mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@28102 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			850 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			850 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveInterval analysis pass which is used
 | |
| // by the Linear Scan Register allocator. This pass linearizes the
 | |
| // basic blocks of the function in DFS order and uses the
 | |
| // LiveVariables pass to conservatively compute live intervals for
 | |
| // each virtual and physical register.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "liveintervals"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineFrameInfo.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/SSARegMap.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
 | |
| 
 | |
|   Statistic<> numIntervals
 | |
|   ("liveintervals", "Number of original intervals");
 | |
| 
 | |
|   Statistic<> numIntervalsAfter
 | |
|   ("liveintervals", "Number of intervals after coalescing");
 | |
| 
 | |
|   Statistic<> numJoins
 | |
|   ("liveintervals", "Number of interval joins performed");
 | |
| 
 | |
|   Statistic<> numPeep
 | |
|   ("liveintervals", "Number of identity moves eliminated after coalescing");
 | |
| 
 | |
|   Statistic<> numFolded
 | |
|   ("liveintervals", "Number of loads/stores folded into instructions");
 | |
| 
 | |
|   cl::opt<bool>
 | |
|   EnableJoining("join-liveintervals",
 | |
|                 cl::desc("Join compatible live intervals"),
 | |
|                 cl::init(true));
 | |
| };
 | |
| 
 | |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
 | |
| {
 | |
|   AU.addRequired<LiveVariables>();
 | |
|   AU.addPreservedID(PHIEliminationID);
 | |
|   AU.addRequiredID(PHIEliminationID);
 | |
|   AU.addRequiredID(TwoAddressInstructionPassID);
 | |
|   AU.addRequired<LoopInfo>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::releaseMemory()
 | |
| {
 | |
|   mi2iMap_.clear();
 | |
|   i2miMap_.clear();
 | |
|   r2iMap_.clear();
 | |
|   r2rMap_.clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| /// runOnMachineFunction - Register allocate the whole function
 | |
| ///
 | |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   tm_ = &fn.getTarget();
 | |
|   mri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   lv_ = &getAnalysis<LiveVariables>();
 | |
|   allocatableRegs_ = mri_->getAllocatableSet(fn);
 | |
|   r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
 | |
| 
 | |
|   // If this function has any live ins, insert a dummy instruction at the
 | |
|   // beginning of the function that we will pretend "defines" the values.  This
 | |
|   // is to make the interval analysis simpler by providing a number.
 | |
|   if (fn.livein_begin() != fn.livein_end()) {
 | |
|     unsigned FirstLiveIn = fn.livein_begin()->first;
 | |
| 
 | |
|     // Find a reg class that contains this live in.
 | |
|     const TargetRegisterClass *RC = 0;
 | |
|     for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
 | |
|            E = mri_->regclass_end(); RCI != E; ++RCI)
 | |
|       if ((*RCI)->contains(FirstLiveIn)) {
 | |
|         RC = *RCI;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|     MachineInstr *OldFirstMI = fn.begin()->begin();
 | |
|     mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
 | |
|                        FirstLiveIn, FirstLiveIn, RC);
 | |
|     assert(OldFirstMI != fn.begin()->begin() &&
 | |
|            "copyRetToReg didn't insert anything!");
 | |
|   }
 | |
| 
 | |
|   // number MachineInstrs
 | |
|   unsigned miIndex = 0;
 | |
|   for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
 | |
|        mbb != mbbEnd; ++mbb)
 | |
|     for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
 | |
|          mi != miEnd; ++mi) {
 | |
|       bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
 | |
|       assert(inserted && "multiple MachineInstr -> index mappings");
 | |
|       i2miMap_.push_back(mi);
 | |
|       miIndex += InstrSlots::NUM;
 | |
|     }
 | |
| 
 | |
|   // Note intervals due to live-in values.
 | |
|   if (fn.livein_begin() != fn.livein_end()) {
 | |
|     MachineBasicBlock *Entry = fn.begin();
 | |
|     for (MachineFunction::livein_iterator I = fn.livein_begin(),
 | |
|            E = fn.livein_end(); I != E; ++I) {
 | |
|       handlePhysicalRegisterDef(Entry, Entry->begin(),
 | |
|                                 getOrCreateInterval(I->first), 0, 0, true);
 | |
|       for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
 | |
|         handlePhysicalRegisterDef(Entry, Entry->begin(),
 | |
|                                   getOrCreateInterval(*AS), 0, 0, true);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   computeIntervals();
 | |
| 
 | |
|   numIntervals += getNumIntervals();
 | |
| 
 | |
|   DEBUG(std::cerr << "********** INTERVALS **********\n";
 | |
|         for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|           I->second.print(std::cerr, mri_);
 | |
|           std::cerr << "\n";
 | |
|         });
 | |
| 
 | |
|   // join intervals if requested
 | |
|   if (EnableJoining) joinIntervals();
 | |
| 
 | |
|   numIntervalsAfter += getNumIntervals();
 | |
| 
 | |
|   // perform a final pass over the instructions and compute spill
 | |
|   // weights, coalesce virtual registers and remove identity moves
 | |
|   const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
 | |
| 
 | |
|   for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     MachineBasicBlock* mbb = mbbi;
 | |
|     unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
 | |
| 
 | |
|     for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
 | |
|          mii != mie; ) {
 | |
|       // if the move will be an identity move delete it
 | |
|       unsigned srcReg, dstReg, RegRep;
 | |
|       if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
 | |
|           (RegRep = rep(srcReg)) == rep(dstReg)) {
 | |
|         // remove from def list
 | |
|         LiveInterval &interval = getOrCreateInterval(RegRep);
 | |
|         // remove index -> MachineInstr and
 | |
|         // MachineInstr -> index mappings
 | |
|         Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
 | |
|         if (mi2i != mi2iMap_.end()) {
 | |
|           i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
 | |
|           mi2iMap_.erase(mi2i);
 | |
|         }
 | |
|         mii = mbbi->erase(mii);
 | |
|         ++numPeep;
 | |
|       }
 | |
|       else {
 | |
|         for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
 | |
|           const MachineOperand& mop = mii->getOperand(i);
 | |
|           if (mop.isRegister() && mop.getReg() &&
 | |
|               MRegisterInfo::isVirtualRegister(mop.getReg())) {
 | |
|             // replace register with representative register
 | |
|             unsigned reg = rep(mop.getReg());
 | |
|             mii->getOperand(i).setReg(reg);
 | |
| 
 | |
|             LiveInterval &RegInt = getInterval(reg);
 | |
|             RegInt.weight +=
 | |
|               (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
 | |
|           }
 | |
|         }
 | |
|         ++mii;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// print - Implement the dump method.
 | |
| void LiveIntervals::print(std::ostream &O, const Module* ) const {
 | |
|   O << "********** INTERVALS **********\n";
 | |
|   for (const_iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     I->second.print(std::cerr, mri_);
 | |
|     std::cerr << "\n";
 | |
|   }
 | |
| 
 | |
|   O << "********** MACHINEINSTRS **********\n";
 | |
|   for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
 | |
|        mbbi != mbbe; ++mbbi) {
 | |
|     O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
 | |
|     for (MachineBasicBlock::iterator mii = mbbi->begin(),
 | |
|            mie = mbbi->end(); mii != mie; ++mii) {
 | |
|       O << getInstructionIndex(mii) << '\t' << *mii;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::vector<LiveInterval*> LiveIntervals::
 | |
| addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
 | |
|   // since this is called after the analysis is done we don't know if
 | |
|   // LiveVariables is available
 | |
|   lv_ = getAnalysisToUpdate<LiveVariables>();
 | |
| 
 | |
|   std::vector<LiveInterval*> added;
 | |
| 
 | |
|   assert(li.weight != HUGE_VAL &&
 | |
|          "attempt to spill already spilled interval!");
 | |
| 
 | |
|   DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
 | |
|         << li << '\n');
 | |
| 
 | |
|   const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
 | |
| 
 | |
|   for (LiveInterval::Ranges::const_iterator
 | |
|          i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
 | |
|     unsigned index = getBaseIndex(i->start);
 | |
|     unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
 | |
|     for (; index != end; index += InstrSlots::NUM) {
 | |
|       // skip deleted instructions
 | |
|       while (index != end && !getInstructionFromIndex(index))
 | |
|         index += InstrSlots::NUM;
 | |
|       if (index == end) break;
 | |
| 
 | |
|       MachineInstr *MI = getInstructionFromIndex(index);
 | |
| 
 | |
|       // NewRegLiveIn - This instruction might have multiple uses of the spilled
 | |
|       // register.  In this case, for the first use, keep track of the new vreg
 | |
|       // that we reload it into.  If we see a second use, reuse this vreg
 | |
|       // instead of creating live ranges for two reloads.
 | |
|       unsigned NewRegLiveIn = 0;
 | |
| 
 | |
|     for_operand:
 | |
|       for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
 | |
|         MachineOperand& mop = MI->getOperand(i);
 | |
|         if (mop.isRegister() && mop.getReg() == li.reg) {
 | |
|           if (NewRegLiveIn && mop.isUse()) {
 | |
|             // We already emitted a reload of this value, reuse it for
 | |
|             // subsequent operands.
 | |
|             MI->getOperand(i).setReg(NewRegLiveIn);
 | |
|             DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
 | |
|                             << " for operand #" << i << '\n');
 | |
|           } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
 | |
|             // Attempt to fold the memory reference into the instruction.  If we
 | |
|             // can do this, we don't need to insert spill code.
 | |
|             if (lv_)
 | |
|               lv_->instructionChanged(MI, fmi);
 | |
|             MachineBasicBlock &MBB = *MI->getParent();
 | |
|             vrm.virtFolded(li.reg, MI, i, fmi);
 | |
|             mi2iMap_.erase(MI);
 | |
|             i2miMap_[index/InstrSlots::NUM] = fmi;
 | |
|             mi2iMap_[fmi] = index;
 | |
|             MI = MBB.insert(MBB.erase(MI), fmi);
 | |
|             ++numFolded;
 | |
|             // Folding the load/store can completely change the instruction in
 | |
|             // unpredictable ways, rescan it from the beginning.
 | |
|             goto for_operand;
 | |
|           } else {
 | |
|             // This is tricky. We need to add information in the interval about
 | |
|             // the spill code so we have to use our extra load/store slots.
 | |
|             //
 | |
|             // If we have a use we are going to have a load so we start the
 | |
|             // interval from the load slot onwards. Otherwise we start from the
 | |
|             // def slot.
 | |
|             unsigned start = (mop.isUse() ?
 | |
|                               getLoadIndex(index) :
 | |
|                               getDefIndex(index));
 | |
|             // If we have a def we are going to have a store right after it so
 | |
|             // we end the interval after the use of the next
 | |
|             // instruction. Otherwise we end after the use of this instruction.
 | |
|             unsigned end = 1 + (mop.isDef() ?
 | |
|                                 getStoreIndex(index) :
 | |
|                                 getUseIndex(index));
 | |
| 
 | |
|             // create a new register for this spill
 | |
|             NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
 | |
|             MI->getOperand(i).setReg(NewRegLiveIn);
 | |
|             vrm.grow();
 | |
|             vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
 | |
|             LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
 | |
|             assert(nI.empty());
 | |
| 
 | |
|             // the spill weight is now infinity as it
 | |
|             // cannot be spilled again
 | |
|             nI.weight = float(HUGE_VAL);
 | |
|             LiveRange LR(start, end, nI.getNextValue());
 | |
|             DEBUG(std::cerr << " +" << LR);
 | |
|             nI.addRange(LR);
 | |
|             added.push_back(&nI);
 | |
| 
 | |
|             // update live variables if it is available
 | |
|             if (lv_)
 | |
|               lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
 | |
|             
 | |
|             // If this is a live in, reuse it for subsequent live-ins.  If it's
 | |
|             // a def, we can't do this.
 | |
|             if (!mop.isUse()) NewRegLiveIn = 0;
 | |
|             
 | |
|             DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return added;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::printRegName(unsigned reg) const
 | |
| {
 | |
|   if (MRegisterInfo::isPhysicalRegister(reg))
 | |
|     std::cerr << mri_->getName(reg);
 | |
|   else
 | |
|     std::cerr << "%reg" << reg;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
 | |
|                                              MachineBasicBlock::iterator mi,
 | |
|                                              LiveInterval& interval)
 | |
| {
 | |
|   DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
 | |
|   LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | |
| 
 | |
|   // Virtual registers may be defined multiple times (due to phi
 | |
|   // elimination and 2-addr elimination).  Much of what we do only has to be
 | |
|   // done once for the vreg.  We use an empty interval to detect the first
 | |
|   // time we see a vreg.
 | |
|   if (interval.empty()) {
 | |
|     // Get the Idx of the defining instructions.
 | |
|     unsigned defIndex = getDefIndex(getInstructionIndex(mi));
 | |
| 
 | |
|     unsigned ValNum = interval.getNextValue();
 | |
|     assert(ValNum == 0 && "First value in interval is not 0?");
 | |
|     ValNum = 0;  // Clue in the optimizer.
 | |
| 
 | |
|     // Loop over all of the blocks that the vreg is defined in.  There are
 | |
|     // two cases we have to handle here.  The most common case is a vreg
 | |
|     // whose lifetime is contained within a basic block.  In this case there
 | |
|     // will be a single kill, in MBB, which comes after the definition.
 | |
|     if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | |
|       // FIXME: what about dead vars?
 | |
|       unsigned killIdx;
 | |
|       if (vi.Kills[0] != mi)
 | |
|         killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
 | |
|       else
 | |
|         killIdx = defIndex+1;
 | |
| 
 | |
|       // If the kill happens after the definition, we have an intra-block
 | |
|       // live range.
 | |
|       if (killIdx > defIndex) {
 | |
|         assert(vi.AliveBlocks.empty() &&
 | |
|                "Shouldn't be alive across any blocks!");
 | |
|         LiveRange LR(defIndex, killIdx, ValNum);
 | |
|         interval.addRange(LR);
 | |
|         DEBUG(std::cerr << " +" << LR << "\n");
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The other case we handle is when a virtual register lives to the end
 | |
|     // of the defining block, potentially live across some blocks, then is
 | |
|     // live into some number of blocks, but gets killed.  Start by adding a
 | |
|     // range that goes from this definition to the end of the defining block.
 | |
|     LiveRange NewLR(defIndex,
 | |
|                     getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | |
|                     ValNum);
 | |
|     DEBUG(std::cerr << " +" << NewLR);
 | |
|     interval.addRange(NewLR);
 | |
| 
 | |
|     // Iterate over all of the blocks that the variable is completely
 | |
|     // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | |
|     // live interval.
 | |
|     for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
 | |
|       if (vi.AliveBlocks[i]) {
 | |
|         MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
 | |
|         if (!mbb->empty()) {
 | |
|           LiveRange LR(getInstructionIndex(&mbb->front()),
 | |
|                        getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | |
|                        ValNum);
 | |
|           interval.addRange(LR);
 | |
|           DEBUG(std::cerr << " +" << LR);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, this virtual register is live from the start of any killing
 | |
|     // block to the 'use' slot of the killing instruction.
 | |
|     for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | |
|       MachineInstr *Kill = vi.Kills[i];
 | |
|       LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
 | |
|                    getUseIndex(getInstructionIndex(Kill))+1,
 | |
|                    ValNum);
 | |
|       interval.addRange(LR);
 | |
|       DEBUG(std::cerr << " +" << LR);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // If this is the second time we see a virtual register definition, it
 | |
|     // must be due to phi elimination or two addr elimination.  If this is
 | |
|     // the result of two address elimination, then the vreg is the first
 | |
|     // operand, and is a def-and-use.
 | |
|     if (mi->getOperand(0).isRegister() &&
 | |
|         mi->getOperand(0).getReg() == interval.reg &&
 | |
|         mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
 | |
|       // If this is a two-address definition, then we have already processed
 | |
|       // the live range.  The only problem is that we didn't realize there
 | |
|       // are actually two values in the live interval.  Because of this we
 | |
|       // need to take the LiveRegion that defines this register and split it
 | |
|       // into two values.
 | |
|       unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
 | |
|       unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
 | |
| 
 | |
|       // Delete the initial value, which should be short and continuous,
 | |
|       // becuase the 2-addr copy must be in the same MBB as the redef.
 | |
|       interval.removeRange(DefIndex, RedefIndex);
 | |
| 
 | |
|       LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
 | |
|       DEBUG(std::cerr << " replace range with " << LR);
 | |
|       interval.addRange(LR);
 | |
| 
 | |
|       // If this redefinition is dead, we need to add a dummy unit live
 | |
|       // range covering the def slot.
 | |
|       if (lv_->RegisterDefIsDead(mi, interval.reg))
 | |
|         interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
 | |
| 
 | |
|       DEBUG(std::cerr << "RESULT: " << interval);
 | |
| 
 | |
|     } else {
 | |
|       // Otherwise, this must be because of phi elimination.  If this is the
 | |
|       // first redefinition of the vreg that we have seen, go back and change
 | |
|       // the live range in the PHI block to be a different value number.
 | |
|       if (interval.containsOneValue()) {
 | |
|         assert(vi.Kills.size() == 1 &&
 | |
|                "PHI elimination vreg should have one kill, the PHI itself!");
 | |
| 
 | |
|         // Remove the old range that we now know has an incorrect number.
 | |
|         MachineInstr *Killer = vi.Kills[0];
 | |
|         unsigned Start = getInstructionIndex(Killer->getParent()->begin());
 | |
|         unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
 | |
|         DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
 | |
|               << interval << "\n");
 | |
|         interval.removeRange(Start, End);
 | |
|         DEBUG(std::cerr << "RESULT: " << interval);
 | |
| 
 | |
|         // Replace the interval with one of a NEW value number.
 | |
|         LiveRange LR(Start, End, interval.getNextValue());
 | |
|         DEBUG(std::cerr << " replace range with " << LR);
 | |
|         interval.addRange(LR);
 | |
|         DEBUG(std::cerr << "RESULT: " << interval);
 | |
|       }
 | |
| 
 | |
|       // In the case of PHI elimination, each variable definition is only
 | |
|       // live until the end of the block.  We've already taken care of the
 | |
|       // rest of the live range.
 | |
|       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
 | |
|       LiveRange LR(defIndex,
 | |
|                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
 | |
|                    interval.getNextValue());
 | |
|       interval.addRange(LR);
 | |
|       DEBUG(std::cerr << " +" << LR);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << '\n');
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | |
|                                               MachineBasicBlock::iterator mi,
 | |
|                                               LiveInterval& interval,
 | |
|                                               unsigned SrcReg, unsigned DestReg,
 | |
|                                               bool isLiveIn)
 | |
| {
 | |
|   // A physical register cannot be live across basic block, so its
 | |
|   // lifetime must end somewhere in its defining basic block.
 | |
|   DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
 | |
|   typedef LiveVariables::killed_iterator KillIter;
 | |
| 
 | |
|   unsigned baseIndex = getInstructionIndex(mi);
 | |
|   unsigned start = getDefIndex(baseIndex);
 | |
|   unsigned end = start;
 | |
| 
 | |
|   // If it is not used after definition, it is considered dead at
 | |
|   // the instruction defining it. Hence its interval is:
 | |
|   // [defSlot(def), defSlot(def)+1)
 | |
|   if (lv_->RegisterDefIsDead(mi, interval.reg)) {
 | |
|     DEBUG(std::cerr << " dead");
 | |
|     end = getDefIndex(start) + 1;
 | |
|     goto exit;
 | |
|   }
 | |
| 
 | |
|   // If it is not dead on definition, it must be killed by a
 | |
|   // subsequent instruction. Hence its interval is:
 | |
|   // [defSlot(def), useSlot(kill)+1)
 | |
|   while (++mi != MBB->end()) {
 | |
|     baseIndex += InstrSlots::NUM;
 | |
|     if (lv_->KillsRegister(mi, interval.reg)) {
 | |
|       DEBUG(std::cerr << " killed");
 | |
|       end = getUseIndex(baseIndex) + 1;
 | |
|       goto exit;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // The only case we should have a dead physreg here without a killing or
 | |
|   // instruction where we know it's dead is if it is live-in to the function
 | |
|   // and never used.
 | |
|   assert(isLiveIn && "physreg was not killed in defining block!");
 | |
|   end = getDefIndex(start) + 1;  // It's dead.
 | |
| 
 | |
| exit:
 | |
|   assert(start < end && "did not find end of interval?");
 | |
| 
 | |
|   // Finally, if this is defining a new range for the physical register, and if
 | |
|   // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
 | |
|   // the physreg, then the new fragment has the same value as the one copied
 | |
|   // into the vreg.
 | |
|   if (interval.reg == DestReg && !interval.empty() &&
 | |
|       MRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
| 
 | |
|     // Get the live interval for the vreg, see if it is defined by a copy.
 | |
|     LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
 | |
| 
 | |
|     if (SrcInterval.containsOneValue()) {
 | |
|       assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
 | |
| 
 | |
|       // Get the first index of the first range.  Though the interval may have
 | |
|       // multiple liveranges in it, we only check the first.
 | |
|       unsigned StartIdx = SrcInterval.begin()->start;
 | |
|       MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
 | |
| 
 | |
|       // Check to see if the vreg was defined by a copy instruction, and that
 | |
|       // the source was this physreg.
 | |
|       unsigned VRegSrcSrc, VRegSrcDest;
 | |
|       if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
 | |
|           SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
 | |
|         // Okay, now we know that the vreg was defined by a copy from this
 | |
|         // physreg.  Find the value number being copied and use it as the value
 | |
|         // for this range.
 | |
|         const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
 | |
|         if (DefRange) {
 | |
|           LiveRange LR(start, end, DefRange->ValId);
 | |
|           interval.addRange(LR);
 | |
|           DEBUG(std::cerr << " +" << LR << '\n');
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   LiveRange LR(start, end, interval.getNextValue());
 | |
|   interval.addRange(LR);
 | |
|   DEBUG(std::cerr << " +" << LR << '\n');
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator MI,
 | |
|                                       unsigned reg) {
 | |
|   if (MRegisterInfo::isVirtualRegister(reg))
 | |
|     handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
 | |
|   else if (allocatableRegs_[reg]) {
 | |
|     unsigned SrcReg = 0, DestReg = 0;
 | |
|     if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
 | |
|       SrcReg = DestReg = 0;
 | |
| 
 | |
|     handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
 | |
|                               SrcReg, DestReg);
 | |
|     for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
 | |
|       handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
 | |
|                                 SrcReg, DestReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// computeIntervals - computes the live intervals for virtual
 | |
| /// registers. for some ordering of the machine instructions [1,N] a
 | |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for
 | |
| /// which a variable is live
 | |
| void LiveIntervals::computeIntervals()
 | |
| {
 | |
|   DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
 | |
|   DEBUG(std::cerr << "********** Function: "
 | |
|         << ((Value*)mf_->getFunction())->getName() << '\n');
 | |
|   bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
 | |
| 
 | |
|   for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | |
|        I != E; ++I) {
 | |
|     MachineBasicBlock* mbb = I;
 | |
|     DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
 | |
| 
 | |
|     MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
 | |
|     if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
 | |
|     for (; mi != miEnd; ++mi) {
 | |
|       const TargetInstrDescriptor& tid =
 | |
|         tm_->getInstrInfo()->get(mi->getOpcode());
 | |
|       DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
 | |
| 
 | |
|       // handle implicit defs
 | |
|       for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
 | |
|         handleRegisterDef(mbb, mi, *id);
 | |
| 
 | |
|       // handle explicit defs
 | |
|       for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
 | |
|         MachineOperand& mop = mi->getOperand(i);
 | |
|         // handle register defs - build intervals
 | |
|         if (mop.isRegister() && mop.getReg() && mop.isDef())
 | |
|           handleRegisterDef(mbb, mi, mop.getReg());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// IntA is defined as a copy from IntB and we know it only has one value
 | |
| /// number.  If all of the places that IntA and IntB overlap are defined by
 | |
| /// copies from IntA to IntB, we know that these two ranges can really be
 | |
| /// merged if we adjust the value numbers.  If it is safe, adjust the value
 | |
| /// numbers and return true, allowing coalescing to occur.
 | |
| bool LiveIntervals::
 | |
| AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
 | |
|                                           LiveInterval &IntB,
 | |
|                                           unsigned CopyIdx) {
 | |
|   std::vector<LiveRange*> Ranges;
 | |
|   IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
 | |
|   
 | |
|   assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
 | |
|   
 | |
|   unsigned IntBRep = rep(IntB.reg);
 | |
|   
 | |
|   // Check to see if all of the overlaps (entries in Ranges) are defined by a
 | |
|   // copy from IntA.  If not, exit.
 | |
|   for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
 | |
|     unsigned Idx = Ranges[i]->start;
 | |
|     MachineInstr *MI = getInstructionFromIndex(Idx);
 | |
|     unsigned SrcReg, DestReg;
 | |
|     if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
 | |
|     
 | |
|     // If this copy isn't actually defining this range, it must be a live
 | |
|     // range spanning basic blocks or something.
 | |
|     if (rep(DestReg) != rep(IntA.reg)) return false;
 | |
|     
 | |
|     // Check to see if this is coming from IntB.  If not, bail out.
 | |
|     if (rep(SrcReg) != IntBRep) return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, we can change this one.  Get the IntB value number that IntA is
 | |
|   // copied from.
 | |
|   unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
 | |
|   
 | |
|   // Change all of the value numbers to the same as what we IntA is copied from.
 | |
|   for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
 | |
|     Ranges[i]->ValId = ActualValNo;
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
 | |
|   DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
 | |
| 
 | |
|   for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
 | |
|        mi != mie; ++mi) {
 | |
|     DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
 | |
| 
 | |
|     // we only join virtual registers with allocatable
 | |
|     // physical registers since we do not have liveness information
 | |
|     // on not allocatable physical registers
 | |
|     unsigned SrcReg, DestReg;
 | |
|     if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
 | |
|         (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
 | |
|         (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){
 | |
| 
 | |
|       // Get representative registers.
 | |
|       SrcReg = rep(SrcReg);
 | |
|       DestReg = rep(DestReg);
 | |
| 
 | |
|       // If they are already joined we continue.
 | |
|       if (SrcReg == DestReg)
 | |
|         continue;
 | |
| 
 | |
|       // If they are both physical registers, we cannot join them.
 | |
|       if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
 | |
|           MRegisterInfo::isPhysicalRegister(DestReg))
 | |
|         continue;
 | |
| 
 | |
|       // If they are not of the same register class, we cannot join them.
 | |
|       if (differingRegisterClasses(SrcReg, DestReg))
 | |
|         continue;
 | |
| 
 | |
|       LiveInterval &SrcInt = getInterval(SrcReg);
 | |
|       LiveInterval &DestInt = getInterval(DestReg);
 | |
|       assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
 | |
|              "Register mapping is horribly broken!");
 | |
| 
 | |
|       DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
 | |
|                       << ": ");
 | |
| 
 | |
|       // If two intervals contain a single value and are joined by a copy, it
 | |
|       // does not matter if the intervals overlap, they can always be joined.
 | |
|       bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();
 | |
| 
 | |
|       unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
 | |
|       
 | |
|       // If the intervals think that this is joinable, do so now.
 | |
|       if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
 | |
|         Joinable = true;
 | |
| 
 | |
|       // If DestInt is actually a copy from SrcInt (which we know) that is used
 | |
|       // to define another value of SrcInt, we can change the other range of
 | |
|       // SrcInt to be the value of the range that defines DestInt, allowing a
 | |
|       // coalesce.
 | |
|       if (!Joinable && DestInt.containsOneValue() &&
 | |
|           AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
 | |
|         Joinable = true;
 | |
|       
 | |
|       if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
 | |
|         DEBUG(std::cerr << "Interference!\n");
 | |
|       } else {
 | |
|         DestInt.join(SrcInt, MIDefIdx);
 | |
|         DEBUG(std::cerr << "Joined.  Result = " << DestInt << "\n");
 | |
| 
 | |
|         if (!MRegisterInfo::isPhysicalRegister(SrcReg)) {
 | |
|           r2iMap_.erase(SrcReg);
 | |
|           r2rMap_[SrcReg] = DestReg;
 | |
|         } else {
 | |
|           // Otherwise merge the data structures the other way so we don't lose
 | |
|           // the physreg information.
 | |
|           r2rMap_[DestReg] = SrcReg;
 | |
|           DestInt.reg = SrcReg;
 | |
|           SrcInt.swap(DestInt);
 | |
|           r2iMap_.erase(DestReg);
 | |
|         }
 | |
|         ++numJoins;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // DepthMBBCompare - Comparison predicate that sort first based on the loop
 | |
|   // depth of the basic block (the unsigned), and then on the MBB number.
 | |
|   struct DepthMBBCompare {
 | |
|     typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
 | |
|     bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
 | |
|       if (LHS.first > RHS.first) return true;   // Deeper loops first
 | |
|       return LHS.first == RHS.first &&
 | |
|         LHS.second->getNumber() < RHS.second->getNumber();
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| void LiveIntervals::joinIntervals() {
 | |
|   DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
 | |
| 
 | |
|   const LoopInfo &LI = getAnalysis<LoopInfo>();
 | |
|   if (LI.begin() == LI.end()) {
 | |
|     // If there are no loops in the function, join intervals in function order.
 | |
|     for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | |
|          I != E; ++I)
 | |
|       joinIntervalsInMachineBB(I);
 | |
|   } else {
 | |
|     // Otherwise, join intervals in inner loops before other intervals.
 | |
|     // Unfortunately we can't just iterate over loop hierarchy here because
 | |
|     // there may be more MBB's than BB's.  Collect MBB's for sorting.
 | |
|     std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
 | |
|     for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
 | |
|          I != E; ++I)
 | |
|       MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
 | |
| 
 | |
|     // Sort by loop depth.
 | |
|     std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
 | |
| 
 | |
|     // Finally, join intervals in loop nest order.
 | |
|     for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
 | |
|       joinIntervalsInMachineBB(MBBs[i].second);
 | |
|   }
 | |
| 
 | |
|   DEBUG(std::cerr << "*** Register mapping ***\n");
 | |
|   DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
 | |
|           if (r2rMap_[i])
 | |
|              std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
 | |
| }
 | |
| 
 | |
| /// Return true if the two specified registers belong to different register
 | |
| /// classes.  The registers may be either phys or virt regs.
 | |
| bool LiveIntervals::differingRegisterClasses(unsigned RegA,
 | |
|                                              unsigned RegB) const {
 | |
| 
 | |
|   // Get the register classes for the first reg.
 | |
|   if (MRegisterInfo::isPhysicalRegister(RegA)) {
 | |
|     assert(MRegisterInfo::isVirtualRegister(RegB) &&
 | |
|            "Shouldn't consider two physregs!");
 | |
|     return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
 | |
|   }
 | |
| 
 | |
|   // Compare against the regclass for the second reg.
 | |
|   const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
 | |
|   if (MRegisterInfo::isVirtualRegister(RegB))
 | |
|     return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
 | |
|   else
 | |
|     return !RegClass->contains(RegB);
 | |
| }
 | |
| 
 | |
| bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
 | |
|                                     const LiveInterval *RHS) const {
 | |
|   if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
 | |
|     if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
 | |
|       return false;   // vreg-vreg merge has no aliases!
 | |
|     std::swap(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
 | |
|          MRegisterInfo::isVirtualRegister(RHS->reg) &&
 | |
|          "first interval must describe a physical register");
 | |
| 
 | |
|   for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
 | |
|     if (RHS->overlaps(getInterval(*AS)))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LiveInterval LiveIntervals::createInterval(unsigned reg) {
 | |
|   float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
 | |
|                        (float)HUGE_VAL :0.0F;
 | |
|   return LiveInterval(reg, Weight);
 | |
| }
 |