mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@83849 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1092 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			1092 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 | |
|                       "http://www.w3.org/TR/html4/strict.dtd">
 | |
| 
 | |
| <html>
 | |
| <head>
 | |
|   <title>Kaleidoscope: Implementing code generation to LLVM IR</title>
 | |
|   <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
|   <meta name="author" content="Chris Lattner">
 | |
|   <meta name="author" content="Erick Tryzelaar">
 | |
|   <link rel="stylesheet" href="../llvm.css" type="text/css">
 | |
| </head>
 | |
| 
 | |
| <body>
 | |
| 
 | |
| <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div>
 | |
| 
 | |
| <ul>
 | |
| <li><a href="index.html">Up to Tutorial Index</a></li>
 | |
| <li>Chapter 3
 | |
|   <ol>
 | |
|     <li><a href="#intro">Chapter 3 Introduction</a></li>
 | |
|     <li><a href="#basics">Code Generation Setup</a></li>
 | |
|     <li><a href="#exprs">Expression Code Generation</a></li>
 | |
|     <li><a href="#funcs">Function Code Generation</a></li>
 | |
|     <li><a href="#driver">Driver Changes and Closing Thoughts</a></li>
 | |
|     <li><a href="#code">Full Code Listing</a></li>
 | |
|   </ol>
 | |
| </li>
 | |
| <li><a href="OCamlLangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer
 | |
| Support</li>
 | |
| </ul>
 | |
| 
 | |
| <div class="doc_author">
 | |
| 	<p>
 | |
| 		Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
 | |
| 		and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a>
 | |
| 	</p>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language
 | |
| with LLVM</a>" tutorial.  This chapter shows you how to transform the <a
 | |
| href="OCamlLangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into
 | |
| LLVM IR.  This will teach you a little bit about how LLVM does things, as well
 | |
| as demonstrate how easy it is to use.  It's much more work to build a lexer and
 | |
| parser than it is to generate LLVM IR code. :)
 | |
| </p>
 | |
| 
 | |
| <p><b>Please note</b>: the code in this chapter and later require LLVM 2.3 or
 | |
| LLVM SVN to work.  LLVM 2.2 and before will not work with it.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="basics">Code Generation Setup</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| In order to generate LLVM IR, we want some simple setup to get started.  First
 | |
| we define virtual code generation (codegen) methods in each AST class:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| let rec codegen_expr = function
 | |
|   | Ast.Number n -> ...
 | |
|   | Ast.Variable name -> ...
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The <tt>Codegen.codegen_expr</tt> function says to emit IR for that AST node
 | |
| along with all the things it depends on, and they all return an LLVM Value
 | |
| object.  "Value" is the class used to represent a "<a
 | |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
 | |
| Assignment (SSA)</a> register" or "SSA value" in LLVM.  The most distinct aspect
 | |
| of SSA values is that their value is computed as the related instruction
 | |
| executes, and it does not get a new value until (and if) the instruction
 | |
| re-executes.  In other words, there is no way to "change" an SSA value.  For
 | |
| more information, please read up on <a
 | |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single
 | |
| Assignment</a> - the concepts are really quite natural once you grok them.</p>
 | |
| 
 | |
| <p>The
 | |
| second thing we want is an "Error" exception like we used for the parser, which
 | |
| will be used to report errors found during code generation (for example, use of
 | |
| an undeclared parameter):</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| exception Error of string
 | |
| 
 | |
| let the_module = create_module (global_context ()) "my cool jit"
 | |
| let builder = builder (global_context ())
 | |
| let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The static variables will be used during code generation.
 | |
| <tt>Codgen.the_module</tt> is the LLVM construct that contains all of the
 | |
| functions and global variables in a chunk of code.  In many ways, it is the
 | |
| top-level structure that the LLVM IR uses to contain code.</p>
 | |
| 
 | |
| <p>The <tt>Codegen.builder</tt> object is a helper object that makes it easy to
 | |
| generate LLVM instructions.  Instances of the <a
 | |
| href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a>
 | |
| class keep track of the current place to insert instructions and has methods to
 | |
| create new instructions.</p>
 | |
| 
 | |
| <p>The <tt>Codegen.named_values</tt> map keeps track of which values are defined
 | |
| in the current scope and what their LLVM representation is.  (In other words, it
 | |
| is a symbol table for the code).  In this form of Kaleidoscope, the only things
 | |
| that can be referenced are function parameters.  As such, function parameters
 | |
| will be in this map when generating code for their function body.</p>
 | |
| 
 | |
| <p>
 | |
| With these basics in place, we can start talking about how to generate code for
 | |
| each expression.  Note that this assumes that the <tt>Codgen.builder</tt> has
 | |
| been set up to generate code <em>into</em> something.  For now, we'll assume
 | |
| that this has already been done, and we'll just use it to emit code.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="exprs">Expression Code Generation</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Generating LLVM code for expression nodes is very straightforward: less
 | |
| than 30 lines of commented code for all four of our expression nodes.  First
 | |
| we'll do numeric literals:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   | Ast.Number n -> const_float double_type n
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In the LLVM IR, numeric constants are represented with the
 | |
| <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt>
 | |
| internally (<tt>APFloat</tt> has the capability of holding floating point
 | |
| constants of <em>A</em>rbitrary <em>P</em>recision).  This code basically just
 | |
| creates and returns a <tt>ConstantFP</tt>.  Note that in the LLVM IR
 | |
| that constants are all uniqued together and shared.  For this reason, the API
 | |
| uses "the foo::get(..)" idiom instead of "new foo(..)" or "foo::Create(..)".</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   | Ast.Variable name ->
 | |
|       (try Hashtbl.find named_values name with
 | |
|         | Not_found -> raise (Error "unknown variable name"))
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>References to variables are also quite simple using LLVM.  In the simple
 | |
| version of Kaleidoscope, we assume that the variable has already been emitted
 | |
| somewhere and its value is available.  In practice, the only values that can be
 | |
| in the <tt>Codegen.named_values</tt> map are function arguments.  This code
 | |
| simply checks to see that the specified name is in the map (if not, an unknown
 | |
| variable is being referenced) and returns the value for it.  In future chapters,
 | |
| we'll add support for <a href="LangImpl5.html#for">loop induction variables</a>
 | |
| in the symbol table, and for <a href="LangImpl7.html#localvars">local
 | |
| variables</a>.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   | Ast.Binary (op, lhs, rhs) ->
 | |
|       let lhs_val = codegen_expr lhs in
 | |
|       let rhs_val = codegen_expr rhs in
 | |
|       begin
 | |
|         match op with
 | |
|         | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | |
|         | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | |
|         | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | |
|         | '<' ->
 | |
|             (* Convert bool 0/1 to double 0.0 or 1.0 *)
 | |
|             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 | |
|             build_uitofp i double_type "booltmp" builder
 | |
|         | _ -> raise (Error "invalid binary operator")
 | |
|       end
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Binary operators start to get more interesting.  The basic idea here is that
 | |
| we recursively emit code for the left-hand side of the expression, then the
 | |
| right-hand side, then we compute the result of the binary expression.  In this
 | |
| code, we do a simple switch on the opcode to create the right LLVM instruction.
 | |
| </p>
 | |
| 
 | |
| <p>In the example above, the LLVM builder class is starting to show its value.
 | |
| IRBuilder knows where to insert the newly created instruction, all you have to
 | |
| do is specify what instruction to create (e.g. with <tt>Llvm.create_add</tt>),
 | |
| which operands to use (<tt>lhs</tt> and <tt>rhs</tt> here) and optionally
 | |
| provide a name for the generated instruction.</p>
 | |
| 
 | |
| <p>One nice thing about LLVM is that the name is just a hint.  For instance, if
 | |
| the code above emits multiple "addtmp" variables, LLVM will automatically
 | |
| provide each one with an increasing, unique numeric suffix.  Local value names
 | |
| for instructions are purely optional, but it makes it much easier to read the
 | |
| IR dumps.</p>
 | |
| 
 | |
| <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by
 | |
| strict rules: for example, the Left and Right operators of
 | |
| an <a href="../LangRef.html#i_add">add instruction</a> must have the same
 | |
| type, and the result type of the add must match the operand types.  Because
 | |
| all values in Kaleidoscope are doubles, this makes for very simple code for add,
 | |
| sub and mul.</p>
 | |
| 
 | |
| <p>On the other hand, LLVM specifies that the <a
 | |
| href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value
 | |
| (a one bit integer).  The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value.  In order to get these semantics, we combine the fcmp instruction with
 | |
| a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>.  This instruction
 | |
| converts its input integer into a floating point value by treating the input
 | |
| as an unsigned value.  In contrast, if we used the <a
 | |
| href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<'
 | |
| operator would return 0.0 and -1.0, depending on the input value.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|   | Ast.Call (callee, args) ->
 | |
|       (* Look up the name in the module table. *)
 | |
|       let callee =
 | |
|         match lookup_function callee the_module with
 | |
|         | Some callee -> callee
 | |
|         | None -> raise (Error "unknown function referenced")
 | |
|       in
 | |
|       let params = params callee in
 | |
| 
 | |
|       (* If argument mismatch error. *)
 | |
|       if Array.length params == Array.length args then () else
 | |
|         raise (Error "incorrect # arguments passed");
 | |
|       let args = Array.map codegen_expr args in
 | |
|       build_call callee args "calltmp" builder
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Code generation for function calls is quite straightforward with LLVM.  The
 | |
| code above initially does a function name lookup in the LLVM Module's symbol
 | |
| table.  Recall that the LLVM Module is the container that holds all of the
 | |
| functions we are JIT'ing.  By giving each function the same name as what the
 | |
| user specifies, we can use the LLVM symbol table to resolve function names for
 | |
| us.</p>
 | |
| 
 | |
| <p>Once we have the function to call, we recursively codegen each argument that
 | |
| is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call
 | |
| instruction</a>.  Note that LLVM uses the native C calling conventions by
 | |
| default, allowing these calls to also call into standard library functions like
 | |
| "sin" and "cos", with no additional effort.</p>
 | |
| 
 | |
| <p>This wraps up our handling of the four basic expressions that we have so far
 | |
| in Kaleidoscope.  Feel free to go in and add some more.  For example, by
 | |
| browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find
 | |
| several other interesting instructions that are really easy to plug into our
 | |
| basic framework.</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="funcs">Function Code Generation</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>Code generation for prototypes and functions must handle a number of
 | |
| details, which make their code less beautiful than expression code
 | |
| generation, but allows us to illustrate some important points.  First, lets
 | |
| talk about code generation for prototypes: they are used both for function
 | |
| bodies and external function declarations.  The code starts with:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| let codegen_proto = function
 | |
|   | Ast.Prototype (name, args) ->
 | |
|       (* Make the function type: double(double,double) etc. *)
 | |
|       let doubles = Array.make (Array.length args) double_type in
 | |
|       let ft = function_type double_type doubles in
 | |
|       let f =
 | |
|         match lookup_function name the_module with
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This code packs a lot of power into a few lines.  Note first that this
 | |
| function returns a "Function*" instead of a "Value*" (although at the moment
 | |
| they both are modeled by <tt>llvalue</tt> in ocaml).  Because a "prototype"
 | |
| really talks about the external interface for a function (not the value computed
 | |
| by an expression), it makes sense for it to return the LLVM Function it
 | |
| corresponds to when codegen'd.</p>
 | |
| 
 | |
| <p>The call to <tt>Llvm.function_type</tt> creates the <tt>Llvm.llvalue</tt>
 | |
| that should be used for a given Prototype.  Since all function arguments in
 | |
| Kaleidoscope are of type double, the first line creates a vector of "N" LLVM
 | |
| double types.  It then uses the <tt>Llvm.function_type</tt> method to create a
 | |
| function type that takes "N" doubles as arguments, returns one double as a
 | |
| result, and that is not vararg (that uses the function
 | |
| <tt>Llvm.var_arg_function_type</tt>).  Note that Types in LLVM are uniqued just
 | |
| like <tt>Constant</tt>s are, so you don't "new" a type, you "get" it.</p>
 | |
| 
 | |
| <p>The final line above checks if the function has already been defined in
 | |
| <tt>Codegen.the_module</tt>. If not, we will create it.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|         | None -> declare_function name ft the_module
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This indicates the type and name to use, as well as which module to insert
 | |
| into.  By default we assume a function has
 | |
| <tt>Llvm.Linkage.ExternalLinkage</tt>.  "<a href="LangRef.html#linkage">external
 | |
| linkage</a>" means that the function may be defined outside the current module
 | |
| and/or that it is callable by functions outside the module.  The "<tt>name</tt>"
 | |
| passed in is the name the user specified: this name is registered in
 | |
| "<tt>Codegen.the_module</tt>"s symbol table, which is used by the function call
 | |
| code above.</p>
 | |
| 
 | |
| <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases:
 | |
| first, we want to allow 'extern'ing a function more than once, as long as the
 | |
| prototypes for the externs match (since all arguments have the same type, we
 | |
| just have to check that the number of arguments match).  Second, we want to
 | |
| allow 'extern'ing a function and then defining a body for it.  This is useful
 | |
| when defining mutually recursive functions.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|         (* If 'f' conflicted, there was already something named 'name'. If it
 | |
|          * has a body, don't allow redefinition or reextern. *)
 | |
|         | Some f ->
 | |
|             (* If 'f' already has a body, reject this. *)
 | |
|             if Array.length (basic_blocks f) == 0 then () else
 | |
|               raise (Error "redefinition of function");
 | |
| 
 | |
|             (* If 'f' took a different number of arguments, reject. *)
 | |
|             if Array.length (params f) == Array.length args then () else
 | |
|               raise (Error "redefinition of function with different # args");
 | |
|             f
 | |
|       in
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>In order to verify the logic above, we first check to see if the pre-existing
 | |
| function is "empty".  In this case, empty means that it has no basic blocks in
 | |
| it, which means it has no body.  If it has no body, it is a forward
 | |
| declaration.  Since we don't allow anything after a full definition of the
 | |
| function, the code rejects this case.  If the previous reference to a function
 | |
| was an 'extern', we simply verify that the number of arguments for that
 | |
| definition and this one match up.  If not, we emit an error.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|       (* Set names for all arguments. *)
 | |
|       Array.iteri (fun i a ->
 | |
|         let n = args.(i) in
 | |
|         set_value_name n a;
 | |
|         Hashtbl.add named_values n a;
 | |
|       ) (params f);
 | |
|       f
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The last bit of code for prototypes loops over all of the arguments in the
 | |
| function, setting the name of the LLVM Argument objects to match, and registering
 | |
| the arguments in the <tt>Codegen.named_values</tt> map for future use by the
 | |
| <tt>Ast.Variable</tt> variant.  Once this is set up, it returns the Function
 | |
| object to the caller.  Note that we don't check for conflicting
 | |
| argument names here (e.g. "extern foo(a b a)").  Doing so would be very
 | |
| straight-forward with the mechanics we have already used above.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| let codegen_func = function
 | |
|   | Ast.Function (proto, body) ->
 | |
|       Hashtbl.clear named_values;
 | |
|       let the_function = codegen_proto proto in
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Code generation for function definitions starts out simply enough: we just
 | |
| codegen the prototype (Proto) and verify that it is ok.  We then clear out the
 | |
| <tt>Codegen.named_values</tt> map to make sure that there isn't anything in it
 | |
| from the last function we compiled.  Code generation of the prototype ensures
 | |
| that there is an LLVM Function object that is ready to go for us.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|       (* Create a new basic block to start insertion into. *)
 | |
|       let bb = append_block "entry" the_function in
 | |
|       position_at_end bb builder;
 | |
| 
 | |
|       try
 | |
|         let ret_val = codegen_expr body in
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Now we get to the point where the <tt>Codegen.builder</tt> is set up.  The
 | |
| first line creates a new
 | |
| <a href="http://en.wikipedia.org/wiki/Basic_block">basic block</a> (named
 | |
| "entry"), which is inserted into <tt>the_function</tt>.  The second line then
 | |
| tells the builder that new instructions should be inserted into the end of the
 | |
| new basic block.  Basic blocks in LLVM are an important part of functions that
 | |
| define the <a
 | |
| href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>.
 | |
| Since we don't have any control flow, our functions will only contain one
 | |
| block at this point.  We'll fix this in <a href="OCamlLangImpl5.html">Chapter
 | |
| 5</a> :).</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|         let ret_val = codegen_expr body in
 | |
| 
 | |
|         (* Finish off the function. *)
 | |
|         let _ = build_ret ret_val builder in
 | |
| 
 | |
|         (* Validate the generated code, checking for consistency. *)
 | |
|         Llvm_analysis.assert_valid_function the_function;
 | |
| 
 | |
|         the_function
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Once the insertion point is set up, we call the <tt>Codegen.codegen_func</tt>
 | |
| method for the root expression of the function.  If no error happens, this emits
 | |
| code to compute the expression into the entry block and returns the value that
 | |
| was computed.  Assuming no error, we then create an LLVM <a
 | |
| href="../LangRef.html#i_ret">ret instruction</a>, which completes the function.
 | |
| Once the function is built, we call
 | |
| <tt>Llvm_analysis.assert_valid_function</tt>, which is provided by LLVM.  This
 | |
| function does a variety of consistency checks on the generated code, to
 | |
| determine if our compiler is doing everything right.  Using this is important:
 | |
| it can catch a lot of bugs.  Once the function is finished and validated, we
 | |
| return it.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
|       with e ->
 | |
|         delete_function the_function;
 | |
|         raise e
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>The only piece left here is handling of the error case.  For simplicity, we
 | |
| handle this by merely deleting the function we produced with the
 | |
| <tt>Llvm.delete_function</tt> method.  This allows the user to redefine a
 | |
| function that they incorrectly typed in before: if we didn't delete it, it
 | |
| would live in the symbol table, with a body, preventing future redefinition.</p>
 | |
| 
 | |
| <p>This code does have a bug, though.  Since the <tt>Codegen.codegen_proto</tt>
 | |
| can return a previously defined forward declaration, our code can actually delete
 | |
| a forward declaration.  There are a number of ways to fix this bug, see what you
 | |
| can come up with!  Here is a testcase:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| extern foo(a b);     # ok, defines foo.
 | |
| def foo(a b) c;      # error, 'c' is invalid.
 | |
| def bar() foo(1, 2); # error, unknown function "foo"
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="driver">Driver Changes and
 | |
| Closing Thoughts</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| For now, code generation to LLVM doesn't really get us much, except that we can
 | |
| look at the pretty IR calls.  The sample code inserts calls to Codegen into the
 | |
| "<tt>Toplevel.main_loop</tt>", and then dumps out the LLVM IR.  This gives a
 | |
| nice way to look at the LLVM IR for simple functions.  For example:
 | |
| </p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>4+5</b>;
 | |
| Read top-level expression:
 | |
| define double @""() {
 | |
| entry:
 | |
|         %addtmp = add double 4.000000e+00, 5.000000e+00
 | |
|         ret double %addtmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Note how the parser turns the top-level expression into anonymous functions
 | |
| for us.  This will be handy when we add <a href="OCamlLangImpl4.html#jit">JIT
 | |
| support</a> in the next chapter.  Also note that the code is very literally
 | |
| transcribed, no optimizations are being performed.  We will
 | |
| <a href="OCamlLangImpl4.html#trivialconstfold">add optimizations</a> explicitly
 | |
| in the next chapter.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b>
 | |
| Read function definition:
 | |
| define double @foo(double %a, double %b) {
 | |
| entry:
 | |
|         %multmp = mul double %a, %a
 | |
|         %multmp1 = mul double 2.000000e+00, %a
 | |
|         %multmp2 = mul double %multmp1, %b
 | |
|         %addtmp = add double %multmp, %multmp2
 | |
|         %multmp3 = mul double %b, %b
 | |
|         %addtmp4 = add double %addtmp, %multmp3
 | |
|         ret double %addtmp4
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This shows some simple arithmetic. Notice the striking similarity to the
 | |
| LLVM builder calls that we use to create the instructions.</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b>
 | |
| Read function definition:
 | |
| define double @bar(double %a) {
 | |
| entry:
 | |
|         %calltmp = call double @foo( double %a, double 4.000000e+00 )
 | |
|         %calltmp1 = call double @bar( double 3.133700e+04 )
 | |
|         %addtmp = add double %calltmp, %calltmp1
 | |
|         ret double %addtmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This shows some function calls.  Note that this function will take a long
 | |
| time to execute if you call it.  In the future we'll add conditional control
 | |
| flow to actually make recursion useful :).</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>extern cos(x);</b>
 | |
| Read extern:
 | |
| declare double @cos(double)
 | |
| 
 | |
| ready> <b>cos(1.234);</b>
 | |
| Read top-level expression:
 | |
| define double @""() {
 | |
| entry:
 | |
|         %calltmp = call double @cos( double 1.234000e+00 )
 | |
|         ret double %calltmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>This shows an extern for the libm "cos" function, and a call to it.</p>
 | |
| 
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| ready> <b>^D</b>
 | |
| ; ModuleID = 'my cool jit'
 | |
| 
 | |
| define double @""() {
 | |
| entry:
 | |
|         %addtmp = add double 4.000000e+00, 5.000000e+00
 | |
|         ret double %addtmp
 | |
| }
 | |
| 
 | |
| define double @foo(double %a, double %b) {
 | |
| entry:
 | |
|         %multmp = mul double %a, %a
 | |
|         %multmp1 = mul double 2.000000e+00, %a
 | |
|         %multmp2 = mul double %multmp1, %b
 | |
|         %addtmp = add double %multmp, %multmp2
 | |
|         %multmp3 = mul double %b, %b
 | |
|         %addtmp4 = add double %addtmp, %multmp3
 | |
|         ret double %addtmp4
 | |
| }
 | |
| 
 | |
| define double @bar(double %a) {
 | |
| entry:
 | |
|         %calltmp = call double @foo( double %a, double 4.000000e+00 )
 | |
|         %calltmp1 = call double @bar( double 3.133700e+04 )
 | |
|         %addtmp = add double %calltmp, %calltmp1
 | |
|         ret double %addtmp
 | |
| }
 | |
| 
 | |
| declare double @cos(double)
 | |
| 
 | |
| define double @""() {
 | |
| entry:
 | |
|         %calltmp = call double @cos( double 1.234000e+00 )
 | |
|         ret double %calltmp
 | |
| }
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>When you quit the current demo, it dumps out the IR for the entire module
 | |
| generated.  Here you can see the big picture with all the functions referencing
 | |
| each other.</p>
 | |
| 
 | |
| <p>This wraps up the third chapter of the Kaleidoscope tutorial.  Up next, we'll
 | |
| describe how to <a href="OCamlLangImpl4.html">add JIT codegen and optimizer
 | |
| support</a> to this so we can actually start running code!</p>
 | |
| 
 | |
| </div>
 | |
| 
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <div class="doc_section"><a name="code">Full Code Listing</a></div>
 | |
| <!-- *********************************************************************** -->
 | |
| 
 | |
| <div class="doc_text">
 | |
| 
 | |
| <p>
 | |
| Here is the complete code listing for our running example, enhanced with the
 | |
| LLVM code generator.    Because this uses the LLVM libraries, we need to link
 | |
| them in.  To do this, we use the <a
 | |
| href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform
 | |
| our makefile/command line about which options to use:</p>
 | |
| 
 | |
| <div class="doc_code">
 | |
| <pre>
 | |
| # Compile
 | |
| ocamlbuild toy.byte
 | |
| # Run
 | |
| ./toy.byte
 | |
| </pre>
 | |
| </div>
 | |
| 
 | |
| <p>Here is the code:</p>
 | |
| 
 | |
| <dl>
 | |
| <dt>_tags:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| <{lexer,parser}.ml>: use_camlp4, pp(camlp4of)
 | |
| <*.{byte,native}>: g++, use_llvm, use_llvm_analysis
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>myocamlbuild.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| open Ocamlbuild_plugin;;
 | |
| 
 | |
| ocaml_lib ~extern:true "llvm";;
 | |
| ocaml_lib ~extern:true "llvm_analysis";;
 | |
| 
 | |
| flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);;
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>token.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Lexer Tokens
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of
 | |
|  * these others for known things. *)
 | |
| type token =
 | |
|   (* commands *)
 | |
|   | Def | Extern
 | |
| 
 | |
|   (* primary *)
 | |
|   | Ident of string | Number of float
 | |
| 
 | |
|   (* unknown *)
 | |
|   | Kwd of char
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>lexer.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Lexer
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| let rec lex = parser
 | |
|   (* Skip any whitespace. *)
 | |
|   | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream
 | |
| 
 | |
|   (* identifier: [a-zA-Z][a-zA-Z0-9] *)
 | |
|   | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] ->
 | |
|       let buffer = Buffer.create 1 in
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_ident buffer stream
 | |
| 
 | |
|   (* number: [0-9.]+ *)
 | |
|   | [< ' ('0' .. '9' as c); stream >] ->
 | |
|       let buffer = Buffer.create 1 in
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_number buffer stream
 | |
| 
 | |
|   (* Comment until end of line. *)
 | |
|   | [< ' ('#'); stream >] ->
 | |
|       lex_comment stream
 | |
| 
 | |
|   (* Otherwise, just return the character as its ascii value. *)
 | |
|   | [< 'c; stream >] ->
 | |
|       [< 'Token.Kwd c; lex stream >]
 | |
| 
 | |
|   (* end of stream. *)
 | |
|   | [< >] -> [< >]
 | |
| 
 | |
| and lex_number buffer = parser
 | |
|   | [< ' ('0' .. '9' | '.' as c); stream >] ->
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_number buffer stream
 | |
|   | [< stream=lex >] ->
 | |
|       [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >]
 | |
| 
 | |
| and lex_ident buffer = parser
 | |
|   | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] ->
 | |
|       Buffer.add_char buffer c;
 | |
|       lex_ident buffer stream
 | |
|   | [< stream=lex >] ->
 | |
|       match Buffer.contents buffer with
 | |
|       | "def" -> [< 'Token.Def; stream >]
 | |
|       | "extern" -> [< 'Token.Extern; stream >]
 | |
|       | id -> [< 'Token.Ident id; stream >]
 | |
| 
 | |
| and lex_comment = parser
 | |
|   | [< ' ('\n'); stream=lex >] -> stream
 | |
|   | [< 'c; e=lex_comment >] -> e
 | |
|   | [< >] -> [< >]
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>ast.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Abstract Syntax Tree (aka Parse Tree)
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| (* expr - Base type for all expression nodes. *)
 | |
| type expr =
 | |
|   (* variant for numeric literals like "1.0". *)
 | |
|   | Number of float
 | |
| 
 | |
|   (* variant for referencing a variable, like "a". *)
 | |
|   | Variable of string
 | |
| 
 | |
|   (* variant for a binary operator. *)
 | |
|   | Binary of char * expr * expr
 | |
| 
 | |
|   (* variant for function calls. *)
 | |
|   | Call of string * expr array
 | |
| 
 | |
| (* proto - This type represents the "prototype" for a function, which captures
 | |
|  * its name, and its argument names (thus implicitly the number of arguments the
 | |
|  * function takes). *)
 | |
| type proto = Prototype of string * string array
 | |
| 
 | |
| (* func - This type represents a function definition itself. *)
 | |
| type func = Function of proto * expr
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>parser.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===---------------------------------------------------------------------===
 | |
|  * Parser
 | |
|  *===---------------------------------------------------------------------===*)
 | |
| 
 | |
| (* binop_precedence - This holds the precedence for each binary operator that is
 | |
|  * defined *)
 | |
| let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10
 | |
| 
 | |
| (* precedence - Get the precedence of the pending binary operator token. *)
 | |
| let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1
 | |
| 
 | |
| (* primary
 | |
|  *   ::= identifier
 | |
|  *   ::= numberexpr
 | |
|  *   ::= parenexpr *)
 | |
| let rec parse_primary = parser
 | |
|   (* numberexpr ::= number *)
 | |
|   | [< 'Token.Number n >] -> Ast.Number n
 | |
| 
 | |
|   (* parenexpr ::= '(' expression ')' *)
 | |
|   | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e
 | |
| 
 | |
|   (* identifierexpr
 | |
|    *   ::= identifier
 | |
|    *   ::= identifier '(' argumentexpr ')' *)
 | |
|   | [< 'Token.Ident id; stream >] ->
 | |
|       let rec parse_args accumulator = parser
 | |
|         | [< e=parse_expr; stream >] ->
 | |
|             begin parser
 | |
|               | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e
 | |
|               | [< >] -> e :: accumulator
 | |
|             end stream
 | |
|         | [< >] -> accumulator
 | |
|       in
 | |
|       let rec parse_ident id = parser
 | |
|         (* Call. *)
 | |
|         | [< 'Token.Kwd '(';
 | |
|              args=parse_args [];
 | |
|              'Token.Kwd ')' ?? "expected ')'">] ->
 | |
|             Ast.Call (id, Array.of_list (List.rev args))
 | |
| 
 | |
|         (* Simple variable ref. *)
 | |
|         | [< >] -> Ast.Variable id
 | |
|       in
 | |
|       parse_ident id stream
 | |
| 
 | |
|   | [< >] -> raise (Stream.Error "unknown token when expecting an expression.")
 | |
| 
 | |
| (* binoprhs
 | |
|  *   ::= ('+' primary)* *)
 | |
| and parse_bin_rhs expr_prec lhs stream =
 | |
|   match Stream.peek stream with
 | |
|   (* If this is a binop, find its precedence. *)
 | |
|   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c ->
 | |
|       let token_prec = precedence c in
 | |
| 
 | |
|       (* If this is a binop that binds at least as tightly as the current binop,
 | |
|        * consume it, otherwise we are done. *)
 | |
|       if token_prec < expr_prec then lhs else begin
 | |
|         (* Eat the binop. *)
 | |
|         Stream.junk stream;
 | |
| 
 | |
|         (* Parse the primary expression after the binary operator. *)
 | |
|         let rhs = parse_primary stream in
 | |
| 
 | |
|         (* Okay, we know this is a binop. *)
 | |
|         let rhs =
 | |
|           match Stream.peek stream with
 | |
|           | Some (Token.Kwd c2) ->
 | |
|               (* If BinOp binds less tightly with rhs than the operator after
 | |
|                * rhs, let the pending operator take rhs as its lhs. *)
 | |
|               let next_prec = precedence c2 in
 | |
|               if token_prec < next_prec
 | |
|               then parse_bin_rhs (token_prec + 1) rhs stream
 | |
|               else rhs
 | |
|           | _ -> rhs
 | |
|         in
 | |
| 
 | |
|         (* Merge lhs/rhs. *)
 | |
|         let lhs = Ast.Binary (c, lhs, rhs) in
 | |
|         parse_bin_rhs expr_prec lhs stream
 | |
|       end
 | |
|   | _ -> lhs
 | |
| 
 | |
| (* expression
 | |
|  *   ::= primary binoprhs *)
 | |
| and parse_expr = parser
 | |
|   | [< lhs=parse_primary; stream >] -> parse_bin_rhs 0 lhs stream
 | |
| 
 | |
| (* prototype
 | |
|  *   ::= id '(' id* ')' *)
 | |
| let parse_prototype =
 | |
|   let rec parse_args accumulator = parser
 | |
|     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e
 | |
|     | [< >] -> accumulator
 | |
|   in
 | |
| 
 | |
|   parser
 | |
|   | [< 'Token.Ident id;
 | |
|        'Token.Kwd '(' ?? "expected '(' in prototype";
 | |
|        args=parse_args [];
 | |
|        'Token.Kwd ')' ?? "expected ')' in prototype" >] ->
 | |
|       (* success. *)
 | |
|       Ast.Prototype (id, Array.of_list (List.rev args))
 | |
| 
 | |
|   | [< >] ->
 | |
|       raise (Stream.Error "expected function name in prototype")
 | |
| 
 | |
| (* definition ::= 'def' prototype expression *)
 | |
| let parse_definition = parser
 | |
|   | [< 'Token.Def; p=parse_prototype; e=parse_expr >] ->
 | |
|       Ast.Function (p, e)
 | |
| 
 | |
| (* toplevelexpr ::= expression *)
 | |
| let parse_toplevel = parser
 | |
|   | [< e=parse_expr >] ->
 | |
|       (* Make an anonymous proto. *)
 | |
|       Ast.Function (Ast.Prototype ("", [||]), e)
 | |
| 
 | |
| (*  external ::= 'extern' prototype *)
 | |
| let parse_extern = parser
 | |
|   | [< 'Token.Extern; e=parse_prototype >] -> e
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>codegen.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Code Generation
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| open Llvm
 | |
| 
 | |
| exception Error of string
 | |
| 
 | |
| let context = global_context ()
 | |
| let the_module = create_module context "my cool jit"
 | |
| let builder = builder context
 | |
| let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10
 | |
| 
 | |
| let rec codegen_expr = function
 | |
|   | Ast.Number n -> const_float double_type n
 | |
|   | Ast.Variable name ->
 | |
|       (try Hashtbl.find named_values name with
 | |
|         | Not_found -> raise (Error "unknown variable name"))
 | |
|   | Ast.Binary (op, lhs, rhs) ->
 | |
|       let lhs_val = codegen_expr lhs in
 | |
|       let rhs_val = codegen_expr rhs in
 | |
|       begin
 | |
|         match op with
 | |
|         | '+' -> build_add lhs_val rhs_val "addtmp" builder
 | |
|         | '-' -> build_sub lhs_val rhs_val "subtmp" builder
 | |
|         | '*' -> build_mul lhs_val rhs_val "multmp" builder
 | |
|         | '<' ->
 | |
|             (* Convert bool 0/1 to double 0.0 or 1.0 *)
 | |
|             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in
 | |
|             build_uitofp i double_type "booltmp" builder
 | |
|         | _ -> raise (Error "invalid binary operator")
 | |
|       end
 | |
|   | Ast.Call (callee, args) ->
 | |
|       (* Look up the name in the module table. *)
 | |
|       let callee =
 | |
|         match lookup_function callee the_module with
 | |
|         | Some callee -> callee
 | |
|         | None -> raise (Error "unknown function referenced")
 | |
|       in
 | |
|       let params = params callee in
 | |
| 
 | |
|       (* If argument mismatch error. *)
 | |
|       if Array.length params == Array.length args then () else
 | |
|         raise (Error "incorrect # arguments passed");
 | |
|       let args = Array.map codegen_expr args in
 | |
|       build_call callee args "calltmp" builder
 | |
| 
 | |
| let codegen_proto = function
 | |
|   | Ast.Prototype (name, args) ->
 | |
|       (* Make the function type: double(double,double) etc. *)
 | |
|       let doubles = Array.make (Array.length args) double_type in
 | |
|       let ft = function_type double_type doubles in
 | |
|       let f =
 | |
|         match lookup_function name the_module with
 | |
|         | None -> declare_function name ft the_module
 | |
| 
 | |
|         (* If 'f' conflicted, there was already something named 'name'. If it
 | |
|          * has a body, don't allow redefinition or reextern. *)
 | |
|         | Some f ->
 | |
|             (* If 'f' already has a body, reject this. *)
 | |
|             if block_begin f <> At_end f then
 | |
|               raise (Error "redefinition of function");
 | |
| 
 | |
|             (* If 'f' took a different number of arguments, reject. *)
 | |
|             if element_type (type_of f) <> ft then
 | |
|               raise (Error "redefinition of function with different # args");
 | |
|             f
 | |
|       in
 | |
| 
 | |
|       (* Set names for all arguments. *)
 | |
|       Array.iteri (fun i a ->
 | |
|         let n = args.(i) in
 | |
|         set_value_name n a;
 | |
|         Hashtbl.add named_values n a;
 | |
|       ) (params f);
 | |
|       f
 | |
| 
 | |
| let codegen_func = function
 | |
|   | Ast.Function (proto, body) ->
 | |
|       Hashtbl.clear named_values;
 | |
|       let the_function = codegen_proto proto in
 | |
| 
 | |
|       (* Create a new basic block to start insertion into. *)
 | |
|       let bb = append_block "entry" the_function in
 | |
|       position_at_end bb builder;
 | |
| 
 | |
|       try
 | |
|         let ret_val = codegen_expr body in
 | |
| 
 | |
|         (* Finish off the function. *)
 | |
|         let _ = build_ret ret_val builder in
 | |
| 
 | |
|         (* Validate the generated code, checking for consistency. *)
 | |
|         Llvm_analysis.assert_valid_function the_function;
 | |
| 
 | |
|         the_function
 | |
|       with e ->
 | |
|         delete_function the_function;
 | |
|         raise e
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>toplevel.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Top-Level parsing and JIT Driver
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| open Llvm
 | |
| 
 | |
| (* top ::= definition | external | expression | ';' *)
 | |
| let rec main_loop stream =
 | |
|   match Stream.peek stream with
 | |
|   | None -> ()
 | |
| 
 | |
|   (* ignore top-level semicolons. *)
 | |
|   | Some (Token.Kwd ';') ->
 | |
|       Stream.junk stream;
 | |
|       main_loop stream
 | |
| 
 | |
|   | Some token ->
 | |
|       begin
 | |
|         try match token with
 | |
|         | Token.Def ->
 | |
|             let e = Parser.parse_definition stream in
 | |
|             print_endline "parsed a function definition.";
 | |
|             dump_value (Codegen.codegen_func e);
 | |
|         | Token.Extern ->
 | |
|             let e = Parser.parse_extern stream in
 | |
|             print_endline "parsed an extern.";
 | |
|             dump_value (Codegen.codegen_proto e);
 | |
|         | _ ->
 | |
|             (* Evaluate a top-level expression into an anonymous function. *)
 | |
|             let e = Parser.parse_toplevel stream in
 | |
|             print_endline "parsed a top-level expr";
 | |
|             dump_value (Codegen.codegen_func e);
 | |
|         with Stream.Error s | Codegen.Error s ->
 | |
|           (* Skip token for error recovery. *)
 | |
|           Stream.junk stream;
 | |
|           print_endline s;
 | |
|       end;
 | |
|       print_string "ready> "; flush stdout;
 | |
|       main_loop stream
 | |
| </pre>
 | |
| </dd>
 | |
| 
 | |
| <dt>toy.ml:</dt>
 | |
| <dd class="doc_code">
 | |
| <pre>
 | |
| (*===----------------------------------------------------------------------===
 | |
|  * Main driver code.
 | |
|  *===----------------------------------------------------------------------===*)
 | |
| 
 | |
| open Llvm
 | |
| 
 | |
| let main () =
 | |
|   (* Install standard binary operators.
 | |
|    * 1 is the lowest precedence. *)
 | |
|   Hashtbl.add Parser.binop_precedence '<' 10;
 | |
|   Hashtbl.add Parser.binop_precedence '+' 20;
 | |
|   Hashtbl.add Parser.binop_precedence '-' 20;
 | |
|   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *)
 | |
| 
 | |
|   (* Prime the first token. *)
 | |
|   print_string "ready> "; flush stdout;
 | |
|   let stream = Lexer.lex (Stream.of_channel stdin) in
 | |
| 
 | |
|   (* Run the main "interpreter loop" now. *)
 | |
|   Toplevel.main_loop stream;
 | |
| 
 | |
|   (* Print out all the generated code. *)
 | |
|   dump_module Codegen.the_module
 | |
| ;;
 | |
| 
 | |
| main ()
 | |
| </pre>
 | |
| </dd>
 | |
| </dl>
 | |
| 
 | |
| <a href="OCamlLangImpl4.html">Next: Adding JIT and Optimizer Support</a>
 | |
| </div>
 | |
| 
 | |
| <!-- *********************************************************************** -->
 | |
| <hr>
 | |
| <address>
 | |
|   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
 | |
|   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
 | |
|   <a href="http://validator.w3.org/check/referer"><img
 | |
|   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
 | |
| 
 | |
|   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
 | |
|   <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br>
 | |
|   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
 | |
|   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $
 | |
| </address>
 | |
| </body>
 | |
| </html>
 |