mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@187107 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2748 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2748 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // MachineScheduler schedules machine instructions after phi elimination. It
 | |
| // preserves LiveIntervals so it can be invoked before register allocation.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "misched"
 | |
| 
 | |
| #include "llvm/CodeGen/MachineScheduler.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/PriorityQueue.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/ScheduleDFS.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GraphWriter.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace llvm {
 | |
| cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
 | |
|                            cl::desc("Force top-down list scheduling"));
 | |
| cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
 | |
|                             cl::desc("Force bottom-up list scheduling"));
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
 | |
|   cl::desc("Pop up a window to show MISched dags after they are processed"));
 | |
| 
 | |
| static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
 | |
|   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
 | |
| #else
 | |
| static bool ViewMISchedDAGs = false;
 | |
| #endif // NDEBUG
 | |
| 
 | |
| static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
 | |
|   cl::desc("Enable load clustering."), cl::init(true));
 | |
| 
 | |
| // Experimental heuristics
 | |
| static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
 | |
|   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
 | |
| 
 | |
| static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
 | |
|   cl::desc("Verify machine instrs before and after machine scheduling"));
 | |
| 
 | |
| // DAG subtrees must have at least this many nodes.
 | |
| static const unsigned MinSubtreeSize = 8;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Machine Instruction Scheduling Pass and Registry
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| MachineSchedContext::MachineSchedContext():
 | |
|     MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
 | |
|   RegClassInfo = new RegisterClassInfo();
 | |
| }
 | |
| 
 | |
| MachineSchedContext::~MachineSchedContext() {
 | |
|   delete RegClassInfo;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// MachineScheduler runs after coalescing and before register allocation.
 | |
| class MachineScheduler : public MachineSchedContext,
 | |
|                          public MachineFunctionPass {
 | |
| public:
 | |
|   MachineScheduler();
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
| 
 | |
|   virtual void releaseMemory() {}
 | |
| 
 | |
|   virtual bool runOnMachineFunction(MachineFunction&);
 | |
| 
 | |
|   virtual void print(raw_ostream &O, const Module* = 0) const;
 | |
| 
 | |
|   static char ID; // Class identification, replacement for typeinfo
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| char MachineScheduler::ID = 0;
 | |
| 
 | |
| char &llvm::MachineSchedulerID = MachineScheduler::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
 | |
|                       "Machine Instruction Scheduler", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | |
| INITIALIZE_PASS_END(MachineScheduler, "misched",
 | |
|                     "Machine Instruction Scheduler", false, false)
 | |
| 
 | |
| MachineScheduler::MachineScheduler()
 | |
| : MachineFunctionPass(ID) {
 | |
|   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequiredID(MachineDominatorsID);
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addRequired<TargetPassConfig>();
 | |
|   AU.addRequired<SlotIndexes>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<LiveIntervals>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| MachinePassRegistry MachineSchedRegistry::Registry;
 | |
| 
 | |
| /// A dummy default scheduler factory indicates whether the scheduler
 | |
| /// is overridden on the command line.
 | |
| static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// MachineSchedOpt allows command line selection of the scheduler.
 | |
| static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
 | |
|                RegisterPassParser<MachineSchedRegistry> >
 | |
| MachineSchedOpt("misched",
 | |
|                 cl::init(&useDefaultMachineSched), cl::Hidden,
 | |
|                 cl::desc("Machine instruction scheduler to use"));
 | |
| 
 | |
| static MachineSchedRegistry
 | |
| DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
 | |
|                      useDefaultMachineSched);
 | |
| 
 | |
| /// Forward declare the standard machine scheduler. This will be used as the
 | |
| /// default scheduler if the target does not set a default.
 | |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
 | |
| 
 | |
| 
 | |
| /// Decrement this iterator until reaching the top or a non-debug instr.
 | |
| static MachineBasicBlock::iterator
 | |
| priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
 | |
|   assert(I != Beg && "reached the top of the region, cannot decrement");
 | |
|   while (--I != Beg) {
 | |
|     if (!I->isDebugValue())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// If this iterator is a debug value, increment until reaching the End or a
 | |
| /// non-debug instruction.
 | |
| static MachineBasicBlock::iterator
 | |
| nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
 | |
|   for(; I != End; ++I) {
 | |
|     if (!I->isDebugValue())
 | |
|       break;
 | |
|   }
 | |
|   return I;
 | |
| }
 | |
| 
 | |
| /// Top-level MachineScheduler pass driver.
 | |
| ///
 | |
| /// Visit blocks in function order. Divide each block into scheduling regions
 | |
| /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
 | |
| /// consistent with the DAG builder, which traverses the interior of the
 | |
| /// scheduling regions bottom-up.
 | |
| ///
 | |
| /// This design avoids exposing scheduling boundaries to the DAG builder,
 | |
| /// simplifying the DAG builder's support for "special" target instructions.
 | |
| /// At the same time the design allows target schedulers to operate across
 | |
| /// scheduling boundaries, for example to bundle the boudary instructions
 | |
| /// without reordering them. This creates complexity, because the target
 | |
| /// scheduler must update the RegionBegin and RegionEnd positions cached by
 | |
| /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
 | |
| /// design would be to split blocks at scheduling boundaries, but LLVM has a
 | |
| /// general bias against block splitting purely for implementation simplicity.
 | |
| bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
 | |
| 
 | |
|   // Initialize the context of the pass.
 | |
|   MF = &mf;
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
|   MDT = &getAnalysis<MachineDominatorTree>();
 | |
|   PassConfig = &getAnalysis<TargetPassConfig>();
 | |
|   AA = &getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   LIS = &getAnalysis<LiveIntervals>();
 | |
|   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | |
| 
 | |
|   if (VerifyScheduling) {
 | |
|     DEBUG(LIS->dump());
 | |
|     MF->verify(this, "Before machine scheduling.");
 | |
|   }
 | |
|   RegClassInfo->runOnMachineFunction(*MF);
 | |
| 
 | |
|   // Select the scheduler, or set the default.
 | |
|   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
 | |
|   if (Ctor == useDefaultMachineSched) {
 | |
|     // Get the default scheduler set by the target.
 | |
|     Ctor = MachineSchedRegistry::getDefault();
 | |
|     if (!Ctor) {
 | |
|       Ctor = createConvergingSched;
 | |
|       MachineSchedRegistry::setDefault(Ctor);
 | |
|     }
 | |
|   }
 | |
|   // Instantiate the selected scheduler.
 | |
|   OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
 | |
| 
 | |
|   // Visit all machine basic blocks.
 | |
|   //
 | |
|   // TODO: Visit blocks in global postorder or postorder within the bottom-up
 | |
|   // loop tree. Then we can optionally compute global RegPressure.
 | |
|   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
 | |
|        MBB != MBBEnd; ++MBB) {
 | |
| 
 | |
|     Scheduler->startBlock(MBB);
 | |
| 
 | |
|     // Break the block into scheduling regions [I, RegionEnd), and schedule each
 | |
|     // region as soon as it is discovered. RegionEnd points the scheduling
 | |
|     // boundary at the bottom of the region. The DAG does not include RegionEnd,
 | |
|     // but the region does (i.e. the next RegionEnd is above the previous
 | |
|     // RegionBegin). If the current block has no terminator then RegionEnd ==
 | |
|     // MBB->end() for the bottom region.
 | |
|     //
 | |
|     // The Scheduler may insert instructions during either schedule() or
 | |
|     // exitRegion(), even for empty regions. So the local iterators 'I' and
 | |
|     // 'RegionEnd' are invalid across these calls.
 | |
|     unsigned RemainingInstrs = MBB->size();
 | |
|     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | |
|         RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
 | |
| 
 | |
|       // Avoid decrementing RegionEnd for blocks with no terminator.
 | |
|       if (RegionEnd != MBB->end()
 | |
|           || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
 | |
|         --RegionEnd;
 | |
|         // Count the boundary instruction.
 | |
|         --RemainingInstrs;
 | |
|       }
 | |
| 
 | |
|       // The next region starts above the previous region. Look backward in the
 | |
|       // instruction stream until we find the nearest boundary.
 | |
|       MachineBasicBlock::iterator I = RegionEnd;
 | |
|       for(;I != MBB->begin(); --I, --RemainingInstrs) {
 | |
|         if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
 | |
|           break;
 | |
|       }
 | |
|       // Notify the scheduler of the region, even if we may skip scheduling
 | |
|       // it. Perhaps it still needs to be bundled.
 | |
|       Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
 | |
| 
 | |
|       // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | |
|       if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
 | |
|         // Close the current region. Bundle the terminator if needed.
 | |
|         // This invalidates 'RegionEnd' and 'I'.
 | |
|         Scheduler->exitRegion();
 | |
|         continue;
 | |
|       }
 | |
|       DEBUG(dbgs() << "********** MI Scheduling **********\n");
 | |
|       DEBUG(dbgs() << MF->getName()
 | |
|             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
 | |
|             << "\n  From: " << *I << "    To: ";
 | |
|             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | |
|             else dbgs() << "End";
 | |
|             dbgs() << " Remaining: " << RemainingInstrs << "\n");
 | |
| 
 | |
|       // Schedule a region: possibly reorder instructions.
 | |
|       // This invalidates 'RegionEnd' and 'I'.
 | |
|       Scheduler->schedule();
 | |
| 
 | |
|       // Close the current region.
 | |
|       Scheduler->exitRegion();
 | |
| 
 | |
|       // Scheduling has invalidated the current iterator 'I'. Ask the
 | |
|       // scheduler for the top of it's scheduled region.
 | |
|       RegionEnd = Scheduler->begin();
 | |
|     }
 | |
|     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
 | |
|     Scheduler->finishBlock();
 | |
|   }
 | |
|   Scheduler->finalizeSchedule();
 | |
|   DEBUG(LIS->dump());
 | |
|   if (VerifyScheduling)
 | |
|     MF->verify(this, "After machine scheduling.");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void MachineScheduler::print(raw_ostream &O, const Module* m) const {
 | |
|   // unimplemented
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ReadyQueue::dump() {
 | |
|   dbgs() << Name << ": ";
 | |
|   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
 | |
|     dbgs() << Queue[i]->NodeNum << " ";
 | |
|   dbgs() << "\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
 | |
| // preservation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ScheduleDAGMI::~ScheduleDAGMI() {
 | |
|   delete DFSResult;
 | |
|   DeleteContainerPointers(Mutations);
 | |
|   delete SchedImpl;
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
 | |
|   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
 | |
|   if (SuccSU != &ExitSU) {
 | |
|     // Do not use WillCreateCycle, it assumes SD scheduling.
 | |
|     // If Pred is reachable from Succ, then the edge creates a cycle.
 | |
|     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
 | |
|       return false;
 | |
|     Topo.AddPred(SuccSU, PredDep.getSUnit());
 | |
|   }
 | |
|   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
 | |
|   // Return true regardless of whether a new edge needed to be inserted.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 | |
| /// NumPredsLeft reaches zero, release the successor node.
 | |
| ///
 | |
| /// FIXME: Adjust SuccSU height based on MinLatency.
 | |
| void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
|   if (SuccEdge->isWeak()) {
 | |
|     --SuccSU->WeakPredsLeft;
 | |
|     if (SuccEdge->isCluster())
 | |
|       NextClusterSucc = SuccSU;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     SuccSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --SuccSU->NumPredsLeft;
 | |
|   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | |
|     SchedImpl->releaseTopNode(SuccSU);
 | |
| }
 | |
| 
 | |
| /// releaseSuccessors - Call releaseSucc on each of SU's successors.
 | |
| void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     releaseSucc(SU, &*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
 | |
| /// NumSuccsLeft reaches zero, release the predecessor node.
 | |
| ///
 | |
| /// FIXME: Adjust PredSU height based on MinLatency.
 | |
| void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
 | |
|   SUnit *PredSU = PredEdge->getSUnit();
 | |
| 
 | |
|   if (PredEdge->isWeak()) {
 | |
|     --PredSU->WeakSuccsLeft;
 | |
|     if (PredEdge->isCluster())
 | |
|       NextClusterPred = PredSU;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (PredSU->NumSuccsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     PredSU->dump(this);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(0);
 | |
|   }
 | |
| #endif
 | |
|   --PredSU->NumSuccsLeft;
 | |
|   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
 | |
|     SchedImpl->releaseBottomNode(PredSU);
 | |
| }
 | |
| 
 | |
| /// releasePredecessors - Call releasePred on each of SU's predecessors.
 | |
| void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     releasePred(SU, &*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// This is normally called from the main scheduler loop but may also be invoked
 | |
| /// by the scheduling strategy to perform additional code motion.
 | |
| void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
 | |
|                                     MachineBasicBlock::iterator InsertPos) {
 | |
|   // Advance RegionBegin if the first instruction moves down.
 | |
|   if (&*RegionBegin == MI)
 | |
|     ++RegionBegin;
 | |
| 
 | |
|   // Update the instruction stream.
 | |
|   BB->splice(InsertPos, BB, MI);
 | |
| 
 | |
|   // Update LiveIntervals
 | |
|   LIS->handleMove(MI, /*UpdateFlags=*/true);
 | |
| 
 | |
|   // Recede RegionBegin if an instruction moves above the first.
 | |
|   if (RegionBegin == InsertPos)
 | |
|     RegionBegin = MI;
 | |
| }
 | |
| 
 | |
| bool ScheduleDAGMI::checkSchedLimit() {
 | |
| #ifndef NDEBUG
 | |
|   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
 | |
|     CurrentTop = CurrentBottom;
 | |
|     return false;
 | |
|   }
 | |
|   ++NumInstrsScheduled;
 | |
| #endif
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | |
| /// crossing a scheduling boundary. [begin, end) includes all instructions in
 | |
| /// the region, including the boundary itself and single-instruction regions
 | |
| /// that don't get scheduled.
 | |
| void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
 | |
|                                 MachineBasicBlock::iterator begin,
 | |
|                                 MachineBasicBlock::iterator end,
 | |
|                                 unsigned endcount)
 | |
| {
 | |
|   ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
 | |
| 
 | |
|   // For convenience remember the end of the liveness region.
 | |
|   LiveRegionEnd =
 | |
|     (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
 | |
| }
 | |
| 
 | |
| // Setup the register pressure trackers for the top scheduled top and bottom
 | |
| // scheduled regions.
 | |
| void ScheduleDAGMI::initRegPressure() {
 | |
|   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
 | |
|   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | |
| 
 | |
|   // Close the RPTracker to finalize live ins.
 | |
|   RPTracker.closeRegion();
 | |
| 
 | |
|   DEBUG(RPTracker.getPressure().dump(TRI));
 | |
| 
 | |
|   // Initialize the live ins and live outs.
 | |
|   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | |
|   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | |
| 
 | |
|   // Close one end of the tracker so we can call
 | |
|   // getMaxUpward/DownwardPressureDelta before advancing across any
 | |
|   // instructions. This converts currently live regs into live ins/outs.
 | |
|   TopRPTracker.closeTop();
 | |
|   BotRPTracker.closeBottom();
 | |
| 
 | |
|   // Account for liveness generated by the region boundary.
 | |
|   if (LiveRegionEnd != RegionEnd)
 | |
|     BotRPTracker.recede();
 | |
| 
 | |
|   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
 | |
| 
 | |
|   // Cache the list of excess pressure sets in this region. This will also track
 | |
|   // the max pressure in the scheduled code for these sets.
 | |
|   RegionCriticalPSets.clear();
 | |
|   const std::vector<unsigned> &RegionPressure =
 | |
|     RPTracker.getPressure().MaxSetPressure;
 | |
|   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
 | |
|     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
 | |
|     if (RegionPressure[i] > Limit) {
 | |
|       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
 | |
|             << " Limit " << Limit
 | |
|             << " Actual " << RegionPressure[i] << "\n");
 | |
|       RegionCriticalPSets.push_back(PressureElement(i, 0));
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "Excess PSets: ";
 | |
|         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
 | |
|           dbgs() << TRI->getRegPressureSetName(
 | |
|             RegionCriticalPSets[i].PSetID) << " ";
 | |
|         dbgs() << "\n");
 | |
| }
 | |
| 
 | |
| // FIXME: When the pressure tracker deals in pressure differences then we won't
 | |
| // iterate over all RegionCriticalPSets[i].
 | |
| void ScheduleDAGMI::
 | |
| updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
 | |
|   for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
 | |
|     unsigned ID = RegionCriticalPSets[i].PSetID;
 | |
|     int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
 | |
|     if ((int)NewMaxPressure[ID] > MaxUnits)
 | |
|       MaxUnits = NewMaxPressure[ID];
 | |
|   }
 | |
|   DEBUG(
 | |
|     for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
 | |
|       unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
 | |
|       if (NewMaxPressure[i] > Limit ) {
 | |
|         dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
 | |
|                << NewMaxPressure[i] << " > " << Limit << "\n";
 | |
|       }
 | |
|     });
 | |
| }
 | |
| 
 | |
| /// schedule - Called back from MachineScheduler::runOnMachineFunction
 | |
| /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | |
| /// only includes instructions that have DAG nodes, not scheduling boundaries.
 | |
| ///
 | |
| /// This is a skeletal driver, with all the functionality pushed into helpers,
 | |
| /// so that it can be easilly extended by experimental schedulers. Generally,
 | |
| /// implementing MachineSchedStrategy should be sufficient to implement a new
 | |
| /// scheduling algorithm. However, if a scheduler further subclasses
 | |
| /// ScheduleDAGMI then it will want to override this virtual method in order to
 | |
| /// update any specialized state.
 | |
| void ScheduleDAGMI::schedule() {
 | |
|   buildDAGWithRegPressure();
 | |
| 
 | |
|   Topo.InitDAGTopologicalSorting();
 | |
| 
 | |
|   postprocessDAG();
 | |
| 
 | |
|   SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | |
|   findRootsAndBiasEdges(TopRoots, BotRoots);
 | |
| 
 | |
|   // Initialize the strategy before modifying the DAG.
 | |
|   // This may initialize a DFSResult to be used for queue priority.
 | |
|   SchedImpl->initialize(this);
 | |
| 
 | |
|   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | |
|           SUnits[su].dumpAll(this));
 | |
|   if (ViewMISchedDAGs) viewGraph();
 | |
| 
 | |
|   // Initialize ready queues now that the DAG and priority data are finalized.
 | |
|   initQueues(TopRoots, BotRoots);
 | |
| 
 | |
|   bool IsTopNode = false;
 | |
|   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
 | |
|     assert(!SU->isScheduled && "Node already scheduled");
 | |
|     if (!checkSchedLimit())
 | |
|       break;
 | |
| 
 | |
|     scheduleMI(SU, IsTopNode);
 | |
| 
 | |
|     updateQueues(SU, IsTopNode);
 | |
|   }
 | |
|   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | |
| 
 | |
|   placeDebugValues();
 | |
| 
 | |
|   DEBUG({
 | |
|       unsigned BBNum = begin()->getParent()->getNumber();
 | |
|       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
 | |
|       dumpSchedule();
 | |
|       dbgs() << '\n';
 | |
|     });
 | |
| }
 | |
| 
 | |
| /// Build the DAG and setup three register pressure trackers.
 | |
| void ScheduleDAGMI::buildDAGWithRegPressure() {
 | |
|   // Initialize the register pressure tracker used by buildSchedGraph.
 | |
|   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | |
| 
 | |
|   // Account for liveness generate by the region boundary.
 | |
|   if (LiveRegionEnd != RegionEnd)
 | |
|     RPTracker.recede();
 | |
| 
 | |
|   // Build the DAG, and compute current register pressure.
 | |
|   buildSchedGraph(AA, &RPTracker);
 | |
| 
 | |
|   // Initialize top/bottom trackers after computing region pressure.
 | |
|   initRegPressure();
 | |
| }
 | |
| 
 | |
| /// Apply each ScheduleDAGMutation step in order.
 | |
| void ScheduleDAGMI::postprocessDAG() {
 | |
|   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
 | |
|     Mutations[i]->apply(this);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::computeDFSResult() {
 | |
|   if (!DFSResult)
 | |
|     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
 | |
|   DFSResult->clear();
 | |
|   ScheduledTrees.clear();
 | |
|   DFSResult->resize(SUnits.size());
 | |
|   DFSResult->compute(SUnits);
 | |
|   ScheduledTrees.resize(DFSResult->getNumSubtrees());
 | |
| }
 | |
| 
 | |
| void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
 | |
|                                           SmallVectorImpl<SUnit*> &BotRoots) {
 | |
|   for (std::vector<SUnit>::iterator
 | |
|          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
 | |
|     SUnit *SU = &(*I);
 | |
|     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
 | |
| 
 | |
|     // Order predecessors so DFSResult follows the critical path.
 | |
|     SU->biasCriticalPath();
 | |
| 
 | |
|     // A SUnit is ready to top schedule if it has no predecessors.
 | |
|     if (!I->NumPredsLeft)
 | |
|       TopRoots.push_back(SU);
 | |
|     // A SUnit is ready to bottom schedule if it has no successors.
 | |
|     if (!I->NumSuccsLeft)
 | |
|       BotRoots.push_back(SU);
 | |
|   }
 | |
|   ExitSU.biasCriticalPath();
 | |
| }
 | |
| 
 | |
| /// Identify DAG roots and setup scheduler queues.
 | |
| void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
 | |
|                                ArrayRef<SUnit*> BotRoots) {
 | |
|   NextClusterSucc = NULL;
 | |
|   NextClusterPred = NULL;
 | |
| 
 | |
|   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
 | |
|   //
 | |
|   // Nodes with unreleased weak edges can still be roots.
 | |
|   // Release top roots in forward order.
 | |
|   for (SmallVectorImpl<SUnit*>::const_iterator
 | |
|          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
 | |
|     SchedImpl->releaseTopNode(*I);
 | |
|   }
 | |
|   // Release bottom roots in reverse order so the higher priority nodes appear
 | |
|   // first. This is more natural and slightly more efficient.
 | |
|   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
 | |
|          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
 | |
|     SchedImpl->releaseBottomNode(*I);
 | |
|   }
 | |
| 
 | |
|   releaseSuccessors(&EntrySU);
 | |
|   releasePredecessors(&ExitSU);
 | |
| 
 | |
|   SchedImpl->registerRoots();
 | |
| 
 | |
|   // Advance past initial DebugValues.
 | |
|   assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | |
|   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
 | |
|   TopRPTracker.setPos(CurrentTop);
 | |
| 
 | |
|   CurrentBottom = RegionEnd;
 | |
| }
 | |
| 
 | |
| /// Move an instruction and update register pressure.
 | |
| void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
 | |
|   // Move the instruction to its new location in the instruction stream.
 | |
|   MachineInstr *MI = SU->getInstr();
 | |
| 
 | |
|   if (IsTopNode) {
 | |
|     assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | |
|     if (&*CurrentTop == MI)
 | |
|       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | |
|     else {
 | |
|       moveInstruction(MI, CurrentTop);
 | |
|       TopRPTracker.setPos(MI);
 | |
|     }
 | |
| 
 | |
|     // Update top scheduled pressure.
 | |
|     TopRPTracker.advance();
 | |
|     assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
 | |
|     updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
 | |
|   }
 | |
|   else {
 | |
|     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | |
|     MachineBasicBlock::iterator priorII =
 | |
|       priorNonDebug(CurrentBottom, CurrentTop);
 | |
|     if (&*priorII == MI)
 | |
|       CurrentBottom = priorII;
 | |
|     else {
 | |
|       if (&*CurrentTop == MI) {
 | |
|         CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | |
|         TopRPTracker.setPos(CurrentTop);
 | |
|       }
 | |
|       moveInstruction(MI, CurrentBottom);
 | |
|       CurrentBottom = MI;
 | |
|     }
 | |
|     // Update bottom scheduled pressure.
 | |
|     BotRPTracker.recede();
 | |
|     assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
 | |
|     updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update scheduler queues after scheduling an instruction.
 | |
| void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
 | |
|   // Release dependent instructions for scheduling.
 | |
|   if (IsTopNode)
 | |
|     releaseSuccessors(SU);
 | |
|   else
 | |
|     releasePredecessors(SU);
 | |
| 
 | |
|   SU->isScheduled = true;
 | |
| 
 | |
|   if (DFSResult) {
 | |
|     unsigned SubtreeID = DFSResult->getSubtreeID(SU);
 | |
|     if (!ScheduledTrees.test(SubtreeID)) {
 | |
|       ScheduledTrees.set(SubtreeID);
 | |
|       DFSResult->scheduleTree(SubtreeID);
 | |
|       SchedImpl->scheduleTree(SubtreeID);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Notify the scheduling strategy after updating the DAG.
 | |
|   SchedImpl->schedNode(SU, IsTopNode);
 | |
| }
 | |
| 
 | |
| /// Reinsert any remaining debug_values, just like the PostRA scheduler.
 | |
| void ScheduleDAGMI::placeDebugValues() {
 | |
|   // If first instruction was a DBG_VALUE then put it back.
 | |
|   if (FirstDbgValue) {
 | |
|     BB->splice(RegionBegin, BB, FirstDbgValue);
 | |
|     RegionBegin = FirstDbgValue;
 | |
|   }
 | |
| 
 | |
|   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | |
|          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | |
|     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
 | |
|     MachineInstr *DbgValue = P.first;
 | |
|     MachineBasicBlock::iterator OrigPrevMI = P.second;
 | |
|     if (&*RegionBegin == DbgValue)
 | |
|       ++RegionBegin;
 | |
|     BB->splice(++OrigPrevMI, BB, DbgValue);
 | |
|     if (OrigPrevMI == llvm::prior(RegionEnd))
 | |
|       RegionEnd = DbgValue;
 | |
|   }
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = NULL;
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| void ScheduleDAGMI::dumpSchedule() const {
 | |
|   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
 | |
|     if (SUnit *SU = getSUnit(&(*MI)))
 | |
|       SU->dump(this);
 | |
|     else
 | |
|       dbgs() << "Missing SUnit\n";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LoadClusterMutation - DAG post-processing to cluster loads.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Post-process the DAG to create cluster edges between neighboring
 | |
| /// loads.
 | |
| class LoadClusterMutation : public ScheduleDAGMutation {
 | |
|   struct LoadInfo {
 | |
|     SUnit *SU;
 | |
|     unsigned BaseReg;
 | |
|     unsigned Offset;
 | |
|     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
 | |
|       : SU(su), BaseReg(reg), Offset(ofs) {}
 | |
|   };
 | |
|   static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
 | |
|                            const LoadClusterMutation::LoadInfo &RHS);
 | |
| 
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
| public:
 | |
|   LoadClusterMutation(const TargetInstrInfo *tii,
 | |
|                       const TargetRegisterInfo *tri)
 | |
|     : TII(tii), TRI(tri) {}
 | |
| 
 | |
|   virtual void apply(ScheduleDAGMI *DAG);
 | |
| protected:
 | |
|   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| bool LoadClusterMutation::LoadInfoLess(
 | |
|   const LoadClusterMutation::LoadInfo &LHS,
 | |
|   const LoadClusterMutation::LoadInfo &RHS) {
 | |
|   if (LHS.BaseReg != RHS.BaseReg)
 | |
|     return LHS.BaseReg < RHS.BaseReg;
 | |
|   return LHS.Offset < RHS.Offset;
 | |
| }
 | |
| 
 | |
| void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
 | |
|                                                   ScheduleDAGMI *DAG) {
 | |
|   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
 | |
|   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
 | |
|     SUnit *SU = Loads[Idx];
 | |
|     unsigned BaseReg;
 | |
|     unsigned Offset;
 | |
|     if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
 | |
|       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
 | |
|   }
 | |
|   if (LoadRecords.size() < 2)
 | |
|     return;
 | |
|   std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
 | |
|   unsigned ClusterLength = 1;
 | |
|   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
 | |
|     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
 | |
|       ClusterLength = 1;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     SUnit *SUa = LoadRecords[Idx].SU;
 | |
|     SUnit *SUb = LoadRecords[Idx+1].SU;
 | |
|     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
 | |
|         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
 | |
| 
 | |
|       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
 | |
|             << SUb->NodeNum << ")\n");
 | |
|       // Copy successor edges from SUa to SUb. Interleaving computation
 | |
|       // dependent on SUa can prevent load combining due to register reuse.
 | |
|       // Predecessor edges do not need to be copied from SUb to SUa since nearby
 | |
|       // loads should have effectively the same inputs.
 | |
|       for (SUnit::const_succ_iterator
 | |
|              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
 | |
|         if (SI->getSUnit() == SUb)
 | |
|           continue;
 | |
|         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
 | |
|         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
 | |
|       }
 | |
|       ++ClusterLength;
 | |
|     }
 | |
|     else
 | |
|       ClusterLength = 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Callback from DAG postProcessing to create cluster edges for loads.
 | |
| void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
 | |
|   // Map DAG NodeNum to store chain ID.
 | |
|   DenseMap<unsigned, unsigned> StoreChainIDs;
 | |
|   // Map each store chain to a set of dependent loads.
 | |
|   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
 | |
|   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | |
|     SUnit *SU = &DAG->SUnits[Idx];
 | |
|     if (!SU->getInstr()->mayLoad())
 | |
|       continue;
 | |
|     unsigned ChainPredID = DAG->SUnits.size();
 | |
|     for (SUnit::const_pred_iterator
 | |
|            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | |
|       if (PI->isCtrl()) {
 | |
|         ChainPredID = PI->getSUnit()->NodeNum;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // Check if this chain-like pred has been seen
 | |
|     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
 | |
|     unsigned NumChains = StoreChainDependents.size();
 | |
|     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
 | |
|       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
 | |
|     if (Result.second)
 | |
|       StoreChainDependents.resize(NumChains + 1);
 | |
|     StoreChainDependents[Result.first->second].push_back(SU);
 | |
|   }
 | |
|   // Iterate over the store chains.
 | |
|   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
 | |
|     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // MacroFusion - DAG post-processing to encourage fusion of macro ops.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Post-process the DAG to create cluster edges between instructions
 | |
| /// that may be fused by the processor into a single operation.
 | |
| class MacroFusion : public ScheduleDAGMutation {
 | |
|   const TargetInstrInfo *TII;
 | |
| public:
 | |
|   MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
 | |
| 
 | |
|   virtual void apply(ScheduleDAGMI *DAG);
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| /// \brief Callback from DAG postProcessing to create cluster edges to encourage
 | |
| /// fused operations.
 | |
| void MacroFusion::apply(ScheduleDAGMI *DAG) {
 | |
|   // For now, assume targets can only fuse with the branch.
 | |
|   MachineInstr *Branch = DAG->ExitSU.getInstr();
 | |
|   if (!Branch)
 | |
|     return;
 | |
| 
 | |
|   for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
 | |
|     SUnit *SU = &DAG->SUnits[--Idx];
 | |
|     if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
 | |
|       continue;
 | |
| 
 | |
|     // Create a single weak edge from SU to ExitSU. The only effect is to cause
 | |
|     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
 | |
|     // need to copy predecessor edges from ExitSU to SU, since top-down
 | |
|     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
 | |
|     // of SU, we could create an artificial edge from the deepest root, but it
 | |
|     // hasn't been needed yet.
 | |
|     bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
 | |
|     (void)Success;
 | |
|     assert(Success && "No DAG nodes should be reachable from ExitSU");
 | |
| 
 | |
|     DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // CopyConstrain - DAG post-processing to encourage copy elimination.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Post-process the DAG to create weak edges from all uses of a copy to
 | |
| /// the one use that defines the copy's source vreg, most likely an induction
 | |
| /// variable increment.
 | |
| class CopyConstrain : public ScheduleDAGMutation {
 | |
|   // Transient state.
 | |
|   SlotIndex RegionBeginIdx;
 | |
|   // RegionEndIdx is the slot index of the last non-debug instruction in the
 | |
|   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
 | |
|   SlotIndex RegionEndIdx;
 | |
| public:
 | |
|   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
 | |
| 
 | |
|   virtual void apply(ScheduleDAGMI *DAG);
 | |
| 
 | |
| protected:
 | |
|   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
 | |
| };
 | |
| } // anonymous
 | |
| 
 | |
| /// constrainLocalCopy handles two possibilities:
 | |
| /// 1) Local src:
 | |
| /// I0:     = dst
 | |
| /// I1: src = ...
 | |
| /// I2:     = dst
 | |
| /// I3: dst = src (copy)
 | |
| /// (create pred->succ edges I0->I1, I2->I1)
 | |
| ///
 | |
| /// 2) Local copy:
 | |
| /// I0: dst = src (copy)
 | |
| /// I1:     = dst
 | |
| /// I2: src = ...
 | |
| /// I3:     = dst
 | |
| /// (create pred->succ edges I1->I2, I3->I2)
 | |
| ///
 | |
| /// Although the MachineScheduler is currently constrained to single blocks,
 | |
| /// this algorithm should handle extended blocks. An EBB is a set of
 | |
| /// contiguously numbered blocks such that the previous block in the EBB is
 | |
| /// always the single predecessor.
 | |
| void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
 | |
|   LiveIntervals *LIS = DAG->getLIS();
 | |
|   MachineInstr *Copy = CopySU->getInstr();
 | |
| 
 | |
|   // Check for pure vreg copies.
 | |
|   unsigned SrcReg = Copy->getOperand(1).getReg();
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | |
|     return;
 | |
| 
 | |
|   unsigned DstReg = Copy->getOperand(0).getReg();
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
 | |
|     return;
 | |
| 
 | |
|   // Check if either the dest or source is local. If it's live across a back
 | |
|   // edge, it's not local. Note that if both vregs are live across the back
 | |
|   // edge, we cannot successfully contrain the copy without cyclic scheduling.
 | |
|   unsigned LocalReg = DstReg;
 | |
|   unsigned GlobalReg = SrcReg;
 | |
|   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
 | |
|   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
 | |
|     LocalReg = SrcReg;
 | |
|     GlobalReg = DstReg;
 | |
|     LocalLI = &LIS->getInterval(LocalReg);
 | |
|     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
 | |
|       return;
 | |
|   }
 | |
|   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
 | |
| 
 | |
|   // Find the global segment after the start of the local LI.
 | |
|   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
 | |
|   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
 | |
|   // local live range. We could create edges from other global uses to the local
 | |
|   // start, but the coalescer should have already eliminated these cases, so
 | |
|   // don't bother dealing with it.
 | |
|   if (GlobalSegment == GlobalLI->end())
 | |
|     return;
 | |
| 
 | |
|   // If GlobalSegment is killed at the LocalLI->start, the call to find()
 | |
|   // returned the next global segment. But if GlobalSegment overlaps with
 | |
|   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
 | |
|   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
 | |
|   if (GlobalSegment->contains(LocalLI->beginIndex()))
 | |
|     ++GlobalSegment;
 | |
| 
 | |
|   if (GlobalSegment == GlobalLI->end())
 | |
|     return;
 | |
| 
 | |
|   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
 | |
|   if (GlobalSegment != GlobalLI->begin()) {
 | |
|     // Two address defs have no hole.
 | |
|     if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
 | |
|                                GlobalSegment->start)) {
 | |
|       return;
 | |
|     }
 | |
|     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
 | |
|     // it would be a disconnected component in the live range.
 | |
|     assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
 | |
|            "Disconnected LRG within the scheduling region.");
 | |
|   }
 | |
|   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
 | |
|   if (!GlobalDef)
 | |
|     return;
 | |
| 
 | |
|   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
 | |
|   if (!GlobalSU)
 | |
|     return;
 | |
| 
 | |
|   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
 | |
|   // constraining the uses of the last local def to precede GlobalDef.
 | |
|   SmallVector<SUnit*,8> LocalUses;
 | |
|   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
 | |
|   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
 | |
|   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
 | |
|   for (SUnit::const_succ_iterator
 | |
|          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
 | |
|       continue;
 | |
|     if (I->getSUnit() == GlobalSU)
 | |
|       continue;
 | |
|     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
 | |
|       return;
 | |
|     LocalUses.push_back(I->getSUnit());
 | |
|   }
 | |
|   // Open the top of the GlobalLI hole by constraining any earlier global uses
 | |
|   // to precede the start of LocalLI.
 | |
|   SmallVector<SUnit*,8> GlobalUses;
 | |
|   MachineInstr *FirstLocalDef =
 | |
|     LIS->getInstructionFromIndex(LocalLI->beginIndex());
 | |
|   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
 | |
|   for (SUnit::const_pred_iterator
 | |
|          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
 | |
|     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
 | |
|       continue;
 | |
|     if (I->getSUnit() == FirstLocalSU)
 | |
|       continue;
 | |
|     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
 | |
|       return;
 | |
|     GlobalUses.push_back(I->getSUnit());
 | |
|   }
 | |
|   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
 | |
|   // Add the weak edges.
 | |
|   for (SmallVectorImpl<SUnit*>::const_iterator
 | |
|          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
 | |
|     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
 | |
|           << GlobalSU->NodeNum << ")\n");
 | |
|     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
 | |
|   }
 | |
|   for (SmallVectorImpl<SUnit*>::const_iterator
 | |
|          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
 | |
|     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
 | |
|           << FirstLocalSU->NodeNum << ")\n");
 | |
|     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// \brief Callback from DAG postProcessing to create weak edges to encourage
 | |
| /// copy elimination.
 | |
| void CopyConstrain::apply(ScheduleDAGMI *DAG) {
 | |
|   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
 | |
|   if (FirstPos == DAG->end())
 | |
|     return;
 | |
|   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
 | |
|   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
 | |
|     &*priorNonDebug(DAG->end(), DAG->begin()));
 | |
| 
 | |
|   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | |
|     SUnit *SU = &DAG->SUnits[Idx];
 | |
|     if (!SU->getInstr()->isCopy())
 | |
|       continue;
 | |
| 
 | |
|     constrainLocalCopy(SU, DAG);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
 | |
| /// the schedule.
 | |
| class ConvergingScheduler : public MachineSchedStrategy {
 | |
| public:
 | |
|   /// Represent the type of SchedCandidate found within a single queue.
 | |
|   /// pickNodeBidirectional depends on these listed by decreasing priority.
 | |
|   enum CandReason {
 | |
|     NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
 | |
|     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
 | |
|     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
 | |
| #endif
 | |
| 
 | |
|   /// Policy for scheduling the next instruction in the candidate's zone.
 | |
|   struct CandPolicy {
 | |
|     bool ReduceLatency;
 | |
|     unsigned ReduceResIdx;
 | |
|     unsigned DemandResIdx;
 | |
| 
 | |
|     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
 | |
|   };
 | |
| 
 | |
|   /// Status of an instruction's critical resource consumption.
 | |
|   struct SchedResourceDelta {
 | |
|     // Count critical resources in the scheduled region required by SU.
 | |
|     unsigned CritResources;
 | |
| 
 | |
|     // Count critical resources from another region consumed by SU.
 | |
|     unsigned DemandedResources;
 | |
| 
 | |
|     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
 | |
| 
 | |
|     bool operator==(const SchedResourceDelta &RHS) const {
 | |
|       return CritResources == RHS.CritResources
 | |
|         && DemandedResources == RHS.DemandedResources;
 | |
|     }
 | |
|     bool operator!=(const SchedResourceDelta &RHS) const {
 | |
|       return !operator==(RHS);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Store the state used by ConvergingScheduler heuristics, required for the
 | |
|   /// lifetime of one invocation of pickNode().
 | |
|   struct SchedCandidate {
 | |
|     CandPolicy Policy;
 | |
| 
 | |
|     // The best SUnit candidate.
 | |
|     SUnit *SU;
 | |
| 
 | |
|     // The reason for this candidate.
 | |
|     CandReason Reason;
 | |
| 
 | |
|     // Set of reasons that apply to multiple candidates.
 | |
|     uint32_t RepeatReasonSet;
 | |
| 
 | |
|     // Register pressure values for the best candidate.
 | |
|     RegPressureDelta RPDelta;
 | |
| 
 | |
|     // Critical resource consumption of the best candidate.
 | |
|     SchedResourceDelta ResDelta;
 | |
| 
 | |
|     SchedCandidate(const CandPolicy &policy)
 | |
|       : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
 | |
| 
 | |
|     bool isValid() const { return SU; }
 | |
| 
 | |
|     // Copy the status of another candidate without changing policy.
 | |
|     void setBest(SchedCandidate &Best) {
 | |
|       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
 | |
|       SU = Best.SU;
 | |
|       Reason = Best.Reason;
 | |
|       RPDelta = Best.RPDelta;
 | |
|       ResDelta = Best.ResDelta;
 | |
|     }
 | |
| 
 | |
|     bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
 | |
|     void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
 | |
| 
 | |
|     void initResourceDelta(const ScheduleDAGMI *DAG,
 | |
|                            const TargetSchedModel *SchedModel);
 | |
|   };
 | |
| 
 | |
|   /// Summarize the unscheduled region.
 | |
|   struct SchedRemainder {
 | |
|     // Critical path through the DAG in expected latency.
 | |
|     unsigned CriticalPath;
 | |
| 
 | |
|     // Scaled count of micro-ops left to schedule.
 | |
|     unsigned RemIssueCount;
 | |
| 
 | |
|     // Unscheduled resources
 | |
|     SmallVector<unsigned, 16> RemainingCounts;
 | |
| 
 | |
|     void reset() {
 | |
|       CriticalPath = 0;
 | |
|       RemIssueCount = 0;
 | |
|       RemainingCounts.clear();
 | |
|     }
 | |
| 
 | |
|     SchedRemainder() { reset(); }
 | |
| 
 | |
|     void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
 | |
|   };
 | |
| 
 | |
|   /// Each Scheduling boundary is associated with ready queues. It tracks the
 | |
|   /// current cycle in the direction of movement, and maintains the state
 | |
|   /// of "hazards" and other interlocks at the current cycle.
 | |
|   struct SchedBoundary {
 | |
|     ScheduleDAGMI *DAG;
 | |
|     const TargetSchedModel *SchedModel;
 | |
|     SchedRemainder *Rem;
 | |
| 
 | |
|     ReadyQueue Available;
 | |
|     ReadyQueue Pending;
 | |
|     bool CheckPending;
 | |
| 
 | |
|     // For heuristics, keep a list of the nodes that immediately depend on the
 | |
|     // most recently scheduled node.
 | |
|     SmallPtrSet<const SUnit*, 8> NextSUs;
 | |
| 
 | |
|     ScheduleHazardRecognizer *HazardRec;
 | |
| 
 | |
|     /// Number of cycles it takes to issue the instructions scheduled in this
 | |
|     /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
 | |
|     /// See getStalls().
 | |
|     unsigned CurrCycle;
 | |
| 
 | |
|     /// Micro-ops issued in the current cycle
 | |
|     unsigned CurrMOps;
 | |
| 
 | |
|     /// MinReadyCycle - Cycle of the soonest available instruction.
 | |
|     unsigned MinReadyCycle;
 | |
| 
 | |
|     // The expected latency of the critical path in this scheduled zone.
 | |
|     unsigned ExpectedLatency;
 | |
| 
 | |
|     // The latency of dependence chains leading into this zone.
 | |
|     // For each node scheduled top-down: DLat = max DLat, N.Depth.
 | |
|     // For each cycle scheduled: DLat -= 1.
 | |
|     unsigned DependentLatency;
 | |
| 
 | |
|     /// Count the scheduled (issued) micro-ops that can be retired by
 | |
|     /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
 | |
|     unsigned RetiredMOps;
 | |
| 
 | |
|     // Count scheduled resources that have been executed. Resources are
 | |
|     // considered executed if they become ready in the time that it takes to
 | |
|     // saturate any resource including the one in question. Counts are scaled
 | |
|     // for direct comparison with other resources. Counts can be compared with
 | |
|     // MOps * getMicroOpFactor and Latency * getLatencyFactor.
 | |
|     SmallVector<unsigned, 16> ExecutedResCounts;
 | |
| 
 | |
|     /// Cache the max count for a single resource.
 | |
|     unsigned MaxExecutedResCount;
 | |
| 
 | |
|     // Cache the critical resources ID in this scheduled zone.
 | |
|     unsigned ZoneCritResIdx;
 | |
| 
 | |
|     // Is the scheduled region resource limited vs. latency limited.
 | |
|     bool IsResourceLimited;
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     // Remember the greatest operand latency as an upper bound on the number of
 | |
|     // times we should retry the pending queue because of a hazard.
 | |
|     unsigned MaxObservedLatency;
 | |
| #endif
 | |
| 
 | |
|     void reset() {
 | |
|       // A new HazardRec is created for each DAG and owned by SchedBoundary.
 | |
|       delete HazardRec;
 | |
| 
 | |
|       Available.clear();
 | |
|       Pending.clear();
 | |
|       CheckPending = false;
 | |
|       NextSUs.clear();
 | |
|       HazardRec = 0;
 | |
|       CurrCycle = 0;
 | |
|       CurrMOps = 0;
 | |
|       MinReadyCycle = UINT_MAX;
 | |
|       ExpectedLatency = 0;
 | |
|       DependentLatency = 0;
 | |
|       RetiredMOps = 0;
 | |
|       MaxExecutedResCount = 0;
 | |
|       ZoneCritResIdx = 0;
 | |
|       IsResourceLimited = false;
 | |
| #ifndef NDEBUG
 | |
|       MaxObservedLatency = 0;
 | |
| #endif
 | |
|       // Reserve a zero-count for invalid CritResIdx.
 | |
|       ExecutedResCounts.resize(1);
 | |
|       assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
 | |
|     }
 | |
| 
 | |
|     /// Pending queues extend the ready queues with the same ID and the
 | |
|     /// PendingFlag set.
 | |
|     SchedBoundary(unsigned ID, const Twine &Name):
 | |
|       DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
 | |
|       Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
 | |
|       HazardRec(0) {
 | |
|       reset();
 | |
|     }
 | |
| 
 | |
|     ~SchedBoundary() { delete HazardRec; }
 | |
| 
 | |
|     void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
 | |
|               SchedRemainder *rem);
 | |
| 
 | |
|     bool isTop() const {
 | |
|       return Available.getID() == ConvergingScheduler::TopQID;
 | |
|     }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     const char *getResourceName(unsigned PIdx) {
 | |
|       if (!PIdx)
 | |
|         return "MOps";
 | |
|       return SchedModel->getProcResource(PIdx)->Name;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /// Get the number of latency cycles "covered" by the scheduled
 | |
|     /// instructions. This is the larger of the critical path within the zone
 | |
|     /// and the number of cycles required to issue the instructions.
 | |
|     unsigned getScheduledLatency() const {
 | |
|       return std::max(ExpectedLatency, CurrCycle);
 | |
|     }
 | |
| 
 | |
|     unsigned getUnscheduledLatency(SUnit *SU) const {
 | |
|       return isTop() ? SU->getHeight() : SU->getDepth();
 | |
|     }
 | |
| 
 | |
|     unsigned getResourceCount(unsigned ResIdx) const {
 | |
|       return ExecutedResCounts[ResIdx];
 | |
|     }
 | |
| 
 | |
|     /// Get the scaled count of scheduled micro-ops and resources, including
 | |
|     /// executed resources.
 | |
|     unsigned getCriticalCount() const {
 | |
|       if (!ZoneCritResIdx)
 | |
|         return RetiredMOps * SchedModel->getMicroOpFactor();
 | |
|       return getResourceCount(ZoneCritResIdx);
 | |
|     }
 | |
| 
 | |
|     /// Get a scaled count for the minimum execution time of the scheduled
 | |
|     /// micro-ops that are ready to execute by getExecutedCount. Notice the
 | |
|     /// feedback loop.
 | |
|     unsigned getExecutedCount() const {
 | |
|       return std::max(CurrCycle * SchedModel->getLatencyFactor(),
 | |
|                       MaxExecutedResCount);
 | |
|     }
 | |
| 
 | |
|     bool checkHazard(SUnit *SU);
 | |
| 
 | |
|     unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
 | |
| 
 | |
|     unsigned getOtherResourceCount(unsigned &OtherCritIdx);
 | |
| 
 | |
|     void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
 | |
| 
 | |
|     void releaseNode(SUnit *SU, unsigned ReadyCycle);
 | |
| 
 | |
|     void bumpCycle(unsigned NextCycle);
 | |
| 
 | |
|     void incExecutedResources(unsigned PIdx, unsigned Count);
 | |
| 
 | |
|     unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
 | |
| 
 | |
|     void bumpNode(SUnit *SU);
 | |
| 
 | |
|     void releasePending();
 | |
| 
 | |
|     void removeReady(SUnit *SU);
 | |
| 
 | |
|     SUnit *pickOnlyChoice();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     void dumpScheduledState();
 | |
| #endif
 | |
|   };
 | |
| 
 | |
| private:
 | |
|   ScheduleDAGMI *DAG;
 | |
|   const TargetSchedModel *SchedModel;
 | |
|   const TargetRegisterInfo *TRI;
 | |
| 
 | |
|   // State of the top and bottom scheduled instruction boundaries.
 | |
|   SchedRemainder Rem;
 | |
|   SchedBoundary Top;
 | |
|   SchedBoundary Bot;
 | |
| 
 | |
| public:
 | |
|   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
 | |
|   enum {
 | |
|     TopQID = 1,
 | |
|     BotQID = 2,
 | |
|     LogMaxQID = 2
 | |
|   };
 | |
| 
 | |
|   ConvergingScheduler():
 | |
|     DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
 | |
| 
 | |
|   virtual void initialize(ScheduleDAGMI *dag);
 | |
| 
 | |
|   virtual SUnit *pickNode(bool &IsTopNode);
 | |
| 
 | |
|   virtual void schedNode(SUnit *SU, bool IsTopNode);
 | |
| 
 | |
|   virtual void releaseTopNode(SUnit *SU);
 | |
| 
 | |
|   virtual void releaseBottomNode(SUnit *SU);
 | |
| 
 | |
|   virtual void registerRoots();
 | |
| 
 | |
| protected:
 | |
|   void tryCandidate(SchedCandidate &Cand,
 | |
|                     SchedCandidate &TryCand,
 | |
|                     SchedBoundary &Zone,
 | |
|                     const RegPressureTracker &RPTracker,
 | |
|                     RegPressureTracker &TempTracker);
 | |
| 
 | |
|   SUnit *pickNodeBidirectional(bool &IsTopNode);
 | |
| 
 | |
|   void pickNodeFromQueue(SchedBoundary &Zone,
 | |
|                          const RegPressureTracker &RPTracker,
 | |
|                          SchedCandidate &Candidate);
 | |
| 
 | |
|   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   void traceCandidate(const SchedCandidate &Cand);
 | |
| #endif
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| void ConvergingScheduler::SchedRemainder::
 | |
| init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
 | |
|   reset();
 | |
|   if (!SchedModel->hasInstrSchedModel())
 | |
|     return;
 | |
|   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
 | |
|   for (std::vector<SUnit>::iterator
 | |
|          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
 | |
|     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
 | |
|     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
 | |
|       * SchedModel->getMicroOpFactor();
 | |
|     for (TargetSchedModel::ProcResIter
 | |
|            PI = SchedModel->getWriteProcResBegin(SC),
 | |
|            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|       unsigned PIdx = PI->ProcResourceIdx;
 | |
|       unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | |
|       RemainingCounts[PIdx] += (Factor * PI->Cycles);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::SchedBoundary::
 | |
| init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
 | |
|   reset();
 | |
|   DAG = dag;
 | |
|   SchedModel = smodel;
 | |
|   Rem = rem;
 | |
|   if (SchedModel->hasInstrSchedModel())
 | |
|     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
 | |
|   DAG = dag;
 | |
|   SchedModel = DAG->getSchedModel();
 | |
|   TRI = DAG->TRI;
 | |
| 
 | |
|   Rem.init(DAG, SchedModel);
 | |
|   Top.init(DAG, SchedModel, &Rem);
 | |
|   Bot.init(DAG, SchedModel, &Rem);
 | |
| 
 | |
|   // Initialize resource counts.
 | |
| 
 | |
|   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
 | |
|   // are disabled, then these HazardRecs will be disabled.
 | |
|   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | |
|   const TargetMachine &TM = DAG->MF.getTarget();
 | |
|   Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | |
|   Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | |
| 
 | |
|   assert((!ForceTopDown || !ForceBottomUp) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::releaseTopNode(SUnit *SU) {
 | |
|   if (SU->isScheduled)
 | |
|     return;
 | |
| 
 | |
|   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isWeak())
 | |
|       continue;
 | |
|     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
 | |
|     unsigned Latency = I->getLatency();
 | |
| #ifndef NDEBUG
 | |
|     Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
 | |
| #endif
 | |
|     if (SU->TopReadyCycle < PredReadyCycle + Latency)
 | |
|       SU->TopReadyCycle = PredReadyCycle + Latency;
 | |
|   }
 | |
|   Top.releaseNode(SU, SU->TopReadyCycle);
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
 | |
|   if (SU->isScheduled)
 | |
|     return;
 | |
| 
 | |
|   assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | |
| 
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->isWeak())
 | |
|       continue;
 | |
|     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
 | |
|     unsigned Latency = I->getLatency();
 | |
| #ifndef NDEBUG
 | |
|     Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
 | |
| #endif
 | |
|     if (SU->BotReadyCycle < SuccReadyCycle + Latency)
 | |
|       SU->BotReadyCycle = SuccReadyCycle + Latency;
 | |
|   }
 | |
|   Bot.releaseNode(SU, SU->BotReadyCycle);
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::registerRoots() {
 | |
|   Rem.CriticalPath = DAG->ExitSU.getDepth();
 | |
|   // Some roots may not feed into ExitSU. Check all of them in case.
 | |
|   for (std::vector<SUnit*>::const_iterator
 | |
|          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
 | |
|     if ((*I)->getDepth() > Rem.CriticalPath)
 | |
|       Rem.CriticalPath = (*I)->getDepth();
 | |
|   }
 | |
|   DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
 | |
| }
 | |
| 
 | |
| /// Does this SU have a hazard within the current instruction group.
 | |
| ///
 | |
| /// The scheduler supports two modes of hazard recognition. The first is the
 | |
| /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | |
| /// supports highly complicated in-order reservation tables
 | |
| /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
 | |
| ///
 | |
| /// The second is a streamlined mechanism that checks for hazards based on
 | |
| /// simple counters that the scheduler itself maintains. It explicitly checks
 | |
| /// for instruction dispatch limitations, including the number of micro-ops that
 | |
| /// can dispatch per cycle.
 | |
| ///
 | |
| /// TODO: Also check whether the SU must start a new group.
 | |
| bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
 | |
|   if (HazardRec->isEnabled())
 | |
|     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
 | |
| 
 | |
|   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
 | |
|   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
 | |
|     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
 | |
|           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Find the unscheduled node in ReadySUs with the highest latency.
 | |
| unsigned ConvergingScheduler::SchedBoundary::
 | |
| findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
 | |
|   SUnit *LateSU = 0;
 | |
|   unsigned RemLatency = 0;
 | |
|   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
 | |
|        I != E; ++I) {
 | |
|     unsigned L = getUnscheduledLatency(*I);
 | |
|     if (L > RemLatency) {
 | |
|       RemLatency = L;
 | |
|       LateSU = *I;
 | |
|     }
 | |
|   }
 | |
|   if (LateSU) {
 | |
|     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
 | |
|           << LateSU->NodeNum << ") " << RemLatency << "c\n");
 | |
|   }
 | |
|   return RemLatency;
 | |
| }
 | |
| 
 | |
| // Count resources in this zone and the remaining unscheduled
 | |
| // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
 | |
| // resource index, or zero if the zone is issue limited.
 | |
| unsigned ConvergingScheduler::SchedBoundary::
 | |
| getOtherResourceCount(unsigned &OtherCritIdx) {
 | |
|   OtherCritIdx = 0;
 | |
|   if (!SchedModel->hasInstrSchedModel())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned OtherCritCount = Rem->RemIssueCount
 | |
|     + (RetiredMOps * SchedModel->getMicroOpFactor());
 | |
|   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
 | |
|         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
 | |
|   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
 | |
|        PIdx != PEnd; ++PIdx) {
 | |
|     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
 | |
|     if (OtherCount > OtherCritCount) {
 | |
|       OtherCritCount = OtherCount;
 | |
|       OtherCritIdx = PIdx;
 | |
|     }
 | |
|   }
 | |
|   if (OtherCritIdx) {
 | |
|     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
 | |
|           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
 | |
|           << " " << getResourceName(OtherCritIdx) << "\n");
 | |
|   }
 | |
|   return OtherCritCount;
 | |
| }
 | |
| 
 | |
| /// Set the CandPolicy for this zone given the current resources and latencies
 | |
| /// inside and outside the zone.
 | |
| void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
 | |
|                                                    SchedBoundary &OtherZone) {
 | |
|   // Now that potential stalls have been considered, apply preemptive heuristics
 | |
|   // based on the the total latency and resources inside and outside this
 | |
|   // zone.
 | |
| 
 | |
|   // Compute remaining latency. We need this both to determine whether the
 | |
|   // overall schedule has become latency-limited and whether the instructions
 | |
|   // outside this zone are resource or latency limited.
 | |
|   //
 | |
|   // The "dependent" latency is updated incrementally during scheduling as the
 | |
|   // max height/depth of scheduled nodes minus the cycles since it was
 | |
|   // scheduled:
 | |
|   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
 | |
|   //
 | |
|   // The "independent" latency is the max ready queue depth:
 | |
|   //   ILat = max N.depth for N in Available|Pending
 | |
|   //
 | |
|   // RemainingLatency is the greater of independent and dependent latency.
 | |
|   unsigned RemLatency = DependentLatency;
 | |
|   RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
 | |
|   RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
 | |
| 
 | |
|   // Compute the critical resource outside the zone.
 | |
|   unsigned OtherCritIdx;
 | |
|   unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
 | |
| 
 | |
|   bool OtherResLimited = false;
 | |
|   if (SchedModel->hasInstrSchedModel()) {
 | |
|     unsigned LFactor = SchedModel->getLatencyFactor();
 | |
|     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
 | |
|   }
 | |
|   if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
 | |
|     Policy.ReduceLatency |= true;
 | |
|     DEBUG(dbgs() << "  " << Available.getName() << " RemainingLatency "
 | |
|           << RemLatency << " + " << CurrCycle << "c > CritPath "
 | |
|           << Rem->CriticalPath << "\n");
 | |
|   }
 | |
|   // If the same resource is limiting inside and outside the zone, do nothing.
 | |
|   if (ZoneCritResIdx == OtherCritIdx)
 | |
|     return;
 | |
| 
 | |
|   DEBUG(
 | |
|     if (IsResourceLimited) {
 | |
|       dbgs() << "  " << Available.getName() << " ResourceLimited: "
 | |
|              << getResourceName(ZoneCritResIdx) << "\n";
 | |
|     }
 | |
|     if (OtherResLimited)
 | |
|       dbgs() << "  RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
 | |
|     if (!IsResourceLimited && !OtherResLimited)
 | |
|       dbgs() << "  Latency limited both directions.\n");
 | |
| 
 | |
|   if (IsResourceLimited && !Policy.ReduceResIdx)
 | |
|     Policy.ReduceResIdx = ZoneCritResIdx;
 | |
| 
 | |
|   if (OtherResLimited)
 | |
|     Policy.DemandResIdx = OtherCritIdx;
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
 | |
|                                                      unsigned ReadyCycle) {
 | |
|   if (ReadyCycle < MinReadyCycle)
 | |
|     MinReadyCycle = ReadyCycle;
 | |
| 
 | |
|   // Check for interlocks first. For the purpose of other heuristics, an
 | |
|   // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | |
|   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
 | |
|   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
 | |
|     Pending.push(SU);
 | |
|   else
 | |
|     Available.push(SU);
 | |
| 
 | |
|   // Record this node as an immediate dependent of the scheduled node.
 | |
|   NextSUs.insert(SU);
 | |
| }
 | |
| 
 | |
| /// Move the boundary of scheduled code by one cycle.
 | |
| void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
 | |
|   if (SchedModel->getMicroOpBufferSize() == 0) {
 | |
|     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
 | |
|     if (MinReadyCycle > NextCycle)
 | |
|       NextCycle = MinReadyCycle;
 | |
|   }
 | |
|   // Update the current micro-ops, which will issue in the next cycle.
 | |
|   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
 | |
|   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
 | |
| 
 | |
|   // Decrement DependentLatency based on the next cycle.
 | |
|   if ((NextCycle - CurrCycle) > DependentLatency)
 | |
|     DependentLatency = 0;
 | |
|   else
 | |
|     DependentLatency -= (NextCycle - CurrCycle);
 | |
| 
 | |
|   if (!HazardRec->isEnabled()) {
 | |
|     // Bypass HazardRec virtual calls.
 | |
|     CurrCycle = NextCycle;
 | |
|   }
 | |
|   else {
 | |
|     // Bypass getHazardType calls in case of long latency.
 | |
|     for (; CurrCycle != NextCycle; ++CurrCycle) {
 | |
|       if (isTop())
 | |
|         HazardRec->AdvanceCycle();
 | |
|       else
 | |
|         HazardRec->RecedeCycle();
 | |
|     }
 | |
|   }
 | |
|   CheckPending = true;
 | |
|   unsigned LFactor = SchedModel->getLatencyFactor();
 | |
|   IsResourceLimited =
 | |
|     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
 | |
|     > (int)LFactor;
 | |
| 
 | |
|   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
 | |
|                                                               unsigned Count) {
 | |
|   ExecutedResCounts[PIdx] += Count;
 | |
|   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
 | |
|     MaxExecutedResCount = ExecutedResCounts[PIdx];
 | |
| }
 | |
| 
 | |
| /// Add the given processor resource to this scheduled zone.
 | |
| ///
 | |
| /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
 | |
| /// during which this resource is consumed.
 | |
| ///
 | |
| /// \return the next cycle at which the instruction may execute without
 | |
| /// oversubscribing resources.
 | |
| unsigned ConvergingScheduler::SchedBoundary::
 | |
| countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
 | |
|   unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | |
|   unsigned Count = Factor * Cycles;
 | |
|   DEBUG(dbgs() << "  " << getResourceName(PIdx)
 | |
|         << " +" << Cycles << "x" << Factor << "u\n");
 | |
| 
 | |
|   // Update Executed resources counts.
 | |
|   incExecutedResources(PIdx, Count);
 | |
|   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
 | |
|   Rem->RemainingCounts[PIdx] -= Count;
 | |
| 
 | |
|   // Check if this resource exceeds the current critical resource. If so, it
 | |
|   // becomes the critical resource.
 | |
|   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
 | |
|     ZoneCritResIdx = PIdx;
 | |
|     DEBUG(dbgs() << "  *** Critical resource "
 | |
|           << getResourceName(PIdx) << ": "
 | |
|           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
 | |
|   }
 | |
|   // TODO: We don't yet model reserved resources. It's not hard though.
 | |
|   return CurrCycle;
 | |
| }
 | |
| 
 | |
| /// Move the boundary of scheduled code by one SUnit.
 | |
| void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
 | |
|   // Update the reservation table.
 | |
|   if (HazardRec->isEnabled()) {
 | |
|     if (!isTop() && SU->isCall) {
 | |
|       // Calls are scheduled with their preceding instructions. For bottom-up
 | |
|       // scheduling, clear the pipeline state before emitting.
 | |
|       HazardRec->Reset();
 | |
|     }
 | |
|     HazardRec->EmitInstruction(SU);
 | |
|   }
 | |
|   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
 | |
|   CurrMOps += IncMOps;
 | |
|   // checkHazard prevents scheduling multiple instructions per cycle that exceed
 | |
|   // issue width. However, we commonly reach the maximum. In this case
 | |
|   // opportunistically bump the cycle to avoid uselessly checking everything in
 | |
|   // the readyQ. Furthermore, a single instruction may produce more than one
 | |
|   // cycle's worth of micro-ops.
 | |
|   //
 | |
|   // TODO: Also check if this SU must end a dispatch group.
 | |
|   unsigned NextCycle = CurrCycle;
 | |
|   if (CurrMOps >= SchedModel->getIssueWidth()) {
 | |
|     ++NextCycle;
 | |
|     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
 | |
|           << " at cycle " << CurrCycle << '\n');
 | |
|   }
 | |
|   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
 | |
|   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
 | |
| 
 | |
|   switch (SchedModel->getMicroOpBufferSize()) {
 | |
|   case 0:
 | |
|     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
 | |
|     break;
 | |
|   case 1:
 | |
|     if (ReadyCycle > NextCycle) {
 | |
|       NextCycle = ReadyCycle;
 | |
|       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     // We don't currently model the OOO reorder buffer, so consider all
 | |
|     // scheduled MOps to be "retired".
 | |
|     break;
 | |
|   }
 | |
|   RetiredMOps += IncMOps;
 | |
| 
 | |
|   // Update resource counts and critical resource.
 | |
|   if (SchedModel->hasInstrSchedModel()) {
 | |
|     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
 | |
|     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
 | |
|     Rem->RemIssueCount -= DecRemIssue;
 | |
|     if (ZoneCritResIdx) {
 | |
|       // Scale scheduled micro-ops for comparing with the critical resource.
 | |
|       unsigned ScaledMOps =
 | |
|         RetiredMOps * SchedModel->getMicroOpFactor();
 | |
| 
 | |
|       // If scaled micro-ops are now more than the previous critical resource by
 | |
|       // a full cycle, then micro-ops issue becomes critical.
 | |
|       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
 | |
|           >= (int)SchedModel->getLatencyFactor()) {
 | |
|         ZoneCritResIdx = 0;
 | |
|         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
 | |
|               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
 | |
|       }
 | |
|     }
 | |
|     for (TargetSchedModel::ProcResIter
 | |
|            PI = SchedModel->getWriteProcResBegin(SC),
 | |
|            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|       unsigned RCycle =
 | |
|         countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
 | |
|       if (RCycle > NextCycle)
 | |
|         NextCycle = RCycle;
 | |
|     }
 | |
|   }
 | |
|   // Update ExpectedLatency and DependentLatency.
 | |
|   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
 | |
|   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
 | |
|   if (SU->getDepth() > TopLatency) {
 | |
|     TopLatency = SU->getDepth();
 | |
|     DEBUG(dbgs() << "  " << Available.getName()
 | |
|           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
 | |
|   }
 | |
|   if (SU->getHeight() > BotLatency) {
 | |
|     BotLatency = SU->getHeight();
 | |
|     DEBUG(dbgs() << "  " << Available.getName()
 | |
|           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
 | |
|   }
 | |
|   // If we stall for any reason, bump the cycle.
 | |
|   if (NextCycle > CurrCycle) {
 | |
|     bumpCycle(NextCycle);
 | |
|   }
 | |
|   else {
 | |
|     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
 | |
|     // resource limited. If a stall occured, bumpCycle does this.
 | |
|     unsigned LFactor = SchedModel->getLatencyFactor();
 | |
|     IsResourceLimited =
 | |
|       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
 | |
|       > (int)LFactor;
 | |
|   }
 | |
|   DEBUG(dumpScheduledState());
 | |
| }
 | |
| 
 | |
| /// Release pending ready nodes in to the available queue. This makes them
 | |
| /// visible to heuristics.
 | |
| void ConvergingScheduler::SchedBoundary::releasePending() {
 | |
|   // If the available queue is empty, it is safe to reset MinReadyCycle.
 | |
|   if (Available.empty())
 | |
|     MinReadyCycle = UINT_MAX;
 | |
| 
 | |
|   // Check to see if any of the pending instructions are ready to issue.  If
 | |
|   // so, add them to the available queue.
 | |
|   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
 | |
|   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
 | |
|     SUnit *SU = *(Pending.begin()+i);
 | |
|     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | |
| 
 | |
|     if (ReadyCycle < MinReadyCycle)
 | |
|       MinReadyCycle = ReadyCycle;
 | |
| 
 | |
|     if (!IsBuffered && ReadyCycle > CurrCycle)
 | |
|       continue;
 | |
| 
 | |
|     if (checkHazard(SU))
 | |
|       continue;
 | |
| 
 | |
|     Available.push(SU);
 | |
|     Pending.remove(Pending.begin()+i);
 | |
|     --i; --e;
 | |
|   }
 | |
|   DEBUG(if (!Pending.empty()) Pending.dump());
 | |
|   CheckPending = false;
 | |
| }
 | |
| 
 | |
| /// Remove SU from the ready set for this boundary.
 | |
| void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
 | |
|   if (Available.isInQueue(SU))
 | |
|     Available.remove(Available.find(SU));
 | |
|   else {
 | |
|     assert(Pending.isInQueue(SU) && "bad ready count");
 | |
|     Pending.remove(Pending.find(SU));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// If this queue only has one ready candidate, return it. As a side effect,
 | |
| /// defer any nodes that now hit a hazard, and advance the cycle until at least
 | |
| /// one node is ready. If multiple instructions are ready, return NULL.
 | |
| SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
 | |
|   if (CheckPending)
 | |
|     releasePending();
 | |
| 
 | |
|   if (CurrMOps > 0) {
 | |
|     // Defer any ready instrs that now have a hazard.
 | |
|     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
 | |
|       if (checkHazard(*I)) {
 | |
|         Pending.push(*I);
 | |
|         I = Available.remove(I);
 | |
|         continue;
 | |
|       }
 | |
|       ++I;
 | |
|     }
 | |
|   }
 | |
|   for (unsigned i = 0; Available.empty(); ++i) {
 | |
|     assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
 | |
|            "permanent hazard"); (void)i;
 | |
|     bumpCycle(CurrCycle + 1);
 | |
|     releasePending();
 | |
|   }
 | |
|   if (Available.size() == 1)
 | |
|     return *Available.begin();
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // This is useful information to dump after bumpNode.
 | |
| // Note that the Queue contents are more useful before pickNodeFromQueue.
 | |
| void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
 | |
|   unsigned ResFactor;
 | |
|   unsigned ResCount;
 | |
|   if (ZoneCritResIdx) {
 | |
|     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
 | |
|     ResCount = getResourceCount(ZoneCritResIdx);
 | |
|   }
 | |
|   else {
 | |
|     ResFactor = SchedModel->getMicroOpFactor();
 | |
|     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
 | |
|   }
 | |
|   unsigned LFactor = SchedModel->getLatencyFactor();
 | |
|   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
 | |
|          << "  Retired: " << RetiredMOps;
 | |
|   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
 | |
|   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
 | |
|          << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
 | |
|          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
 | |
|          << (IsResourceLimited ? "  - Resource" : "  - Latency")
 | |
|          << " limited.\n";
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ConvergingScheduler::SchedCandidate::
 | |
| initResourceDelta(const ScheduleDAGMI *DAG,
 | |
|                   const TargetSchedModel *SchedModel) {
 | |
|   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
 | |
|     return;
 | |
| 
 | |
|   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | |
|   for (TargetSchedModel::ProcResIter
 | |
|          PI = SchedModel->getWriteProcResBegin(SC),
 | |
|          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | |
|     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
 | |
|       ResDelta.CritResources += PI->Cycles;
 | |
|     if (PI->ProcResourceIdx == Policy.DemandResIdx)
 | |
|       ResDelta.DemandedResources += PI->Cycles;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /// Return true if this heuristic determines order.
 | |
| static bool tryLess(int TryVal, int CandVal,
 | |
|                     ConvergingScheduler::SchedCandidate &TryCand,
 | |
|                     ConvergingScheduler::SchedCandidate &Cand,
 | |
|                     ConvergingScheduler::CandReason Reason) {
 | |
|   if (TryVal < CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal > CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   Cand.setRepeat(Reason);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryGreater(int TryVal, int CandVal,
 | |
|                        ConvergingScheduler::SchedCandidate &TryCand,
 | |
|                        ConvergingScheduler::SchedCandidate &Cand,
 | |
|                        ConvergingScheduler::CandReason Reason) {
 | |
|   if (TryVal > CandVal) {
 | |
|     TryCand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   if (TryVal < CandVal) {
 | |
|     if (Cand.Reason > Reason)
 | |
|       Cand.Reason = Reason;
 | |
|     return true;
 | |
|   }
 | |
|   Cand.setRepeat(Reason);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
 | |
|   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
 | |
| }
 | |
| 
 | |
| /// Minimize physical register live ranges. Regalloc wants them adjacent to
 | |
| /// their physreg def/use.
 | |
| ///
 | |
| /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
 | |
| /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
 | |
| /// with the operation that produces or consumes the physreg. We'll do this when
 | |
| /// regalloc has support for parallel copies.
 | |
| static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
 | |
|   const MachineInstr *MI = SU->getInstr();
 | |
|   if (!MI->isCopy())
 | |
|     return 0;
 | |
| 
 | |
|   unsigned ScheduledOper = isTop ? 1 : 0;
 | |
|   unsigned UnscheduledOper = isTop ? 0 : 1;
 | |
|   // If we have already scheduled the physreg produce/consumer, immediately
 | |
|   // schedule the copy.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(
 | |
|         MI->getOperand(ScheduledOper).getReg()))
 | |
|     return 1;
 | |
|   // If the physreg is at the boundary, defer it. Otherwise schedule it
 | |
|   // immediately to free the dependent. We can hoist the copy later.
 | |
|   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(
 | |
|         MI->getOperand(UnscheduledOper).getReg()))
 | |
|     return AtBoundary ? -1 : 1;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Apply a set of heursitics to a new candidate. Heuristics are currently
 | |
| /// hierarchical. This may be more efficient than a graduated cost model because
 | |
| /// we don't need to evaluate all aspects of the model for each node in the
 | |
| /// queue. But it's really done to make the heuristics easier to debug and
 | |
| /// statistically analyze.
 | |
| ///
 | |
| /// \param Cand provides the policy and current best candidate.
 | |
| /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | |
| /// \param Zone describes the scheduled zone that we are extending.
 | |
| /// \param RPTracker describes reg pressure within the scheduled zone.
 | |
| /// \param TempTracker is a scratch pressure tracker to reuse in queries.
 | |
| void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
 | |
|                                        SchedCandidate &TryCand,
 | |
|                                        SchedBoundary &Zone,
 | |
|                                        const RegPressureTracker &RPTracker,
 | |
|                                        RegPressureTracker &TempTracker) {
 | |
| 
 | |
|   // Always initialize TryCand's RPDelta.
 | |
|   TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
 | |
|                                   DAG->getRegionCriticalPSets(),
 | |
|                                   DAG->getRegPressure().MaxSetPressure);
 | |
| 
 | |
|   // Initialize the candidate if needed.
 | |
|   if (!Cand.isValid()) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
 | |
|                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
 | |
|                  TryCand, Cand, PhysRegCopy))
 | |
|     return;
 | |
| 
 | |
|   // Avoid exceeding the target's limit.
 | |
|   if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
 | |
|               Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, RegExcess))
 | |
|     return;
 | |
| 
 | |
|   // Avoid increasing the max critical pressure in the scheduled region.
 | |
|   if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
 | |
|               Cand.RPDelta.CriticalMax.UnitIncrease,
 | |
|               TryCand, Cand, RegCritical))
 | |
|     return;
 | |
| 
 | |
|   // Keep clustered nodes together to encourage downstream peephole
 | |
|   // optimizations which may reduce resource requirements.
 | |
|   //
 | |
|   // This is a best effort to set things up for a post-RA pass. Optimizations
 | |
|   // like generating loads of multiple registers should ideally be done within
 | |
|   // the scheduler pass by combining the loads during DAG postprocessing.
 | |
|   const SUnit *NextClusterSU =
 | |
|     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
 | |
|   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
 | |
|                  TryCand, Cand, Cluster))
 | |
|     return;
 | |
| 
 | |
|   // Weak edges are for clustering and other constraints.
 | |
|   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
 | |
|               getWeakLeft(Cand.SU, Zone.isTop()),
 | |
|               TryCand, Cand, Weak)) {
 | |
|     return;
 | |
|   }
 | |
|   // Avoid increasing the max pressure of the entire region.
 | |
|   if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
 | |
|               Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, RegMax))
 | |
|     return;
 | |
| 
 | |
|   // Avoid critical resource consumption and balance the schedule.
 | |
|   TryCand.initResourceDelta(DAG, SchedModel);
 | |
|   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | |
|               TryCand, Cand, ResourceReduce))
 | |
|     return;
 | |
|   if (tryGreater(TryCand.ResDelta.DemandedResources,
 | |
|                  Cand.ResDelta.DemandedResources,
 | |
|                  TryCand, Cand, ResourceDemand))
 | |
|     return;
 | |
| 
 | |
|   // Avoid serializing long latency dependence chains.
 | |
|   if (Cand.Policy.ReduceLatency) {
 | |
|     if (Zone.isTop()) {
 | |
|       if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
 | |
|         if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | |
|                     TryCand, Cand, TopDepthReduce))
 | |
|           return;
 | |
|       }
 | |
|       if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | |
|                      TryCand, Cand, TopPathReduce))
 | |
|         return;
 | |
|     }
 | |
|     else {
 | |
|       if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
 | |
|         if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | |
|                     TryCand, Cand, BotHeightReduce))
 | |
|           return;
 | |
|       }
 | |
|       if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | |
|                      TryCand, Cand, BotPathReduce))
 | |
|         return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Prefer immediate defs/users of the last scheduled instruction. This is a
 | |
|   // local pressure avoidance strategy that also makes the machine code
 | |
|   // readable.
 | |
|   if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
 | |
|                  TryCand, Cand, NextDefUse))
 | |
|     return;
 | |
| 
 | |
|   // Fall through to original instruction order.
 | |
|   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | |
|       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
 | |
|     TryCand.Reason = NodeOrder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| const char *ConvergingScheduler::getReasonStr(
 | |
|   ConvergingScheduler::CandReason Reason) {
 | |
|   switch (Reason) {
 | |
|   case NoCand:         return "NOCAND    ";
 | |
|   case PhysRegCopy:    return "PREG-COPY";
 | |
|   case RegExcess:      return "REG-EXCESS";
 | |
|   case RegCritical:    return "REG-CRIT  ";
 | |
|   case Cluster:        return "CLUSTER   ";
 | |
|   case Weak:           return "WEAK      ";
 | |
|   case RegMax:         return "REG-MAX   ";
 | |
|   case ResourceReduce: return "RES-REDUCE";
 | |
|   case ResourceDemand: return "RES-DEMAND";
 | |
|   case TopDepthReduce: return "TOP-DEPTH ";
 | |
|   case TopPathReduce:  return "TOP-PATH  ";
 | |
|   case BotHeightReduce:return "BOT-HEIGHT";
 | |
|   case BotPathReduce:  return "BOT-PATH  ";
 | |
|   case NextDefUse:     return "DEF-USE   ";
 | |
|   case NodeOrder:      return "ORDER     ";
 | |
|   };
 | |
|   llvm_unreachable("Unknown reason!");
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
 | |
|   PressureElement P;
 | |
|   unsigned ResIdx = 0;
 | |
|   unsigned Latency = 0;
 | |
|   switch (Cand.Reason) {
 | |
|   default:
 | |
|     break;
 | |
|   case RegExcess:
 | |
|     P = Cand.RPDelta.Excess;
 | |
|     break;
 | |
|   case RegCritical:
 | |
|     P = Cand.RPDelta.CriticalMax;
 | |
|     break;
 | |
|   case RegMax:
 | |
|     P = Cand.RPDelta.CurrentMax;
 | |
|     break;
 | |
|   case ResourceReduce:
 | |
|     ResIdx = Cand.Policy.ReduceResIdx;
 | |
|     break;
 | |
|   case ResourceDemand:
 | |
|     ResIdx = Cand.Policy.DemandResIdx;
 | |
|     break;
 | |
|   case TopDepthReduce:
 | |
|     Latency = Cand.SU->getDepth();
 | |
|     break;
 | |
|   case TopPathReduce:
 | |
|     Latency = Cand.SU->getHeight();
 | |
|     break;
 | |
|   case BotHeightReduce:
 | |
|     Latency = Cand.SU->getHeight();
 | |
|     break;
 | |
|   case BotPathReduce:
 | |
|     Latency = Cand.SU->getDepth();
 | |
|     break;
 | |
|   }
 | |
|   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | |
|   if (P.isValid())
 | |
|     dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
 | |
|            << ":" << P.UnitIncrease << " ";
 | |
|   else
 | |
|     dbgs() << "      ";
 | |
|   if (ResIdx)
 | |
|     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
 | |
|   else
 | |
|     dbgs() << "         ";
 | |
|   if (Latency)
 | |
|     dbgs() << " " << Latency << " cycles ";
 | |
|   else
 | |
|     dbgs() << "          ";
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// Pick the best candidate from the top queue.
 | |
| ///
 | |
| /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | |
| /// DAG building. To adjust for the current scheduling location we need to
 | |
| /// maintain the number of vreg uses remaining to be top-scheduled.
 | |
| void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
 | |
|                                             const RegPressureTracker &RPTracker,
 | |
|                                             SchedCandidate &Cand) {
 | |
|   ReadyQueue &Q = Zone.Available;
 | |
| 
 | |
|   DEBUG(Q.dump());
 | |
| 
 | |
|   // getMaxPressureDelta temporarily modifies the tracker.
 | |
|   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | |
| 
 | |
|   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | |
| 
 | |
|     SchedCandidate TryCand(Cand.Policy);
 | |
|     TryCand.SU = *I;
 | |
|     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
 | |
|     if (TryCand.Reason != NoCand) {
 | |
|       // Initialize resource delta if needed in case future heuristics query it.
 | |
|       if (TryCand.ResDelta == SchedResourceDelta())
 | |
|         TryCand.initResourceDelta(DAG, SchedModel);
 | |
|       Cand.setBest(TryCand);
 | |
|       DEBUG(traceCandidate(Cand));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
 | |
|                       bool IsTop) {
 | |
|   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
 | |
|         << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
 | |
| }
 | |
| 
 | |
| /// Pick the best candidate node from either the top or bottom queue.
 | |
| SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
 | |
|   // Schedule as far as possible in the direction of no choice. This is most
 | |
|   // efficient, but also provides the best heuristics for CriticalPSets.
 | |
|   if (SUnit *SU = Bot.pickOnlyChoice()) {
 | |
|     IsTopNode = false;
 | |
|     DEBUG(dbgs() << "Pick Bot NOCAND\n");
 | |
|     return SU;
 | |
|   }
 | |
|   if (SUnit *SU = Top.pickOnlyChoice()) {
 | |
|     IsTopNode = true;
 | |
|     DEBUG(dbgs() << "Pick Top NOCAND\n");
 | |
|     return SU;
 | |
|   }
 | |
|   CandPolicy NoPolicy;
 | |
|   SchedCandidate BotCand(NoPolicy);
 | |
|   SchedCandidate TopCand(NoPolicy);
 | |
|   Bot.setPolicy(BotCand.Policy, Top);
 | |
|   Top.setPolicy(TopCand.Policy, Bot);
 | |
| 
 | |
|   // Prefer bottom scheduling when heuristics are silent.
 | |
|   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | |
|   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | |
| 
 | |
|   // If either Q has a single candidate that provides the least increase in
 | |
|   // Excess pressure, we can immediately schedule from that Q.
 | |
|   //
 | |
|   // RegionCriticalPSets summarizes the pressure within the scheduled region and
 | |
|   // affects picking from either Q. If scheduling in one direction must
 | |
|   // increase pressure for one of the excess PSets, then schedule in that
 | |
|   // direction first to provide more freedom in the other direction.
 | |
|   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
 | |
|       || (BotCand.Reason == RegCritical
 | |
|           && !BotCand.isRepeat(RegCritical)))
 | |
|   {
 | |
|     IsTopNode = false;
 | |
|     tracePick(BotCand, IsTopNode);
 | |
|     return BotCand.SU;
 | |
|   }
 | |
|   // Check if the top Q has a better candidate.
 | |
|   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | |
|   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | |
| 
 | |
|   // Choose the queue with the most important (lowest enum) reason.
 | |
|   if (TopCand.Reason < BotCand.Reason) {
 | |
|     IsTopNode = true;
 | |
|     tracePick(TopCand, IsTopNode);
 | |
|     return TopCand.SU;
 | |
|   }
 | |
|   // Otherwise prefer the bottom candidate, in node order if all else failed.
 | |
|   IsTopNode = false;
 | |
|   tracePick(BotCand, IsTopNode);
 | |
|   return BotCand.SU;
 | |
| }
 | |
| 
 | |
| /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | |
| SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
 | |
|   if (DAG->top() == DAG->bottom()) {
 | |
|     assert(Top.Available.empty() && Top.Pending.empty() &&
 | |
|            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | |
|     return NULL;
 | |
|   }
 | |
|   SUnit *SU;
 | |
|   do {
 | |
|     if (ForceTopDown) {
 | |
|       SU = Top.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         SchedCandidate TopCand(NoPolicy);
 | |
|         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | |
|         assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | |
|         SU = TopCand.SU;
 | |
|       }
 | |
|       IsTopNode = true;
 | |
|     }
 | |
|     else if (ForceBottomUp) {
 | |
|       SU = Bot.pickOnlyChoice();
 | |
|       if (!SU) {
 | |
|         CandPolicy NoPolicy;
 | |
|         SchedCandidate BotCand(NoPolicy);
 | |
|         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | |
|         assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | |
|         SU = BotCand.SU;
 | |
|       }
 | |
|       IsTopNode = false;
 | |
|     }
 | |
|     else {
 | |
|       SU = pickNodeBidirectional(IsTopNode);
 | |
|     }
 | |
|   } while (SU->isScheduled);
 | |
| 
 | |
|   if (SU->isTopReady())
 | |
|     Top.removeReady(SU);
 | |
|   if (SU->isBottomReady())
 | |
|     Bot.removeReady(SU);
 | |
| 
 | |
|   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
 | |
|   return SU;
 | |
| }
 | |
| 
 | |
| void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
 | |
| 
 | |
|   MachineBasicBlock::iterator InsertPos = SU->getInstr();
 | |
|   if (!isTop)
 | |
|     ++InsertPos;
 | |
|   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
 | |
| 
 | |
|   // Find already scheduled copies with a single physreg dependence and move
 | |
|   // them just above the scheduled instruction.
 | |
|   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
 | |
|        I != E; ++I) {
 | |
|     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
 | |
|       continue;
 | |
|     SUnit *DepSU = I->getSUnit();
 | |
|     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
 | |
|       continue;
 | |
|     MachineInstr *Copy = DepSU->getInstr();
 | |
|     if (!Copy->isCopy())
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "  Rescheduling physreg copy ";
 | |
|           I->getSUnit()->dump(DAG));
 | |
|     DAG->moveInstruction(Copy, InsertPos);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Update the scheduler's state after scheduling a node. This is the same node
 | |
| /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
 | |
| /// it's state based on the current cycle before MachineSchedStrategy does.
 | |
| ///
 | |
| /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
 | |
| /// them here. See comments in biasPhysRegCopy.
 | |
| void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | |
|   if (IsTopNode) {
 | |
|     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
 | |
|     Top.bumpNode(SU);
 | |
|     if (SU->hasPhysRegUses)
 | |
|       reschedulePhysRegCopies(SU, true);
 | |
|   }
 | |
|   else {
 | |
|     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
 | |
|     Bot.bumpNode(SU);
 | |
|     if (SU->hasPhysRegDefs)
 | |
|       reschedulePhysRegCopies(SU, false);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Create the standard converging machine scheduler. This will be used as the
 | |
| /// default scheduler if the target does not set a default.
 | |
| static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
 | |
|   assert((!ForceTopDown || !ForceBottomUp) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
|   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
 | |
|   // Register DAG post-processors.
 | |
|   //
 | |
|   // FIXME: extend the mutation API to allow earlier mutations to instantiate
 | |
|   // data and pass it to later mutations. Have a single mutation that gathers
 | |
|   // the interesting nodes in one pass.
 | |
|   DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
 | |
|   if (EnableLoadCluster)
 | |
|     DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
 | |
|   if (EnableMacroFusion)
 | |
|     DAG->addMutation(new MacroFusion(DAG->TII));
 | |
|   return DAG;
 | |
| }
 | |
| static MachineSchedRegistry
 | |
| ConvergingSchedRegistry("converge", "Standard converging scheduler.",
 | |
|                         createConvergingSched);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ILP Scheduler. Currently for experimental analysis of heuristics.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// \brief Order nodes by the ILP metric.
 | |
| struct ILPOrder {
 | |
|   const SchedDFSResult *DFSResult;
 | |
|   const BitVector *ScheduledTrees;
 | |
|   bool MaximizeILP;
 | |
| 
 | |
|   ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
 | |
| 
 | |
|   /// \brief Apply a less-than relation on node priority.
 | |
|   ///
 | |
|   /// (Return true if A comes after B in the Q.)
 | |
|   bool operator()(const SUnit *A, const SUnit *B) const {
 | |
|     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
 | |
|     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
 | |
|     if (SchedTreeA != SchedTreeB) {
 | |
|       // Unscheduled trees have lower priority.
 | |
|       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
 | |
|         return ScheduledTrees->test(SchedTreeB);
 | |
| 
 | |
|       // Trees with shallower connections have have lower priority.
 | |
|       if (DFSResult->getSubtreeLevel(SchedTreeA)
 | |
|           != DFSResult->getSubtreeLevel(SchedTreeB)) {
 | |
|         return DFSResult->getSubtreeLevel(SchedTreeA)
 | |
|           < DFSResult->getSubtreeLevel(SchedTreeB);
 | |
|       }
 | |
|     }
 | |
|     if (MaximizeILP)
 | |
|       return DFSResult->getILP(A) < DFSResult->getILP(B);
 | |
|     else
 | |
|       return DFSResult->getILP(A) > DFSResult->getILP(B);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// \brief Schedule based on the ILP metric.
 | |
| class ILPScheduler : public MachineSchedStrategy {
 | |
|   /// In case all subtrees are eventually connected to a common root through
 | |
|   /// data dependence (e.g. reduction), place an upper limit on their size.
 | |
|   ///
 | |
|   /// FIXME: A subtree limit is generally good, but in the situation commented
 | |
|   /// above, where multiple similar subtrees feed a common root, we should
 | |
|   /// only split at a point where the resulting subtrees will be balanced.
 | |
|   /// (a motivating test case must be found).
 | |
|   static const unsigned SubtreeLimit = 16;
 | |
| 
 | |
|   ScheduleDAGMI *DAG;
 | |
|   ILPOrder Cmp;
 | |
| 
 | |
|   std::vector<SUnit*> ReadyQ;
 | |
| public:
 | |
|   ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
 | |
| 
 | |
|   virtual void initialize(ScheduleDAGMI *dag) {
 | |
|     DAG = dag;
 | |
|     DAG->computeDFSResult();
 | |
|     Cmp.DFSResult = DAG->getDFSResult();
 | |
|     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
 | |
|     ReadyQ.clear();
 | |
|   }
 | |
| 
 | |
|   virtual void registerRoots() {
 | |
|     // Restore the heap in ReadyQ with the updated DFS results.
 | |
|     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| 
 | |
|   /// Implement MachineSchedStrategy interface.
 | |
|   /// -----------------------------------------
 | |
| 
 | |
|   /// Callback to select the highest priority node from the ready Q.
 | |
|   virtual SUnit *pickNode(bool &IsTopNode) {
 | |
|     if (ReadyQ.empty()) return NULL;
 | |
|     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|     SUnit *SU = ReadyQ.back();
 | |
|     ReadyQ.pop_back();
 | |
|     IsTopNode = false;
 | |
|     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
 | |
|           << " ILP: " << DAG->getDFSResult()->getILP(SU)
 | |
|           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
 | |
|           << DAG->getDFSResult()->getSubtreeLevel(
 | |
|             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
 | |
|           << "Scheduling " << *SU->getInstr());
 | |
|     return SU;
 | |
|   }
 | |
| 
 | |
|   /// \brief Scheduler callback to notify that a new subtree is scheduled.
 | |
|   virtual void scheduleTree(unsigned SubtreeID) {
 | |
|     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| 
 | |
|   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
 | |
|   /// DFSResults, and resort the priority Q.
 | |
|   virtual void schedNode(SUnit *SU, bool IsTopNode) {
 | |
|     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
 | |
|   }
 | |
| 
 | |
|   virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
 | |
| 
 | |
|   virtual void releaseBottomNode(SUnit *SU) {
 | |
|     ReadyQ.push_back(SU);
 | |
|     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMI(C, new ILPScheduler(true));
 | |
| }
 | |
| static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
 | |
|   return new ScheduleDAGMI(C, new ILPScheduler(false));
 | |
| }
 | |
| static MachineSchedRegistry ILPMaxRegistry(
 | |
|   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
 | |
| static MachineSchedRegistry ILPMinRegistry(
 | |
|   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Machine Instruction Shuffler for Correctness Testing
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| namespace {
 | |
| /// Apply a less-than relation on the node order, which corresponds to the
 | |
| /// instruction order prior to scheduling. IsReverse implements greater-than.
 | |
| template<bool IsReverse>
 | |
| struct SUnitOrder {
 | |
|   bool operator()(SUnit *A, SUnit *B) const {
 | |
|     if (IsReverse)
 | |
|       return A->NodeNum > B->NodeNum;
 | |
|     else
 | |
|       return A->NodeNum < B->NodeNum;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Reorder instructions as much as possible.
 | |
| class InstructionShuffler : public MachineSchedStrategy {
 | |
|   bool IsAlternating;
 | |
|   bool IsTopDown;
 | |
| 
 | |
|   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
 | |
|   // gives nodes with a higher number higher priority causing the latest
 | |
|   // instructions to be scheduled first.
 | |
|   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
 | |
|     TopQ;
 | |
|   // When scheduling bottom-up, use greater-than as the queue priority.
 | |
|   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
 | |
|     BottomQ;
 | |
| public:
 | |
|   InstructionShuffler(bool alternate, bool topdown)
 | |
|     : IsAlternating(alternate), IsTopDown(topdown) {}
 | |
| 
 | |
|   virtual void initialize(ScheduleDAGMI *) {
 | |
|     TopQ.clear();
 | |
|     BottomQ.clear();
 | |
|   }
 | |
| 
 | |
|   /// Implement MachineSchedStrategy interface.
 | |
|   /// -----------------------------------------
 | |
| 
 | |
|   virtual SUnit *pickNode(bool &IsTopNode) {
 | |
|     SUnit *SU;
 | |
|     if (IsTopDown) {
 | |
|       do {
 | |
|         if (TopQ.empty()) return NULL;
 | |
|         SU = TopQ.top();
 | |
|         TopQ.pop();
 | |
|       } while (SU->isScheduled);
 | |
|       IsTopNode = true;
 | |
|     }
 | |
|     else {
 | |
|       do {
 | |
|         if (BottomQ.empty()) return NULL;
 | |
|         SU = BottomQ.top();
 | |
|         BottomQ.pop();
 | |
|       } while (SU->isScheduled);
 | |
|       IsTopNode = false;
 | |
|     }
 | |
|     if (IsAlternating)
 | |
|       IsTopDown = !IsTopDown;
 | |
|     return SU;
 | |
|   }
 | |
| 
 | |
|   virtual void schedNode(SUnit *SU, bool IsTopNode) {}
 | |
| 
 | |
|   virtual void releaseTopNode(SUnit *SU) {
 | |
|     TopQ.push(SU);
 | |
|   }
 | |
|   virtual void releaseBottomNode(SUnit *SU) {
 | |
|     BottomQ.push(SU);
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
 | |
|   bool Alternate = !ForceTopDown && !ForceBottomUp;
 | |
|   bool TopDown = !ForceBottomUp;
 | |
|   assert((TopDown || !ForceTopDown) &&
 | |
|          "-misched-topdown incompatible with -misched-bottomup");
 | |
|   return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
 | |
| }
 | |
| static MachineSchedRegistry ShufflerRegistry(
 | |
|   "shuffle", "Shuffle machine instructions alternating directions",
 | |
|   createInstructionShuffler);
 | |
| #endif // !NDEBUG
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // GraphWriter support for ScheduleDAGMI.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| namespace llvm {
 | |
| 
 | |
| template<> struct GraphTraits<
 | |
|   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
 | |
| 
 | |
| template<>
 | |
| struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
 | |
| 
 | |
|   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
 | |
| 
 | |
|   static std::string getGraphName(const ScheduleDAG *G) {
 | |
|     return G->MF.getName();
 | |
|   }
 | |
| 
 | |
|   static bool renderGraphFromBottomUp() {
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   static bool isNodeHidden(const SUnit *Node) {
 | |
|     return (Node->NumPreds > 10 || Node->NumSuccs > 10);
 | |
|   }
 | |
| 
 | |
|   static bool hasNodeAddressLabel(const SUnit *Node,
 | |
|                                   const ScheduleDAG *Graph) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// If you want to override the dot attributes printed for a particular
 | |
|   /// edge, override this method.
 | |
|   static std::string getEdgeAttributes(const SUnit *Node,
 | |
|                                        SUnitIterator EI,
 | |
|                                        const ScheduleDAG *Graph) {
 | |
|     if (EI.isArtificialDep())
 | |
|       return "color=cyan,style=dashed";
 | |
|     if (EI.isCtrlDep())
 | |
|       return "color=blue,style=dashed";
 | |
|     return "";
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
 | |
|     std::string Str;
 | |
|     raw_string_ostream SS(Str);
 | |
|     SS << "SU(" << SU->NodeNum << ')';
 | |
|     return SS.str();
 | |
|   }
 | |
|   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
 | |
|     return G->getGraphNodeLabel(SU);
 | |
|   }
 | |
| 
 | |
|   static std::string getNodeAttributes(const SUnit *N,
 | |
|                                        const ScheduleDAG *Graph) {
 | |
|     std::string Str("shape=Mrecord");
 | |
|     const SchedDFSResult *DFS =
 | |
|       static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
 | |
|     if (DFS) {
 | |
|       Str += ",style=filled,fillcolor=\"#";
 | |
|       Str += DOT::getColorString(DFS->getSubtreeID(N));
 | |
|       Str += '"';
 | |
|     }
 | |
|     return Str;
 | |
|   }
 | |
| };
 | |
| } // namespace llvm
 | |
| #endif // NDEBUG
 | |
| 
 | |
| /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
 | |
| /// rendered using 'dot'.
 | |
| ///
 | |
| void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
 | |
| #ifndef NDEBUG
 | |
|   ViewGraph(this, Name, false, Title);
 | |
| #else
 | |
|   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
 | |
|          << "systems with Graphviz or gv!\n";
 | |
| #endif  // NDEBUG
 | |
| }
 | |
| 
 | |
| /// Out-of-line implementation with no arguments is handy for gdb.
 | |
| void ScheduleDAGMI::viewGraph() {
 | |
|   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
 | |
| }
 |