mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147071 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			722 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			722 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ExecutionDepsFix.cpp - Fix execution dependecy issues ----*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the execution dependency fix pass.
 | |
| //
 | |
| // Some X86 SSE instructions like mov, and, or, xor are available in different
 | |
| // variants for different operand types. These variant instructions are
 | |
| // equivalent, but on Nehalem and newer cpus there is extra latency
 | |
| // transferring data between integer and floating point domains.  ARM cores
 | |
| // have similar issues when they are configured with both VFP and NEON
 | |
| // pipelines.
 | |
| //
 | |
| // This pass changes the variant instructions to minimize domain crossings.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "execution-fix"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/Support/Allocator.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// A DomainValue is a bit like LiveIntervals' ValNo, but it also keeps track
 | |
| /// of execution domains.
 | |
| ///
 | |
| /// An open DomainValue represents a set of instructions that can still switch
 | |
| /// execution domain. Multiple registers may refer to the same open
 | |
| /// DomainValue - they will eventually be collapsed to the same execution
 | |
| /// domain.
 | |
| ///
 | |
| /// A collapsed DomainValue represents a single register that has been forced
 | |
| /// into one of more execution domains. There is a separate collapsed
 | |
| /// DomainValue for each register, but it may contain multiple execution
 | |
| /// domains. A register value is initially created in a single execution
 | |
| /// domain, but if we were forced to pay the penalty of a domain crossing, we
 | |
| /// keep track of the fact that the register is now available in multiple
 | |
| /// domains.
 | |
| namespace {
 | |
| struct DomainValue {
 | |
|   // Basic reference counting.
 | |
|   unsigned Refs;
 | |
| 
 | |
|   // Bitmask of available domains. For an open DomainValue, it is the still
 | |
|   // possible domains for collapsing. For a collapsed DomainValue it is the
 | |
|   // domains where the register is available for free.
 | |
|   unsigned AvailableDomains;
 | |
| 
 | |
|   // Pointer to the next DomainValue in a chain.  When two DomainValues are
 | |
|   // merged, Victim.Next is set to point to Victor, so old DomainValue
 | |
|   // references can be updated by folowing the chain.
 | |
|   DomainValue *Next;
 | |
| 
 | |
|   // Twiddleable instructions using or defining these registers.
 | |
|   SmallVector<MachineInstr*, 8> Instrs;
 | |
| 
 | |
|   // A collapsed DomainValue has no instructions to twiddle - it simply keeps
 | |
|   // track of the domains where the registers are already available.
 | |
|   bool isCollapsed() const { return Instrs.empty(); }
 | |
| 
 | |
|   // Is domain available?
 | |
|   bool hasDomain(unsigned domain) const {
 | |
|     return AvailableDomains & (1u << domain);
 | |
|   }
 | |
| 
 | |
|   // Mark domain as available.
 | |
|   void addDomain(unsigned domain) {
 | |
|     AvailableDomains |= 1u << domain;
 | |
|   }
 | |
| 
 | |
|   // Restrict to a single domain available.
 | |
|   void setSingleDomain(unsigned domain) {
 | |
|     AvailableDomains = 1u << domain;
 | |
|   }
 | |
| 
 | |
|   // Return bitmask of domains that are available and in mask.
 | |
|   unsigned getCommonDomains(unsigned mask) const {
 | |
|     return AvailableDomains & mask;
 | |
|   }
 | |
| 
 | |
|   // First domain available.
 | |
|   unsigned getFirstDomain() const {
 | |
|     return CountTrailingZeros_32(AvailableDomains);
 | |
|   }
 | |
| 
 | |
|   DomainValue() : Refs(0) { clear(); }
 | |
| 
 | |
|   // Clear this DomainValue and point to next which has all its data.
 | |
|   void clear() {
 | |
|     AvailableDomains = 0;
 | |
|     Next = 0;
 | |
|     Instrs.clear();
 | |
|   }
 | |
| };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// LiveReg - Information about a live register.
 | |
| struct LiveReg {
 | |
|   /// Value currently in this register, or NULL when no value is being tracked.
 | |
|   /// This counts as a DomainValue reference.
 | |
|   DomainValue *Value;
 | |
| 
 | |
|   /// Instruction that defined this register, relative to the beginning of the
 | |
|   /// current basic block.  When a LiveReg is used to represent a live-out
 | |
|   /// register, this value is relative to the end of the basic block, so it
 | |
|   /// will be a negative number.
 | |
|   int Def;
 | |
| };
 | |
| } // anonynous namespace
 | |
| 
 | |
| namespace {
 | |
| class ExeDepsFix : public MachineFunctionPass {
 | |
|   static char ID;
 | |
|   SpecificBumpPtrAllocator<DomainValue> Allocator;
 | |
|   SmallVector<DomainValue*,16> Avail;
 | |
| 
 | |
|   const TargetRegisterClass *const RC;
 | |
|   MachineFunction *MF;
 | |
|   const TargetInstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
|   std::vector<int> AliasMap;
 | |
|   const unsigned NumRegs;
 | |
|   LiveReg *LiveRegs;
 | |
|   typedef DenseMap<MachineBasicBlock*, LiveReg*> LiveOutMap;
 | |
|   LiveOutMap LiveOuts;
 | |
| 
 | |
|   /// Current instruction number.
 | |
|   /// The first instruction in each basic block is 0.
 | |
|   int CurInstr;
 | |
| 
 | |
|   /// True when the current block has a predecessor that hasn't been visited
 | |
|   /// yet.
 | |
|   bool SeenUnknownBackEdge;
 | |
| 
 | |
| public:
 | |
|   ExeDepsFix(const TargetRegisterClass *rc)
 | |
|     : MachineFunctionPass(ID), RC(rc), NumRegs(RC->getNumRegs()) {}
 | |
| 
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.setPreservesAll();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|   virtual const char *getPassName() const {
 | |
|     return "Execution dependency fix";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Register mapping.
 | |
|   int regIndex(unsigned Reg);
 | |
| 
 | |
|   // DomainValue allocation.
 | |
|   DomainValue *alloc(int domain = -1);
 | |
|   DomainValue *retain(DomainValue *DV) {
 | |
|     if (DV) ++DV->Refs;
 | |
|     return DV;
 | |
|   }
 | |
|   void release(DomainValue*);
 | |
|   DomainValue *resolve(DomainValue*&);
 | |
| 
 | |
|   // LiveRegs manipulations.
 | |
|   void setLiveReg(int rx, DomainValue *DV);
 | |
|   void kill(int rx);
 | |
|   void force(int rx, unsigned domain);
 | |
|   void collapse(DomainValue *dv, unsigned domain);
 | |
|   bool merge(DomainValue *A, DomainValue *B);
 | |
| 
 | |
|   void enterBasicBlock(MachineBasicBlock*);
 | |
|   void leaveBasicBlock(MachineBasicBlock*);
 | |
|   void visitInstr(MachineInstr*);
 | |
|   void processDefs(MachineInstr*, bool Kill);
 | |
|   void visitSoftInstr(MachineInstr*, unsigned mask);
 | |
|   void visitHardInstr(MachineInstr*, unsigned domain);
 | |
| };
 | |
| }
 | |
| 
 | |
| char ExeDepsFix::ID = 0;
 | |
| 
 | |
| /// Translate TRI register number to an index into our smaller tables of
 | |
| /// interesting registers. Return -1 for boring registers.
 | |
| int ExeDepsFix::regIndex(unsigned Reg) {
 | |
|   assert(Reg < AliasMap.size() && "Invalid register");
 | |
|   return AliasMap[Reg];
 | |
| }
 | |
| 
 | |
| DomainValue *ExeDepsFix::alloc(int domain) {
 | |
|   DomainValue *dv = Avail.empty() ?
 | |
|                       new(Allocator.Allocate()) DomainValue :
 | |
|                       Avail.pop_back_val();
 | |
|   if (domain >= 0)
 | |
|     dv->addDomain(domain);
 | |
|   assert(dv->Refs == 0 && "Reference count wasn't cleared");
 | |
|   assert(!dv->Next && "Chained DomainValue shouldn't have been recycled");
 | |
|   return dv;
 | |
| }
 | |
| 
 | |
| /// release - Release a reference to DV.  When the last reference is released,
 | |
| /// collapse if needed.
 | |
| void ExeDepsFix::release(DomainValue *DV) {
 | |
|   while (DV) {
 | |
|     assert(DV->Refs && "Bad DomainValue");
 | |
|     if (--DV->Refs)
 | |
|       return;
 | |
| 
 | |
|     // There are no more DV references. Collapse any contained instructions.
 | |
|     if (DV->AvailableDomains && !DV->isCollapsed())
 | |
|       collapse(DV, DV->getFirstDomain());
 | |
| 
 | |
|     DomainValue *Next = DV->Next;
 | |
|     DV->clear();
 | |
|     Avail.push_back(DV);
 | |
|     // Also release the next DomainValue in the chain.
 | |
|     DV = Next;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// resolve - Follow the chain of dead DomainValues until a live DomainValue is
 | |
| /// reached.  Update the referenced pointer when necessary.
 | |
| DomainValue *ExeDepsFix::resolve(DomainValue *&DVRef) {
 | |
|   DomainValue *DV = DVRef;
 | |
|   if (!DV || !DV->Next)
 | |
|     return DV;
 | |
| 
 | |
|   // DV has a chain. Find the end.
 | |
|   do DV = DV->Next;
 | |
|   while (DV->Next);
 | |
| 
 | |
|   // Update DVRef to point to DV.
 | |
|   retain(DV);
 | |
|   release(DVRef);
 | |
|   DVRef = DV;
 | |
|   return DV;
 | |
| }
 | |
| 
 | |
| /// Set LiveRegs[rx] = dv, updating reference counts.
 | |
| void ExeDepsFix::setLiveReg(int rx, DomainValue *dv) {
 | |
|   assert(unsigned(rx) < NumRegs && "Invalid index");
 | |
|   assert(LiveRegs && "Must enter basic block first.");
 | |
| 
 | |
|   if (LiveRegs[rx].Value == dv)
 | |
|     return;
 | |
|   if (LiveRegs[rx].Value)
 | |
|     release(LiveRegs[rx].Value);
 | |
|   LiveRegs[rx].Value = retain(dv);
 | |
| }
 | |
| 
 | |
| // Kill register rx, recycle or collapse any DomainValue.
 | |
| void ExeDepsFix::kill(int rx) {
 | |
|   assert(unsigned(rx) < NumRegs && "Invalid index");
 | |
|   assert(LiveRegs && "Must enter basic block first.");
 | |
|   if (!LiveRegs[rx].Value)
 | |
|     return;
 | |
| 
 | |
|   release(LiveRegs[rx].Value);
 | |
|   LiveRegs[rx].Value = 0;
 | |
| }
 | |
| 
 | |
| /// Force register rx into domain.
 | |
| void ExeDepsFix::force(int rx, unsigned domain) {
 | |
|   assert(unsigned(rx) < NumRegs && "Invalid index");
 | |
|   assert(LiveRegs && "Must enter basic block first.");
 | |
|   if (DomainValue *dv = LiveRegs[rx].Value) {
 | |
|     if (dv->isCollapsed())
 | |
|       dv->addDomain(domain);
 | |
|     else if (dv->hasDomain(domain))
 | |
|       collapse(dv, domain);
 | |
|     else {
 | |
|       // This is an incompatible open DomainValue. Collapse it to whatever and
 | |
|       // force the new value into domain. This costs a domain crossing.
 | |
|       collapse(dv, dv->getFirstDomain());
 | |
|       assert(LiveRegs[rx].Value && "Not live after collapse?");
 | |
|       LiveRegs[rx].Value->addDomain(domain);
 | |
|     }
 | |
|   } else {
 | |
|     // Set up basic collapsed DomainValue.
 | |
|     setLiveReg(rx, alloc(domain));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Collapse open DomainValue into given domain. If there are multiple
 | |
| /// registers using dv, they each get a unique collapsed DomainValue.
 | |
| void ExeDepsFix::collapse(DomainValue *dv, unsigned domain) {
 | |
|   assert(dv->hasDomain(domain) && "Cannot collapse");
 | |
| 
 | |
|   // Collapse all the instructions.
 | |
|   while (!dv->Instrs.empty())
 | |
|     TII->setExecutionDomain(dv->Instrs.pop_back_val(), domain);
 | |
|   dv->setSingleDomain(domain);
 | |
| 
 | |
|   // If there are multiple users, give them new, unique DomainValues.
 | |
|   if (LiveRegs && dv->Refs > 1)
 | |
|     for (unsigned rx = 0; rx != NumRegs; ++rx)
 | |
|       if (LiveRegs[rx].Value == dv)
 | |
|         setLiveReg(rx, alloc(domain));
 | |
| }
 | |
| 
 | |
| /// Merge - All instructions and registers in B are moved to A, and B is
 | |
| /// released.
 | |
| bool ExeDepsFix::merge(DomainValue *A, DomainValue *B) {
 | |
|   assert(!A->isCollapsed() && "Cannot merge into collapsed");
 | |
|   assert(!B->isCollapsed() && "Cannot merge from collapsed");
 | |
|   if (A == B)
 | |
|     return true;
 | |
|   // Restrict to the domains that A and B have in common.
 | |
|   unsigned common = A->getCommonDomains(B->AvailableDomains);
 | |
|   if (!common)
 | |
|     return false;
 | |
|   A->AvailableDomains = common;
 | |
|   A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
 | |
| 
 | |
|   // Clear the old DomainValue so we won't try to swizzle instructions twice.
 | |
|   B->clear();
 | |
|   // All uses of B are referred to A.
 | |
|   B->Next = retain(A);
 | |
| 
 | |
|   for (unsigned rx = 0; rx != NumRegs; ++rx)
 | |
|     if (LiveRegs[rx].Value == B)
 | |
|       setLiveReg(rx, A);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // enterBasicBlock - Set up LiveRegs by merging predecessor live-out values.
 | |
| void ExeDepsFix::enterBasicBlock(MachineBasicBlock *MBB) {
 | |
|   // Detect back-edges from predecessors we haven't processed yet.
 | |
|   SeenUnknownBackEdge = false;
 | |
| 
 | |
|   // Reset instruction counter in each basic block.
 | |
|   CurInstr = 0;
 | |
| 
 | |
|   // Set up LiveRegs to represent registers entering MBB.
 | |
|   if (!LiveRegs)
 | |
|     LiveRegs = new LiveReg[NumRegs];
 | |
| 
 | |
|   // Default values are 'nothing happened a long time ago'.
 | |
|   for (unsigned rx = 0; rx != NumRegs; ++rx) {
 | |
|     LiveRegs[rx].Value = 0;
 | |
|     LiveRegs[rx].Def = -(1 << 20);
 | |
|   }
 | |
| 
 | |
|   // This is the entry block.
 | |
|   if (MBB->pred_empty()) {
 | |
|     for (MachineBasicBlock::livein_iterator i = MBB->livein_begin(),
 | |
|          e = MBB->livein_end(); i != e; ++i) {
 | |
|       int rx = regIndex(*i);
 | |
|       if (rx < 0)
 | |
|         continue;
 | |
|       // Treat function live-ins as if they were defined just before the first
 | |
|       // instruction.  Usually, function arguments are set up immediately
 | |
|       // before the call.
 | |
|       LiveRegs[rx].Def = -1;
 | |
|     }
 | |
|     DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": entry\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Try to coalesce live-out registers from predecessors.
 | |
|   for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
 | |
|        pe = MBB->pred_end(); pi != pe; ++pi) {
 | |
|     LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
 | |
|     if (fi == LiveOuts.end()) {
 | |
|       SeenUnknownBackEdge = true;
 | |
|       continue;
 | |
|     }
 | |
|     assert(fi->second && "Can't have NULL entries");
 | |
| 
 | |
|     for (unsigned rx = 0; rx != NumRegs; ++rx) {
 | |
|       // Use the most recent predecessor def for each register.
 | |
|       LiveRegs[rx].Def = std::max(LiveRegs[rx].Def, fi->second[rx].Def);
 | |
| 
 | |
|       DomainValue *pdv = resolve(fi->second[rx].Value);
 | |
|       if (!pdv)
 | |
|         continue;
 | |
|       if (!LiveRegs[rx].Value) {
 | |
|         setLiveReg(rx, pdv);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We have a live DomainValue from more than one predecessor.
 | |
|       if (LiveRegs[rx].Value->isCollapsed()) {
 | |
|         // We are already collapsed, but predecessor is not. Force him.
 | |
|         unsigned Domain = LiveRegs[rx].Value->getFirstDomain();
 | |
|         if (!pdv->isCollapsed() && pdv->hasDomain(Domain))
 | |
|           collapse(pdv, Domain);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Currently open, merge in predecessor.
 | |
|       if (!pdv->isCollapsed())
 | |
|         merge(LiveRegs[rx].Value, pdv);
 | |
|       else
 | |
|         force(rx, pdv->getFirstDomain());
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "BB#" << MBB->getNumber()
 | |
|         << (SeenUnknownBackEdge ? ": incomplete\n" : ": all preds known\n"));
 | |
| }
 | |
| 
 | |
| void ExeDepsFix::leaveBasicBlock(MachineBasicBlock *MBB) {
 | |
|   assert(LiveRegs && "Must enter basic block first.");
 | |
|   // Save live registers at end of MBB - used by enterBasicBlock().
 | |
|   // Also use LiveOuts as a visited set to detect back-edges.
 | |
|   bool First = LiveOuts.insert(std::make_pair(MBB, LiveRegs)).second;
 | |
| 
 | |
|   if (First) {
 | |
|     // LiveRegs was inserted in LiveOuts.  Adjust all defs to be relative to
 | |
|     // the end of this block instead of the beginning.
 | |
|     for (unsigned i = 0, e = NumRegs; i != e; ++i)
 | |
|       LiveRegs[i].Def -= CurInstr;
 | |
|   } else {
 | |
|     // Insertion failed, this must be the second pass.
 | |
|     // Release all the DomainValues instead of keeping them.
 | |
|     for (unsigned i = 0, e = NumRegs; i != e; ++i)
 | |
|       release(LiveRegs[i].Value);
 | |
|     delete[] LiveRegs;
 | |
|   }
 | |
|   LiveRegs = 0;
 | |
| }
 | |
| 
 | |
| void ExeDepsFix::visitInstr(MachineInstr *MI) {
 | |
|   if (MI->isDebugValue())
 | |
|     return;
 | |
| 
 | |
|   // Update instructions with explicit execution domains.
 | |
|   std::pair<uint16_t, uint16_t> DomP = TII->getExecutionDomain(MI);
 | |
|   if (DomP.first) {
 | |
|     if (DomP.second)
 | |
|       visitSoftInstr(MI, DomP.second);
 | |
|     else
 | |
|       visitHardInstr(MI, DomP.first);
 | |
|   }
 | |
| 
 | |
|   // Process defs to track register ages, and kill values clobbered by generic
 | |
|   // instructions.
 | |
|   processDefs(MI, !DomP.first);
 | |
| }
 | |
| 
 | |
| // Update def-ages for registers defined by MI.
 | |
| // If Kill is set, also kill off DomainValues clobbered by the defs.
 | |
| void ExeDepsFix::processDefs(MachineInstr *MI, bool Kill) {
 | |
|   assert(!MI->isDebugValue() && "Won't process debug values");
 | |
|   const MCInstrDesc &MCID = MI->getDesc();
 | |
|   for (unsigned i = 0,
 | |
|          e = MI->isVariadic() ? MI->getNumOperands() : MCID.getNumDefs();
 | |
|          i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (MO.isImplicit())
 | |
|       break;
 | |
|     if (MO.isUse())
 | |
|       continue;
 | |
|     int rx = regIndex(MO.getReg());
 | |
|     if (rx < 0)
 | |
|       continue;
 | |
| 
 | |
|     // This instruction explicitly defines rx.
 | |
|     DEBUG(dbgs() << TRI->getName(RC->getRegister(rx)) << ":\t" << CurInstr
 | |
|                  << '\t' << *MI);
 | |
| 
 | |
|     // How many instructions since rx was last written?
 | |
|     unsigned Clearance = CurInstr - LiveRegs[rx].Def;
 | |
|     LiveRegs[rx].Def = CurInstr;
 | |
| 
 | |
|     // Kill off domains redefined by generic instructions.
 | |
|     if (Kill)
 | |
|       kill(rx);
 | |
| 
 | |
|     // Verify clearance before partial register updates.
 | |
|     unsigned Pref = TII->getPartialRegUpdateClearance(MI, i, TRI);
 | |
|     if (!Pref)
 | |
|       continue;
 | |
|     DEBUG(dbgs() << "Clearance: " << Clearance << ", want " << Pref);
 | |
|     if (Pref > Clearance) {
 | |
|       DEBUG(dbgs() << ": Break dependency.\n");
 | |
|       TII->breakPartialRegDependency(MI, i, TRI);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // The current clearance seems OK, but we may be ignoring a def from a
 | |
|     // back-edge.
 | |
|     if (!SeenUnknownBackEdge || Pref <= unsigned(CurInstr)) {
 | |
|       DEBUG(dbgs() << ": OK.\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // A def from an unprocessed back-edge may make us break this dependency.
 | |
|     DEBUG(dbgs() << ": Wait for back-edge to resolve.\n");
 | |
|   }
 | |
| 
 | |
|   ++CurInstr;
 | |
| }
 | |
| 
 | |
| // A hard instruction only works in one domain. All input registers will be
 | |
| // forced into that domain.
 | |
| void ExeDepsFix::visitHardInstr(MachineInstr *mi, unsigned domain) {
 | |
|   // Collapse all uses.
 | |
|   for (unsigned i = mi->getDesc().getNumDefs(),
 | |
|                 e = mi->getDesc().getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &mo = mi->getOperand(i);
 | |
|     if (!mo.isReg()) continue;
 | |
|     int rx = regIndex(mo.getReg());
 | |
|     if (rx < 0) continue;
 | |
|     force(rx, domain);
 | |
|   }
 | |
| 
 | |
|   // Kill all defs and force them.
 | |
|   for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
 | |
|     MachineOperand &mo = mi->getOperand(i);
 | |
|     if (!mo.isReg()) continue;
 | |
|     int rx = regIndex(mo.getReg());
 | |
|     if (rx < 0) continue;
 | |
|     kill(rx);
 | |
|     force(rx, domain);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // A soft instruction can be changed to work in other domains given by mask.
 | |
| void ExeDepsFix::visitSoftInstr(MachineInstr *mi, unsigned mask) {
 | |
|   // Bitmask of available domains for this instruction after taking collapsed
 | |
|   // operands into account.
 | |
|   unsigned available = mask;
 | |
| 
 | |
|   // Scan the explicit use operands for incoming domains.
 | |
|   SmallVector<int, 4> used;
 | |
|   if (LiveRegs)
 | |
|     for (unsigned i = mi->getDesc().getNumDefs(),
 | |
|                   e = mi->getDesc().getNumOperands(); i != e; ++i) {
 | |
|       MachineOperand &mo = mi->getOperand(i);
 | |
|       if (!mo.isReg()) continue;
 | |
|       int rx = regIndex(mo.getReg());
 | |
|       if (rx < 0) continue;
 | |
|       if (DomainValue *dv = LiveRegs[rx].Value) {
 | |
|         // Bitmask of domains that dv and available have in common.
 | |
|         unsigned common = dv->getCommonDomains(available);
 | |
|         // Is it possible to use this collapsed register for free?
 | |
|         if (dv->isCollapsed()) {
 | |
|           // Restrict available domains to the ones in common with the operand.
 | |
|           // If there are no common domains, we must pay the cross-domain 
 | |
|           // penalty for this operand.
 | |
|           if (common) available = common;
 | |
|         } else if (common)
 | |
|           // Open DomainValue is compatible, save it for merging.
 | |
|           used.push_back(rx);
 | |
|         else
 | |
|           // Open DomainValue is not compatible with instruction. It is useless
 | |
|           // now.
 | |
|           kill(rx);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // If the collapsed operands force a single domain, propagate the collapse.
 | |
|   if (isPowerOf2_32(available)) {
 | |
|     unsigned domain = CountTrailingZeros_32(available);
 | |
|     TII->setExecutionDomain(mi, domain);
 | |
|     visitHardInstr(mi, domain);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Kill off any remaining uses that don't match available, and build a list of
 | |
|   // incoming DomainValues that we want to merge.
 | |
|   SmallVector<LiveReg, 4> Regs;
 | |
|   for (SmallVector<int, 4>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
 | |
|     int rx = *i;
 | |
|     const LiveReg &LR = LiveRegs[rx];
 | |
|     // This useless DomainValue could have been missed above.
 | |
|     if (!LR.Value->getCommonDomains(available)) {
 | |
|       kill(rx);
 | |
|       continue;
 | |
|     }
 | |
|     // Sorted insertion.
 | |
|     bool Inserted = false;
 | |
|     for (SmallVector<LiveReg, 4>::iterator i = Regs.begin(), e = Regs.end();
 | |
|            i != e && !Inserted; ++i) {
 | |
|       if (LR.Def < i->Def) {
 | |
|         Inserted = true;
 | |
|         Regs.insert(i, LR);
 | |
|       }
 | |
|     }
 | |
|     if (!Inserted)
 | |
|       Regs.push_back(LR);
 | |
|   }
 | |
| 
 | |
|   // doms are now sorted in order of appearance. Try to merge them all, giving
 | |
|   // priority to the latest ones.
 | |
|   DomainValue *dv = 0;
 | |
|   while (!Regs.empty()) {
 | |
|     if (!dv) {
 | |
|       dv = Regs.pop_back_val().Value;
 | |
|       // Force the first dv to match the current instruction.
 | |
|       dv->AvailableDomains = dv->getCommonDomains(available);
 | |
|       assert(dv->AvailableDomains && "Domain should have been filtered");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     DomainValue *Latest = Regs.pop_back_val().Value;
 | |
|     // Skip already merged values.
 | |
|     if (Latest == dv || Latest->Next)
 | |
|       continue;
 | |
|     if (merge(dv, Latest))
 | |
|       continue;
 | |
| 
 | |
|     // If latest didn't merge, it is useless now. Kill all registers using it.
 | |
|     for (SmallVector<int,4>::iterator i=used.begin(), e=used.end(); i != e; ++i)
 | |
|       if (LiveRegs[*i].Value == Latest)
 | |
|         kill(*i);
 | |
|   }
 | |
| 
 | |
|   // dv is the DomainValue we are going to use for this instruction.
 | |
|   if (!dv) {
 | |
|     dv = alloc();
 | |
|     dv->AvailableDomains = available;
 | |
|   }
 | |
|   dv->Instrs.push_back(mi);
 | |
| 
 | |
|   // Finally set all defs and non-collapsed uses to dv.
 | |
|   for (unsigned i = 0, e = mi->getDesc().getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &mo = mi->getOperand(i);
 | |
|     if (!mo.isReg()) continue;
 | |
|     int rx = regIndex(mo.getReg());
 | |
|     if (rx < 0) continue;
 | |
|     if (!LiveRegs[rx].Value || (mo.isDef() && LiveRegs[rx].Value != dv)) {
 | |
|       kill(rx);
 | |
|       setLiveReg(rx, dv);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ExeDepsFix::runOnMachineFunction(MachineFunction &mf) {
 | |
|   MF = &mf;
 | |
|   TII = MF->getTarget().getInstrInfo();
 | |
|   TRI = MF->getTarget().getRegisterInfo();
 | |
|   LiveRegs = 0;
 | |
|   assert(NumRegs == RC->getNumRegs() && "Bad regclass");
 | |
| 
 | |
|   DEBUG(dbgs() << "********** FIX EXECUTION DEPENDENCIES: "
 | |
|                << RC->getName() << " **********\n");
 | |
| 
 | |
|   // If no relevant registers are used in the function, we can skip it
 | |
|   // completely.
 | |
|   bool anyregs = false;
 | |
|   for (TargetRegisterClass::const_iterator I = RC->begin(), E = RC->end();
 | |
|        I != E; ++I)
 | |
|     if (MF->getRegInfo().isPhysRegOrOverlapUsed(*I)) {
 | |
|       anyregs = true;
 | |
|       break;
 | |
|     }
 | |
|   if (!anyregs) return false;
 | |
| 
 | |
|   // Initialize the AliasMap on the first use.
 | |
|   if (AliasMap.empty()) {
 | |
|     // Given a PhysReg, AliasMap[PhysReg] is either the relevant index into RC,
 | |
|     // or -1.
 | |
|     AliasMap.resize(TRI->getNumRegs(), -1);
 | |
|     for (unsigned i = 0, e = RC->getNumRegs(); i != e; ++i)
 | |
|       for (const unsigned *AI = TRI->getOverlaps(RC->getRegister(i)); *AI; ++AI)
 | |
|         AliasMap[*AI] = i;
 | |
|   }
 | |
| 
 | |
|   MachineBasicBlock *Entry = MF->begin();
 | |
|   ReversePostOrderTraversal<MachineBasicBlock*> RPOT(Entry);
 | |
|   SmallVector<MachineBasicBlock*, 16> Loops;
 | |
|   for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
 | |
|          MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = *MBBI;
 | |
|     enterBasicBlock(MBB);
 | |
|     if (SeenUnknownBackEdge)
 | |
|       Loops.push_back(MBB);
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
 | |
|         ++I)
 | |
|       visitInstr(I);
 | |
|     leaveBasicBlock(MBB);
 | |
|   }
 | |
| 
 | |
|   // Visit all the loop blocks again in order to merge DomainValues from
 | |
|   // back-edges.
 | |
|   for (unsigned i = 0, e = Loops.size(); i != e; ++i) {
 | |
|     MachineBasicBlock *MBB = Loops[i];
 | |
|     enterBasicBlock(MBB);
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
 | |
|         ++I)
 | |
|       if (!I->isDebugValue())
 | |
|         processDefs(I, false);
 | |
|     leaveBasicBlock(MBB);
 | |
|   }
 | |
| 
 | |
|   // Clear the LiveOuts vectors and collapse any remaining DomainValues.
 | |
|   for (ReversePostOrderTraversal<MachineBasicBlock*>::rpo_iterator
 | |
|          MBBI = RPOT.begin(), MBBE = RPOT.end(); MBBI != MBBE; ++MBBI) {
 | |
|     LiveOutMap::const_iterator FI = LiveOuts.find(*MBBI);
 | |
|     if (FI == LiveOuts.end() || !FI->second)
 | |
|       continue;
 | |
|     for (unsigned i = 0, e = NumRegs; i != e; ++i)
 | |
|       if (FI->second[i].Value)
 | |
|         release(FI->second[i].Value);
 | |
|     delete[] FI->second;
 | |
|   }
 | |
|   LiveOuts.clear();
 | |
|   Avail.clear();
 | |
|   Allocator.DestroyAll();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| FunctionPass *
 | |
| llvm::createExecutionDependencyFixPass(const TargetRegisterClass *RC) {
 | |
|   return new ExeDepsFix(RC);
 | |
| }
 |