mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	Fixes clang selfhost. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@139120 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2576 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2576 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements routines for folding instructions into simpler forms
 | |
| // that do not require creating new instructions.  This does constant folding
 | |
| // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
 | |
| // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
 | |
| // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
 | |
| // simplified: This is usually true and assuming it simplifies the logic (if
 | |
| // they have not been simplified then results are correct but maybe suboptimal).
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "instsimplify"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Support/ConstantRange.h"
 | |
| #include "llvm/Support/PatternMatch.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| using namespace llvm;
 | |
| using namespace llvm::PatternMatch;
 | |
| 
 | |
| enum { RecursionLimit = 3 };
 | |
| 
 | |
| STATISTIC(NumExpand,  "Number of expansions");
 | |
| STATISTIC(NumFactor , "Number of factorizations");
 | |
| STATISTIC(NumReassoc, "Number of reassociations");
 | |
| 
 | |
| static Value *SimplifyAndInst(Value *, Value *, const TargetData *,
 | |
|                               const DominatorTree *, unsigned);
 | |
| static Value *SimplifyBinOp(unsigned, Value *, Value *, const TargetData *,
 | |
|                             const DominatorTree *, unsigned);
 | |
| static Value *SimplifyCmpInst(unsigned, Value *, Value *, const TargetData *,
 | |
|                               const DominatorTree *, unsigned);
 | |
| static Value *SimplifyOrInst(Value *, Value *, const TargetData *,
 | |
|                              const DominatorTree *, unsigned);
 | |
| static Value *SimplifyXorInst(Value *, Value *, const TargetData *,
 | |
|                               const DominatorTree *, unsigned);
 | |
| 
 | |
| /// getFalse - For a boolean type, or a vector of boolean type, return false, or
 | |
| /// a vector with every element false, as appropriate for the type.
 | |
| static Constant *getFalse(Type *Ty) {
 | |
|   assert((Ty->isIntegerTy(1) ||
 | |
|           (Ty->isVectorTy() &&
 | |
|            cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
 | |
|          "Expected i1 type or a vector of i1!");
 | |
|   return Constant::getNullValue(Ty);
 | |
| }
 | |
| 
 | |
| /// getTrue - For a boolean type, or a vector of boolean type, return true, or
 | |
| /// a vector with every element true, as appropriate for the type.
 | |
| static Constant *getTrue(Type *Ty) {
 | |
|   assert((Ty->isIntegerTy(1) ||
 | |
|           (Ty->isVectorTy() &&
 | |
|            cast<VectorType>(Ty)->getElementType()->isIntegerTy(1))) &&
 | |
|          "Expected i1 type or a vector of i1!");
 | |
|   return Constant::getAllOnesValue(Ty);
 | |
| }
 | |
| 
 | |
| /// ValueDominatesPHI - Does the given value dominate the specified phi node?
 | |
| static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I)
 | |
|     // Arguments and constants dominate all instructions.
 | |
|     return true;
 | |
| 
 | |
|   // If we have a DominatorTree then do a precise test.
 | |
|   if (DT)
 | |
|     return DT->dominates(I, P);
 | |
| 
 | |
|   // Otherwise, if the instruction is in the entry block, and is not an invoke,
 | |
|   // then it obviously dominates all phi nodes.
 | |
|   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
 | |
|       !isa<InvokeInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
 | |
| /// it into "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
 | |
| /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
 | |
| /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
 | |
| /// Returns the simplified value, or null if no simplification was performed.
 | |
| static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                           unsigned OpcToExpand, const TargetData *TD,
 | |
|                           const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   // Check whether the expression has the form "(A op' B) op C".
 | |
|   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
 | |
|     if (Op0->getOpcode() == OpcodeToExpand) {
 | |
|       // It does!  Try turning it into "(A op C) op' (B op C)".
 | |
|       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
 | |
|       // Do "A op C" and "B op C" both simplify?
 | |
|       if (Value *L = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse))
 | |
|         if (Value *R = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
 | |
|           // They do! Return "L op' R" if it simplifies or is already available.
 | |
|           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
 | |
|           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
 | |
|                                      && L == B && R == A)) {
 | |
|             ++NumExpand;
 | |
|             return LHS;
 | |
|           }
 | |
|           // Otherwise return "L op' R" if it simplifies.
 | |
|           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
 | |
|                                        MaxRecurse)) {
 | |
|             ++NumExpand;
 | |
|             return V;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   // Check whether the expression has the form "A op (B op' C)".
 | |
|   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
 | |
|     if (Op1->getOpcode() == OpcodeToExpand) {
 | |
|       // It does!  Try turning it into "(A op B) op' (A op C)".
 | |
|       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
 | |
|       // Do "A op B" and "A op C" both simplify?
 | |
|       if (Value *L = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse))
 | |
|         if (Value *R = SimplifyBinOp(Opcode, A, C, TD, DT, MaxRecurse)) {
 | |
|           // They do! Return "L op' R" if it simplifies or is already available.
 | |
|           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
 | |
|           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
 | |
|                                      && L == C && R == B)) {
 | |
|             ++NumExpand;
 | |
|             return RHS;
 | |
|           }
 | |
|           // Otherwise return "L op' R" if it simplifies.
 | |
|           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, TD, DT,
 | |
|                                        MaxRecurse)) {
 | |
|             ++NumExpand;
 | |
|             return V;
 | |
|           }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
 | |
| /// using the operation OpCodeToExtract.  For example, when Opcode is Add and
 | |
| /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
 | |
| /// Returns the simplified value, or null if no simplification was performed.
 | |
| static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                              unsigned OpcToExtract, const TargetData *TD,
 | |
|                              const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
| 
 | |
|   if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
 | |
|       !Op1 || Op1->getOpcode() != OpcodeToExtract)
 | |
|     return 0;
 | |
| 
 | |
|   // The expression has the form "(A op' B) op (C op' D)".
 | |
|   Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
 | |
|   Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
 | |
| 
 | |
|   // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
 | |
|   // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
 | |
|   // commutative case, "(A op' B) op (C op' A)"?
 | |
|   if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
 | |
|     Value *DD = A == C ? D : C;
 | |
|     // Form "A op' (B op DD)" if it simplifies completely.
 | |
|     // Does "B op DD" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, B, DD, TD, DT, MaxRecurse)) {
 | |
|       // It does!  Return "A op' V" if it simplifies or is already available.
 | |
|       // If V equals B then "A op' V" is just the LHS.  If V equals DD then
 | |
|       // "A op' V" is just the RHS.
 | |
|       if (V == B || V == DD) {
 | |
|         ++NumFactor;
 | |
|         return V == B ? LHS : RHS;
 | |
|       }
 | |
|       // Otherwise return "A op' V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, TD, DT, MaxRecurse)) {
 | |
|         ++NumFactor;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
 | |
|   // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
 | |
|   // commutative case, "(A op' B) op (B op' D)"?
 | |
|   if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
 | |
|     Value *CC = B == D ? C : D;
 | |
|     // Form "(A op CC) op' B" if it simplifies completely..
 | |
|     // Does "A op CC" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, A, CC, TD, DT, MaxRecurse)) {
 | |
|       // It does!  Return "V op' B" if it simplifies or is already available.
 | |
|       // If V equals A then "V op' B" is just the LHS.  If V equals CC then
 | |
|       // "V op' B" is just the RHS.
 | |
|       if (V == A || V == CC) {
 | |
|         ++NumFactor;
 | |
|         return V == A ? LHS : RHS;
 | |
|       }
 | |
|       // Otherwise return "V op' B" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, TD, DT, MaxRecurse)) {
 | |
|         ++NumFactor;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyAssociativeBinOp - Generic simplifications for associative binary
 | |
| /// operations.  Returns the simpler value, or null if none was found.
 | |
| static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
 | |
|                                        const TargetData *TD,
 | |
|                                        const DominatorTree *DT,
 | |
|                                        unsigned MaxRecurse) {
 | |
|   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
 | |
|   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
 | |
| 
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "B op C" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, B, C, TD, DT, MaxRecurse)) {
 | |
|       // It does!  Return "A op V" if it simplifies or is already available.
 | |
|       // If V equals B then "A op V" is just the LHS.
 | |
|       if (V == B) return LHS;
 | |
|       // Otherwise return "A op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, A, V, TD, DT, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "A op B" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, A, B, TD, DT, MaxRecurse)) {
 | |
|       // It does!  Return "V op C" if it simplifies or is already available.
 | |
|       // If V equals B then "V op C" is just the RHS.
 | |
|       if (V == B) return RHS;
 | |
|       // Otherwise return "V op C" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, C, TD, DT, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The remaining transforms require commutativity as well as associativity.
 | |
|   if (!Instruction::isCommutative(Opcode))
 | |
|     return 0;
 | |
| 
 | |
|   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
 | |
|   if (Op0 && Op0->getOpcode() == Opcode) {
 | |
|     Value *A = Op0->getOperand(0);
 | |
|     Value *B = Op0->getOperand(1);
 | |
|     Value *C = RHS;
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
 | |
|       // It does!  Return "V op B" if it simplifies or is already available.
 | |
|       // If V equals A then "V op B" is just the LHS.
 | |
|       if (V == A) return LHS;
 | |
|       // Otherwise return "V op B" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, V, B, TD, DT, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
 | |
|   if (Op1 && Op1->getOpcode() == Opcode) {
 | |
|     Value *A = LHS;
 | |
|     Value *B = Op1->getOperand(0);
 | |
|     Value *C = Op1->getOperand(1);
 | |
| 
 | |
|     // Does "C op A" simplify?
 | |
|     if (Value *V = SimplifyBinOp(Opcode, C, A, TD, DT, MaxRecurse)) {
 | |
|       // It does!  Return "B op V" if it simplifies or is already available.
 | |
|       // If V equals C then "B op V" is just the RHS.
 | |
|       if (V == C) return RHS;
 | |
|       // Otherwise return "B op V" if it simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Opcode, B, V, TD, DT, MaxRecurse)) {
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ThreadBinOpOverSelect - In the case of a binary operation with a select
 | |
| /// instruction as an operand, try to simplify the binop by seeing whether
 | |
| /// evaluating it on both branches of the select results in the same value.
 | |
| /// Returns the common value if so, otherwise returns null.
 | |
| static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                                     const TargetData *TD,
 | |
|                                     const DominatorTree *DT,
 | |
|                                     unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   SelectInst *SI;
 | |
|   if (isa<SelectInst>(LHS)) {
 | |
|     SI = cast<SelectInst>(LHS);
 | |
|   } else {
 | |
|     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
 | |
|     SI = cast<SelectInst>(RHS);
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the true and false branches of the select.
 | |
|   Value *TV;
 | |
|   Value *FV;
 | |
|   if (SI == LHS) {
 | |
|     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, TD, DT, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, TD, DT, MaxRecurse);
 | |
|   } else {
 | |
|     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), TD, DT, MaxRecurse);
 | |
|     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), TD, DT, MaxRecurse);
 | |
|   }
 | |
| 
 | |
|   // If they simplified to the same value, then return the common value.
 | |
|   // If they both failed to simplify then return null.
 | |
|   if (TV == FV)
 | |
|     return TV;
 | |
| 
 | |
|   // If one branch simplified to undef, return the other one.
 | |
|   if (TV && isa<UndefValue>(TV))
 | |
|     return FV;
 | |
|   if (FV && isa<UndefValue>(FV))
 | |
|     return TV;
 | |
| 
 | |
|   // If applying the operation did not change the true and false select values,
 | |
|   // then the result of the binop is the select itself.
 | |
|   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
 | |
|     return SI;
 | |
| 
 | |
|   // If one branch simplified and the other did not, and the simplified
 | |
|   // value is equal to the unsimplified one, return the simplified value.
 | |
|   // For example, select (cond, X, X & Z) & Z -> X & Z.
 | |
|   if ((FV && !TV) || (TV && !FV)) {
 | |
|     // Check that the simplified value has the form "X op Y" where "op" is the
 | |
|     // same as the original operation.
 | |
|     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
 | |
|     if (Simplified && Simplified->getOpcode() == Opcode) {
 | |
|       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
 | |
|       // We already know that "op" is the same as for the simplified value.  See
 | |
|       // if the operands match too.  If so, return the simplified value.
 | |
|       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
 | |
|       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
 | |
|       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
 | |
|       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|       if (Simplified->isCommutative() &&
 | |
|           Simplified->getOperand(1) == UnsimplifiedLHS &&
 | |
|           Simplified->getOperand(0) == UnsimplifiedRHS)
 | |
|         return Simplified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
 | |
| /// try to simplify the comparison by seeing whether both branches of the select
 | |
| /// result in the same value.  Returns the common value if so, otherwise returns
 | |
| /// null.
 | |
| static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
 | |
|                                   Value *RHS, const TargetData *TD,
 | |
|                                   const DominatorTree *DT,
 | |
|                                   unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   // Make sure the select is on the LHS.
 | |
|   if (!isa<SelectInst>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
 | |
|   SelectInst *SI = cast<SelectInst>(LHS);
 | |
| 
 | |
|   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
 | |
|   // Does "cmp TV, RHS" simplify?
 | |
|   if (Value *TCmp = SimplifyCmpInst(Pred, SI->getTrueValue(), RHS, TD, DT,
 | |
|                                     MaxRecurse)) {
 | |
|     // It does!  Does "cmp FV, RHS" simplify?
 | |
|     if (Value *FCmp = SimplifyCmpInst(Pred, SI->getFalseValue(), RHS, TD, DT,
 | |
|                                       MaxRecurse)) {
 | |
|       // It does!  If they simplified to the same value, then use it as the
 | |
|       // result of the original comparison.
 | |
|       if (TCmp == FCmp)
 | |
|         return TCmp;
 | |
|       Value *Cond = SI->getCondition();
 | |
|       // If the false value simplified to false, then the result of the compare
 | |
|       // is equal to "Cond && TCmp".  This also catches the case when the false
 | |
|       // value simplified to false and the true value to true, returning "Cond".
 | |
|       if (match(FCmp, m_Zero()))
 | |
|         if (Value *V = SimplifyAndInst(Cond, TCmp, TD, DT, MaxRecurse))
 | |
|           return V;
 | |
|       // If the true value simplified to true, then the result of the compare
 | |
|       // is equal to "Cond || FCmp".
 | |
|       if (match(TCmp, m_One()))
 | |
|         if (Value *V = SimplifyOrInst(Cond, FCmp, TD, DT, MaxRecurse))
 | |
|           return V;
 | |
|       // Finally, if the false value simplified to true and the true value to
 | |
|       // false, then the result of the compare is equal to "!Cond".
 | |
|       if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
 | |
|         if (Value *V =
 | |
|             SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
 | |
|                             TD, DT, MaxRecurse))
 | |
|           return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
 | |
| /// is a PHI instruction, try to simplify the binop by seeing whether evaluating
 | |
| /// it on the incoming phi values yields the same result for every value.  If so
 | |
| /// returns the common value, otherwise returns null.
 | |
| static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                                  const TargetData *TD, const DominatorTree *DT,
 | |
|                                  unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   PHINode *PI;
 | |
|   if (isa<PHINode>(LHS)) {
 | |
|     PI = cast<PHINode>(LHS);
 | |
|     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(RHS, PI, DT))
 | |
|       return 0;
 | |
|   } else {
 | |
|     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
 | |
|     PI = cast<PHINode>(RHS);
 | |
|     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
 | |
|     if (!ValueDominatesPHI(LHS, PI, DT))
 | |
|       return 0;
 | |
|   }
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = 0;
 | |
|   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PI->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = PI == LHS ?
 | |
|       SimplifyBinOp(Opcode, Incoming, RHS, TD, DT, MaxRecurse) :
 | |
|       SimplifyBinOp(Opcode, LHS, Incoming, TD, DT, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return 0;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
 | |
| /// try to simplify the comparison by seeing whether comparing with all of the
 | |
| /// incoming phi values yields the same result every time.  If so returns the
 | |
| /// common result, otherwise returns null.
 | |
| static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   // Recursion is always used, so bail out at once if we already hit the limit.
 | |
|   if (!MaxRecurse--)
 | |
|     return 0;
 | |
| 
 | |
|   // Make sure the phi is on the LHS.
 | |
|   if (!isa<PHINode>(LHS)) {
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
|   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
 | |
|   PHINode *PI = cast<PHINode>(LHS);
 | |
| 
 | |
|   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
 | |
|   if (!ValueDominatesPHI(RHS, PI, DT))
 | |
|     return 0;
 | |
| 
 | |
|   // Evaluate the BinOp on the incoming phi values.
 | |
|   Value *CommonValue = 0;
 | |
|   for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PI->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PI) continue;
 | |
|     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, TD, DT, MaxRecurse);
 | |
|     // If the operation failed to simplify, or simplified to a different value
 | |
|     // to previously, then give up.
 | |
|     if (!V || (CommonValue && V != CommonValue))
 | |
|       return 0;
 | |
|     CommonValue = V;
 | |
|   }
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| /// SimplifyAddInst - Given operands for an Add, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const TargetData *TD, const DominatorTree *DT,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(),
 | |
|                                       Ops, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X + undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X + 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X + (Y - X) -> Y
 | |
|   // (Y - X) + X -> Y
 | |
|   // Eg: X + -X -> 0
 | |
|   Value *Y = 0;
 | |
|   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
 | |
|       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
 | |
|     return Y;
 | |
| 
 | |
|   // X + ~X -> -1   since   ~X = -X-1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   /// i1 add -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, TD, DT,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Mul distributes over Add.  Try some generic simplifications based on this.
 | |
|   if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
 | |
|                                 TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Add over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A + select(cond, B, C)" means evaluating
 | |
|   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifySubInst - Given operands for a Sub, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const TargetData *TD, const DominatorTree *DT,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0))
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
 | |
|                                       Ops, TD);
 | |
|     }
 | |
| 
 | |
|   // X - undef -> undef
 | |
|   // undef - X -> undef
 | |
|   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // X - 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X - X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X*2) - X -> X
 | |
|   // (X<<1) - X -> X
 | |
|   Value *X = 0;
 | |
|   if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
 | |
|       match(Op0, m_Shl(m_Specific(Op1), m_One())))
 | |
|     return Op1;
 | |
| 
 | |
|   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
 | |
|   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
 | |
|   Value *Y = 0, *Z = Op1;
 | |
|   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
 | |
|     // See if "V === Y - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, TD, DT, MaxRecurse-1))
 | |
|       // It does!  Now see if "X + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, TD, DT,
 | |
|                                    MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
 | |
|       // It does!  Now see if "Y + V" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, TD, DT,
 | |
|                                    MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
 | |
|   // For example, X - (X + 1) -> -1
 | |
|   X = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
 | |
|     // See if "V === X - Y" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, TD, DT, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Z" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, TD, DT,
 | |
|                                    MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|     // See if "V === X - Z" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, TD, DT, MaxRecurse-1))
 | |
|       // It does!  Now see if "V - Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, TD, DT,
 | |
|                                    MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
 | |
|   // For example, X - (X - Y) -> Y.
 | |
|   Z = Op0;
 | |
|   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
 | |
|     // See if "V === Z - X" simplifies.
 | |
|     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, TD, DT, MaxRecurse-1))
 | |
|       // It does!  Now see if "V + Y" simplifies.
 | |
|       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, TD, DT,
 | |
|                                    MaxRecurse-1)) {
 | |
|         // It does, we successfully reassociated!
 | |
|         ++NumReassoc;
 | |
|         return W;
 | |
|       }
 | |
| 
 | |
|   // Mul distributes over Sub.  Try some generic simplifications based on this.
 | |
|   if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
 | |
|                                 TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // i1 sub -> xor.
 | |
|   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | |
|     if (Value *V = SimplifyXorInst(Op0, Op1, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Threading Sub over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A - select(cond, B, C)" means evaluating
 | |
|   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyMulInst - Given operands for a Mul, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
 | |
|                                       Ops, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X * undef -> 0
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X * 0 -> 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X * 1 -> X
 | |
|   if (match(Op1, m_One()))
 | |
|     return Op0;
 | |
| 
 | |
|   // (X / Y) * Y -> X if the division is exact.
 | |
|   Value *X = 0, *Y = 0;
 | |
|   if ((match(Op0, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
 | |
|       (match(Op1, m_IDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
 | |
|     BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
 | |
|     if (Div->isExact())
 | |
|       return X;
 | |
|   }
 | |
| 
 | |
|   // i1 mul -> and.
 | |
|   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
 | |
|     if (Value *V = SimplifyAndInst(Op0, Op1, TD, DT, MaxRecurse-1))
 | |
|       return V;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, TD, DT,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Mul distributes over Add.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
 | |
|                              TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, TD, DT,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, TD, DT,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT) {
 | |
|   return ::SimplifyMulInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const TargetData *TD, const DominatorTree *DT,
 | |
|                           unsigned MaxRecurse) {
 | |
|   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { C0, C1 };
 | |
|       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isSigned = Opcode == Instruction::SDiv;
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // undef / X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // 0 / X -> 0, we don't need to preserve faults!
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X / 1 -> X
 | |
|   if (match(Op1, m_One()))
 | |
|     return Op0;
 | |
| 
 | |
|   if (Op0->getType()->isIntegerTy(1))
 | |
|     // It can't be division by zero, hence it must be division by one.
 | |
|     return Op0;
 | |
| 
 | |
|   // X / X -> 1
 | |
|   if (Op0 == Op1)
 | |
|     return ConstantInt::get(Op0->getType(), 1);
 | |
| 
 | |
|   // (X * Y) / Y -> X if the multiplication does not overflow.
 | |
|   Value *X = 0, *Y = 0;
 | |
|   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
 | |
|     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
 | |
|     BinaryOperator *Mul = cast<BinaryOperator>(Op0);
 | |
|     // If the Mul knows it does not overflow, then we are good to go.
 | |
|     if ((isSigned && Mul->hasNoSignedWrap()) ||
 | |
|         (!isSigned && Mul->hasNoUnsignedWrap()))
 | |
|       return X;
 | |
|     // If X has the form X = A / Y then X * Y cannot overflow.
 | |
|     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
 | |
|       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
 | |
|         return X;
 | |
|   }
 | |
| 
 | |
|   // (X rem Y) / Y -> 0
 | |
|   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
 | |
|       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifySDivInst - Given operands for an SDiv, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                                const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT) {
 | |
|   return ::SimplifySDivInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyUDivInst - Given operands for a UDiv, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                                const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT) {
 | |
|   return ::SimplifyUDivInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *,
 | |
|                                const DominatorTree *, unsigned) {
 | |
|   // undef / X -> undef    (the undef could be a snan).
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X / undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT) {
 | |
|   return ::SimplifyFDivInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyRem - Given operands for an SRem or URem, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
 | |
|                           const TargetData *TD, const DominatorTree *DT,
 | |
|                           unsigned MaxRecurse) {
 | |
|   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { C0, C1 };
 | |
|       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // X % undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // undef % X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // 0 % X -> 0, we don't need to preserve faults!
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X % 0 -> undef, we don't need to preserve faults!
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // X % 1 -> 0
 | |
|   if (match(Op1, m_One()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   if (Op0->getType()->isIntegerTy(1))
 | |
|     // It can't be remainder by zero, hence it must be remainder by one.
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X % X -> 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifySRemInst - Given operands for an SRem, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                                const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT) {
 | |
|   return ::SimplifySRemInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyURemInst - Given operands for a URem, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                                const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT) {
 | |
|   return ::SimplifyURemInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *,
 | |
|                                const DominatorTree *, unsigned) {
 | |
|   // undef % X -> undef    (the undef could be a snan).
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X % undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT) {
 | |
|   return ::SimplifyFRemInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
 | |
|                             const TargetData *TD, const DominatorTree *DT,
 | |
|                             unsigned MaxRecurse) {
 | |
|   if (Constant *C0 = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *C1 = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { C0, C1 };
 | |
|       return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, TD);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // 0 shift by X -> 0
 | |
|   if (match(Op0, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X shift by 0 -> X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X shift by undef -> undef because it may shift by the bitwidth.
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // Shifting by the bitwidth or more is undefined.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
 | |
|     if (CI->getValue().getLimitedValue() >=
 | |
|         Op0->getType()->getScalarSizeInBits())
 | |
|       return UndefValue::get(Op0->getType());
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyShlInst - Given operands for an Shl, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                               const TargetData *TD, const DominatorTree *DT,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // undef << X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X >> A) << A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1))) &&
 | |
|       cast<PossiblyExactOperator>(Op0)->isExact())
 | |
|     return X;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
 | |
|                              const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyLShrInst - Given operands for an LShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // undef >>l X -> 0
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
 | |
|       cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
 | |
|     return X;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyLShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyAShrInst - Given operands for an AShr, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // all ones >>a X -> all ones
 | |
|   if (match(Op0, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // undef >>a X -> all ones
 | |
|   if (match(Op0, m_Undef()))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (X << A) >> A -> X
 | |
|   Value *X;
 | |
|   if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
 | |
|       cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
 | |
|     return X;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
 | |
|                               const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyAShrInst(Op0, Op1, isExact, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyAndInst - Given operands for an And, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
 | |
|                                       Ops, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X & undef -> 0
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // X & X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X & 0 = 0
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op1;
 | |
| 
 | |
|   // X & -1 = X
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A & ~A  =  ~A & A  =  0
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // (A | ?) & A = A
 | |
|   Value *A = 0, *B = 0;
 | |
|   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A & (A | ?) = A
 | |
|   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op0;
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, TD, DT,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Or.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
 | |
|                              TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Xor.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
 | |
|                              TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Or distributes over And.  Try some generic simplifications based on this.
 | |
|   if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
 | |
|                                 TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, TD, DT,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, TD, DT,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT) {
 | |
|   return ::SimplifyAndInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyOrInst - Given operands for an Or, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
 | |
|                                       Ops, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // X | undef -> -1
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // X | X = X
 | |
|   if (Op0 == Op1)
 | |
|     return Op0;
 | |
| 
 | |
|   // X | 0 = X
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // X | -1 = -1
 | |
|   if (match(Op1, m_AllOnes()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | ~A  =  ~A | A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // (A & ?) | A = A
 | |
|   Value *A = 0, *B = 0;
 | |
|   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Op1;
 | |
| 
 | |
|   // A | (A & ?) = A
 | |
|   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Op0;
 | |
| 
 | |
|   // ~(A & ?) | A = -1
 | |
|   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
 | |
|       (A == Op1 || B == Op1))
 | |
|     return Constant::getAllOnesValue(Op1->getType());
 | |
| 
 | |
|   // A | ~(A & ?) = -1
 | |
|   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
 | |
|       (A == Op0 || B == Op0))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, TD, DT,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Or distributes over And.  Try some generic simplifications based on this.
 | |
|   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And,
 | |
|                              TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Or.  Try some generic simplifications based on this.
 | |
|   if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
 | |
|                                 TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // If the operation is with the result of a select instruction, check whether
 | |
|   // operating on either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, TD, DT,
 | |
|                                          MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the operation is with the result of a phi instruction, check whether
 | |
|   // operating on all incoming values of the phi always yields the same value.
 | |
|   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
 | |
|     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, TD, DT,
 | |
|                                       MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                             const DominatorTree *DT) {
 | |
|   return ::SimplifyOrInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyXorInst - Given operands for a Xor, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                               const DominatorTree *DT, unsigned MaxRecurse) {
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
 | |
|       Constant *Ops[] = { CLHS, CRHS };
 | |
|       return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
 | |
|                                       Ops, TD);
 | |
|     }
 | |
| 
 | |
|     // Canonicalize the constant to the RHS.
 | |
|     std::swap(Op0, Op1);
 | |
|   }
 | |
| 
 | |
|   // A ^ undef -> undef
 | |
|   if (match(Op1, m_Undef()))
 | |
|     return Op1;
 | |
| 
 | |
|   // A ^ 0 = A
 | |
|   if (match(Op1, m_Zero()))
 | |
|     return Op0;
 | |
| 
 | |
|   // A ^ A = 0
 | |
|   if (Op0 == Op1)
 | |
|     return Constant::getNullValue(Op0->getType());
 | |
| 
 | |
|   // A ^ ~A  =  ~A ^ A  =  -1
 | |
|   if (match(Op0, m_Not(m_Specific(Op1))) ||
 | |
|       match(Op1, m_Not(m_Specific(Op0))))
 | |
|     return Constant::getAllOnesValue(Op0->getType());
 | |
| 
 | |
|   // Try some generic simplifications for associative operations.
 | |
|   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, TD, DT,
 | |
|                                           MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // And distributes over Xor.  Try some generic simplifications based on this.
 | |
|   if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
 | |
|                                 TD, DT, MaxRecurse))
 | |
|     return V;
 | |
| 
 | |
|   // Threading Xor over selects and phi nodes is pointless, so don't bother.
 | |
|   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
 | |
|   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
 | |
|   // only if B and C are equal.  If B and C are equal then (since we assume
 | |
|   // that operands have already been simplified) "select(cond, B, C)" should
 | |
|   // have been simplified to the common value of B and C already.  Analysing
 | |
|   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
 | |
|   // for threading over phi nodes.
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const TargetData *TD,
 | |
|                              const DominatorTree *DT) {
 | |
|   return ::SimplifyXorInst(Op0, Op1, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| static Type *GetCompareTy(Value *Op) {
 | |
|   return CmpInst::makeCmpResultType(Op->getType());
 | |
| }
 | |
| 
 | |
| /// ExtractEquivalentCondition - Rummage around inside V looking for something
 | |
| /// equivalent to the comparison "LHS Pred RHS".  Return such a value if found,
 | |
| /// otherwise return null.  Helper function for analyzing max/min idioms.
 | |
| static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
 | |
|                                          Value *LHS, Value *RHS) {
 | |
|   SelectInst *SI = dyn_cast<SelectInst>(V);
 | |
|   if (!SI)
 | |
|     return 0;
 | |
|   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
 | |
|   if (!Cmp)
 | |
|     return 0;
 | |
|   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
 | |
|   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
 | |
|     return Cmp;
 | |
|   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
 | |
|       LHS == CmpRHS && RHS == CmpLHS)
 | |
|     return Cmp;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   Type *ITy = GetCompareTy(LHS); // The return type.
 | |
|   Type *OpTy = LHS->getType();   // The operand type.
 | |
| 
 | |
|   // icmp X, X -> true/false
 | |
|   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
 | |
|   // because X could be 0.
 | |
|   if (LHS == RHS || isa<UndefValue>(RHS))
 | |
|     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
 | |
| 
 | |
|   // Special case logic when the operands have i1 type.
 | |
|   if (OpTy->isIntegerTy(1) || (OpTy->isVectorTy() &&
 | |
|        cast<VectorType>(OpTy)->getElementType()->isIntegerTy(1))) {
 | |
|     switch (Pred) {
 | |
|     default: break;
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|       // X == 1 -> X
 | |
|       if (match(RHS, m_One()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|       // X != 0 -> X
 | |
|       if (match(RHS, m_Zero()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       // X >u 0 -> X
 | |
|       if (match(RHS, m_Zero()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       // X >=u 1 -> X
 | |
|       if (match(RHS, m_One()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       // X <s 0 -> X
 | |
|       if (match(RHS, m_Zero()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       // X <=s -1 -> X
 | |
|       if (match(RHS, m_One()))
 | |
|         return LHS;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // icmp <alloca*>, <global/alloca*/null> - Different stack variables have
 | |
|   // different addresses, and what's more the address of a stack variable is
 | |
|   // never null or equal to the address of a global.  Note that generalizing
 | |
|   // to the case where LHS is a global variable address or null is pointless,
 | |
|   // since if both LHS and RHS are constants then we already constant folded
 | |
|   // the compare, and if only one of them is then we moved it to RHS already.
 | |
|   if (isa<AllocaInst>(LHS) && (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) ||
 | |
|                                isa<ConstantPointerNull>(RHS)))
 | |
|     // We already know that LHS != RHS.
 | |
|     return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred));
 | |
| 
 | |
|   // If we are comparing with zero then try hard since this is a common case.
 | |
|   if (match(RHS, m_Zero())) {
 | |
|     bool LHSKnownNonNegative, LHSKnownNegative;
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       assert(false && "Unknown ICmp predicate!");
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|       return getFalse(ITy);
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getTrue(ITy);
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       if (isKnownNonZero(LHS, TD))
 | |
|         return getFalse(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|       if (isKnownNonZero(LHS, TD))
 | |
|         return getTrue(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | |
|       if (LHSKnownNegative)
 | |
|         return getTrue(ITy);
 | |
|       if (LHSKnownNonNegative)
 | |
|         return getFalse(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | |
|       if (LHSKnownNegative)
 | |
|         return getTrue(ITy);
 | |
|       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
 | |
|         return getFalse(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | |
|       if (LHSKnownNegative)
 | |
|         return getFalse(ITy);
 | |
|       if (LHSKnownNonNegative)
 | |
|         return getTrue(ITy);
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, TD);
 | |
|       if (LHSKnownNegative)
 | |
|         return getFalse(ITy);
 | |
|       if (LHSKnownNonNegative && isKnownNonZero(LHS, TD))
 | |
|         return getTrue(ITy);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // See if we are doing a comparison with a constant integer.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|     // Rule out tautological comparisons (eg., ult 0 or uge 0).
 | |
|     ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
 | |
|     if (RHS_CR.isEmptySet())
 | |
|       return ConstantInt::getFalse(CI->getContext());
 | |
|     if (RHS_CR.isFullSet())
 | |
|       return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|     // Many binary operators with constant RHS have easy to compute constant
 | |
|     // range.  Use them to check whether the comparison is a tautology.
 | |
|     uint32_t Width = CI->getBitWidth();
 | |
|     APInt Lower = APInt(Width, 0);
 | |
|     APInt Upper = APInt(Width, 0);
 | |
|     ConstantInt *CI2;
 | |
|     if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'urem x, CI2' produces [0, CI2).
 | |
|       Upper = CI2->getValue();
 | |
|     } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'srem x, CI2' produces (-|CI2|, |CI2|).
 | |
|       Upper = CI2->getValue().abs();
 | |
|       Lower = (-Upper) + 1;
 | |
|     } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
 | |
|       APInt NegOne = APInt::getAllOnesValue(Width);
 | |
|       if (!CI2->isZero())
 | |
|         Upper = NegOne.udiv(CI2->getValue()) + 1;
 | |
|     } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
 | |
|       APInt IntMin = APInt::getSignedMinValue(Width);
 | |
|       APInt IntMax = APInt::getSignedMaxValue(Width);
 | |
|       APInt Val = CI2->getValue().abs();
 | |
|       if (!Val.isMinValue()) {
 | |
|         Lower = IntMin.sdiv(Val);
 | |
|         Upper = IntMax.sdiv(Val) + 1;
 | |
|       }
 | |
|     } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
 | |
|       APInt NegOne = APInt::getAllOnesValue(Width);
 | |
|       if (CI2->getValue().ult(Width))
 | |
|         Upper = NegOne.lshr(CI2->getValue()) + 1;
 | |
|     } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
 | |
|       APInt IntMin = APInt::getSignedMinValue(Width);
 | |
|       APInt IntMax = APInt::getSignedMaxValue(Width);
 | |
|       if (CI2->getValue().ult(Width)) {
 | |
|         Lower = IntMin.ashr(CI2->getValue());
 | |
|         Upper = IntMax.ashr(CI2->getValue()) + 1;
 | |
|       }
 | |
|     } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'or x, CI2' produces [CI2, UINT_MAX].
 | |
|       Lower = CI2->getValue();
 | |
|     } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
 | |
|       // 'and x, CI2' produces [0, CI2].
 | |
|       Upper = CI2->getValue() + 1;
 | |
|     }
 | |
|     if (Lower != Upper) {
 | |
|       ConstantRange LHS_CR = ConstantRange(Lower, Upper);
 | |
|       if (RHS_CR.contains(LHS_CR))
 | |
|         return ConstantInt::getTrue(RHS->getContext());
 | |
|       if (RHS_CR.inverse().contains(LHS_CR))
 | |
|         return ConstantInt::getFalse(RHS->getContext());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Compare of cast, for example (zext X) != 0 -> X != 0
 | |
|   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
 | |
|     Instruction *LI = cast<CastInst>(LHS);
 | |
|     Value *SrcOp = LI->getOperand(0);
 | |
|     Type *SrcTy = SrcOp->getType();
 | |
|     Type *DstTy = LI->getType();
 | |
| 
 | |
|     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
 | |
|     // if the integer type is the same size as the pointer type.
 | |
|     if (MaxRecurse && TD && isa<PtrToIntInst>(LI) &&
 | |
|         TD->getPointerSizeInBits() == DstTy->getPrimitiveSizeInBits()) {
 | |
|       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|         // Transfer the cast to the constant.
 | |
|         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
 | |
|                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
 | |
|                                         TD, DT, MaxRecurse-1))
 | |
|           return V;
 | |
|       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
 | |
|         if (RI->getOperand(0)->getType() == SrcTy)
 | |
|           // Compare without the cast.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           TD, DT, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<ZExtInst>(LHS)) {
 | |
|       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that signed predicates become unsigned.
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                           SrcOp, RI->getOperand(0), TD, DT,
 | |
|                                           MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two zero-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
 | |
|                                           SrcOp, Trunc, TD, DT, MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
 | |
|         // there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default:
 | |
|             assert(false && "Unknown ICmp predicate!");
 | |
|           // LHS <u RHS.
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_NE:
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
 | |
|           // is non-negative then LHS <s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
| 
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (isa<SExtInst>(LHS)) {
 | |
|       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
 | |
|       // same type.
 | |
|       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
 | |
|         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
 | |
|           // Compare X and Y.  Note that the predicate does not change.
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
 | |
|                                           TD, DT, MaxRecurse-1))
 | |
|             return V;
 | |
|       }
 | |
|       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
 | |
|       // too.  If not, then try to deduce the result of the comparison.
 | |
|       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
 | |
|         // Compute the constant that would happen if we truncated to SrcTy then
 | |
|         // reextended to DstTy.
 | |
|         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
 | |
|         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
 | |
| 
 | |
|         // If the re-extended constant didn't change then this is effectively
 | |
|         // also a case of comparing two sign-extended values.
 | |
|         if (RExt == CI && MaxRecurse)
 | |
|           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, TD, DT,
 | |
|                                           MaxRecurse-1))
 | |
|             return V;
 | |
| 
 | |
|         // Otherwise the upper bits of LHS are all equal, while RHS has varying
 | |
|         // bits there.  Use this to work out the result of the comparison.
 | |
|         if (RExt != CI) {
 | |
|           switch (Pred) {
 | |
|           default:
 | |
|             assert(false && "Unknown ICmp predicate!");
 | |
|           case ICmpInst::ICMP_EQ:
 | |
|             return ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_NE:
 | |
|             return ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
 | |
|           // LHS >s RHS.
 | |
|           case ICmpInst::ICMP_SGT:
 | |
|           case ICmpInst::ICMP_SGE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getTrue(CI->getContext()) :
 | |
|               ConstantInt::getFalse(CI->getContext());
 | |
|           case ICmpInst::ICMP_SLT:
 | |
|           case ICmpInst::ICMP_SLE:
 | |
|             return CI->getValue().isNegative() ?
 | |
|               ConstantInt::getFalse(CI->getContext()) :
 | |
|               ConstantInt::getTrue(CI->getContext());
 | |
| 
 | |
|           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
 | |
|           // LHS >u RHS.
 | |
|           case ICmpInst::ICMP_UGT:
 | |
|           case ICmpInst::ICMP_UGE:
 | |
|             // Comparison is true iff the LHS <s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               TD, DT, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           case ICmpInst::ICMP_ULT:
 | |
|           case ICmpInst::ICMP_ULE:
 | |
|             // Comparison is true iff the LHS >=s 0.
 | |
|             if (MaxRecurse)
 | |
|               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
 | |
|                                               Constant::getNullValue(SrcTy),
 | |
|                                               TD, DT, MaxRecurse-1))
 | |
|                 return V;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Special logic for binary operators.
 | |
|   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
 | |
|   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
 | |
|   if (MaxRecurse && (LBO || RBO)) {
 | |
|     // Analyze the case when either LHS or RHS is an add instruction.
 | |
|     Value *A = 0, *B = 0, *C = 0, *D = 0;
 | |
|     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
 | |
|     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
 | |
|     if (LBO && LBO->getOpcode() == Instruction::Add) {
 | |
|       A = LBO->getOperand(0); B = LBO->getOperand(1);
 | |
|       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
 | |
|     }
 | |
|     if (RBO && RBO->getOpcode() == Instruction::Add) {
 | |
|       C = RBO->getOperand(0); D = RBO->getOperand(1);
 | |
|       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
 | |
|         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
 | |
|         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
 | |
|     }
 | |
| 
 | |
|     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
 | |
|     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
 | |
|       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
 | |
|                                       Constant::getNullValue(RHS->getType()),
 | |
|                                       TD, DT, MaxRecurse-1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
 | |
|     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
 | |
|       if (Value *V = SimplifyICmpInst(Pred,
 | |
|                                       Constant::getNullValue(LHS->getType()),
 | |
|                                       C == LHS ? D : C, TD, DT, MaxRecurse-1))
 | |
|         return V;
 | |
| 
 | |
|     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
 | |
|     if (A && C && (A == C || A == D || B == C || B == D) &&
 | |
|         NoLHSWrapProblem && NoRHSWrapProblem) {
 | |
|       // Determine Y and Z in the form icmp (X+Y), (X+Z).
 | |
|       Value *Y = (A == C || A == D) ? B : A;
 | |
|       Value *Z = (C == A || C == B) ? D : C;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, Y, Z, TD, DT, MaxRecurse-1))
 | |
|         return V;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
 | |
|     bool KnownNonNegative, KnownNegative;
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getFalse(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, TD);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getTrue(ITy);
 | |
|     }
 | |
|   }
 | |
|   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
 | |
|     bool KnownNonNegative, KnownNegative;
 | |
|     switch (Pred) {
 | |
|     default:
 | |
|       break;
 | |
|     case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE:
 | |
|       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_NE:
 | |
|     case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE:
 | |
|       return getTrue(ITy);
 | |
|     case ICmpInst::ICMP_SLT:
 | |
|     case ICmpInst::ICMP_SLE:
 | |
|       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, TD);
 | |
|       if (!KnownNonNegative)
 | |
|         break;
 | |
|       // fall-through
 | |
|     case ICmpInst::ICMP_EQ:
 | |
|     case ICmpInst::ICMP_ULT:
 | |
|     case ICmpInst::ICMP_ULE:
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
 | |
|       LBO->getOperand(1) == RBO->getOperand(1)) {
 | |
|     switch (LBO->getOpcode()) {
 | |
|     default: break;
 | |
|     case Instruction::UDiv:
 | |
|     case Instruction::LShr:
 | |
|       if (ICmpInst::isSigned(Pred))
 | |
|         break;
 | |
|       // fall-through
 | |
|     case Instruction::SDiv:
 | |
|     case Instruction::AShr:
 | |
|       if (!LBO->isExact() || !RBO->isExact())
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
 | |
|         return V;
 | |
|       break;
 | |
|     case Instruction::Shl: {
 | |
|       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
 | |
|       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
 | |
|       if (!NUW && !NSW)
 | |
|         break;
 | |
|       if (!NSW && ICmpInst::isSigned(Pred))
 | |
|         break;
 | |
|       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
 | |
|                                       RBO->getOperand(0), TD, DT, MaxRecurse-1))
 | |
|         return V;
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Simplify comparisons involving max/min.
 | |
|   Value *A, *B;
 | |
|   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
 | |
| 
 | |
|   // Signed variants on "max(a,b)>=a -> true".
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
 | |
|     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
 | |
|     // We analyze this as smax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
 | |
|     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
 | |
|     // We analyze this as smax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_SLE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_SGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_SGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_SLT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Unsigned variants on "max(a,b)>=a -> true".
 | |
|   P = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) pred A.
 | |
|     P = Pred;
 | |
|   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
 | |
|     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
 | |
|     // We analyze this as umax(A, B) swapped-pred A.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == RHS || B == RHS)) {
 | |
|     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) swapped-pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = CmpInst::getSwappedPredicate(Pred);
 | |
|   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              (A == LHS || B == LHS)) {
 | |
|     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
 | |
|     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
 | |
|     // We analyze this as umax(-A, -B) pred -A.
 | |
|     // Note that we do not need to actually form -A or -B thanks to EqP.
 | |
|     P = Pred;
 | |
|   }
 | |
|   if (P != CmpInst::BAD_ICMP_PREDICATE) {
 | |
|     // Cases correspond to "max(A, B) p A".
 | |
|     switch (P) {
 | |
|     default:
 | |
|       break;
 | |
|     case CmpInst::ICMP_EQ:
 | |
|     case CmpInst::ICMP_ULE:
 | |
|       // Equivalent to "A EqP B".  This may be the same as the condition tested
 | |
|       // in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A EqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(EqP, A, B, TD, DT, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|     case CmpInst::ICMP_UGT: {
 | |
|       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
 | |
|       // Equivalent to "A InvEqP B".  This may be the same as the condition
 | |
|       // tested in the max/min; if so, we can just return that.
 | |
|       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
 | |
|         return V;
 | |
|       // Otherwise, see if "A InvEqP B" simplifies.
 | |
|       if (MaxRecurse)
 | |
|         if (Value *V = SimplifyICmpInst(InvEqP, A, B, TD, DT, MaxRecurse-1))
 | |
|           return V;
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_UGE:
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     case CmpInst::ICMP_ULT:
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Variants on "max(x,y) >= min(x,z)".
 | |
|   Value *C, *D;
 | |
|   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
 | |
|       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
 | |
|       (A == C || A == D || B == C || B == D)) {
 | |
|     // max(x, ?) pred min(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_SGE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_SLT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // min(x, ?) pred max(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_SLE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_SGT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // max(x, ?) pred min(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_UGE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_ULT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
 | |
|              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
 | |
|              (A == C || A == D || B == C || B == D)) {
 | |
|     // min(x, ?) pred max(x, ?).
 | |
|     if (Pred == CmpInst::ICMP_ULE)
 | |
|       // Always true.
 | |
|       return getTrue(ITy);
 | |
|     if (Pred == CmpInst::ICMP_UGT)
 | |
|       // Always false.
 | |
|       return getFalse(ITy);
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                                const TargetData *TD, const DominatorTree *DT,
 | |
|                                unsigned MaxRecurse) {
 | |
|   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
 | |
|   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
 | |
| 
 | |
|   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
 | |
|     if (Constant *CRHS = dyn_cast<Constant>(RHS))
 | |
|       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD);
 | |
| 
 | |
|     // If we have a constant, make sure it is on the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Fold trivial predicates.
 | |
|   if (Pred == FCmpInst::FCMP_FALSE)
 | |
|     return ConstantInt::get(GetCompareTy(LHS), 0);
 | |
|   if (Pred == FCmpInst::FCMP_TRUE)
 | |
|     return ConstantInt::get(GetCompareTy(LHS), 1);
 | |
| 
 | |
|   if (isa<UndefValue>(RHS))                  // fcmp pred X, undef -> undef
 | |
|     return UndefValue::get(GetCompareTy(LHS));
 | |
| 
 | |
|   // fcmp x,x -> true/false.  Not all compares are foldable.
 | |
|   if (LHS == RHS) {
 | |
|     if (CmpInst::isTrueWhenEqual(Pred))
 | |
|       return ConstantInt::get(GetCompareTy(LHS), 1);
 | |
|     if (CmpInst::isFalseWhenEqual(Pred))
 | |
|       return ConstantInt::get(GetCompareTy(LHS), 0);
 | |
|   }
 | |
| 
 | |
|   // Handle fcmp with constant RHS
 | |
|   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
 | |
|     // If the constant is a nan, see if we can fold the comparison based on it.
 | |
|     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
 | |
|       if (CFP->getValueAPF().isNaN()) {
 | |
|         if (FCmpInst::isOrdered(Pred))   // True "if ordered and foo"
 | |
|           return ConstantInt::getFalse(CFP->getContext());
 | |
|         assert(FCmpInst::isUnordered(Pred) &&
 | |
|                "Comparison must be either ordered or unordered!");
 | |
|         // True if unordered.
 | |
|         return ConstantInt::getTrue(CFP->getContext());
 | |
|       }
 | |
|       // Check whether the constant is an infinity.
 | |
|       if (CFP->getValueAPF().isInfinity()) {
 | |
|         if (CFP->getValueAPF().isNegative()) {
 | |
|           switch (Pred) {
 | |
|           case FCmpInst::FCMP_OLT:
 | |
|             // No value is ordered and less than negative infinity.
 | |
|             return ConstantInt::getFalse(CFP->getContext());
 | |
|           case FCmpInst::FCMP_UGE:
 | |
|             // All values are unordered with or at least negative infinity.
 | |
|             return ConstantInt::getTrue(CFP->getContext());
 | |
|           default:
 | |
|             break;
 | |
|           }
 | |
|         } else {
 | |
|           switch (Pred) {
 | |
|           case FCmpInst::FCMP_OGT:
 | |
|             // No value is ordered and greater than infinity.
 | |
|             return ConstantInt::getFalse(CFP->getContext());
 | |
|           case FCmpInst::FCMP_ULE:
 | |
|             // All values are unordered with and at most infinity.
 | |
|             return ConstantInt::getTrue(CFP->getContext());
 | |
|           default:
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the comparison is with the result of a select instruction, check whether
 | |
|   // comparing with either branch of the select always yields the same value.
 | |
|   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   // If the comparison is with the result of a phi instruction, check whether
 | |
|   // doing the compare with each incoming phi value yields a common result.
 | |
|   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, TD, DT, MaxRecurse))
 | |
|       return V;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
 | |
| /// the result.  If not, this returns null.
 | |
| Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal,
 | |
|                                 const TargetData *TD, const DominatorTree *) {
 | |
|   // select true, X, Y  -> X
 | |
|   // select false, X, Y -> Y
 | |
|   if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
 | |
|     return CB->getZExtValue() ? TrueVal : FalseVal;
 | |
| 
 | |
|   // select C, X, X -> X
 | |
|   if (TrueVal == FalseVal)
 | |
|     return TrueVal;
 | |
| 
 | |
|   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
 | |
|     if (isa<Constant>(TrueVal))
 | |
|       return TrueVal;
 | |
|     return FalseVal;
 | |
|   }
 | |
|   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
 | |
|     return FalseVal;
 | |
|   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
 | |
|     return TrueVal;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops,
 | |
|                              const TargetData *TD, const DominatorTree *) {
 | |
|   // The type of the GEP pointer operand.
 | |
|   PointerType *PtrTy = cast<PointerType>(Ops[0]->getType());
 | |
| 
 | |
|   // getelementptr P -> P.
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   if (isa<UndefValue>(Ops[0])) {
 | |
|     // Compute the (pointer) type returned by the GEP instruction.
 | |
|     Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
 | |
|     Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
 | |
|     return UndefValue::get(GEPTy);
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 2) {
 | |
|     // getelementptr P, 0 -> P.
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
 | |
|       if (C->isZero())
 | |
|         return Ops[0];
 | |
|     // getelementptr P, N -> P if P points to a type of zero size.
 | |
|     if (TD) {
 | |
|       Type *Ty = PtrTy->getElementType();
 | |
|       if (Ty->isSized() && TD->getTypeAllocSize(Ty) == 0)
 | |
|         return Ops[0];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is constant foldable.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     if (!isa<Constant>(Ops[i]))
 | |
|       return 0;
 | |
| 
 | |
|   return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
 | |
| }
 | |
| 
 | |
| /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
 | |
| /// can fold the result.  If not, this returns null.
 | |
| Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
 | |
|                                      ArrayRef<unsigned> Idxs,
 | |
|                                      const TargetData *,
 | |
|                                      const DominatorTree *) {
 | |
|   if (Constant *CAgg = dyn_cast<Constant>(Agg))
 | |
|     if (Constant *CVal = dyn_cast<Constant>(Val))
 | |
|       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
 | |
| 
 | |
|   // insertvalue x, undef, n -> x
 | |
|   if (match(Val, m_Undef()))
 | |
|     return Agg;
 | |
| 
 | |
|   // insertvalue x, (extractvalue y, n), n
 | |
|   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
 | |
|     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
 | |
|         EV->getIndices() == Idxs) {
 | |
|       // insertvalue undef, (extractvalue y, n), n -> y
 | |
|       if (match(Agg, m_Undef()))
 | |
|         return EV->getAggregateOperand();
 | |
| 
 | |
|       // insertvalue y, (extractvalue y, n), n -> y
 | |
|       if (Agg == EV->getAggregateOperand())
 | |
|         return Agg;
 | |
|     }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// SimplifyPHINode - See if we can fold the given phi.  If not, returns null.
 | |
| static Value *SimplifyPHINode(PHINode *PN, const DominatorTree *DT) {
 | |
|   // If all of the PHI's incoming values are the same then replace the PHI node
 | |
|   // with the common value.
 | |
|   Value *CommonValue = 0;
 | |
|   bool HasUndefInput = false;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = PN->getIncomingValue(i);
 | |
|     // If the incoming value is the phi node itself, it can safely be skipped.
 | |
|     if (Incoming == PN) continue;
 | |
|     if (isa<UndefValue>(Incoming)) {
 | |
|       // Remember that we saw an undef value, but otherwise ignore them.
 | |
|       HasUndefInput = true;
 | |
|       continue;
 | |
|     }
 | |
|     if (CommonValue && Incoming != CommonValue)
 | |
|       return 0;  // Not the same, bail out.
 | |
|     CommonValue = Incoming;
 | |
|   }
 | |
| 
 | |
|   // If CommonValue is null then all of the incoming values were either undef or
 | |
|   // equal to the phi node itself.
 | |
|   if (!CommonValue)
 | |
|     return UndefValue::get(PN->getType());
 | |
| 
 | |
|   // If we have a PHI node like phi(X, undef, X), where X is defined by some
 | |
|   // instruction, we cannot return X as the result of the PHI node unless it
 | |
|   // dominates the PHI block.
 | |
|   if (HasUndefInput)
 | |
|     return ValueDominatesPHI(CommonValue, PN, DT) ? CommonValue : 0;
 | |
| 
 | |
|   return CommonValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| //=== Helper functions for higher up the class hierarchy.
 | |
| 
 | |
| /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
 | |
| /// fold the result.  If not, this returns null.
 | |
| static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                             const TargetData *TD, const DominatorTree *DT,
 | |
|                             unsigned MaxRecurse) {
 | |
|   switch (Opcode) {
 | |
|   case Instruction::Add:
 | |
|     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | |
|                            TD, DT, MaxRecurse);
 | |
|   case Instruction::Sub:
 | |
|     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | |
|                            TD, DT, MaxRecurse);
 | |
|   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::URem: return SimplifyURemInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::Shl:
 | |
|     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
 | |
|                            TD, DT, MaxRecurse);
 | |
|   case Instruction::LShr:
 | |
|     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
 | |
|   case Instruction::AShr:
 | |
|     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, TD, DT, MaxRecurse);
 | |
|   case Instruction::And: return SimplifyAndInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, TD, DT, MaxRecurse);
 | |
|   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, TD, DT, MaxRecurse);
 | |
|   default:
 | |
|     if (Constant *CLHS = dyn_cast<Constant>(LHS))
 | |
|       if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
 | |
|         Constant *COps[] = {CLHS, CRHS};
 | |
|         return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, TD);
 | |
|       }
 | |
| 
 | |
|     // If the operation is associative, try some generic simplifications.
 | |
|     if (Instruction::isAssociative(Opcode))
 | |
|       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, TD, DT,
 | |
|                                               MaxRecurse))
 | |
|         return V;
 | |
| 
 | |
|     // If the operation is with the result of a select instruction, check whether
 | |
|     // operating on either branch of the select always yields the same value.
 | |
|     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
 | |
|       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, TD, DT,
 | |
|                                            MaxRecurse))
 | |
|         return V;
 | |
| 
 | |
|     // If the operation is with the result of a phi instruction, check whether
 | |
|     // operating on all incoming values of the phi always yields the same value.
 | |
|     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
 | |
|       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, TD, DT, MaxRecurse))
 | |
|         return V;
 | |
| 
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
 | |
|                            const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyBinOp(Opcode, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyCmpInst - Given operands for a CmpInst, see if we can
 | |
| /// fold the result.
 | |
| static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                               const TargetData *TD, const DominatorTree *DT,
 | |
|                               unsigned MaxRecurse) {
 | |
|   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
 | |
|     return SimplifyICmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
 | |
|   return SimplifyFCmpInst(Predicate, LHS, RHS, TD, DT, MaxRecurse);
 | |
| }
 | |
| 
 | |
| Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
 | |
|                              const TargetData *TD, const DominatorTree *DT) {
 | |
|   return ::SimplifyCmpInst(Predicate, LHS, RHS, TD, DT, RecursionLimit);
 | |
| }
 | |
| 
 | |
| /// SimplifyInstruction - See if we can compute a simplified version of this
 | |
| /// instruction.  If not, this returns null.
 | |
| Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD,
 | |
|                                  const DominatorTree *DT) {
 | |
|   Value *Result;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default:
 | |
|     Result = ConstantFoldInstruction(I, TD);
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | |
|                              TD, DT);
 | |
|     break;
 | |
|   case Instruction::Sub:
 | |
|     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | |
|                              TD, DT);
 | |
|     break;
 | |
|   case Instruction::Mul:
 | |
|     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::SDiv:
 | |
|     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::FDiv:
 | |
|     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::SRem:
 | |
|     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::URem:
 | |
|     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::FRem:
 | |
|     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Shl:
 | |
|     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
 | |
|                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
 | |
|                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
 | |
|                              TD, DT);
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               cast<BinaryOperator>(I)->isExact(),
 | |
|                               TD, DT);
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
 | |
|                               cast<BinaryOperator>(I)->isExact(),
 | |
|                               TD, DT);
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Or:
 | |
|     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Xor:
 | |
|     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
 | |
|                               I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::FCmp:
 | |
|     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
 | |
|                               I->getOperand(0), I->getOperand(1), TD, DT);
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
 | |
|                                 I->getOperand(2), TD, DT);
 | |
|     break;
 | |
|   case Instruction::GetElementPtr: {
 | |
|     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
 | |
|     Result = SimplifyGEPInst(Ops, TD, DT);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::InsertValue: {
 | |
|     InsertValueInst *IV = cast<InsertValueInst>(I);
 | |
|     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
 | |
|                                      IV->getInsertedValueOperand(),
 | |
|                                      IV->getIndices(), TD, DT);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI:
 | |
|     Result = SimplifyPHINode(cast<PHINode>(I), DT);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   /// If called on unreachable code, the above logic may report that the
 | |
|   /// instruction simplified to itself.  Make life easier for users by
 | |
|   /// detecting that case here, returning a safe value instead.
 | |
|   return Result == I ? UndefValue::get(I->getType()) : Result;
 | |
| }
 | |
| 
 | |
| /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then
 | |
| /// delete the From instruction.  In addition to a basic RAUW, this does a
 | |
| /// recursive simplification of the newly formed instructions.  This catches
 | |
| /// things where one simplification exposes other opportunities.  This only
 | |
| /// simplifies and deletes scalar operations, it does not change the CFG.
 | |
| ///
 | |
| void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To,
 | |
|                                      const TargetData *TD,
 | |
|                                      const DominatorTree *DT) {
 | |
|   assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!");
 | |
| 
 | |
|   // FromHandle/ToHandle - This keeps a WeakVH on the from/to values so that
 | |
|   // we can know if it gets deleted out from under us or replaced in a
 | |
|   // recursive simplification.
 | |
|   WeakVH FromHandle(From);
 | |
|   WeakVH ToHandle(To);
 | |
| 
 | |
|   while (!From->use_empty()) {
 | |
|     // Update the instruction to use the new value.
 | |
|     Use &TheUse = From->use_begin().getUse();
 | |
|     Instruction *User = cast<Instruction>(TheUse.getUser());
 | |
|     TheUse = To;
 | |
| 
 | |
|     // Check to see if the instruction can be folded due to the operand
 | |
|     // replacement.  For example changing (or X, Y) into (or X, -1) can replace
 | |
|     // the 'or' with -1.
 | |
|     Value *SimplifiedVal;
 | |
|     {
 | |
|       // Sanity check to make sure 'User' doesn't dangle across
 | |
|       // SimplifyInstruction.
 | |
|       AssertingVH<> UserHandle(User);
 | |
| 
 | |
|       SimplifiedVal = SimplifyInstruction(User, TD, DT);
 | |
|       if (SimplifiedVal == 0) continue;
 | |
|     }
 | |
| 
 | |
|     // Recursively simplify this user to the new value.
 | |
|     ReplaceAndSimplifyAllUses(User, SimplifiedVal, TD, DT);
 | |
|     From = dyn_cast_or_null<Instruction>((Value*)FromHandle);
 | |
|     To = ToHandle;
 | |
| 
 | |
|     assert(ToHandle && "To value deleted by recursive simplification?");
 | |
| 
 | |
|     // If the recursive simplification ended up revisiting and deleting
 | |
|     // 'From' then we're done.
 | |
|     if (From == 0)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // If 'From' has value handles referring to it, do a real RAUW to update them.
 | |
|   From->replaceAllUsesWith(To);
 | |
| 
 | |
|   From->eraseFromParent();
 | |
| }
 |