mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	whatever the size of unsigned is), though this can't actually occur for any integer value of NUM_NODES. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136460 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			347 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			347 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "gtest/gtest.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
 | 
						|
template <unsigned N>
 | 
						|
class Graph {
 | 
						|
private:
 | 
						|
  // Disable copying.
 | 
						|
  Graph(const Graph&);
 | 
						|
  Graph& operator=(const Graph&);
 | 
						|
 | 
						|
  static void ValidateIndex(unsigned Idx) {
 | 
						|
    assert(Idx < N && "Invalid node index!");
 | 
						|
  }
 | 
						|
public:
 | 
						|
 | 
						|
  /// NodeSubset - A subset of the graph's nodes.
 | 
						|
  class NodeSubset {
 | 
						|
    typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
 | 
						|
    BitVector Elements;
 | 
						|
    NodeSubset(BitVector e) : Elements(e) {}
 | 
						|
  public:
 | 
						|
    /// NodeSubset - Default constructor, creates an empty subset.
 | 
						|
    NodeSubset() : Elements(0) {
 | 
						|
      assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
 | 
						|
    }
 | 
						|
    /// NodeSubset - Copy constructor.
 | 
						|
    NodeSubset(const NodeSubset &other) : Elements(other.Elements) {}
 | 
						|
 | 
						|
    /// Comparison operators.
 | 
						|
    bool operator==(const NodeSubset &other) const {
 | 
						|
      return other.Elements == this->Elements;
 | 
						|
    }
 | 
						|
    bool operator!=(const NodeSubset &other) const {
 | 
						|
      return !(*this == other);
 | 
						|
    }
 | 
						|
 | 
						|
    /// AddNode - Add the node with the given index to the subset.
 | 
						|
    void AddNode(unsigned Idx) {
 | 
						|
      ValidateIndex(Idx);
 | 
						|
      Elements |= 1U << Idx;
 | 
						|
    }
 | 
						|
 | 
						|
    /// DeleteNode - Remove the node with the given index from the subset.
 | 
						|
    void DeleteNode(unsigned Idx) {
 | 
						|
      ValidateIndex(Idx);
 | 
						|
      Elements &= ~(1U << Idx);
 | 
						|
    }
 | 
						|
 | 
						|
    /// count - Return true if the node with the given index is in the subset.
 | 
						|
    bool count(unsigned Idx) {
 | 
						|
      ValidateIndex(Idx);
 | 
						|
      return (Elements & (1U << Idx)) != 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// isEmpty - Return true if this is the empty set.
 | 
						|
    bool isEmpty() const {
 | 
						|
      return Elements == 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /// isSubsetOf - Return true if this set is a subset of the given one.
 | 
						|
    bool isSubsetOf(const NodeSubset &other) const {
 | 
						|
      return (this->Elements | other.Elements) == other.Elements;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Complement - Return the complement of this subset.
 | 
						|
    NodeSubset Complement() const {
 | 
						|
      return ~(unsigned)this->Elements & ((1U << N) - 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Join - Return the union of this subset and the given one.
 | 
						|
    NodeSubset Join(const NodeSubset &other) const {
 | 
						|
      return this->Elements | other.Elements;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Meet - Return the intersection of this subset and the given one.
 | 
						|
    NodeSubset Meet(const NodeSubset &other) const {
 | 
						|
      return this->Elements & other.Elements;
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// NodeType - Node index and set of children of the node.
 | 
						|
  typedef std::pair<unsigned, NodeSubset> NodeType;
 | 
						|
 | 
						|
private:
 | 
						|
  /// Nodes - The list of nodes for this graph.
 | 
						|
  NodeType Nodes[N];
 | 
						|
public:
 | 
						|
 | 
						|
  /// Graph - Default constructor.  Creates an empty graph.
 | 
						|
  Graph() {
 | 
						|
    // Let each node know which node it is.  This allows us to find the start of
 | 
						|
    // the Nodes array given a pointer to any element of it.
 | 
						|
    for (unsigned i = 0; i != N; ++i)
 | 
						|
      Nodes[i].first = i;
 | 
						|
  }
 | 
						|
 | 
						|
  /// AddEdge - Add an edge from the node with index FromIdx to the node with
 | 
						|
  /// index ToIdx.
 | 
						|
  void AddEdge(unsigned FromIdx, unsigned ToIdx) {
 | 
						|
    ValidateIndex(FromIdx);
 | 
						|
    Nodes[FromIdx].second.AddNode(ToIdx);
 | 
						|
  }
 | 
						|
 | 
						|
  /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
 | 
						|
  /// the node with index ToIdx.
 | 
						|
  void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
 | 
						|
    ValidateIndex(FromIdx);
 | 
						|
    Nodes[FromIdx].second.DeleteNode(ToIdx);
 | 
						|
  }
 | 
						|
 | 
						|
  /// AccessNode - Get a pointer to the node with the given index.
 | 
						|
  NodeType *AccessNode(unsigned Idx) const {
 | 
						|
    ValidateIndex(Idx);
 | 
						|
    // The constant cast is needed when working with GraphTraits, which insists
 | 
						|
    // on taking a constant Graph.
 | 
						|
    return const_cast<NodeType *>(&Nodes[Idx]);
 | 
						|
  }
 | 
						|
 | 
						|
  /// NodesReachableFrom - Return the set of all nodes reachable from the given
 | 
						|
  /// node.
 | 
						|
  NodeSubset NodesReachableFrom(unsigned Idx) const {
 | 
						|
    // This algorithm doesn't scale, but that doesn't matter given the small
 | 
						|
    // size of our graphs.
 | 
						|
    NodeSubset Reachable;
 | 
						|
 | 
						|
    // The initial node is reachable.
 | 
						|
    Reachable.AddNode(Idx);
 | 
						|
    do {
 | 
						|
      NodeSubset Previous(Reachable);
 | 
						|
 | 
						|
      // Add in all nodes which are children of a reachable node.
 | 
						|
      for (unsigned i = 0; i != N; ++i)
 | 
						|
        if (Previous.count(i))
 | 
						|
          Reachable = Reachable.Join(Nodes[i].second);
 | 
						|
 | 
						|
      // If nothing changed then we have found all reachable nodes.
 | 
						|
      if (Reachable == Previous)
 | 
						|
        return Reachable;
 | 
						|
 | 
						|
      // Rinse and repeat.
 | 
						|
    } while (1);
 | 
						|
  }
 | 
						|
 | 
						|
  /// ChildIterator - Visit all children of a node.
 | 
						|
  class ChildIterator {
 | 
						|
    friend class Graph;
 | 
						|
 | 
						|
    /// FirstNode - Pointer to first node in the graph's Nodes array.
 | 
						|
    NodeType *FirstNode;
 | 
						|
    /// Children - Set of nodes which are children of this one and that haven't
 | 
						|
    /// yet been visited.
 | 
						|
    NodeSubset Children;
 | 
						|
 | 
						|
    ChildIterator(); // Disable default constructor.
 | 
						|
  protected:
 | 
						|
    ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
 | 
						|
 | 
						|
  public:
 | 
						|
    /// ChildIterator - Copy constructor.
 | 
						|
    ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
 | 
						|
      Children(other.Children) {}
 | 
						|
 | 
						|
    /// Comparison operators.
 | 
						|
    bool operator==(const ChildIterator &other) const {
 | 
						|
      return other.FirstNode == this->FirstNode &&
 | 
						|
        other.Children == this->Children;
 | 
						|
    }
 | 
						|
    bool operator!=(const ChildIterator &other) const {
 | 
						|
      return !(*this == other);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Prefix increment operator.
 | 
						|
    ChildIterator& operator++() {
 | 
						|
      // Find the next unvisited child node.
 | 
						|
      for (unsigned i = 0; i != N; ++i)
 | 
						|
        if (Children.count(i)) {
 | 
						|
          // Remove that child - it has been visited.  This is the increment!
 | 
						|
          Children.DeleteNode(i);
 | 
						|
          return *this;
 | 
						|
        }
 | 
						|
      assert(false && "Incrementing end iterator!");
 | 
						|
      return *this; // Avoid compiler warnings.
 | 
						|
    }
 | 
						|
 | 
						|
    /// Postfix increment operator.
 | 
						|
    ChildIterator operator++(int) {
 | 
						|
      ChildIterator Result(*this);
 | 
						|
      ++(*this);
 | 
						|
      return Result;
 | 
						|
    }
 | 
						|
 | 
						|
    /// Dereference operator.
 | 
						|
    NodeType *operator*() {
 | 
						|
      // Find the next unvisited child node.
 | 
						|
      for (unsigned i = 0; i != N; ++i)
 | 
						|
        if (Children.count(i))
 | 
						|
          // Return a pointer to it.
 | 
						|
          return FirstNode + i;
 | 
						|
      assert(false && "Dereferencing end iterator!");
 | 
						|
      return 0; // Avoid compiler warning.
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// child_begin - Return an iterator pointing to the first child of the given
 | 
						|
  /// node.
 | 
						|
  static ChildIterator child_begin(NodeType *Parent) {
 | 
						|
    return ChildIterator(Parent - Parent->first, Parent->second);
 | 
						|
  }
 | 
						|
 | 
						|
  /// child_end - Return the end iterator for children of the given node.
 | 
						|
  static ChildIterator child_end(NodeType *Parent) {
 | 
						|
    return ChildIterator(Parent - Parent->first, NodeSubset());
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <unsigned N>
 | 
						|
struct GraphTraits<Graph<N> > {
 | 
						|
  typedef typename Graph<N>::NodeType NodeType;
 | 
						|
  typedef typename Graph<N>::ChildIterator ChildIteratorType;
 | 
						|
 | 
						|
 static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
 | 
						|
 static inline ChildIteratorType child_begin(NodeType *Node) {
 | 
						|
   return Graph<N>::child_begin(Node);
 | 
						|
 }
 | 
						|
 static inline ChildIteratorType child_end(NodeType *Node) {
 | 
						|
   return Graph<N>::child_end(Node);
 | 
						|
 }
 | 
						|
};
 | 
						|
 | 
						|
TEST(SCCIteratorTest, AllSmallGraphs) {
 | 
						|
  // Test SCC computation against every graph with NUM_NODES nodes or less.
 | 
						|
  // Since SCC considers every node to have an implicit self-edge, we only
 | 
						|
  // create graphs for which every node has a self-edge.
 | 
						|
#define NUM_NODES 4
 | 
						|
#define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
 | 
						|
  typedef Graph<NUM_NODES> GT;
 | 
						|
 | 
						|
  /// Enumerate all graphs using NUM_GRAPHS bits.
 | 
						|
  assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT && "Too many graphs!");
 | 
						|
  for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
 | 
						|
       ++GraphDescriptor) {
 | 
						|
    GT G;
 | 
						|
 | 
						|
    // Add edges as specified by the descriptor.
 | 
						|
    unsigned DescriptorCopy = GraphDescriptor;
 | 
						|
    for (unsigned i = 0; i != NUM_NODES; ++i)
 | 
						|
      for (unsigned j = 0; j != NUM_NODES; ++j) {
 | 
						|
        // Always add a self-edge.
 | 
						|
        if (i == j) {
 | 
						|
          G.AddEdge(i, j);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        if (DescriptorCopy & 1)
 | 
						|
          G.AddEdge(i, j);
 | 
						|
        DescriptorCopy >>= 1;
 | 
						|
      }
 | 
						|
 | 
						|
    // Test the SCC logic on this graph.
 | 
						|
 | 
						|
    /// NodesInSomeSCC - Those nodes which are in some SCC.
 | 
						|
    GT::NodeSubset NodesInSomeSCC;
 | 
						|
 | 
						|
    for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
 | 
						|
      std::vector<GT::NodeType*> &SCC = *I;
 | 
						|
 | 
						|
      // Get the nodes in this SCC as a NodeSubset rather than a vector.
 | 
						|
      GT::NodeSubset NodesInThisSCC;
 | 
						|
      for (unsigned i = 0, e = SCC.size(); i != e; ++i)
 | 
						|
        NodesInThisSCC.AddNode(SCC[i]->first);
 | 
						|
 | 
						|
      // There should be at least one node in every SCC.
 | 
						|
      EXPECT_FALSE(NodesInThisSCC.isEmpty());
 | 
						|
 | 
						|
      // Check that every node in the SCC is reachable from every other node in
 | 
						|
      // the SCC.
 | 
						|
      for (unsigned i = 0; i != NUM_NODES; ++i)
 | 
						|
        if (NodesInThisSCC.count(i))
 | 
						|
          EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
 | 
						|
 | 
						|
      // OK, now that we now that every node in the SCC is reachable from every
 | 
						|
      // other, this means that the set of nodes reachable from any node in the
 | 
						|
      // SCC is the same as the set of nodes reachable from every node in the
 | 
						|
      // SCC.  Check that for every node N not in the SCC but reachable from the
 | 
						|
      // SCC, no element of the SCC is reachable from N.
 | 
						|
      for (unsigned i = 0; i != NUM_NODES; ++i)
 | 
						|
        if (NodesInThisSCC.count(i)) {
 | 
						|
          GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
 | 
						|
          GT::NodeSubset ReachableButNotInSCC =
 | 
						|
            NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
 | 
						|
 | 
						|
          for (unsigned j = 0; j != NUM_NODES; ++j)
 | 
						|
            if (ReachableButNotInSCC.count(j))
 | 
						|
              EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
 | 
						|
 | 
						|
          // The result must be the same for all other nodes in this SCC, so
 | 
						|
          // there is no point in checking them.
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
      // This is indeed a SCC: a maximal set of nodes for which each node is
 | 
						|
      // reachable from every other.
 | 
						|
 | 
						|
      // Check that we didn't already see this SCC.
 | 
						|
      EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
 | 
						|
 | 
						|
      NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
 | 
						|
 | 
						|
      // Check a property that is specific to the LLVM SCC iterator and
 | 
						|
      // guaranteed by it: if a node in SCC S1 has an edge to a node in
 | 
						|
      // SCC S2, then S1 is visited *after* S2.  This means that the set
 | 
						|
      // of nodes reachable from this SCC must be contained either in the
 | 
						|
      // union of this SCC and all previously visited SCC's.
 | 
						|
 | 
						|
      for (unsigned i = 0; i != NUM_NODES; ++i)
 | 
						|
        if (NodesInThisSCC.count(i)) {
 | 
						|
          GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
 | 
						|
          EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
 | 
						|
          // The result must be the same for all other nodes in this SCC, so
 | 
						|
          // there is no point in checking them.
 | 
						|
          break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, check that the nodes in some SCC are exactly those that are
 | 
						|
    // reachable from the initial node.
 | 
						|
    EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
}
 |