 | |
|       return VAL == RHS.VAL;
 | |
|     return EqualSlowCase(RHS);
 | |
|   }
 | |
| 
 | |
|   /// \brief Equality operator.
 | |
|   ///
 | |
|   /// Compares this APInt with a uint64_t for the validity of the equality
 | |
|   /// relationship.
 | |
|   ///
 | |
|   /// \returns true if *this == Val
 | |
|   bool operator==(uint64_t Val) const {
 | |
|     if (isSingleWord())
 | |
|       return VAL == Val;
 | |
|     return EqualSlowCase(Val);
 | |
|   }
 | |
| 
 | |
|   /// \brief Equality comparison.
 | |
|   ///
 | |
|   /// Compares this APInt with RHS for the validity of the equality
 | |
|   /// relationship.
 | |
|   ///
 | |
|   /// \returns true if *this == Val
 | |
|   bool eq(const APInt &RHS) const { return (*this) == RHS; }
 | |
| 
 | |
|   /// \brief Inequality operator.
 | |
|   ///
 | |
|   /// Compares this APInt with RHS for the validity of the inequality
 | |
|   /// relationship.
 | |
|   ///
 | |
|   /// \returns true if *this != Val
 | |
|   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
 | |
| 
 | |
|   /// \brief Inequality operator.
 | |
|   ///
 | |
|   /// Compares this APInt with a uint64_t for the validity of the inequality
 | |
|   /// relationship.
 | |
|   ///
 | |
|   /// \returns true if *this != Val
 | |
|   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
 | |
| 
 | |
|   /// \brief Inequality comparison
 | |
|   ///
 | |
|   /// Compares this APInt with RHS for the validity of the inequality
 | |
|   /// relationship.
 | |
|   ///
 | |
|   /// \returns true if *this != Val
 | |
|   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
 | |
| 
 | |
|   /// \brief Unsigned less than comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// the validity of the less-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this < RHS when both are considered unsigned.
 | |
|   bool ult(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Unsigned less than comparison
 | |
|   ///
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the less-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this < RHS when considered unsigned.
 | |
|   bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Signed less than comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// validity of the less-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this < RHS when both are considered signed.
 | |
|   bool slt(const APInt &RHS) const;
 | |
| 
 | |
|   /// \brief Signed less than comparison
 | |
|   ///
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the less-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this < RHS when considered signed.
 | |
|   bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Unsigned less or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// validity of the less-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this <= RHS when both are considered unsigned.
 | |
|   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
 | |
| 
 | |
|   /// \brief Unsigned less or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the less-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this <= RHS when considered unsigned.
 | |
|   bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Signed less or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// validity of the less-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this <= RHS when both are considered signed.
 | |
|   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
 | |
| 
 | |
|   /// \brief Signed less or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for the
 | |
|   /// validity of the less-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this <= RHS when considered signed.
 | |
|   bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Unsigned greather than comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this > RHS when both are considered unsigned.
 | |
|   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
 | |
| 
 | |
|   /// \brief Unsigned greater than comparison
 | |
|   ///
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this > RHS when considered unsigned.
 | |
|   bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Signed greather than comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for the
 | |
|   /// validity of the greater-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this > RHS when both are considered signed.
 | |
|   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
 | |
| 
 | |
|   /// \brief Signed greater than comparison
 | |
|   ///
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the greater-than relationship.
 | |
|   ///
 | |
|   /// \returns true if *this > RHS when considered signed.
 | |
|   bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Unsigned greater or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as unsigned quantities and compares them for
 | |
|   /// validity of the greater-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this >= RHS when both are considered unsigned.
 | |
|   bool uge(const APInt &RHS) const { return !ult(RHS); }
 | |
| 
 | |
|   /// \brief Unsigned greater or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this as an unsigned quantity and compares it with RHS for
 | |
|   /// the validity of the greater-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this >= RHS when considered unsigned.
 | |
|   bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// \brief Signed greather or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this and RHS as signed quantities and compares them for
 | |
|   /// validity of the greater-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this >= RHS when both are considered signed.
 | |
|   bool sge(const APInt &RHS) const { return !slt(RHS); }
 | |
| 
 | |
|   /// \brief Signed greater or equal comparison
 | |
|   ///
 | |
|   /// Regards both *this as a signed quantity and compares it with RHS for
 | |
|   /// the validity of the greater-or-equal relationship.
 | |
|   ///
 | |
|   /// \returns true if *this >= RHS when considered signed.
 | |
|   bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
 | |
| 
 | |
|   /// This operation tests if there are any pairs of corresponding bits
 | |
|   /// between this APInt and RHS that are both set.
 | |
|   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Resizing Operators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Truncate to new width.
 | |
|   ///
 | |
|   /// Truncate the APInt to a specified width. It is an error to specify a width
 | |
|   /// that is greater than or equal to the current width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
 | |
| 
 | |
|   /// \brief Sign extend to a new width.
 | |
|   ///
 | |
|   /// This operation sign extends the APInt to a new width. If the high order
 | |
|   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
 | |
|   /// It is an error to specify a width that is less than or equal to the
 | |
|   /// current width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
 | |
| 
 | |
|   /// \brief Zero extend to a new width.
 | |
|   ///
 | |
|   /// This operation zero extends the APInt to a new width. The high order bits
 | |
|   /// are filled with 0 bits.  It is an error to specify a width that is less
 | |
|   /// than or equal to the current width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
 | |
| 
 | |
|   /// \brief Sign extend or truncate to width
 | |
|   ///
 | |
|   /// Make this APInt have the bit width given by \p width. The value is sign
 | |
|   /// extended, truncated, or left alone to make it that width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
 | |
| 
 | |
|   /// \brief Zero extend or truncate to width
 | |
|   ///
 | |
|   /// Make this APInt have the bit width given by \p width. The value is zero
 | |
|   /// extended, truncated, or left alone to make it that width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
 | |
| 
 | |
|   /// \brief Sign extend or truncate to width
 | |
|   ///
 | |
|   /// Make this APInt have the bit width given by \p width. The value is sign
 | |
|   /// extended, or left alone to make it that width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
 | |
| 
 | |
|   /// \brief Zero extend or truncate to width
 | |
|   ///
 | |
|   /// Make this APInt have the bit width given by \p width. The value is zero
 | |
|   /// extended, or left alone to make it that width.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Bit Manipulation Operators
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Set every bit to 1.
 | |
|   void setAllBits() {
 | |
|     if (isSingleWord())
 | |
|       VAL = UINT64_MAX;
 | |
|     else {
 | |
|       // Set all the bits in all the words.
 | |
|       for (unsigned i = 0; i < getNumWords(); ++i)
 | |
|         pVal[i] = UINT64_MAX;
 | |
|     }
 | |
|     // Clear the unused ones
 | |
|     clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   /// \brief Set a given bit to 1.
 | |
|   ///
 | |
|   /// Set the given bit to 1 whose position is given as "bitPosition".
 | |
|   void setBit(unsigned bitPosition);
 | |
| 
 | |
|   /// \brief Set every bit to 0.
 | |
|   void clearAllBits() {
 | |
|     if (isSingleWord())
 | |
|       VAL = 0;
 | |
|     else
 | |
|       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
 | |
|   }
 | |
| 
 | |
|   /// \brief Set a given bit to 0.
 | |
|   ///
 | |
|   /// Set the given bit to 0 whose position is given as "bitPosition".
 | |
|   void clearBit(unsigned bitPosition);
 | |
| 
 | |
|   /// \brief Toggle every bit to its opposite value.
 | |
|   void flipAllBits() {
 | |
|     if (isSingleWord())
 | |
|       VAL ^= UINT64_MAX;
 | |
|     else {
 | |
|       for (unsigned i = 0; i < getNumWords(); ++i)
 | |
|         pVal[i] ^= UINT64_MAX;
 | |
|     }
 | |
|     clearUnusedBits();
 | |
|   }
 | |
| 
 | |
|   /// \brief Toggles a given bit to its opposite value.
 | |
|   ///
 | |
|   /// Toggle a given bit to its opposite value whose position is given
 | |
|   /// as "bitPosition".
 | |
|   void flipBit(unsigned bitPosition);
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Value Characterization Functions
 | |
|   /// @{
 | |
| 
 | |
|   /// \brief Return the number of bits in the APInt.
 | |
|   unsigned getBitWidth() const { return BitWidth; }
 | |
| 
 | |
|   /// \brief Get the number of words.
 | |
|   ///
 | |
|   /// Here one word's bitwidth equals to that of uint64_t.
 | |
|   ///
 | |
|   /// \returns the number of words to hold the integer value of this APInt.
 | |
|   unsigned getNumWords() const { return getNumWords(BitWidth); }
 | |
| 
 | |
|   /// \brief Get the number of words.
 | |
|   ///
 | |
|   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
 | |
|   ///
 | |
|   /// \returns the number of words to hold the integer value with a given bit
 | |
|   /// width.
 | |
|   static unsigned getNumWords(unsigned BitWidth) {
 | |
|     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the number of active bits in the value
 | |
|   ///
 | |
|   /// This function returns the number of active bits which is defined as the
 | |
|   /// bit width minus the number of leading zeros. This is used in several
 | |
|   /// computations to see how "wide" the value is.
 | |
|   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
 | |
| 
 | |
|   /// \brief Compute the number of active words in the value of this APInt.
 | |
|   ///
 | |
|   /// This is used in conjunction with getActiveData to extract the raw value of
 | |
|   /// the APInt.
 | |
|   unsigned getActiveWords() const {
 | |
|     unsigned numActiveBits = getActiveBits();
 | |
|     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get the minimum bit size for this signed APInt
 | |
|   ///
 | |
|   /// Computes the minimum bit width for this APInt while considering it to be a
 | |
|   /// signed (and probably negative) value. If the value is not negative, this
 | |
|   /// function returns the same value as getActiveBits()+1. Otherwise, it
 | |
|   /// returns the smallest bit width that will retain the negative value. For
 | |
|   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
 | |
|   /// for -1, this function will always return 1.
 | |
|   unsigned getMinSignedBits() const {
 | |
|     if (isNegative())
 | |
|       return BitWidth - countLeadingOnes() + 1;
 | |
|     return getActiveBits() + 1;
 | |
|   }
 | |
| 
 | |
|   /// \brief Get zero extended value
 | |
|   ///
 | |
|   /// This method attempts to return the value of this APInt as a zero extended
 | |
|   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
 | |
|   /// uint64_t. Otherwise an assertion will result.
 | |
|   uint64_t getZExtValue() const {
 | |
|     if (isSingleWord())
 | |
|       return VAL;
 | |
|     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
 | |
|     return pVal[0];
 | |
|   }
 | |
| 
 | |
|   /// \brief Get sign extended value
 | |
|   ///
 | |
|   /// This method attempts to return the value of this APInt as a sign extended
 | |
|   /// int64_t. The bit width must be <= 64 or the value must fit within an
 | |
|   /// int64_t. Otherwise an assertion will result.
 | |
|   int64_t getSExtValue() const {
 | |
|     if (isSingleWord())
 | |
|       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
 | |
|              (APINT_BITS_PER_WORD - BitWidth);
 | |
|     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
 | |
|     return int64_t(pVal[0]);
 | |
|   }
 | |
| 
 | |
|   /// \brief Get bits required for string value.
 | |
|   ///
 | |
|   /// This method determines how many bits are required to hold the APInt
 | |
|   /// equivalent of the string given by \p str.
 | |
|   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
 | |
| 
 | |
|   /// \brief The APInt version of the countLeadingZeros functions in
 | |
|   ///   MathExtras.h.
 | |
|   ///
 | |
|   /// It counts the number of zeros from the most significant bit to the first
 | |
|   /// one bit.
 | |
|   ///
 | |
|   /// \returns BitWidth if the value is zero, otherwise returns the number of
 | |
|   ///   zeros from the most significant bit to the first one bits.
 | |
|   unsigned countLeadingZeros() const {
 | |
|     if (isSingleWord()) {
 | |
|       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
 | |
|       return llvm::countLeadingZeros(VAL) - unusedBits;
 | |
|     }
 | |
|     return countLeadingZerosSlowCase();
 | |
|   }
 | |
| 
 | |
|   /// \brief Count the number of leading one bits.
 | |
|   ///
 | |
|   /// This function is an APInt version of the countLeadingOnes_{32,64}
 | |
|   /// functions in MathExtras.h. It counts the number of ones from the most
 | |
|   /// significant bit to the first zero bit.
 | |
|   ///
 | |
|   /// \returns 0 if the high order bit is not set, otherwise returns the number
 | |
|   /// of 1 bits from the most significant to the least
 | |
|   unsigned countLeadingOnes() const;
 | |
| 
 | |
|   /// Computes the number of leading bits of this APInt that are equal to its
 | |
|   /// sign bit.
 | |
|   unsigned getNumSignBits() const {
 | |
|     return isNegative() ? countLeadingOnes() : countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   /// \brief Count the number of trailing zero bits.
 | |
|   ///
 | |
|   /// This function is an APInt version of the countTrailingZeros_{32,64}
 | |
|   /// functions in MathExtras.h. It counts the number of zeros from the least
 | |
|   /// significant bit to the first set bit.
 | |
|   ///
 | |
|   /// \returns BitWidth if the value is zero, otherwise returns the number of
 | |
|   /// zeros from the least significant bit to the first one bit.
 | |
|   unsigned countTrailingZeros() const;
 | |
| 
 | |
|   /// \brief Count the number of trailing one bits.
 | |
|   ///
 | |
|   /// This function is an APInt version of the countTrailingOnes_{32,64}
 | |
|   /// functions in MathExtras.h. It counts the number of ones from the least
 | |
|   /// significant bit to the first zero bit.
 | |
|   ///
 | |
|   /// \returns BitWidth if the value is all ones, otherwise returns the number
 | |
|   /// of ones from the least significant bit to the first zero bit.
 | |
|   unsigned countTrailingOnes() const {
 | |
|     if (isSingleWord())
 | |
|       return CountTrailingOnes_64(VAL);
 | |
|     return countTrailingOnesSlowCase();
 | |
|   }
 | |
| 
 | |
|   /// \brief Count the number of bits set.
 | |
|   ///
 | |
|   /// This function is an APInt version of the countPopulation_{32,64} functions
 | |
|   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
 | |
|   ///
 | |
|   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
 | |
|   unsigned countPopulation() const {
 | |
|     if (isSingleWord())
 | |
|       return CountPopulation_64(VAL);
 | |
|     return countPopulationSlowCase();
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Conversion Functions
 | |
|   /// @{
 | |
|   void print(raw_ostream &OS, bool isSigned) const;
 | |
| 
 | |
|   /// Converts an APInt to a string and append it to Str.  Str is commonly a
 | |
|   /// SmallString.
 | |
|   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
 | |
|                 bool formatAsCLiteral = false) const;
 | |
| 
 | |
|   /// Considers the APInt to be unsigned and converts it into a string in the
 | |
|   /// radix given. The radix can be 2, 8, 10 16, or 36.
 | |
|   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
 | |
|     toString(Str, Radix, false, false);
 | |
|   }
 | |
| 
 | |
|   /// Considers the APInt to be signed and converts it into a string in the
 | |
|   /// radix given. The radix can be 2, 8, 10, 16, or 36.
 | |
|   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
 | |
|     toString(Str, Radix, true, false);
 | |
|   }
 | |
| 
 | |
|   /// \brief Return the APInt as a std::string.
 | |
|   ///
 | |
|   /// Note that this is an inefficient method.  It is better to pass in a
 | |
|   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
 | |
|   /// for the string.
 | |
|   std::string toString(unsigned Radix, bool Signed) const;
 | |
| 
 | |
|   /// \returns a byte-swapped representation of this APInt Value.
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
 | |
| 
 | |
|   /// \brief Converts this APInt to a double value.
 | |
|   double roundToDouble(bool isSigned) const;
 | |
| 
 | |
|   /// \brief Converts this unsigned APInt to a double value.
 | |
|   double roundToDouble() const { return roundToDouble(false); }
 | |
| 
 | |
|   /// \brief Converts this signed APInt to a double value.
 | |
|   double signedRoundToDouble() const { return roundToDouble(true); }
 | |
| 
 | |
|   /// \brief Converts APInt bits to a double
 | |
|   ///
 | |
|   /// The conversion does not do a translation from integer to double, it just
 | |
|   /// re-interprets the bits as a double. Note that it is valid to do this on
 | |
|   /// any bit width. Exactly 64 bits will be translated.
 | |
|   double bitsToDouble() const {
 | |
|     union {
 | |
|       uint64_t I;
 | |
|       double D;
 | |
|     } T;
 | |
|     T.I = (isSingleWord() ? VAL : pVal[0]);
 | |
|     return T.D;
 | |
|   }
 | |
| 
 | |
|   /// \brief Converts APInt bits to a double
 | |
|   ///
 | |
|   /// The conversion does not do a translation from integer to float, it just
 | |
|   /// re-interprets the bits as a float. Note that it is valid to do this on
 | |
|   /// any bit width. Exactly 32 bits will be translated.
 | |
|   float bitsToFloat() const {
 | |
|     union {
 | |
|       unsigned I;
 | |
|       float F;
 | |
|     } T;
 | |
|     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
 | |
|     return T.F;
 | |
|   }
 | |
| 
 | |
|   /// \brief Converts a double to APInt bits.
 | |
|   ///
 | |
|   /// The conversion does not do a translation from double to integer, it just
 | |
|   /// re-interprets the bits of the double.
 | |
|   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
 | |
|     union {
 | |
|       uint64_t I;
 | |
|       double D;
 | |
|     } T;
 | |
|     T.D = V;
 | |
|     return APInt(sizeof T * CHAR_BIT, T.I);
 | |
|   }
 | |
| 
 | |
|   /// \brief Converts a float to APInt bits.
 | |
|   ///
 | |
|   /// The conversion does not do a translation from float to integer, it just
 | |
|   /// re-interprets the bits of the float.
 | |
|   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
 | |
|     union {
 | |
|       unsigned I;
 | |
|       float F;
 | |
|     } T;
 | |
|     T.F = V;
 | |
|     return APInt(sizeof T * CHAR_BIT, T.I);
 | |
|   }
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Mathematics Operations
 | |
|   /// @{
 | |
| 
 | |
|   /// \returns the floor log base 2 of this APInt.
 | |
|   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
 | |
| 
 | |
|   /// \returns the ceil log base 2 of this APInt.
 | |
|   unsigned ceilLogBase2() const {
 | |
|     return BitWidth - (*this - 1).countLeadingZeros();
 | |
|   }
 | |
| 
 | |
|   /// \returns the nearest log base 2 of this APInt. Ties round up.
 | |
|   ///
 | |
|   /// NOTE: When we have a BitWidth of 1, we define:
 | |
|   /// 
 | |
|   ///   log2(0) = UINT32_MAX
 | |
|   ///   log2(1) = 0
 | |
|   ///
 | |
|   /// to get around any mathematical concerns resulting from
 | |
|   /// referencing 2 in a space where 2 does no exist.
 | |
|   unsigned nearestLogBase2() const {
 | |
|     // Special case when we have a bitwidth of 1. If VAL is 1, then we
 | |
|     // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
 | |
|     // UINT32_MAX.
 | |
|     if (BitWidth == 1)
 | |
|       return VAL - 1;
 | |
| 
 | |
|     // Handle the zero case.
 | |
|     if (!getBoolValue())
 | |
|       return UINT32_MAX;
 | |
| 
 | |
|     // The non-zero case is handled by computing:
 | |
|     //
 | |
|     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
 | |
|     //
 | |
|     // where x[i] is referring to the value of the ith bit of x.
 | |
|     unsigned lg = logBase2();
 | |
|     return lg + unsigned((*this)[lg - 1]);
 | |
|   }
 | |
| 
 | |
|   /// \returns the log base 2 of this APInt if its an exact power of two, -1
 | |
|   /// otherwise
 | |
|   int32_t exactLogBase2() const {
 | |
|     if (!isPowerOf2())
 | |
|       return -1;
 | |
|     return logBase2();
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the square root
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
 | |
| 
 | |
|   /// \brief Get the absolute value;
 | |
|   ///
 | |
|   /// If *this is < 0 then return -(*this), otherwise *this;
 | |
|   APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
 | |
|     if (isNegative())
 | |
|       return -(*this);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// \returns the multiplicative inverse for a given modulo.
 | |
|   APInt multiplicativeInverse(const APInt &modulo) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Support for division by constant
 | |
|   /// @{
 | |
| 
 | |
|   /// Calculate the magic number for signed division by a constant.
 | |
|   struct ms;
 | |
|   ms magic() const;
 | |
| 
 | |
|   /// Calculate the magic number for unsigned division by a constant.
 | |
|   struct mu;
 | |
|   mu magicu(unsigned LeadingZeros = 0) const;
 | |
| 
 | |
|   /// @}
 | |
|   /// \name Building-block Operations for APInt and APFloat
 | |
|   /// @{
 | |
| 
 | |
|   // These building block operations operate on a representation of arbitrary
 | |
|   // precision, two's-complement, bignum integer values. They should be
 | |
|   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
 | |
|   // generally a pointer to the base of an array of integer parts, representing
 | |
|   // an unsigned bignum, and a count of how many parts there are.
 | |
| 
 | |
|   /// Sets the least significant part of a bignum to the input value, and zeroes
 | |
|   /// out higher parts.
 | |
|   static void tcSet(integerPart *, integerPart, unsigned int);
 | |
| 
 | |
|   /// Assign one bignum to another.
 | |
|   static void tcAssign(integerPart *, const integerPart *, unsigned int);
 | |
| 
 | |
|   /// Returns true if a bignum is zero, false otherwise.
 | |
|   static bool tcIsZero(const integerPart *, unsigned int);
 | |
| 
 | |
|   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
 | |
|   static int tcExtractBit(const integerPart *, unsigned int bit);
 | |
| 
 | |
|   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
 | |
|   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
 | |
|   /// significant bit of DST.  All high bits above srcBITS in DST are
 | |
|   /// zero-filled.
 | |
|   static void tcExtract(integerPart *, unsigned int dstCount,
 | |
|                         const integerPart *, unsigned int srcBits,
 | |
|                         unsigned int srcLSB);
 | |
| 
 | |
|   /// Set the given bit of a bignum.  Zero-based.
 | |
|   static void tcSetBit(integerPart *, unsigned int bit);
 | |
| 
 | |
|   /// Clear the given bit of a bignum.  Zero-based.
 | |
|   static void tcClearBit(integerPart *, unsigned int bit);
 | |
| 
 | |
|   /// Returns the bit number of the least or most significant set bit of a
 | |
|   /// number.  If the input number has no bits set -1U is returned.
 | |
|   static unsigned int tcLSB(const integerPart *, unsigned int);
 | |
|   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
 | |
| 
 | |
|   /// Negate a bignum in-place.
 | |
|   static void tcNegate(integerPart *, unsigned int);
 | |
| 
 | |
|   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
 | |
|   static integerPart tcAdd(integerPart *, const integerPart *,
 | |
|                            integerPart carry, unsigned);
 | |
| 
 | |
|   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
 | |
|   static integerPart tcSubtract(integerPart *, const integerPart *,
 | |
|                                 integerPart carry, unsigned);
 | |
| 
 | |
|   /// DST += SRC * MULTIPLIER + PART   if add is true
 | |
|   /// DST  = SRC * MULTIPLIER + PART   if add is false
 | |
|   ///
 | |
|   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
 | |
|   /// start at the same point, i.e. DST == SRC.
 | |
|   ///
 | |
|   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
 | |
|   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
 | |
|   /// result, and if all of the omitted higher parts were zero return zero,
 | |
|   /// otherwise overflow occurred and return one.
 | |
|   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
 | |
|                             integerPart multiplier, integerPart carry,
 | |
|                             unsigned int srcParts, unsigned int dstParts,
 | |
|                             bool add);
 | |
| 
 | |
|   /// DST = LHS * RHS, where DST has the same width as the operands and is
 | |
|   /// filled with the least significant parts of the result.  Returns one if
 | |
|   /// overflow occurred, otherwise zero.  DST must be disjoint from both
 | |
|   /// operands.
 | |
|   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
 | |
|                         unsigned);
 | |
| 
 | |
|   /// DST = LHS * RHS, where DST has width the sum of the widths of the
 | |
|   /// operands.  No overflow occurs.  DST must be disjoint from both
 | |
|   /// operands. Returns the number of parts required to hold the result.
 | |
|   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
 | |
|                                      const integerPart *, unsigned, unsigned);
 | |
| 
 | |
|   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
 | |
|   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
 | |
|   /// REMAINDER to the remainder, return zero.  i.e.
 | |
|   ///
 | |
|   ///  OLD_LHS = RHS * LHS + REMAINDER
 | |
|   ///
 | |
|   /// SCRATCH is a bignum of the same size as the operands and result for use by
 | |
|   /// the routine; its contents need not be initialized and are destroyed.  LHS,
 | |
|   /// REMAINDER and SCRATCH must be distinct.
 | |
|   static int tcDivide(integerPart *lhs, const integerPart *rhs,
 | |
|                       integerPart *remainder, integerPart *scratch,
 | |
|                       unsigned int parts);
 | |
| 
 | |
|   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
 | |
|   /// restrictions on COUNT.
 | |
|   static void tcShiftLeft(integerPart *, unsigned int parts,
 | |
|                           unsigned int count);
 | |
| 
 | |
|   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
 | |
|   /// restrictions on COUNT.
 | |
|   static void tcShiftRight(integerPart *, unsigned int parts,
 | |
|                            unsigned int count);
 | |
| 
 | |
|   /// The obvious AND, OR and XOR and complement operations.
 | |
|   static void tcAnd(integerPart *, const integerPart *, unsigned int);
 | |
|   static void tcOr(integerPart *, const integerPart *, unsigned int);
 | |
|   static void tcXor(integerPart *, const integerPart *, unsigned int);
 | |
|   static void tcComplement(integerPart *, unsigned int);
 | |
| 
 | |
|   /// Comparison (unsigned) of two bignums.
 | |
|   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
 | |
| 
 | |
|   /// Increment a bignum in-place.  Return the carry flag.
 | |
|   static integerPart tcIncrement(integerPart *, unsigned int);
 | |
| 
 | |
|   /// Decrement a bignum in-place.  Return the borrow flag.
 | |
|   static integerPart tcDecrement(integerPart *, unsigned int);
 | |
| 
 | |
|   /// Set the least significant BITS and clear the rest.
 | |
|   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
 | |
|                                         unsigned int bits);
 | |
| 
 | |
|   /// \brief debug method
 | |
|   void dump() const;
 | |
| 
 | |
|   /// @}
 | |
| };
 | |
| 
 | |
| /// Magic data for optimising signed division by a constant.
 | |
| struct APInt::ms {
 | |
|   APInt m;    ///< magic number
 | |
|   unsigned s; ///< shift amount
 | |
| };
 | |
| 
 | |
| /// Magic data for optimising unsigned division by a constant.
 | |
| struct APInt::mu {
 | |
|   APInt m;    ///< magic number
 | |
|   bool a;     ///< add indicator
 | |
|   unsigned s; ///< shift amount
 | |
| };
 | |
| 
 | |
| inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
 | |
| 
 | |
| inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
 | |
| 
 | |
| inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
 | |
|   I.print(OS, true);
 | |
|   return OS;
 | |
| }
 | |
| 
 | |
| namespace APIntOps {
 | |
| 
 | |
| /// \brief Determine the smaller of two APInts considered to be signed.
 | |
| inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
 | |
| 
 | |
| /// \brief Determine the larger of two APInts considered to be signed.
 | |
| inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
 | |
| 
 | |
| /// \brief Determine the smaller of two APInts considered to be signed.
 | |
| inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
 | |
| 
 | |
| /// \brief Determine the larger of two APInts considered to be unsigned.
 | |
| inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
 | |
| 
 | |
| /// \brief Check if the specified APInt has a N-bits unsigned integer value.
 | |
| inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
 | |
| 
 | |
| /// \brief Check if the specified APInt has a N-bits signed integer value.
 | |
| inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
 | |
|   return APIVal.isSignedIntN(N);
 | |
| }
 | |
| 
 | |
| /// \returns true if the argument APInt value is a sequence of ones starting at
 | |
| /// the least significant bit with the remainder zero.
 | |
| inline bool isMask(unsigned numBits, const APInt &APIVal) {
 | |
|   return numBits <= APIVal.getBitWidth() &&
 | |
|          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
 | |
| }
 | |
| 
 | |
| /// \brief Return true if the argument APInt value contains a sequence of ones
 | |
| /// with the remainder zero.
 | |
| inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
 | |
|   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
 | |
| }
 | |
| 
 | |
| /// \brief Returns a byte-swapped representation of the specified APInt Value.
 | |
| inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
 | |
| 
 | |
| /// \brief Returns the floor log base 2 of the specified APInt value.
 | |
| inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
 | |
| 
 | |
| /// \brief Compute GCD of two APInt values.
 | |
| ///
 | |
| /// This function returns the greatest common divisor of the two APInt values
 | |
| /// using Euclid's algorithm.
 | |
| ///
 | |
| /// \returns the greatest common divisor of Val1 and Val2
 | |
| APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
 | |
| 
 | |
| /// \brief Converts the given APInt to a double value.
 | |
| ///
 | |
| /// Treats the APInt as an unsigned value for conversion purposes.
 | |
| inline double RoundAPIntToDouble(const APInt &APIVal) {
 | |
|   return APIVal.roundToDouble();
 | |
| }
 | |
| 
 | |
| /// \brief Converts the given APInt to a double value.
 | |
| ///
 | |
| /// Treats the APInt as a signed value for conversion purposes.
 | |
| inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
 | |
|   return APIVal.signedRoundToDouble();
 | |
| }
 | |
| 
 | |
| /// \brief Converts the given APInt to a float vlalue.
 | |
| inline float RoundAPIntToFloat(const APInt &APIVal) {
 | |
|   return float(RoundAPIntToDouble(APIVal));
 | |
| }
 | |
| 
 | |
| /// \brief Converts the given APInt to a float value.
 | |
| ///
 | |
| /// Treast the APInt as a signed value for conversion purposes.
 | |
| inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
 | |
|   return float(APIVal.signedRoundToDouble());
 | |
| }
 | |
| 
 | |
| /// \brief Converts the given double value into a APInt.
 | |
| ///
 | |
| /// This function convert a double value to an APInt value.
 | |
| APInt RoundDoubleToAPInt(double Double, unsigned width);
 | |
| 
 | |
| /// \brief Converts a float value into a APInt.
 | |
| ///
 | |
| /// Converts a float value into an APInt value.
 | |
| inline APInt RoundFloatToAPInt(float Float, unsigned width) {
 | |
|   return RoundDoubleToAPInt(double(Float), width);
 | |
| }
 | |
| 
 | |
| /// \brief Arithmetic right-shift function.
 | |
| ///
 | |
| /// Arithmetic right-shift the APInt by shiftAmt.
 | |
| inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
 | |
|   return LHS.ashr(shiftAmt);
 | |
| }
 | |
| 
 | |
| /// \brief Logical right-shift function.
 | |
| ///
 | |
| /// Logical right-shift the APInt by shiftAmt.
 | |
| inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
 | |
|   return LHS.lshr(shiftAmt);
 | |
| }
 | |
| 
 | |
| /// \brief Left-shift function.
 | |
| ///
 | |
| /// Left-shift the APInt by shiftAmt.
 | |
| inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
 | |
|   return LHS.shl(shiftAmt);
 | |
| }
 | |
| 
 | |
| /// \brief Signed division function for APInt.
 | |
| ///
 | |
| /// Signed divide APInt LHS by APInt RHS.
 | |
| inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
 | |
| 
 | |
| /// \brief Unsigned division function for APInt.
 | |
| ///
 | |
| /// Unsigned divide APInt LHS by APInt RHS.
 | |
| inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
 | |
| 
 | |
| /// \brief Function for signed remainder operation.
 | |
| ///
 | |
| /// Signed remainder operation on APInt.
 | |
| inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
 | |
| 
 | |
| /// \brief Function for unsigned remainder operation.
 | |
| ///
 | |
| /// Unsigned remainder operation on APInt.
 | |
| inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
 | |
| 
 | |
| /// \brief Function for multiplication operation.
 | |
| ///
 | |
| /// Performs multiplication on APInt values.
 | |
| inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
 | |
| 
 | |
| /// \brief Function for addition operation.
 | |
| ///
 | |
| /// Performs addition on APInt values.
 | |
| inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
 | |
| 
 | |
| /// \brief Function for subtraction operation.
 | |
| ///
 | |
| /// Performs subtraction on APInt values.
 | |
| inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
 | |
| 
 | |
| /// \brief Bitwise AND function for APInt.
 | |
| ///
 | |
| /// Performs bitwise AND operation on APInt LHS and
 | |
| /// APInt RHS.
 | |
| inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
 | |
| 
 | |
| /// \brief Bitwise OR function for APInt.
 | |
| ///
 | |
| /// Performs bitwise OR operation on APInt LHS and APInt RHS.
 | |
| inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
 | |
| 
 | |
| /// \brief Bitwise XOR function for APInt.
 | |
| ///
 | |
| /// Performs bitwise XOR operation on APInt.
 | |
| inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
 | |
| 
 | |
| /// \brief Bitwise complement function.
 | |
| ///
 | |
| /// Performs a bitwise complement operation on APInt.
 | |
| inline APInt Not(const APInt &APIVal) { return ~APIVal; }
 | |
| 
 | |
| } // End of APIntOps namespace
 | |
| 
 | |
| // See friend declaration above. This additional declaration is required in
 | |
| // order to compile LLVM with IBM xlC compiler.
 | |
| hash_code hash_value(const APInt &Arg);
 | |
| } // End of llvm namespace
 | |
| 
 | |
| #endif
 |