mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	bundles. This method takes a bundle start and an MI being bundled, and makes the intervals for the MI's operands appear to start/end on the bundle start. Also fixes some minor cosmetic issues (whitespace, naming convention) in the HMEditor code. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151099 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1541 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1541 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveInterval analysis pass which is used
 | |
| // by the Linear Scan Register allocator. This pass linearizes the
 | |
| // basic blocks of the function in DFS order and uses the
 | |
| // LiveVariables pass to conservatively compute live intervals for
 | |
| // each virtual and physical register.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/Value.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <limits>
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| // Hidden options for help debugging.
 | |
| static cl::opt<bool> DisableReMat("disable-rematerialization",
 | |
|                                   cl::init(false), cl::Hidden);
 | |
| 
 | |
| STATISTIC(numIntervals , "Number of original intervals");
 | |
| 
 | |
| char LiveIntervals::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
 | |
|                 "Live Interval Analysis", false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(LiveVariables)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | |
| INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
 | |
|                 "Live Interval Analysis", false, false)
 | |
| 
 | |
| void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<LiveVariables>();
 | |
|   AU.addPreserved<LiveVariables>();
 | |
|   AU.addPreservedID(MachineLoopInfoID);
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequiredTransitive<SlotIndexes>();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::releaseMemory() {
 | |
|   // Free the live intervals themselves.
 | |
|   for (DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
 | |
|        E = r2iMap_.end(); I != E; ++I)
 | |
|     delete I->second;
 | |
| 
 | |
|   r2iMap_.clear();
 | |
|   RegMaskSlots.clear();
 | |
|   RegMaskBits.clear();
 | |
|   RegMaskBlocks.clear();
 | |
| 
 | |
|   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
 | |
|   VNInfoAllocator.Reset();
 | |
| }
 | |
| 
 | |
| /// runOnMachineFunction - Register allocate the whole function
 | |
| ///
 | |
| bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
 | |
|   mf_ = &fn;
 | |
|   mri_ = &mf_->getRegInfo();
 | |
|   tm_ = &fn.getTarget();
 | |
|   tri_ = tm_->getRegisterInfo();
 | |
|   tii_ = tm_->getInstrInfo();
 | |
|   aa_ = &getAnalysis<AliasAnalysis>();
 | |
|   lv_ = &getAnalysis<LiveVariables>();
 | |
|   indexes_ = &getAnalysis<SlotIndexes>();
 | |
|   allocatableRegs_ = tri_->getAllocatableSet(fn);
 | |
|   reservedRegs_ = tri_->getReservedRegs(fn);
 | |
| 
 | |
|   computeIntervals();
 | |
| 
 | |
|   numIntervals += getNumIntervals();
 | |
| 
 | |
|   DEBUG(dump());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// print - Implement the dump method.
 | |
| void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
 | |
|   OS << "********** INTERVALS **********\n";
 | |
| 
 | |
|   // Dump the physregs.
 | |
|   for (unsigned Reg = 1, RegE = tri_->getNumRegs(); Reg != RegE; ++Reg)
 | |
|     if (const LiveInterval *LI = r2iMap_.lookup(Reg)) {
 | |
|       LI->print(OS, tri_);
 | |
|       OS << '\n';
 | |
|     }
 | |
| 
 | |
|   // Dump the virtregs.
 | |
|   for (unsigned Reg = 0, RegE = mri_->getNumVirtRegs(); Reg != RegE; ++Reg)
 | |
|     if (const LiveInterval *LI =
 | |
|         r2iMap_.lookup(TargetRegisterInfo::index2VirtReg(Reg))) {
 | |
|       LI->print(OS, tri_);
 | |
|       OS << '\n';
 | |
|     }
 | |
| 
 | |
|   printInstrs(OS);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::printInstrs(raw_ostream &OS) const {
 | |
|   OS << "********** MACHINEINSTRS **********\n";
 | |
|   mf_->print(OS, indexes_);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::dumpInstrs() const {
 | |
|   printInstrs(dbgs());
 | |
| }
 | |
| 
 | |
| static
 | |
| bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
 | |
|   unsigned Reg = MI.getOperand(MOIdx).getReg();
 | |
|   for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
 | |
|     const MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg())
 | |
|       continue;
 | |
|     if (MO.getReg() == Reg && MO.isDef()) {
 | |
|       assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
 | |
|              MI.getOperand(MOIdx).getSubReg() &&
 | |
|              (MO.getSubReg() || MO.isImplicit()));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isPartialRedef - Return true if the specified def at the specific index is
 | |
| /// partially re-defining the specified live interval. A common case of this is
 | |
| /// a definition of the sub-register.
 | |
| bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
 | |
|                                    LiveInterval &interval) {
 | |
|   if (!MO.getSubReg() || MO.isEarlyClobber())
 | |
|     return false;
 | |
| 
 | |
|   SlotIndex RedefIndex = MIIdx.getRegSlot();
 | |
|   const LiveRange *OldLR =
 | |
|     interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
 | |
|   MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
 | |
|   if (DefMI != 0) {
 | |
|     return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
 | |
|                                              MachineBasicBlock::iterator mi,
 | |
|                                              SlotIndex MIIdx,
 | |
|                                              MachineOperand& MO,
 | |
|                                              unsigned MOIdx,
 | |
|                                              LiveInterval &interval) {
 | |
|   DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
 | |
| 
 | |
|   // Virtual registers may be defined multiple times (due to phi
 | |
|   // elimination and 2-addr elimination).  Much of what we do only has to be
 | |
|   // done once for the vreg.  We use an empty interval to detect the first
 | |
|   // time we see a vreg.
 | |
|   LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
 | |
|   if (interval.empty()) {
 | |
|     // Get the Idx of the defining instructions.
 | |
|     SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
 | |
| 
 | |
|     // Make sure the first definition is not a partial redefinition. Add an
 | |
|     // <imp-def> of the full register.
 | |
|     // FIXME: LiveIntervals shouldn't modify the code like this.  Whoever
 | |
|     // created the machine instruction should annotate it with <undef> flags
 | |
|     // as needed.  Then we can simply assert here.  The REG_SEQUENCE lowering
 | |
|     // is the main suspect.
 | |
|     if (MO.getSubReg()) {
 | |
|       mi->addRegisterDefined(interval.reg);
 | |
|       // Mark all defs of interval.reg on this instruction as reading <undef>.
 | |
|       for (unsigned i = MOIdx, e = mi->getNumOperands(); i != e; ++i) {
 | |
|         MachineOperand &MO2 = mi->getOperand(i);
 | |
|         if (MO2.isReg() && MO2.getReg() == interval.reg && MO2.getSubReg())
 | |
|           MO2.setIsUndef();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
 | |
|     assert(ValNo->id == 0 && "First value in interval is not 0?");
 | |
| 
 | |
|     // Loop over all of the blocks that the vreg is defined in.  There are
 | |
|     // two cases we have to handle here.  The most common case is a vreg
 | |
|     // whose lifetime is contained within a basic block.  In this case there
 | |
|     // will be a single kill, in MBB, which comes after the definition.
 | |
|     if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
 | |
|       // FIXME: what about dead vars?
 | |
|       SlotIndex killIdx;
 | |
|       if (vi.Kills[0] != mi)
 | |
|         killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
 | |
|       else
 | |
|         killIdx = defIndex.getDeadSlot();
 | |
| 
 | |
|       // If the kill happens after the definition, we have an intra-block
 | |
|       // live range.
 | |
|       if (killIdx > defIndex) {
 | |
|         assert(vi.AliveBlocks.empty() &&
 | |
|                "Shouldn't be alive across any blocks!");
 | |
|         LiveRange LR(defIndex, killIdx, ValNo);
 | |
|         interval.addRange(LR);
 | |
|         DEBUG(dbgs() << " +" << LR << "\n");
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // The other case we handle is when a virtual register lives to the end
 | |
|     // of the defining block, potentially live across some blocks, then is
 | |
|     // live into some number of blocks, but gets killed.  Start by adding a
 | |
|     // range that goes from this definition to the end of the defining block.
 | |
|     LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
 | |
|     DEBUG(dbgs() << " +" << NewLR);
 | |
|     interval.addRange(NewLR);
 | |
| 
 | |
|     bool PHIJoin = lv_->isPHIJoin(interval.reg);
 | |
| 
 | |
|     if (PHIJoin) {
 | |
|       // A phi join register is killed at the end of the MBB and revived as a new
 | |
|       // valno in the killing blocks.
 | |
|       assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
 | |
|       DEBUG(dbgs() << " phi-join");
 | |
|       ValNo->setHasPHIKill(true);
 | |
|     } else {
 | |
|       // Iterate over all of the blocks that the variable is completely
 | |
|       // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
 | |
|       // live interval.
 | |
|       for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
 | |
|                E = vi.AliveBlocks.end(); I != E; ++I) {
 | |
|         MachineBasicBlock *aliveBlock = mf_->getBlockNumbered(*I);
 | |
|         LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock), ValNo);
 | |
|         interval.addRange(LR);
 | |
|         DEBUG(dbgs() << " +" << LR);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Finally, this virtual register is live from the start of any killing
 | |
|     // block to the 'use' slot of the killing instruction.
 | |
|     for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
 | |
|       MachineInstr *Kill = vi.Kills[i];
 | |
|       SlotIndex Start = getMBBStartIdx(Kill->getParent());
 | |
|       SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
 | |
| 
 | |
|       // Create interval with one of a NEW value number.  Note that this value
 | |
|       // number isn't actually defined by an instruction, weird huh? :)
 | |
|       if (PHIJoin) {
 | |
|         assert(getInstructionFromIndex(Start) == 0 &&
 | |
|                "PHI def index points at actual instruction.");
 | |
|         ValNo = interval.getNextValue(Start, VNInfoAllocator);
 | |
|         ValNo->setIsPHIDef(true);
 | |
|       }
 | |
|       LiveRange LR(Start, killIdx, ValNo);
 | |
|       interval.addRange(LR);
 | |
|       DEBUG(dbgs() << " +" << LR);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     if (MultipleDefsBySameMI(*mi, MOIdx))
 | |
|       // Multiple defs of the same virtual register by the same instruction.
 | |
|       // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
 | |
|       // This is likely due to elimination of REG_SEQUENCE instructions. Return
 | |
|       // here since there is nothing to do.
 | |
|       return;
 | |
| 
 | |
|     // If this is the second time we see a virtual register definition, it
 | |
|     // must be due to phi elimination or two addr elimination.  If this is
 | |
|     // the result of two address elimination, then the vreg is one of the
 | |
|     // def-and-use register operand.
 | |
| 
 | |
|     // It may also be partial redef like this:
 | |
|     // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
 | |
|     // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
 | |
|     bool PartReDef = isPartialRedef(MIIdx, MO, interval);
 | |
|     if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
 | |
|       // If this is a two-address definition, then we have already processed
 | |
|       // the live range.  The only problem is that we didn't realize there
 | |
|       // are actually two values in the live interval.  Because of this we
 | |
|       // need to take the LiveRegion that defines this register and split it
 | |
|       // into two values.
 | |
|       SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
 | |
| 
 | |
|       const LiveRange *OldLR =
 | |
|         interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
 | |
|       VNInfo *OldValNo = OldLR->valno;
 | |
|       SlotIndex DefIndex = OldValNo->def.getRegSlot();
 | |
| 
 | |
|       // Delete the previous value, which should be short and continuous,
 | |
|       // because the 2-addr copy must be in the same MBB as the redef.
 | |
|       interval.removeRange(DefIndex, RedefIndex);
 | |
| 
 | |
|       // The new value number (#1) is defined by the instruction we claimed
 | |
|       // defined value #0.
 | |
|       VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
 | |
| 
 | |
|       // Value#0 is now defined by the 2-addr instruction.
 | |
|       OldValNo->def = RedefIndex;
 | |
| 
 | |
|       // Add the new live interval which replaces the range for the input copy.
 | |
|       LiveRange LR(DefIndex, RedefIndex, ValNo);
 | |
|       DEBUG(dbgs() << " replace range with " << LR);
 | |
|       interval.addRange(LR);
 | |
| 
 | |
|       // If this redefinition is dead, we need to add a dummy unit live
 | |
|       // range covering the def slot.
 | |
|       if (MO.isDead())
 | |
|         interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
 | |
|                                     OldValNo));
 | |
| 
 | |
|       DEBUG({
 | |
|           dbgs() << " RESULT: ";
 | |
|           interval.print(dbgs(), tri_);
 | |
|         });
 | |
|     } else if (lv_->isPHIJoin(interval.reg)) {
 | |
|       // In the case of PHI elimination, each variable definition is only
 | |
|       // live until the end of the block.  We've already taken care of the
 | |
|       // rest of the live range.
 | |
| 
 | |
|       SlotIndex defIndex = MIIdx.getRegSlot();
 | |
|       if (MO.isEarlyClobber())
 | |
|         defIndex = MIIdx.getRegSlot(true);
 | |
| 
 | |
|       VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
 | |
| 
 | |
|       SlotIndex killIndex = getMBBEndIdx(mbb);
 | |
|       LiveRange LR(defIndex, killIndex, ValNo);
 | |
|       interval.addRange(LR);
 | |
|       ValNo->setHasPHIKill(true);
 | |
|       DEBUG(dbgs() << " phi-join +" << LR);
 | |
|     } else {
 | |
|       llvm_unreachable("Multiply defined register");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << '\n');
 | |
| }
 | |
| 
 | |
| static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
 | |
|   for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
 | |
|                                               SE = MBB->succ_end();
 | |
|        SI != SE; ++SI) {
 | |
|     const MachineBasicBlock* succ = *SI;
 | |
|     if (succ->isLiveIn(Reg))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
 | |
|                                               MachineBasicBlock::iterator mi,
 | |
|                                               SlotIndex MIIdx,
 | |
|                                               MachineOperand& MO,
 | |
|                                               LiveInterval &interval) {
 | |
|   DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, tri_));
 | |
| 
 | |
|   SlotIndex baseIndex = MIIdx;
 | |
|   SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
 | |
|   SlotIndex end = start;
 | |
| 
 | |
|   // If it is not used after definition, it is considered dead at
 | |
|   // the instruction defining it. Hence its interval is:
 | |
|   // [defSlot(def), defSlot(def)+1)
 | |
|   // For earlyclobbers, the defSlot was pushed back one; the extra
 | |
|   // advance below compensates.
 | |
|   if (MO.isDead()) {
 | |
|     DEBUG(dbgs() << " dead");
 | |
|     end = start.getDeadSlot();
 | |
|     goto exit;
 | |
|   }
 | |
| 
 | |
|   // If it is not dead on definition, it must be killed by a
 | |
|   // subsequent instruction. Hence its interval is:
 | |
|   // [defSlot(def), useSlot(kill)+1)
 | |
|   baseIndex = baseIndex.getNextIndex();
 | |
|   while (++mi != MBB->end()) {
 | |
| 
 | |
|     if (mi->isDebugValue())
 | |
|       continue;
 | |
|     if (getInstructionFromIndex(baseIndex) == 0)
 | |
|       baseIndex = indexes_->getNextNonNullIndex(baseIndex);
 | |
| 
 | |
|     if (mi->killsRegister(interval.reg, tri_)) {
 | |
|       DEBUG(dbgs() << " killed");
 | |
|       end = baseIndex.getRegSlot();
 | |
|       goto exit;
 | |
|     } else {
 | |
|       int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,tri_);
 | |
|       if (DefIdx != -1) {
 | |
|         if (mi->isRegTiedToUseOperand(DefIdx)) {
 | |
|           // Two-address instruction.
 | |
|           end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
 | |
|         } else {
 | |
|           // Another instruction redefines the register before it is ever read.
 | |
|           // Then the register is essentially dead at the instruction that
 | |
|           // defines it. Hence its interval is:
 | |
|           // [defSlot(def), defSlot(def)+1)
 | |
|           DEBUG(dbgs() << " dead");
 | |
|           end = start.getDeadSlot();
 | |
|         }
 | |
|         goto exit;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     baseIndex = baseIndex.getNextIndex();
 | |
|   }
 | |
| 
 | |
|   // If we get here the register *should* be live out.
 | |
|   assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
 | |
| 
 | |
|   // FIXME: We need saner rules for reserved regs.
 | |
|   if (isReserved(interval.reg)) {
 | |
|     end = start.getDeadSlot();
 | |
|   } else {
 | |
|     // Unreserved, unallocable registers like EFLAGS can be live across basic
 | |
|     // block boundaries.
 | |
|     assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
 | |
|            "Unreserved reg not live-out?");
 | |
|     end = getMBBEndIdx(MBB);
 | |
|   }
 | |
| exit:
 | |
|   assert(start < end && "did not find end of interval?");
 | |
| 
 | |
|   // Already exists? Extend old live interval.
 | |
|   VNInfo *ValNo = interval.getVNInfoAt(start);
 | |
|   bool Extend = ValNo != 0;
 | |
|   if (!Extend)
 | |
|     ValNo = interval.getNextValue(start, VNInfoAllocator);
 | |
|   LiveRange LR(start, end, ValNo);
 | |
|   interval.addRange(LR);
 | |
|   DEBUG(dbgs() << " +" << LR << '\n');
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
 | |
|                                       MachineBasicBlock::iterator MI,
 | |
|                                       SlotIndex MIIdx,
 | |
|                                       MachineOperand& MO,
 | |
|                                       unsigned MOIdx) {
 | |
|   if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|     handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
 | |
|                              getOrCreateInterval(MO.getReg()));
 | |
|   else
 | |
|     handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
 | |
|                               getOrCreateInterval(MO.getReg()));
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
 | |
|                                          SlotIndex MIIdx,
 | |
|                                          LiveInterval &interval) {
 | |
|   assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
 | |
|          "Only physical registers can be live in.");
 | |
|   assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
 | |
|           MBB->isLandingPad()) &&
 | |
|           "Allocatable live-ins only valid for entry blocks and landing pads.");
 | |
| 
 | |
|   DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, tri_));
 | |
| 
 | |
|   // Look for kills, if it reaches a def before it's killed, then it shouldn't
 | |
|   // be considered a livein.
 | |
|   MachineBasicBlock::iterator mi = MBB->begin();
 | |
|   MachineBasicBlock::iterator E = MBB->end();
 | |
|   // Skip over DBG_VALUE at the start of the MBB.
 | |
|   if (mi != E && mi->isDebugValue()) {
 | |
|     while (++mi != E && mi->isDebugValue())
 | |
|       ;
 | |
|     if (mi == E)
 | |
|       // MBB is empty except for DBG_VALUE's.
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   SlotIndex baseIndex = MIIdx;
 | |
|   SlotIndex start = baseIndex;
 | |
|   if (getInstructionFromIndex(baseIndex) == 0)
 | |
|     baseIndex = indexes_->getNextNonNullIndex(baseIndex);
 | |
| 
 | |
|   SlotIndex end = baseIndex;
 | |
|   bool SeenDefUse = false;
 | |
| 
 | |
|   while (mi != E) {
 | |
|     if (mi->killsRegister(interval.reg, tri_)) {
 | |
|       DEBUG(dbgs() << " killed");
 | |
|       end = baseIndex.getRegSlot();
 | |
|       SeenDefUse = true;
 | |
|       break;
 | |
|     } else if (mi->modifiesRegister(interval.reg, tri_)) {
 | |
|       // Another instruction redefines the register before it is ever read.
 | |
|       // Then the register is essentially dead at the instruction that defines
 | |
|       // it. Hence its interval is:
 | |
|       // [defSlot(def), defSlot(def)+1)
 | |
|       DEBUG(dbgs() << " dead");
 | |
|       end = start.getDeadSlot();
 | |
|       SeenDefUse = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     while (++mi != E && mi->isDebugValue())
 | |
|       // Skip over DBG_VALUE.
 | |
|       ;
 | |
|     if (mi != E)
 | |
|       baseIndex = indexes_->getNextNonNullIndex(baseIndex);
 | |
|   }
 | |
| 
 | |
|   // Live-in register might not be used at all.
 | |
|   if (!SeenDefUse) {
 | |
|     if (isAllocatable(interval.reg) ||
 | |
|         !isRegLiveIntoSuccessor(MBB, interval.reg)) {
 | |
|       // Allocatable registers are never live through.
 | |
|       // Non-allocatable registers that aren't live into any successors also
 | |
|       // aren't live through.
 | |
|       DEBUG(dbgs() << " dead");
 | |
|       return;
 | |
|     } else {
 | |
|       // If we get here the register is non-allocatable and live into some
 | |
|       // successor. We'll conservatively assume it's live-through.
 | |
|       DEBUG(dbgs() << " live through");
 | |
|       end = getMBBEndIdx(MBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   SlotIndex defIdx = getMBBStartIdx(MBB);
 | |
|   assert(getInstructionFromIndex(defIdx) == 0 &&
 | |
|          "PHI def index points at actual instruction.");
 | |
|   VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
 | |
|   vni->setIsPHIDef(true);
 | |
|   LiveRange LR(start, end, vni);
 | |
| 
 | |
|   interval.addRange(LR);
 | |
|   DEBUG(dbgs() << " +" << LR << '\n');
 | |
| }
 | |
| 
 | |
| /// computeIntervals - computes the live intervals for virtual
 | |
| /// registers. for some ordering of the machine instructions [1,N] a
 | |
| /// live interval is an interval [i, j) where 1 <= i <= j < N for
 | |
| /// which a variable is live
 | |
| void LiveIntervals::computeIntervals() {
 | |
|   DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((Value*)mf_->getFunction())->getName() << '\n');
 | |
| 
 | |
|   RegMaskBlocks.resize(mf_->getNumBlockIDs());
 | |
| 
 | |
|   SmallVector<unsigned, 8> UndefUses;
 | |
|   for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
 | |
|        MBBI != E; ++MBBI) {
 | |
|     MachineBasicBlock *MBB = MBBI;
 | |
|     RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
 | |
| 
 | |
|     if (MBB->empty())
 | |
|       continue;
 | |
| 
 | |
|     // Track the index of the current machine instr.
 | |
|     SlotIndex MIIndex = getMBBStartIdx(MBB);
 | |
|     DEBUG(dbgs() << "BB#" << MBB->getNumber()
 | |
|           << ":\t\t# derived from " << MBB->getName() << "\n");
 | |
| 
 | |
|     // Create intervals for live-ins to this BB first.
 | |
|     for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
 | |
|            LE = MBB->livein_end(); LI != LE; ++LI) {
 | |
|       handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
 | |
|     }
 | |
| 
 | |
|     // Skip over empty initial indices.
 | |
|     if (getInstructionFromIndex(MIIndex) == 0)
 | |
|       MIIndex = indexes_->getNextNonNullIndex(MIIndex);
 | |
| 
 | |
|     for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
 | |
|          MI != miEnd; ++MI) {
 | |
|       DEBUG(dbgs() << MIIndex << "\t" << *MI);
 | |
|       if (MI->isDebugValue())
 | |
|         continue;
 | |
|       assert(indexes_->getInstructionFromIndex(MIIndex) == MI &&
 | |
|              "Lost SlotIndex synchronization");
 | |
| 
 | |
|       // Handle defs.
 | |
|       for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
| 
 | |
|         // Collect register masks.
 | |
|         if (MO.isRegMask()) {
 | |
|           RegMaskSlots.push_back(MIIndex.getRegSlot());
 | |
|           RegMaskBits.push_back(MO.getRegMask());
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         if (!MO.isReg() || !MO.getReg())
 | |
|           continue;
 | |
| 
 | |
|         // handle register defs - build intervals
 | |
|         if (MO.isDef())
 | |
|           handleRegisterDef(MBB, MI, MIIndex, MO, i);
 | |
|         else if (MO.isUndef())
 | |
|           UndefUses.push_back(MO.getReg());
 | |
|       }
 | |
| 
 | |
|       // Move to the next instr slot.
 | |
|       MIIndex = indexes_->getNextNonNullIndex(MIIndex);
 | |
|     }
 | |
| 
 | |
|     // Compute the number of register mask instructions in this block.
 | |
|     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
 | |
|     RMB.second = RegMaskSlots.size() - RMB.first;;
 | |
|   }
 | |
| 
 | |
|   // Create empty intervals for registers defined by implicit_def's (except
 | |
|   // for those implicit_def that define values which are liveout of their
 | |
|   // blocks.
 | |
|   for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
 | |
|     unsigned UndefReg = UndefUses[i];
 | |
|     (void)getOrCreateInterval(UndefReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| LiveInterval* LiveIntervals::createInterval(unsigned reg) {
 | |
|   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
 | |
|   return new LiveInterval(reg, Weight);
 | |
| }
 | |
| 
 | |
| /// dupInterval - Duplicate a live interval. The caller is responsible for
 | |
| /// managing the allocated memory.
 | |
| LiveInterval* LiveIntervals::dupInterval(LiveInterval *li) {
 | |
|   LiveInterval *NewLI = createInterval(li->reg);
 | |
|   NewLI->Copy(*li, mri_, getVNInfoAllocator());
 | |
|   return NewLI;
 | |
| }
 | |
| 
 | |
| /// shrinkToUses - After removing some uses of a register, shrink its live
 | |
| /// range to just the remaining uses. This method does not compute reaching
 | |
| /// defs for new uses, and it doesn't remove dead defs.
 | |
| bool LiveIntervals::shrinkToUses(LiveInterval *li,
 | |
|                                  SmallVectorImpl<MachineInstr*> *dead) {
 | |
|   DEBUG(dbgs() << "Shrink: " << *li << '\n');
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
 | |
|          && "Can only shrink virtual registers");
 | |
|   // Find all the values used, including PHI kills.
 | |
|   SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
 | |
| 
 | |
|   // Blocks that have already been added to WorkList as live-out.
 | |
|   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
 | |
| 
 | |
|   // Visit all instructions reading li->reg.
 | |
|   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(li->reg);
 | |
|        MachineInstr *UseMI = I.skipInstruction();) {
 | |
|     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
 | |
|       continue;
 | |
|     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
 | |
|     // Note: This intentionally picks up the wrong VNI in case of an EC redef.
 | |
|     // See below.
 | |
|     VNInfo *VNI = li->getVNInfoBefore(Idx);
 | |
|     if (!VNI) {
 | |
|       // This shouldn't happen: readsVirtualRegister returns true, but there is
 | |
|       // no live value. It is likely caused by a target getting <undef> flags
 | |
|       // wrong.
 | |
|       DEBUG(dbgs() << Idx << '\t' << *UseMI
 | |
|                    << "Warning: Instr claims to read non-existent value in "
 | |
|                     << *li << '\n');
 | |
|       continue;
 | |
|     }
 | |
|     // Special case: An early-clobber tied operand reads and writes the
 | |
|     // register one slot early.  The getVNInfoBefore call above would have
 | |
|     // picked up the value defined by UseMI.  Adjust the kill slot and value.
 | |
|     if (SlotIndex::isSameInstr(VNI->def, Idx)) {
 | |
|       Idx = VNI->def;
 | |
|       VNI = li->getVNInfoBefore(Idx);
 | |
|       assert(VNI && "Early-clobber tied value not available");
 | |
|     }
 | |
|     WorkList.push_back(std::make_pair(Idx, VNI));
 | |
|   }
 | |
| 
 | |
|   // Create a new live interval with only minimal live segments per def.
 | |
|   LiveInterval NewLI(li->reg, 0);
 | |
|   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
 | |
|        I != E; ++I) {
 | |
|     VNInfo *VNI = *I;
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
 | |
|   }
 | |
| 
 | |
|   // Keep track of the PHIs that are in use.
 | |
|   SmallPtrSet<VNInfo*, 8> UsedPHIs;
 | |
| 
 | |
|   // Extend intervals to reach all uses in WorkList.
 | |
|   while (!WorkList.empty()) {
 | |
|     SlotIndex Idx = WorkList.back().first;
 | |
|     VNInfo *VNI = WorkList.back().second;
 | |
|     WorkList.pop_back();
 | |
|     const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
 | |
|     SlotIndex BlockStart = getMBBStartIdx(MBB);
 | |
| 
 | |
|     // Extend the live range for VNI to be live at Idx.
 | |
|     if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
 | |
|       (void)ExtVNI;
 | |
|       assert(ExtVNI == VNI && "Unexpected existing value number");
 | |
|       // Is this a PHIDef we haven't seen before?
 | |
|       if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
 | |
|         continue;
 | |
|       // The PHI is live, make sure the predecessors are live-out.
 | |
|       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|            PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|         if (!LiveOut.insert(*PI))
 | |
|           continue;
 | |
|         SlotIndex Stop = getMBBEndIdx(*PI);
 | |
|         // A predecessor is not required to have a live-out value for a PHI.
 | |
|         if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
 | |
|           WorkList.push_back(std::make_pair(Stop, PVNI));
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // VNI is live-in to MBB.
 | |
|     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
 | |
|     NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
 | |
| 
 | |
|     // Make sure VNI is live-out from the predecessors.
 | |
|     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|          PE = MBB->pred_end(); PI != PE; ++PI) {
 | |
|       if (!LiveOut.insert(*PI))
 | |
|         continue;
 | |
|       SlotIndex Stop = getMBBEndIdx(*PI);
 | |
|       assert(li->getVNInfoBefore(Stop) == VNI &&
 | |
|              "Wrong value out of predecessor");
 | |
|       WorkList.push_back(std::make_pair(Stop, VNI));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle dead values.
 | |
|   bool CanSeparate = false;
 | |
|   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
 | |
|        I != E; ++I) {
 | |
|     VNInfo *VNI = *I;
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
 | |
|     assert(LII != NewLI.end() && "Missing live range for PHI");
 | |
|     if (LII->end != VNI->def.getDeadSlot())
 | |
|       continue;
 | |
|     if (VNI->isPHIDef()) {
 | |
|       // This is a dead PHI. Remove it.
 | |
|       VNI->setIsUnused(true);
 | |
|       NewLI.removeRange(*LII);
 | |
|       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
 | |
|       CanSeparate = true;
 | |
|     } else {
 | |
|       // This is a dead def. Make sure the instruction knows.
 | |
|       MachineInstr *MI = getInstructionFromIndex(VNI->def);
 | |
|       assert(MI && "No instruction defining live value");
 | |
|       MI->addRegisterDead(li->reg, tri_);
 | |
|       if (dead && MI->allDefsAreDead()) {
 | |
|         DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
 | |
|         dead->push_back(MI);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move the trimmed ranges back.
 | |
|   li->ranges.swap(NewLI.ranges);
 | |
|   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
 | |
|   return CanSeparate;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Register allocator hooks.
 | |
| //
 | |
| 
 | |
| void LiveIntervals::addKillFlags() {
 | |
|   for (iterator I = begin(), E = end(); I != E; ++I) {
 | |
|     unsigned Reg = I->first;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|       continue;
 | |
|     if (mri_->reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     LiveInterval *LI = I->second;
 | |
| 
 | |
|     // Every instruction that kills Reg corresponds to a live range end point.
 | |
|     for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
 | |
|          ++RI) {
 | |
|       // A block index indicates an MBB edge.
 | |
|       if (RI->end.isBlock())
 | |
|         continue;
 | |
|       MachineInstr *MI = getInstructionFromIndex(RI->end);
 | |
|       if (!MI)
 | |
|         continue;
 | |
|       MI->addRegisterKilled(Reg, NULL);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getReMatImplicitUse - If the remat definition MI has one (for now, we only
 | |
| /// allow one) virtual register operand, then its uses are implicitly using
 | |
| /// the register. Returns the virtual register.
 | |
| unsigned LiveIntervals::getReMatImplicitUse(const LiveInterval &li,
 | |
|                                             MachineInstr *MI) const {
 | |
|   unsigned RegOp = 0;
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isUse())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (Reg == 0 || Reg == li.reg)
 | |
|       continue;
 | |
| 
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isAllocatable(Reg))
 | |
|       continue;
 | |
|     RegOp = MO.getReg();
 | |
|     break; // Found vreg operand - leave the loop.
 | |
|   }
 | |
|   return RegOp;
 | |
| }
 | |
| 
 | |
| /// isValNoAvailableAt - Return true if the val# of the specified interval
 | |
| /// which reaches the given instruction also reaches the specified use index.
 | |
| bool LiveIntervals::isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
 | |
|                                        SlotIndex UseIdx) const {
 | |
|   VNInfo *UValNo = li.getVNInfoAt(UseIdx);
 | |
|   return UValNo && UValNo == li.getVNInfoAt(getInstructionIndex(MI));
 | |
| }
 | |
| 
 | |
| /// isReMaterializable - Returns true if the definition MI of the specified
 | |
| /// val# of the specified interval is re-materializable.
 | |
| bool
 | |
| LiveIntervals::isReMaterializable(const LiveInterval &li,
 | |
|                                   const VNInfo *ValNo, MachineInstr *MI,
 | |
|                                   const SmallVectorImpl<LiveInterval*> *SpillIs,
 | |
|                                   bool &isLoad) {
 | |
|   if (DisableReMat)
 | |
|     return false;
 | |
| 
 | |
|   if (!tii_->isTriviallyReMaterializable(MI, aa_))
 | |
|     return false;
 | |
| 
 | |
|   // Target-specific code can mark an instruction as being rematerializable
 | |
|   // if it has one virtual reg use, though it had better be something like
 | |
|   // a PIC base register which is likely to be live everywhere.
 | |
|   unsigned ImpUse = getReMatImplicitUse(li, MI);
 | |
|   if (ImpUse) {
 | |
|     const LiveInterval &ImpLi = getInterval(ImpUse);
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator
 | |
|            ri = mri_->use_nodbg_begin(li.reg), re = mri_->use_nodbg_end();
 | |
|          ri != re; ++ri) {
 | |
|       MachineInstr *UseMI = &*ri;
 | |
|       SlotIndex UseIdx = getInstructionIndex(UseMI);
 | |
|       if (li.getVNInfoAt(UseIdx) != ValNo)
 | |
|         continue;
 | |
|       if (!isValNoAvailableAt(ImpLi, MI, UseIdx))
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // If a register operand of the re-materialized instruction is going to
 | |
|     // be spilled next, then it's not legal to re-materialize this instruction.
 | |
|     if (SpillIs)
 | |
|       for (unsigned i = 0, e = SpillIs->size(); i != e; ++i)
 | |
|         if (ImpUse == (*SpillIs)[i]->reg)
 | |
|           return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isReMaterializable - Returns true if every definition of MI of every
 | |
| /// val# of the specified interval is re-materializable.
 | |
| bool
 | |
| LiveIntervals::isReMaterializable(const LiveInterval &li,
 | |
|                                   const SmallVectorImpl<LiveInterval*> *SpillIs,
 | |
|                                   bool &isLoad) {
 | |
|   isLoad = false;
 | |
|   for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
 | |
|        i != e; ++i) {
 | |
|     const VNInfo *VNI = *i;
 | |
|     if (VNI->isUnused())
 | |
|       continue; // Dead val#.
 | |
|     // Is the def for the val# rematerializable?
 | |
|     MachineInstr *ReMatDefMI = getInstructionFromIndex(VNI->def);
 | |
|     if (!ReMatDefMI)
 | |
|       return false;
 | |
|     bool DefIsLoad = false;
 | |
|     if (!ReMatDefMI ||
 | |
|         !isReMaterializable(li, VNI, ReMatDefMI, SpillIs, DefIsLoad))
 | |
|       return false;
 | |
|     isLoad |= DefIsLoad;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| MachineBasicBlock*
 | |
| LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
 | |
|   // A local live range must be fully contained inside the block, meaning it is
 | |
|   // defined and killed at instructions, not at block boundaries. It is not
 | |
|   // live in or or out of any block.
 | |
|   //
 | |
|   // It is technically possible to have a PHI-defined live range identical to a
 | |
|   // single block, but we are going to return false in that case.
 | |
| 
 | |
|   SlotIndex Start = LI.beginIndex();
 | |
|   if (Start.isBlock())
 | |
|     return NULL;
 | |
| 
 | |
|   SlotIndex Stop = LI.endIndex();
 | |
|   if (Stop.isBlock())
 | |
|     return NULL;
 | |
| 
 | |
|   // getMBBFromIndex doesn't need to search the MBB table when both indexes
 | |
|   // belong to proper instructions.
 | |
|   MachineBasicBlock *MBB1 = indexes_->getMBBFromIndex(Start);
 | |
|   MachineBasicBlock *MBB2 = indexes_->getMBBFromIndex(Stop);
 | |
|   return MBB1 == MBB2 ? MBB1 : NULL;
 | |
| }
 | |
| 
 | |
| float
 | |
| LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
 | |
|   // Limit the loop depth ridiculousness.
 | |
|   if (loopDepth > 200)
 | |
|     loopDepth = 200;
 | |
| 
 | |
|   // The loop depth is used to roughly estimate the number of times the
 | |
|   // instruction is executed. Something like 10^d is simple, but will quickly
 | |
|   // overflow a float. This expression behaves like 10^d for small d, but is
 | |
|   // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
 | |
|   // headroom before overflow.
 | |
|   // By the way, powf() might be unavailable here. For consistency,
 | |
|   // We may take pow(double,double).
 | |
|   float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
 | |
| 
 | |
|   return (isDef + isUse) * lc;
 | |
| }
 | |
| 
 | |
| LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
 | |
|                                                   MachineInstr* startInst) {
 | |
|   LiveInterval& Interval = getOrCreateInterval(reg);
 | |
|   VNInfo* VN = Interval.getNextValue(
 | |
|     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | |
|     getVNInfoAllocator());
 | |
|   VN->setHasPHIKill(true);
 | |
|   LiveRange LR(
 | |
|      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
 | |
|      getMBBEndIdx(startInst->getParent()), VN);
 | |
|   Interval.addRange(LR);
 | |
| 
 | |
|   return LR;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                          Register mask functions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
 | |
|                                              BitVector &UsableRegs) {
 | |
|   if (LI.empty())
 | |
|     return false;
 | |
|   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
 | |
| 
 | |
|   // Use a smaller arrays for local live ranges.
 | |
|   ArrayRef<SlotIndex> Slots;
 | |
|   ArrayRef<const uint32_t*> Bits;
 | |
|   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
 | |
|     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
 | |
|     Bits = getRegMaskBitsInBlock(MBB->getNumber());
 | |
|   } else {
 | |
|     Slots = getRegMaskSlots();
 | |
|     Bits = getRegMaskBits();
 | |
|   }
 | |
| 
 | |
|   // We are going to enumerate all the register mask slots contained in LI.
 | |
|   // Start with a binary search of RegMaskSlots to find a starting point.
 | |
|   ArrayRef<SlotIndex>::iterator SlotI =
 | |
|     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
 | |
|   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
 | |
| 
 | |
|   // No slots in range, LI begins after the last call.
 | |
|   if (SlotI == SlotE)
 | |
|     return false;
 | |
| 
 | |
|   bool Found = false;
 | |
|   for (;;) {
 | |
|     assert(*SlotI >= LiveI->start);
 | |
|     // Loop over all slots overlapping this segment.
 | |
|     while (*SlotI < LiveI->end) {
 | |
|       // *SlotI overlaps LI. Collect mask bits.
 | |
|       if (!Found) {
 | |
|         // This is the first overlap. Initialize UsableRegs to all ones.
 | |
|         UsableRegs.clear();
 | |
|         UsableRegs.resize(tri_->getNumRegs(), true);
 | |
|         Found = true;
 | |
|       }
 | |
|       // Remove usable registers clobbered by this mask.
 | |
|       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
 | |
|       if (++SlotI == SlotE)
 | |
|         return Found;
 | |
|     }
 | |
|     // *SlotI is beyond the current LI segment.
 | |
|     LiveI = LI.advanceTo(LiveI, *SlotI);
 | |
|     if (LiveI == LiveE)
 | |
|       return Found;
 | |
|     // Advance SlotI until it overlaps.
 | |
|     while (*SlotI < LiveI->start)
 | |
|       if (++SlotI == SlotE)
 | |
|         return Found;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         IntervalUpdate class.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
 | |
| class LiveIntervals::HMEditor {
 | |
| private:
 | |
|   LiveIntervals& LIS;
 | |
|   const MachineRegisterInfo& MRI;
 | |
|   const TargetRegisterInfo& TRI;
 | |
|   SlotIndex NewIdx;
 | |
| 
 | |
|   typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
 | |
|   typedef DenseSet<IntRangePair> RangeSet;
 | |
| 
 | |
|   struct RegRanges {
 | |
|     LiveRange* Use;
 | |
|     LiveRange* EC;
 | |
|     LiveRange* Dead;
 | |
|     LiveRange* Def;
 | |
|     RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
 | |
|   };
 | |
|   typedef DenseMap<unsigned, RegRanges> BundleRanges;
 | |
| 
 | |
| public:
 | |
|   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
 | |
|            const TargetRegisterInfo& TRI, SlotIndex NewIdx)
 | |
|     : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
 | |
| 
 | |
|   // Update intervals for all operands of MI from OldIdx to NewIdx.
 | |
|   // This assumes that MI used to be at OldIdx, and now resides at
 | |
|   // NewIdx.
 | |
|   void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
 | |
|     assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
 | |
| 
 | |
|     // Collect the operands.
 | |
|     RangeSet Entering, Internal, Exiting;
 | |
|     bool hasRegMaskOp = false;
 | |
|     collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
 | |
| 
 | |
|     moveAllEnteringFrom(OldIdx, Entering);
 | |
|     moveAllInternalFrom(OldIdx, Internal);
 | |
|     moveAllExitingFrom(OldIdx, Exiting);
 | |
| 
 | |
|     if (hasRegMaskOp)
 | |
|       updateRegMaskSlots(OldIdx);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     LIValidator validator;
 | |
|     std::for_each(Entering.begin(), Entering.end(), validator);
 | |
|     std::for_each(Internal.begin(), Internal.end(), validator);
 | |
|     std::for_each(Exiting.begin(), Exiting.end(), validator);
 | |
|     assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
 | |
| #endif
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Update intervals for all operands of MI to refer to BundleStart's
 | |
|   // SlotIndex.
 | |
|   void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
 | |
|     if (MI == BundleStart)
 | |
|       return; // Bundling instr with itself - nothing to do.
 | |
| 
 | |
|     SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
 | |
|     assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
 | |
|            "SlotIndex <-> Instruction mapping broken for MI");
 | |
| 
 | |
|     // Collect all ranges already in the bundle.
 | |
|     MachineBasicBlock::instr_iterator BII(BundleStart);
 | |
|     RangeSet Entering, Internal, Exiting;
 | |
|     bool hasRegMaskOp = false;
 | |
|     collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
 | |
|     assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
 | |
|     for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
 | |
|       if (&*BII == MI)
 | |
|         continue;
 | |
|       collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
 | |
|       assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
 | |
|     }
 | |
| 
 | |
|     BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
 | |
| 
 | |
|     collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
 | |
|     assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
 | |
| 
 | |
|     DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
 | |
|     DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
 | |
|     DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
 | |
| 
 | |
|     moveAllEnteringFromInto(OldIdx, Entering, BR);
 | |
|     moveAllInternalFromInto(OldIdx, Internal, BR);
 | |
|     moveAllExitingFromInto(OldIdx, Exiting, BR);
 | |
| 
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|     LIValidator validator;
 | |
|     std::for_each(Entering.begin(), Entering.end(), validator);
 | |
|     std::for_each(Internal.begin(), Internal.end(), validator);
 | |
|     std::for_each(Exiting.begin(), Exiting.end(), validator);
 | |
|     assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| private:
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   class LIValidator {
 | |
|   private:
 | |
|     DenseSet<const LiveInterval*> Checked, Bogus;
 | |
|   public:
 | |
|     void operator()(const IntRangePair& P) {
 | |
|       const LiveInterval* LI = P.first;
 | |
|       if (Checked.count(LI))
 | |
|         return;
 | |
|       Checked.insert(LI);
 | |
|       if (LI->empty())
 | |
|         return;
 | |
|       SlotIndex LastEnd = LI->begin()->start;
 | |
|       for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
 | |
|            LRI != LRE; ++LRI) {
 | |
|         const LiveRange& LR = *LRI;
 | |
|         if (LastEnd > LR.start || LR.start >= LR.end)
 | |
|           Bogus.insert(LI);
 | |
|         LastEnd = LR.end;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     bool rangesOk() const {
 | |
|       return Bogus.empty();
 | |
|     }
 | |
|   };
 | |
| #endif
 | |
| 
 | |
|   // Collect IntRangePairs for all operands of MI that may need fixing.
 | |
|   // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
 | |
|   // maps).
 | |
|   void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
 | |
|                      RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
 | |
|     hasRegMaskOp = false;
 | |
|     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | |
|                                     MOE = MI->operands_end();
 | |
|          MOI != MOE; ++MOI) {
 | |
|       const MachineOperand& MO = *MOI;
 | |
| 
 | |
|       if (MO.isRegMask()) {
 | |
|         hasRegMaskOp = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (!MO.isReg() || MO.getReg() == 0)
 | |
|         continue;
 | |
| 
 | |
|       unsigned Reg = MO.getReg();
 | |
| 
 | |
|       // TODO: Currently we're skipping uses that are reserved or have no
 | |
|       // interval, but we're not updating their kills. This should be
 | |
|       // fixed.
 | |
|       if (!LIS.hasInterval(Reg) ||
 | |
|           (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
 | |
|         continue;
 | |
| 
 | |
|       LiveInterval* LI = &LIS.getInterval(Reg);
 | |
| 
 | |
|       if (MO.readsReg()) {
 | |
|         LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
 | |
|         if (LR != 0)
 | |
|           Entering.insert(std::make_pair(LI, LR));
 | |
|       }
 | |
|       if (MO.isDef()) {
 | |
|         if (MO.isEarlyClobber()) {
 | |
|           LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot(true));
 | |
|           assert(LR != 0 && "No EC range?");
 | |
|           if (LR->end > OldIdx.getDeadSlot())
 | |
|             Exiting.insert(std::make_pair(LI, LR));
 | |
|           else
 | |
|             Internal.insert(std::make_pair(LI, LR));
 | |
|         } else if (MO.isDead()) {
 | |
|           LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
 | |
|           assert(LR != 0 && "No dead-def range?");
 | |
|           Internal.insert(std::make_pair(LI, LR));
 | |
|         } else {
 | |
|           LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getDeadSlot());
 | |
|           assert(LR && LR->end > OldIdx.getDeadSlot() &&
 | |
|                  "Non-dead-def should have live range exiting.");
 | |
|           Exiting.insert(std::make_pair(LI, LR));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect IntRangePairs for all operands of MI that may need fixing.
 | |
|   void collectRangesInBundle(MachineInstr* MI, RangeSet& Entering,
 | |
|                              RangeSet& Exiting, SlotIndex MIStartIdx,
 | |
|                              SlotIndex MIEndIdx) {
 | |
|     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | |
|                                     MOE = MI->operands_end();
 | |
|          MOI != MOE; ++MOI) {
 | |
|       const MachineOperand& MO = *MOI;
 | |
|       assert(!MO.isRegMask() && "Can't have RegMasks in bundles.");
 | |
|       if (!MO.isReg() || MO.getReg() == 0)
 | |
|         continue;
 | |
| 
 | |
|       unsigned Reg = MO.getReg();
 | |
| 
 | |
|       // TODO: Currently we're skipping uses that are reserved or have no
 | |
|       // interval, but we're not updating their kills. This should be
 | |
|       // fixed.
 | |
|       if (!LIS.hasInterval(Reg) ||
 | |
|           (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg)))
 | |
|         continue;
 | |
| 
 | |
|       LiveInterval* LI = &LIS.getInterval(Reg);
 | |
| 
 | |
|       if (MO.readsReg()) {
 | |
|         LiveRange* LR = LI->getLiveRangeContaining(MIStartIdx);
 | |
|         if (LR != 0)
 | |
|           Entering.insert(std::make_pair(LI, LR));
 | |
|       }
 | |
|       if (MO.isDef()) {
 | |
|         assert(!MO.isEarlyClobber() && "Early clobbers not allowed in bundles.");
 | |
|         assert(!MO.isDead() && "Dead-defs not allowed in bundles.");
 | |
|         LiveRange* LR = LI->getLiveRangeContaining(MIEndIdx.getDeadSlot());
 | |
|         assert(LR != 0 && "Internal ranges not allowed in bundles.");
 | |
|         Exiting.insert(std::make_pair(LI, LR));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   BundleRanges createBundleRanges(RangeSet& Entering, RangeSet& Internal, RangeSet& Exiting) {
 | |
|     BundleRanges BR;
 | |
| 
 | |
|     for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
 | |
|          EI != EE; ++EI) {
 | |
|       LiveInterval* LI = EI->first;
 | |
|       LiveRange* LR = EI->second;
 | |
|       BR[LI->reg].Use = LR;
 | |
|     }
 | |
| 
 | |
|     for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
 | |
|          II != IE; ++II) {
 | |
|       LiveInterval* LI = II->first;
 | |
|       LiveRange* LR = II->second;
 | |
|       if (LR->end.isDead()) {
 | |
|         BR[LI->reg].Dead = LR;
 | |
|       } else {
 | |
|         BR[LI->reg].EC = LR;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
 | |
|          EI != EE; ++EI) {
 | |
|       LiveInterval* LI = EI->first;
 | |
|       LiveRange* LR = EI->second;
 | |
|       BR[LI->reg].Def = LR;
 | |
|     }
 | |
| 
 | |
|     return BR;
 | |
|   }
 | |
| 
 | |
|   void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
 | |
|     MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
 | |
|     if (!OldKillMI->killsRegister(reg))
 | |
|       return; // Bail out if we don't have kill flags on the old register.
 | |
|     MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
 | |
|     assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
 | |
|     assert(!NewKillMI->killsRegister(reg) && "New kill instr is already a kill.");
 | |
|     OldKillMI->clearRegisterKills(reg, &TRI);
 | |
|     NewKillMI->addRegisterKilled(reg, &TRI);
 | |
|   }
 | |
| 
 | |
|   void updateRegMaskSlots(SlotIndex OldIdx) {
 | |
|     SmallVectorImpl<SlotIndex>::iterator RI =
 | |
|       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
 | |
|                        OldIdx);
 | |
|     assert(*RI == OldIdx && "No RegMask at OldIdx.");
 | |
|     *RI = NewIdx;
 | |
|     assert(*prior(RI) < *RI && *RI < *next(RI) &&
 | |
|            "RegSlots out of order. Did you move one call across another?");
 | |
|   }
 | |
| 
 | |
|   // Return the last use of reg between NewIdx and OldIdx.
 | |
|   SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
 | |
|     SlotIndex LastUse = NewIdx;
 | |
|     for (MachineRegisterInfo::use_nodbg_iterator
 | |
|            UI = MRI.use_nodbg_begin(Reg),
 | |
|            UE = MRI.use_nodbg_end();
 | |
|          UI != UE; UI.skipInstruction()) {
 | |
|       const MachineInstr* MI = &*UI;
 | |
|       SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
 | |
|       if (InstSlot > LastUse && InstSlot < OldIdx)
 | |
|         LastUse = InstSlot;
 | |
|     }
 | |
|     return LastUse;
 | |
|   }
 | |
| 
 | |
|   void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
 | |
|     LiveInterval* LI = P.first;
 | |
|     LiveRange* LR = P.second;
 | |
|     bool LiveThrough = LR->end > OldIdx.getRegSlot();
 | |
|     if (LiveThrough)
 | |
|       return;
 | |
|     SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
 | |
|     if (LastUse != NewIdx)
 | |
|       moveKillFlags(LI->reg, NewIdx, LastUse);
 | |
|     LR->end = LastUse.getRegSlot();
 | |
|   }
 | |
| 
 | |
|   void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
 | |
|     LiveInterval* LI = P.first;
 | |
|     LiveRange* LR = P.second;
 | |
|     if (NewIdx > LR->end) {
 | |
|       moveKillFlags(LI->reg, LR->end, NewIdx);
 | |
|       LR->end = NewIdx.getRegSlot();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
 | |
|     bool GoingUp = NewIdx < OldIdx;
 | |
| 
 | |
|     if (GoingUp) {
 | |
|       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
 | |
|            EI != EE; ++EI)
 | |
|         moveEnteringUpFrom(OldIdx, *EI);
 | |
|     } else {
 | |
|       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
 | |
|            EI != EE; ++EI)
 | |
|         moveEnteringDownFrom(OldIdx, *EI);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
 | |
|     LiveInterval* LI = P.first;
 | |
|     LiveRange* LR = P.second;
 | |
|     assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
 | |
|            LR->end <= OldIdx.getDeadSlot() &&
 | |
|            "Range should be internal to OldIdx.");
 | |
|     LiveRange Tmp(*LR);
 | |
|     Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
 | |
|     Tmp.valno->def = Tmp.start;
 | |
|     Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
 | |
|     LI->removeRange(*LR);
 | |
|     LI->addRange(Tmp);
 | |
|   }
 | |
| 
 | |
|   void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
 | |
|     for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
 | |
|          II != IE; ++II)
 | |
|       moveInternalFrom(OldIdx, *II);
 | |
|   }
 | |
| 
 | |
|   void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
 | |
|     LiveRange* LR = P.second;
 | |
|     assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
 | |
|            "Range should start in OldIdx.");
 | |
|     assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
 | |
|     SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
 | |
|     LR->start = NewStart;
 | |
|     LR->valno->def = NewStart;
 | |
|   }
 | |
| 
 | |
|   void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
 | |
|     for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
 | |
|          EI != EE; ++EI)
 | |
|       moveExitingFrom(OldIdx, *EI);
 | |
|   }
 | |
| 
 | |
|   void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
 | |
|                               BundleRanges& BR) {
 | |
|     LiveInterval* LI = P.first;
 | |
|     LiveRange* LR = P.second;
 | |
|     bool LiveThrough = LR->end > OldIdx.getRegSlot();
 | |
|     if (LiveThrough) {
 | |
|       assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
 | |
|              "Def in bundle should be def range.");
 | |
|       assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
 | |
|              "If bundle has use for this reg it should be LR.");
 | |
|       BR[LI->reg].Use = LR;
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
 | |
|     moveKillFlags(LI->reg, OldIdx, LastUse);
 | |
| 
 | |
|     if (LR->start < NewIdx) {
 | |
|       // Becoming a new entering range.
 | |
|       assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
 | |
|              "Bundle shouldn't be re-defining reg mid-range.");
 | |
|       assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
 | |
|              "Bundle shouldn't have different use range for same reg.");
 | |
|       LR->end = LastUse.getRegSlot();
 | |
|       BR[LI->reg].Use = LR;
 | |
|     } else {
 | |
|       // Becoming a new Dead-def.
 | |
|       assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
 | |
|              "Live range starting at unexpected slot.");
 | |
|       assert(BR[LI->reg].Def == LR && "Reg should have def range.");
 | |
|       assert(BR[LI->reg].Dead == 0 &&
 | |
|                "Can't have def and dead def of same reg in a bundle.");
 | |
|       LR->end = LastUse.getDeadSlot();
 | |
|       BR[LI->reg].Dead = BR[LI->reg].Def;
 | |
|       BR[LI->reg].Def = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
 | |
|                                 BundleRanges& BR) {
 | |
|     LiveInterval* LI = P.first;
 | |
|     LiveRange* LR = P.second;
 | |
|     if (NewIdx > LR->end) {
 | |
|       // Range extended to bundle. Add to bundle uses.
 | |
|       // Note: Currently adds kill flags to bundle start.
 | |
|       assert(BR[LI->reg].Use == 0 &&
 | |
|              "Bundle already has use range for reg.");
 | |
|       moveKillFlags(LI->reg, LR->end, NewIdx);
 | |
|       LR->end = NewIdx.getRegSlot();
 | |
|       BR[LI->reg].Use = LR;
 | |
|     } else {
 | |
|       assert(BR[LI->reg].Use != 0 &&
 | |
|              "Bundle should already have a use range for reg.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
 | |
|                                BundleRanges& BR) {
 | |
|     bool GoingUp = NewIdx < OldIdx;
 | |
| 
 | |
|     if (GoingUp) {
 | |
|       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
 | |
|            EI != EE; ++EI)
 | |
|         moveEnteringUpFromInto(OldIdx, *EI, BR);
 | |
|     } else {
 | |
|       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
 | |
|            EI != EE; ++EI)
 | |
|         moveEnteringDownFromInto(OldIdx, *EI, BR);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
 | |
|                             BundleRanges& BR) {
 | |
|     // TODO: Sane rules for moving ranges into bundles.
 | |
|   }
 | |
| 
 | |
|   void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
 | |
|                                BundleRanges& BR) {
 | |
|     for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
 | |
|          II != IE; ++II)
 | |
|       moveInternalFromInto(OldIdx, *II, BR);
 | |
|   }
 | |
| 
 | |
|   void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
 | |
|                            BundleRanges& BR) {
 | |
|     LiveInterval* LI = P.first;
 | |
|     LiveRange* LR = P.second;
 | |
| 
 | |
|     assert(LR->start.isRegister() &&
 | |
|            "Don't know how to merge exiting ECs into bundles yet.");
 | |
| 
 | |
|     if (LR->end > NewIdx.getDeadSlot()) {
 | |
|       // This range is becoming an exiting range on the bundle.
 | |
|       // If there was an old dead-def of this reg, delete it.
 | |
|       if (BR[LI->reg].Dead != 0) {
 | |
|         LI->removeRange(*BR[LI->reg].Dead);
 | |
|         BR[LI->reg].Dead = 0;
 | |
|       }
 | |
|       assert(BR[LI->reg].Def == 0 &&
 | |
|              "Can't have two defs for the same variable exiting a bundle.");
 | |
|       LR->start = NewIdx.getRegSlot();
 | |
|       LR->valno->def = LR->start;
 | |
|       BR[LI->reg].Def = LR;
 | |
|     } else {
 | |
|       // This range is becoming internal to the bundle.
 | |
|       assert(LR->end == NewIdx.getRegSlot() &&
 | |
|              "Can't bundle def whose kill is before the bundle");
 | |
|       if (BR[LI->reg].Dead || BR[LI->reg].Def) {
 | |
|         // Already have a def for this. Just delete range.
 | |
|         LI->removeRange(*LR);
 | |
|       } else {
 | |
|         // Make range dead, record.
 | |
|         LR->end = NewIdx.getDeadSlot();
 | |
|         BR[LI->reg].Dead = LR;
 | |
|         assert(BR[LI->reg].Use == LR &&
 | |
|                "Range becoming dead should currently be use.");
 | |
|       }
 | |
|       // In both cases the range is no longer a use on the bundle.
 | |
|       BR[LI->reg].Use = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
 | |
|                               BundleRanges& BR) {
 | |
|     for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
 | |
|          EI != EE; ++EI)
 | |
|       moveExitingFromInto(OldIdx, *EI, BR);
 | |
|   }
 | |
| 
 | |
| };
 | |
| 
 | |
| void LiveIntervals::handleMove(MachineInstr* MI) {
 | |
|   SlotIndex OldIndex = indexes_->getInstructionIndex(MI);
 | |
|   indexes_->removeMachineInstrFromMaps(MI);
 | |
|   SlotIndex NewIndex = MI->isInsideBundle() ?
 | |
|                         indexes_->getInstructionIndex(MI->getBundleStart()) :
 | |
|                         indexes_->insertMachineInstrInMaps(MI);
 | |
|   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
 | |
|          OldIndex < getMBBEndIdx(MI->getParent()) &&
 | |
|          "Cannot handle moves across basic block boundaries.");
 | |
|   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
 | |
| 
 | |
|   HMEditor HME(*this, *mri_, *tri_, NewIndex);
 | |
|   HME.moveAllRangesFrom(MI, OldIndex);
 | |
| }
 | |
| 
 | |
| void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI, MachineInstr* BundleStart) {
 | |
|   SlotIndex NewIndex = indexes_->getInstructionIndex(BundleStart);
 | |
|   HMEditor HME(*this, *mri_, *tri_, NewIndex);
 | |
|   HME.moveAllRangesInto(MI, BundleStart);
 | |
| }
 |