mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137662 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			241 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Loads.cpp - Local load analysis ------------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines simple local analyses for load instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Operator.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// AreEquivalentAddressValues - Test if A and B will obviously have the same
 | |
| /// value. This includes recognizing that %t0 and %t1 will have the same
 | |
| /// value in code like this:
 | |
| ///   %t0 = getelementptr \@a, 0, 3
 | |
| ///   store i32 0, i32* %t0
 | |
| ///   %t1 = getelementptr \@a, 0, 3
 | |
| ///   %t2 = load i32* %t1
 | |
| ///
 | |
| static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
 | |
|   // Test if the values are trivially equivalent.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   // Test if the values come from identical arithmetic instructions.
 | |
|   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
 | |
|   // this function is only used when one address use dominates the
 | |
|   // other, which means that they'll always either have the same
 | |
|   // value or one of them will have an undefined value.
 | |
|   if (isa<BinaryOperator>(A) || isa<CastInst>(A) ||
 | |
|       isa<PHINode>(A) || isa<GetElementPtrInst>(A))
 | |
|     if (const Instruction *BI = dyn_cast<Instruction>(B))
 | |
|       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | |
|         return true;
 | |
| 
 | |
|   // Otherwise they may not be equivalent.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// getUnderlyingObjectWithOffset - Strip off up to MaxLookup GEPs and
 | |
| /// bitcasts to get back to the underlying object being addressed, keeping
 | |
| /// track of the offset in bytes from the GEPs relative to the result.
 | |
| /// This is closely related to GetUnderlyingObject but is located
 | |
| /// here to avoid making VMCore depend on TargetData.
 | |
| static Value *getUnderlyingObjectWithOffset(Value *V, const TargetData *TD,
 | |
|                                             uint64_t &ByteOffset,
 | |
|                                             unsigned MaxLookup = 6) {
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return V;
 | |
|   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
 | |
|     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       if (!GEP->hasAllConstantIndices())
 | |
|         return V;
 | |
|       SmallVector<Value*, 8> Indices(GEP->op_begin() + 1, GEP->op_end());
 | |
|       ByteOffset += TD->getIndexedOffset(GEP->getPointerOperandType(),
 | |
|                                          Indices);
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (GA->mayBeOverridden())
 | |
|         return V;
 | |
|       V = GA->getAliasee();
 | |
|     } else {
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   }
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// isSafeToLoadUnconditionally - Return true if we know that executing a load
 | |
| /// from this value cannot trap.  If it is not obviously safe to load from the
 | |
| /// specified pointer, we do a quick local scan of the basic block containing
 | |
| /// ScanFrom, to determine if the address is already accessed.
 | |
| bool llvm::isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom,
 | |
|                                        unsigned Align, const TargetData *TD) {
 | |
|   uint64_t ByteOffset = 0;
 | |
|   Value *Base = V;
 | |
|   if (TD)
 | |
|     Base = getUnderlyingObjectWithOffset(V, TD, ByteOffset);
 | |
| 
 | |
|   Type *BaseType = 0;
 | |
|   unsigned BaseAlign = 0;
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
 | |
|     // An alloca is safe to load from as load as it is suitably aligned.
 | |
|     BaseType = AI->getAllocatedType();
 | |
|     BaseAlign = AI->getAlignment();
 | |
|   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(Base)) {
 | |
|     // Global variables are safe to load from but their size cannot be
 | |
|     // guaranteed if they are overridden.
 | |
|     if (!isa<GlobalAlias>(GV) && !GV->mayBeOverridden()) {
 | |
|       BaseType = GV->getType()->getElementType();
 | |
|       BaseAlign = GV->getAlignment();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (BaseType && BaseType->isSized()) {
 | |
|     if (TD && BaseAlign == 0)
 | |
|       BaseAlign = TD->getPrefTypeAlignment(BaseType);
 | |
| 
 | |
|     if (Align <= BaseAlign) {
 | |
|       if (!TD)
 | |
|         return true; // Loading directly from an alloca or global is OK.
 | |
| 
 | |
|       // Check if the load is within the bounds of the underlying object.
 | |
|       PointerType *AddrTy = cast<PointerType>(V->getType());
 | |
|       uint64_t LoadSize = TD->getTypeStoreSize(AddrTy->getElementType());
 | |
|       if (ByteOffset + LoadSize <= TD->getTypeAllocSize(BaseType) &&
 | |
|           (Align == 0 || (ByteOffset % Align) == 0))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, be a little bit aggressive by scanning the local block where we
 | |
|   // want to check to see if the pointer is already being loaded or stored
 | |
|   // from/to.  If so, the previous load or store would have already trapped,
 | |
|   // so there is no harm doing an extra load (also, CSE will later eliminate
 | |
|   // the load entirely).
 | |
|   BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
 | |
| 
 | |
|   while (BBI != E) {
 | |
|     --BBI;
 | |
| 
 | |
|     // If we see a free or a call which may write to memory (i.e. which might do
 | |
|     // a free) the pointer could be marked invalid.
 | |
|     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
 | |
|         !isa<DbgInfoIntrinsic>(BBI))
 | |
|       return false;
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       if (AreEquivalentAddressValues(LI->getOperand(0), V)) return true;
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|       if (AreEquivalentAddressValues(SI->getOperand(1), V)) return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// FindAvailableLoadedValue - Scan the ScanBB block backwards (starting at the
 | |
| /// instruction before ScanFrom) checking to see if we have the value at the
 | |
| /// memory address *Ptr locally available within a small number of instructions.
 | |
| /// If the value is available, return it.
 | |
| ///
 | |
| /// If not, return the iterator for the last validated instruction that the 
 | |
| /// value would be live through.  If we scanned the entire block and didn't find
 | |
| /// something that invalidates *Ptr or provides it, ScanFrom would be left at
 | |
| /// begin() and this returns null.  ScanFrom could also be left 
 | |
| ///
 | |
| /// MaxInstsToScan specifies the maximum instructions to scan in the block.  If
 | |
| /// it is set to 0, it will scan the whole block. You can also optionally
 | |
| /// specify an alias analysis implementation, which makes this more precise.
 | |
| Value *llvm::FindAvailableLoadedValue(Value *Ptr, BasicBlock *ScanBB,
 | |
|                                       BasicBlock::iterator &ScanFrom,
 | |
|                                       unsigned MaxInstsToScan,
 | |
|                                       AliasAnalysis *AA) {
 | |
|   if (MaxInstsToScan == 0) MaxInstsToScan = ~0U;
 | |
| 
 | |
|   // If we're using alias analysis to disambiguate get the size of *Ptr.
 | |
|   uint64_t AccessSize = 0;
 | |
|   if (AA) {
 | |
|     Type *AccessTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|     AccessSize = AA->getTypeStoreSize(AccessTy);
 | |
|   }
 | |
|   
 | |
|   while (ScanFrom != ScanBB->begin()) {
 | |
|     // We must ignore debug info directives when counting (otherwise they
 | |
|     // would affect codegen).
 | |
|     Instruction *Inst = --ScanFrom;
 | |
|     if (isa<DbgInfoIntrinsic>(Inst))
 | |
|       continue;
 | |
| 
 | |
|     // Restore ScanFrom to expected value in case next test succeeds
 | |
|     ScanFrom++;
 | |
|    
 | |
|     // Don't scan huge blocks.
 | |
|     if (MaxInstsToScan-- == 0) return 0;
 | |
|     
 | |
|     --ScanFrom;
 | |
|     // If this is a load of Ptr, the loaded value is available.
 | |
|     // (This is true even if the load is volatile or atomic, although
 | |
|     // those cases are unlikely.)
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|       if (AreEquivalentAddressValues(LI->getOperand(0), Ptr))
 | |
|         return LI;
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       // If this is a store through Ptr, the value is available!
 | |
|       // (This is true even if the store is volatile or atomic, although
 | |
|       // those cases are unlikely.)
 | |
|       if (AreEquivalentAddressValues(SI->getOperand(1), Ptr))
 | |
|         return SI->getOperand(0);
 | |
|       
 | |
|       // If Ptr is an alloca and this is a store to a different alloca, ignore
 | |
|       // the store.  This is a trivial form of alias analysis that is important
 | |
|       // for reg2mem'd code.
 | |
|       if ((isa<AllocaInst>(Ptr) || isa<GlobalVariable>(Ptr)) &&
 | |
|           (isa<AllocaInst>(SI->getOperand(1)) ||
 | |
|            isa<GlobalVariable>(SI->getOperand(1))))
 | |
|         continue;
 | |
|       
 | |
|       // If we have alias analysis and it says the store won't modify the loaded
 | |
|       // value, ignore the store.
 | |
|       if (AA &&
 | |
|           (AA->getModRefInfo(SI, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
 | |
|         continue;
 | |
|       
 | |
|       // Otherwise the store that may or may not alias the pointer, bail out.
 | |
|       ++ScanFrom;
 | |
|       return 0;
 | |
|     }
 | |
|     
 | |
|     // If this is some other instruction that may clobber Ptr, bail out.
 | |
|     if (Inst->mayWriteToMemory()) {
 | |
|       // If alias analysis claims that it really won't modify the load,
 | |
|       // ignore it.
 | |
|       if (AA &&
 | |
|           (AA->getModRefInfo(Inst, Ptr, AccessSize) & AliasAnalysis::Mod) == 0)
 | |
|         continue;
 | |
|       
 | |
|       // May modify the pointer, bail out.
 | |
|       ++ScanFrom;
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Got to the start of the block, we didn't find it, but are done for this
 | |
|   // block.
 | |
|   return 0;
 | |
| }
 |