mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-19 04:32:19 +00:00
2f2d06506c
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@8478 91177308-0d34-0410-b5e6-96231b3b80d8
345 lines
14 KiB
C++
345 lines
14 KiB
C++
//===- llvm/Analysis/BasicAliasAnalysis.h - Alias Analysis Impl -*- C++ -*-===//
|
|
//
|
|
// This file defines the default implementation of the Alias Analysis interface
|
|
// that simply implements a few identities (two different globals cannot alias,
|
|
// etc), but otherwise does no analysis.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iOther.h"
|
|
#include "llvm/ConstantHandling.h"
|
|
#include "llvm/GlobalValue.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
|
|
// Make sure that anything that uses AliasAnalysis pulls in this file...
|
|
void BasicAAStub() {}
|
|
|
|
|
|
namespace {
|
|
struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AliasAnalysis::getAnalysisUsage(AU);
|
|
}
|
|
|
|
virtual void initializePass();
|
|
|
|
// alias - This is the only method here that does anything interesting...
|
|
//
|
|
AliasResult alias(const Value *V1, unsigned V1Size,
|
|
const Value *V2, unsigned V2Size);
|
|
private:
|
|
// CheckGEPInstructions - Check two GEP instructions of compatible types and
|
|
// equal number of arguments. This checks to see if the index expressions
|
|
// preclude the pointers from aliasing...
|
|
AliasResult CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1Size,
|
|
GetElementPtrInst *GEP2, unsigned G2Size);
|
|
};
|
|
|
|
// Register this pass...
|
|
RegisterOpt<BasicAliasAnalysis>
|
|
X("basicaa", "Basic Alias Analysis (default AA impl)");
|
|
|
|
// Declare that we implement the AliasAnalysis interface
|
|
RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
|
|
} // End of anonymous namespace
|
|
|
|
void BasicAliasAnalysis::initializePass() {
|
|
InitializeAliasAnalysis(this);
|
|
}
|
|
|
|
|
|
|
|
// hasUniqueAddress - Return true if the
|
|
static inline bool hasUniqueAddress(const Value *V) {
|
|
return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
|
|
}
|
|
|
|
static const Value *getUnderlyingObject(const Value *V) {
|
|
if (!isa<PointerType>(V->getType())) return 0;
|
|
|
|
// If we are at some type of object... return it.
|
|
if (hasUniqueAddress(V)) return V;
|
|
|
|
// Traverse through different addressing mechanisms...
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
if (isa<CastInst>(I) || isa<GetElementPtrInst>(I))
|
|
return getUnderlyingObject(I->getOperand(0));
|
|
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
|
|
if (CE->getOpcode() == Instruction::Cast ||
|
|
CE->getOpcode() == Instruction::GetElementPtr)
|
|
return getUnderlyingObject(CE->getOperand(0));
|
|
} else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
|
|
return CPR->getValue();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
// alias - Provide a bunch of ad-hoc rules to disambiguate in common cases, such
|
|
// as array references. Note that this function is heavily tail recursive.
|
|
// Hopefully we have a smart C++ compiler. :)
|
|
//
|
|
AliasAnalysis::AliasResult
|
|
BasicAliasAnalysis::alias(const Value *V1, unsigned V1Size,
|
|
const Value *V2, unsigned V2Size) {
|
|
// Strip off constant pointer refs if they exist
|
|
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
|
|
V1 = CPR->getValue();
|
|
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
|
|
V2 = CPR->getValue();
|
|
|
|
// Are we checking for alias of the same value?
|
|
if (V1 == V2) return MustAlias;
|
|
|
|
if ((!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType())) &&
|
|
V1->getType() != Type::LongTy && V2->getType() != Type::LongTy)
|
|
return NoAlias; // Scalars cannot alias each other
|
|
|
|
// Strip off cast instructions...
|
|
if (const Instruction *I = dyn_cast<CastInst>(V1))
|
|
return alias(I->getOperand(0), V1Size, V2, V2Size);
|
|
if (const Instruction *I = dyn_cast<CastInst>(V2))
|
|
return alias(V1, V1Size, I->getOperand(0), V2Size);
|
|
|
|
// Figure out what objects these things are pointing to if we can...
|
|
const Value *O1 = getUnderlyingObject(V1);
|
|
const Value *O2 = getUnderlyingObject(V2);
|
|
|
|
// Pointing at a discernible object?
|
|
if (O1 && O2) {
|
|
// If they are two different objects, we know that we have no alias...
|
|
if (O1 != O2) return NoAlias;
|
|
|
|
// If they are the same object, they we can look at the indexes. If they
|
|
// index off of the object is the same for both pointers, they must alias.
|
|
// If they are provably different, they must not alias. Otherwise, we can't
|
|
// tell anything.
|
|
} else if (O1 && isa<ConstantPointerNull>(V2)) {
|
|
return NoAlias; // Unique values don't alias null
|
|
} else if (O2 && isa<ConstantPointerNull>(V1)) {
|
|
return NoAlias; // Unique values don't alias null
|
|
}
|
|
|
|
// If we have two gep instructions with identical indices, return an alias
|
|
// result equal to the alias result of the original pointer...
|
|
//
|
|
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(V1))
|
|
if (const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(V2))
|
|
if (GEP1->getNumOperands() == GEP2->getNumOperands() &&
|
|
GEP1->getOperand(0)->getType() == GEP2->getOperand(0)->getType()) {
|
|
AliasResult GAlias =
|
|
CheckGEPInstructions((GetElementPtrInst*)GEP1, V1Size,
|
|
(GetElementPtrInst*)GEP2, V2Size);
|
|
if (GAlias != MayAlias)
|
|
return GAlias;
|
|
}
|
|
|
|
// Check to see if these two pointers are related by a getelementptr
|
|
// instruction. If one pointer is a GEP with a non-zero index of the other
|
|
// pointer, we know they cannot alias.
|
|
//
|
|
if (isa<GetElementPtrInst>(V2)) {
|
|
std::swap(V1, V2);
|
|
std::swap(V1Size, V2Size);
|
|
}
|
|
|
|
if (V1Size != ~0U && V2Size != ~0U)
|
|
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V1)) {
|
|
AliasResult R = alias(GEP->getOperand(0), V1Size, V2, V2Size);
|
|
if (R == MustAlias) {
|
|
// If there is at least one non-zero constant index, we know they cannot
|
|
// alias.
|
|
bool ConstantFound = false;
|
|
for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i)
|
|
if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
|
|
if (!C->isNullValue()) {
|
|
ConstantFound = true;
|
|
break;
|
|
}
|
|
if (ConstantFound) {
|
|
if (V2Size <= 1 && V1Size <= 1) // Just pointer check?
|
|
return NoAlias;
|
|
|
|
// Otherwise we have to check to see that the distance is more than
|
|
// the size of the argument... build an index vector that is equal to
|
|
// the arguments provided, except substitute 0's for any variable
|
|
// indexes we find...
|
|
|
|
std::vector<Value*> Indices;
|
|
Indices.reserve(GEP->getNumOperands()-1);
|
|
for (unsigned i = 1; i != GEP->getNumOperands(); ++i)
|
|
if (const Constant *C = dyn_cast<Constant>(GEP->getOperand(i)))
|
|
Indices.push_back((Value*)C);
|
|
else
|
|
Indices.push_back(Constant::getNullValue(Type::LongTy));
|
|
const Type *Ty = GEP->getOperand(0)->getType();
|
|
int Offset = getTargetData().getIndexedOffset(Ty, Indices);
|
|
if (Offset >= (int)V2Size || Offset <= -(int)V1Size)
|
|
return NoAlias;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MayAlias;
|
|
}
|
|
|
|
static Value *CheckArrayIndicesForOverflow(const Type *PtrTy,
|
|
const std::vector<Value*> &Indices,
|
|
const ConstantInt *Idx) {
|
|
if (const ConstantSInt *IdxS = dyn_cast<ConstantSInt>(Idx)) {
|
|
if (IdxS->getValue() < 0) // Underflow on the array subscript?
|
|
return Constant::getNullValue(Type::LongTy);
|
|
else { // Check for overflow
|
|
const ArrayType *ATy =
|
|
cast<ArrayType>(GetElementPtrInst::getIndexedType(PtrTy, Indices,true));
|
|
if (IdxS->getValue() >= (int64_t)ATy->getNumElements())
|
|
return ConstantSInt::get(Type::LongTy, ATy->getNumElements()-1);
|
|
}
|
|
}
|
|
return (Value*)Idx; // Everything is acceptable.
|
|
}
|
|
|
|
// CheckGEPInstructions - Check two GEP instructions of compatible types and
|
|
// equal number of arguments. This checks to see if the index expressions
|
|
// preclude the pointers from aliasing...
|
|
//
|
|
AliasAnalysis::AliasResult
|
|
BasicAliasAnalysis::CheckGEPInstructions(GetElementPtrInst *GEP1, unsigned G1S,
|
|
GetElementPtrInst *GEP2, unsigned G2S){
|
|
// Do the base pointers alias?
|
|
AliasResult BaseAlias = alias(GEP1->getOperand(0), G1S,
|
|
GEP2->getOperand(0), G2S);
|
|
if (BaseAlias != MustAlias) // No or May alias: We cannot add anything...
|
|
return BaseAlias;
|
|
|
|
// Find the (possibly empty) initial sequence of equal values...
|
|
unsigned NumGEPOperands = GEP1->getNumOperands();
|
|
unsigned UnequalOper = 1;
|
|
while (UnequalOper != NumGEPOperands &&
|
|
GEP1->getOperand(UnequalOper) == GEP2->getOperand(UnequalOper))
|
|
++UnequalOper;
|
|
|
|
// If all operands equal each other, then the derived pointers must
|
|
// alias each other...
|
|
if (UnequalOper == NumGEPOperands) return MustAlias;
|
|
|
|
// So now we know that the indexes derived from the base pointers,
|
|
// which are known to alias, are different. We can still determine a
|
|
// no-alias result if there are differing constant pairs in the index
|
|
// chain. For example:
|
|
// A[i][0] != A[j][1] iff (&A[0][1]-&A[0][0] >= std::max(G1S, G2S))
|
|
//
|
|
unsigned SizeMax = std::max(G1S, G2S);
|
|
if (SizeMax == ~0U) return MayAlias; // Avoid frivolous work...
|
|
|
|
// Scan for the first operand that is constant and unequal in the
|
|
// two getelemenptrs...
|
|
unsigned FirstConstantOper = UnequalOper;
|
|
for (; FirstConstantOper != NumGEPOperands; ++FirstConstantOper) {
|
|
const Value *G1Oper = GEP1->getOperand(FirstConstantOper);
|
|
const Value *G2Oper = GEP2->getOperand(FirstConstantOper);
|
|
if (G1Oper != G2Oper && // Found non-equal constant indexes...
|
|
isa<Constant>(G1Oper) && isa<Constant>(G2Oper)) {
|
|
// Make sure they are comparable... and make sure the GEP with
|
|
// the smaller leading constant is GEP1.
|
|
ConstantBool *Compare =
|
|
*cast<Constant>(GEP1->getOperand(FirstConstantOper)) >
|
|
*cast<Constant>(GEP2->getOperand(FirstConstantOper));
|
|
if (Compare) { // If they are comparable...
|
|
if (Compare->getValue())
|
|
std::swap(GEP1, GEP2); // Make GEP1 < GEP2
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// No constant operands, we cannot tell anything...
|
|
if (FirstConstantOper == NumGEPOperands) return MayAlias;
|
|
|
|
// If there are non-equal constants arguments, then we can figure
|
|
// out a minimum known delta between the two index expressions... at
|
|
// this point we know that the first constant index of GEP1 is less
|
|
// than the first constant index of GEP2.
|
|
//
|
|
std::vector<Value*> Indices1;
|
|
Indices1.reserve(NumGEPOperands-1);
|
|
for (unsigned i = 1; i != FirstConstantOper; ++i)
|
|
if (GEP1->getOperand(i)->getType() == Type::UByteTy)
|
|
Indices1.push_back(GEP1->getOperand(i));
|
|
else
|
|
Indices1.push_back(Constant::getNullValue(Type::LongTy));
|
|
std::vector<Value*> Indices2;
|
|
Indices2.reserve(NumGEPOperands-1);
|
|
Indices2 = Indices1; // Copy the zeros prefix...
|
|
|
|
// Add the two known constant operands...
|
|
Indices1.push_back((Value*)GEP1->getOperand(FirstConstantOper));
|
|
Indices2.push_back((Value*)GEP2->getOperand(FirstConstantOper));
|
|
|
|
const Type *GEPPointerTy = GEP1->getOperand(0)->getType();
|
|
|
|
// Loop over the rest of the operands...
|
|
for (unsigned i = FirstConstantOper+1; i != NumGEPOperands; ++i) {
|
|
const Value *Op1 = GEP1->getOperand(i);
|
|
const Value *Op2 = GEP2->getOperand(i);
|
|
if (Op1 == Op2) { // If they are equal, use a zero index...
|
|
if (!isa<Constant>(Op1)) {
|
|
Indices1.push_back(Constant::getNullValue(Op1->getType()));
|
|
Indices2.push_back(Indices1.back());
|
|
} else {
|
|
Indices1.push_back((Value*)Op1);
|
|
Indices2.push_back((Value*)Op2);
|
|
}
|
|
} else {
|
|
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
// If this is an array index, make sure the array element is in range...
|
|
if (i != 1) // The pointer index can be "out of range"
|
|
Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices1, Op1C);
|
|
|
|
Indices1.push_back((Value*)Op1);
|
|
} else {
|
|
// GEP1 is known to produce a value less than GEP2. To be
|
|
// conservatively correct, we must assume the largest possible constant
|
|
// is used in this position. This cannot be the initial index to the
|
|
// GEP instructions (because we know we have at least one element before
|
|
// this one with the different constant arguments), so we know that the
|
|
// current index must be into either a struct or array. Because we know
|
|
// it's not constant, this cannot be a structure index. Because of
|
|
// this, we can calculate the maximum value possible.
|
|
//
|
|
const ArrayType *ElTy =
|
|
cast<ArrayType>(GEP1->getIndexedType(GEPPointerTy, Indices1, true));
|
|
Indices1.push_back(ConstantSInt::get(Type::LongTy,
|
|
ElTy->getNumElements()-1));
|
|
}
|
|
|
|
if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op2)) {
|
|
// If this is an array index, make sure the array element is in range...
|
|
if (i != 1) // The pointer index can be "out of range"
|
|
Op1 = CheckArrayIndicesForOverflow(GEPPointerTy, Indices2, Op1C);
|
|
|
|
Indices2.push_back((Value*)Op2);
|
|
}
|
|
else // Conservatively assume the minimum value for this index
|
|
Indices2.push_back(Constant::getNullValue(Op2->getType()));
|
|
}
|
|
}
|
|
|
|
int64_t Offset1 = getTargetData().getIndexedOffset(GEPPointerTy, Indices1);
|
|
int64_t Offset2 = getTargetData().getIndexedOffset(GEPPointerTy, Indices2);
|
|
assert(Offset1 < Offset2 &&"There is at least one different constant here!");
|
|
|
|
if ((uint64_t)(Offset2-Offset1) >= SizeMax) {
|
|
//std::cerr << "Determined that these two GEP's don't alias ["
|
|
// << SizeMax << " bytes]: \n" << *GEP1 << *GEP2;
|
|
return NoAlias;
|
|
}
|
|
return MayAlias;
|
|
}
|
|
|