mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	Creates a configurable regalloc pipeline. Ensure specific llc options do what they say and nothing more: -reglloc=... has no effect other than selecting the allocator pass itself. This patch introduces a new umbrella flag, "-optimize-regalloc", to enable/disable the optimizing regalloc "superpass". This allows for example testing coalscing and scheduling under -O0 or vice-versa. When a CodeGen pass requires the MachineFunction to have a particular property, we need to explicitly define that property so it can be directly queried rather than naming a specific Pass. For example, to check for SSA, use MRI->isSSA, not addRequired<PHIElimination>. CodeGen transformation passes are never "required" as an analysis ProcessImplicitDefs does not require LiveVariables. We have a plan to massively simplify some of the early passes within the regalloc superpass. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150226 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			824 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			824 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LiveVariable analysis pass.  For each machine
 | |
| // instruction in the function, this pass calculates the set of registers that
 | |
| // are immediately dead after the instruction (i.e., the instruction calculates
 | |
| // the value, but it is never used) and the set of registers that are used by
 | |
| // the instruction, but are never used after the instruction (i.e., they are
 | |
| // killed).
 | |
| //
 | |
| // This class computes live variables using are sparse implementation based on
 | |
| // the machine code SSA form.  This class computes live variable information for
 | |
| // each virtual and _register allocatable_ physical register in a function.  It
 | |
| // uses the dominance properties of SSA form to efficiently compute live
 | |
| // variables for virtual registers, and assumes that physical registers are only
 | |
| // live within a single basic block (allowing it to do a single local analysis
 | |
| // to resolve physical register lifetimes in each basic block).  If a physical
 | |
| // register is not register allocatable, it is not tracked.  This is useful for
 | |
| // things like the stack pointer and condition codes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LiveVariables.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| char LiveVariables::ID = 0;
 | |
| char &llvm::LiveVariablesID = LiveVariables::ID;
 | |
| INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
 | |
|                 "Live Variable Analysis", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
 | |
| INITIALIZE_PASS_END(LiveVariables, "livevars",
 | |
|                 "Live Variable Analysis", false, false)
 | |
| 
 | |
| 
 | |
| void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequiredID(UnreachableMachineBlockElimID);
 | |
|   AU.setPreservesAll();
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| MachineInstr *
 | |
| LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
 | |
|   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
 | |
|     if (Kills[i]->getParent() == MBB)
 | |
|       return Kills[i];
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| void LiveVariables::VarInfo::dump() const {
 | |
|   dbgs() << "  Alive in blocks: ";
 | |
|   for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
 | |
|            E = AliveBlocks.end(); I != E; ++I)
 | |
|     dbgs() << *I << ", ";
 | |
|   dbgs() << "\n  Killed by:";
 | |
|   if (Kills.empty())
 | |
|     dbgs() << " No instructions.\n";
 | |
|   else {
 | |
|     for (unsigned i = 0, e = Kills.size(); i != e; ++i)
 | |
|       dbgs() << "\n    #" << i << ": " << *Kills[i];
 | |
|     dbgs() << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
 | |
| LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
 | |
|   assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
 | |
|          "getVarInfo: not a virtual register!");
 | |
|   VirtRegInfo.grow(RegIdx);
 | |
|   return VirtRegInfo[RegIdx];
 | |
| }
 | |
| 
 | |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
 | |
|                                             MachineBasicBlock *DefBlock,
 | |
|                                             MachineBasicBlock *MBB,
 | |
|                                     std::vector<MachineBasicBlock*> &WorkList) {
 | |
|   unsigned BBNum = MBB->getNumber();
 | |
| 
 | |
|   // Check to see if this basic block is one of the killing blocks.  If so,
 | |
|   // remove it.
 | |
|   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
 | |
|     if (VRInfo.Kills[i]->getParent() == MBB) {
 | |
|       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   if (MBB == DefBlock) return;  // Terminate recursion
 | |
| 
 | |
|   if (VRInfo.AliveBlocks.test(BBNum))
 | |
|     return;  // We already know the block is live
 | |
| 
 | |
|   // Mark the variable known alive in this bb
 | |
|   VRInfo.AliveBlocks.set(BBNum);
 | |
| 
 | |
|   WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
 | |
| }
 | |
| 
 | |
| void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
 | |
|                                             MachineBasicBlock *DefBlock,
 | |
|                                             MachineBasicBlock *MBB) {
 | |
|   std::vector<MachineBasicBlock*> WorkList;
 | |
|   MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
 | |
| 
 | |
|   while (!WorkList.empty()) {
 | |
|     MachineBasicBlock *Pred = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
|     MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
 | |
|                                      MachineInstr *MI) {
 | |
|   assert(MRI->getVRegDef(reg) && "Register use before def!");
 | |
| 
 | |
|   unsigned BBNum = MBB->getNumber();
 | |
| 
 | |
|   VarInfo& VRInfo = getVarInfo(reg);
 | |
| 
 | |
|   // Check to see if this basic block is already a kill block.
 | |
|   if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
 | |
|     // Yes, this register is killed in this basic block already. Increase the
 | |
|     // live range by updating the kill instruction.
 | |
|     VRInfo.Kills.back() = MI;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
 | |
|     assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
 | |
| #endif
 | |
| 
 | |
|   // This situation can occur:
 | |
|   //
 | |
|   //     ,------.
 | |
|   //     |      |
 | |
|   //     |      v
 | |
|   //     |   t2 = phi ... t1 ...
 | |
|   //     |      |
 | |
|   //     |      v
 | |
|   //     |   t1 = ...
 | |
|   //     |  ... = ... t1 ...
 | |
|   //     |      |
 | |
|   //     `------'
 | |
|   //
 | |
|   // where there is a use in a PHI node that's a predecessor to the defining
 | |
|   // block. We don't want to mark all predecessors as having the value "alive"
 | |
|   // in this case.
 | |
|   if (MBB == MRI->getVRegDef(reg)->getParent()) return;
 | |
| 
 | |
|   // Add a new kill entry for this basic block. If this virtual register is
 | |
|   // already marked as alive in this basic block, that means it is alive in at
 | |
|   // least one of the successor blocks, it's not a kill.
 | |
|   if (!VRInfo.AliveBlocks.test(BBNum))
 | |
|     VRInfo.Kills.push_back(MI);
 | |
| 
 | |
|   // Update all dominating blocks to mark them as "known live".
 | |
|   for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
 | |
|          E = MBB->pred_end(); PI != E; ++PI)
 | |
|     MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
 | |
|   VarInfo &VRInfo = getVarInfo(Reg);
 | |
| 
 | |
|   if (VRInfo.AliveBlocks.empty())
 | |
|     // If vr is not alive in any block, then defaults to dead.
 | |
|     VRInfo.Kills.push_back(MI);
 | |
| }
 | |
| 
 | |
| /// FindLastPartialDef - Return the last partial def of the specified register.
 | |
| /// Also returns the sub-registers that're defined by the instruction.
 | |
| MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
 | |
|                                             SmallSet<unsigned,4> &PartDefRegs) {
 | |
|   unsigned LastDefReg = 0;
 | |
|   unsigned LastDefDist = 0;
 | |
|   MachineInstr *LastDef = NULL;
 | |
|   for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     MachineInstr *Def = PhysRegDef[SubReg];
 | |
|     if (!Def)
 | |
|       continue;
 | |
|     unsigned Dist = DistanceMap[Def];
 | |
|     if (Dist > LastDefDist) {
 | |
|       LastDefReg  = SubReg;
 | |
|       LastDef     = Def;
 | |
|       LastDefDist = Dist;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!LastDef)
 | |
|     return 0;
 | |
| 
 | |
|   PartDefRegs.insert(LastDefReg);
 | |
|   for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = LastDef->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
 | |
|       continue;
 | |
|     unsigned DefReg = MO.getReg();
 | |
|     if (TRI->isSubRegister(Reg, DefReg)) {
 | |
|       PartDefRegs.insert(DefReg);
 | |
|       for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
 | |
|            unsigned SubReg = *SubRegs; ++SubRegs)
 | |
|         PartDefRegs.insert(SubReg);
 | |
|     }
 | |
|   }
 | |
|   return LastDef;
 | |
| }
 | |
| 
 | |
| /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
 | |
| /// implicit defs to a machine instruction if there was an earlier def of its
 | |
| /// super-register.
 | |
| void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
 | |
|   MachineInstr *LastDef = PhysRegDef[Reg];
 | |
|   // If there was a previous use or a "full" def all is well.
 | |
|   if (!LastDef && !PhysRegUse[Reg]) {
 | |
|     // Otherwise, the last sub-register def implicitly defines this register.
 | |
|     // e.g.
 | |
|     // AH =
 | |
|     // AL = ... <imp-def EAX>, <imp-kill AH>
 | |
|     //    = AH
 | |
|     // ...
 | |
|     //    = EAX
 | |
|     // All of the sub-registers must have been defined before the use of Reg!
 | |
|     SmallSet<unsigned, 4> PartDefRegs;
 | |
|     MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
 | |
|     // If LastPartialDef is NULL, it must be using a livein register.
 | |
|     if (LastPartialDef) {
 | |
|       LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
 | |
|                                                            true/*IsImp*/));
 | |
|       PhysRegDef[Reg] = LastPartialDef;
 | |
|       SmallSet<unsigned, 8> Processed;
 | |
|       for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|            unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|         if (Processed.count(SubReg))
 | |
|           continue;
 | |
|         if (PartDefRegs.count(SubReg))
 | |
|           continue;
 | |
|         // This part of Reg was defined before the last partial def. It's killed
 | |
|         // here.
 | |
|         LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
 | |
|                                                              false/*IsDef*/,
 | |
|                                                              true/*IsImp*/));
 | |
|         PhysRegDef[SubReg] = LastPartialDef;
 | |
|         for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
 | |
|           Processed.insert(*SS);
 | |
|       }
 | |
|     }
 | |
|   } else if (LastDef && !PhysRegUse[Reg] &&
 | |
|              !LastDef->findRegisterDefOperand(Reg))
 | |
|     // Last def defines the super register, add an implicit def of reg.
 | |
|     LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
 | |
|                                                   true/*IsImp*/));
 | |
| 
 | |
|   // Remember this use.
 | |
|   PhysRegUse[Reg]  = MI;
 | |
|   for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs)
 | |
|     PhysRegUse[SubReg] =  MI;
 | |
| }
 | |
| 
 | |
| /// FindLastRefOrPartRef - Return the last reference or partial reference of
 | |
| /// the specified register.
 | |
| MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
 | |
|   MachineInstr *LastDef = PhysRegDef[Reg];
 | |
|   MachineInstr *LastUse = PhysRegUse[Reg];
 | |
|   if (!LastDef && !LastUse)
 | |
|     return 0;
 | |
| 
 | |
|   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
 | |
|   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
 | |
|   unsigned LastPartDefDist = 0;
 | |
|   for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     MachineInstr *Def = PhysRegDef[SubReg];
 | |
|     if (Def && Def != LastDef) {
 | |
|       // There was a def of this sub-register in between. This is a partial
 | |
|       // def, keep track of the last one.
 | |
|       unsigned Dist = DistanceMap[Def];
 | |
|       if (Dist > LastPartDefDist)
 | |
|         LastPartDefDist = Dist;
 | |
|     } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
 | |
|       unsigned Dist = DistanceMap[Use];
 | |
|       if (Dist > LastRefOrPartRefDist) {
 | |
|         LastRefOrPartRefDist = Dist;
 | |
|         LastRefOrPartRef = Use;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return LastRefOrPartRef;
 | |
| }
 | |
| 
 | |
| bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
 | |
|   MachineInstr *LastDef = PhysRegDef[Reg];
 | |
|   MachineInstr *LastUse = PhysRegUse[Reg];
 | |
|   if (!LastDef && !LastUse)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
 | |
|   unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
 | |
|   // The whole register is used.
 | |
|   // AL =
 | |
|   // AH =
 | |
|   //
 | |
|   //    = AX
 | |
|   //    = AL, AX<imp-use, kill>
 | |
|   // AX =
 | |
|   //
 | |
|   // Or whole register is defined, but not used at all.
 | |
|   // AX<dead> =
 | |
|   // ...
 | |
|   // AX =
 | |
|   //
 | |
|   // Or whole register is defined, but only partly used.
 | |
|   // AX<dead> = AL<imp-def>
 | |
|   //    = AL<kill>
 | |
|   // AX =
 | |
|   MachineInstr *LastPartDef = 0;
 | |
|   unsigned LastPartDefDist = 0;
 | |
|   SmallSet<unsigned, 8> PartUses;
 | |
|   for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     MachineInstr *Def = PhysRegDef[SubReg];
 | |
|     if (Def && Def != LastDef) {
 | |
|       // There was a def of this sub-register in between. This is a partial
 | |
|       // def, keep track of the last one.
 | |
|       unsigned Dist = DistanceMap[Def];
 | |
|       if (Dist > LastPartDefDist) {
 | |
|         LastPartDefDist = Dist;
 | |
|         LastPartDef = Def;
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     if (MachineInstr *Use = PhysRegUse[SubReg]) {
 | |
|       PartUses.insert(SubReg);
 | |
|       for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
 | |
|         PartUses.insert(*SS);
 | |
|       unsigned Dist = DistanceMap[Use];
 | |
|       if (Dist > LastRefOrPartRefDist) {
 | |
|         LastRefOrPartRefDist = Dist;
 | |
|         LastRefOrPartRef = Use;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!PhysRegUse[Reg]) {
 | |
|     // Partial uses. Mark register def dead and add implicit def of
 | |
|     // sub-registers which are used.
 | |
|     // EAX<dead>  = op  AL<imp-def>
 | |
|     // That is, EAX def is dead but AL def extends pass it.
 | |
|     PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
 | |
|     for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|          unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|       if (!PartUses.count(SubReg))
 | |
|         continue;
 | |
|       bool NeedDef = true;
 | |
|       if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
 | |
|         MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
 | |
|         if (MO) {
 | |
|           NeedDef = false;
 | |
|           assert(!MO->isDead());
 | |
|         }
 | |
|       }
 | |
|       if (NeedDef)
 | |
|         PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
 | |
|                                                  true/*IsDef*/, true/*IsImp*/));
 | |
|       MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
 | |
|       if (LastSubRef)
 | |
|         LastSubRef->addRegisterKilled(SubReg, TRI, true);
 | |
|       else {
 | |
|         LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
 | |
|         PhysRegUse[SubReg] = LastRefOrPartRef;
 | |
|         for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg);
 | |
|              unsigned SSReg = *SSRegs; ++SSRegs)
 | |
|           PhysRegUse[SSReg] = LastRefOrPartRef;
 | |
|       }
 | |
|       for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
 | |
|         PartUses.erase(*SS);
 | |
|     }
 | |
|   } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
 | |
|     if (LastPartDef)
 | |
|       // The last partial def kills the register.
 | |
|       LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
 | |
|                                                 true/*IsImp*/, true/*IsKill*/));
 | |
|     else {
 | |
|       MachineOperand *MO =
 | |
|         LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
 | |
|       bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
 | |
|       // If the last reference is the last def, then it's not used at all.
 | |
|       // That is, unless we are currently processing the last reference itself.
 | |
|       LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
 | |
|       if (NeedEC) {
 | |
|         // If we are adding a subreg def and the superreg def is marked early
 | |
|         // clobber, add an early clobber marker to the subreg def.
 | |
|         MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
 | |
|         if (MO)
 | |
|           MO->setIsEarlyClobber();
 | |
|       }
 | |
|     }
 | |
|   } else
 | |
|     LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandleRegMask(const MachineOperand &MO) {
 | |
|   // Call HandlePhysRegKill() for all live registers clobbered by Mask.
 | |
|   // Clobbered registers are always dead, sp there is no need to use
 | |
|   // HandlePhysRegDef().
 | |
|   for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
 | |
|     // Skip dead regs.
 | |
|     if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
 | |
|       continue;
 | |
|     // Skip mask-preserved regs.
 | |
|     if (!MO.clobbersPhysReg(Reg))
 | |
|       continue;
 | |
|     // Kill the largest clobbered super-register.
 | |
|     // This avoids needless implicit operands.
 | |
|     unsigned Super = Reg;
 | |
|     for (const unsigned *SR = TRI->getSuperRegisters(Reg); *SR; ++SR)
 | |
|       if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
 | |
|         Super = *SR;
 | |
|     HandlePhysRegKill(Super, 0);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
 | |
|                                      SmallVector<unsigned, 4> &Defs) {
 | |
|   // What parts of the register are previously defined?
 | |
|   SmallSet<unsigned, 32> Live;
 | |
|   if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
 | |
|     Live.insert(Reg);
 | |
|     for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
 | |
|       Live.insert(*SS);
 | |
|   } else {
 | |
|     for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|          unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|       // If a register isn't itself defined, but all parts that make up of it
 | |
|       // are defined, then consider it also defined.
 | |
|       // e.g.
 | |
|       // AL =
 | |
|       // AH =
 | |
|       //    = AX
 | |
|       if (Live.count(SubReg))
 | |
|         continue;
 | |
|       if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
 | |
|         Live.insert(SubReg);
 | |
|         for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
 | |
|           Live.insert(*SS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Start from the largest piece, find the last time any part of the register
 | |
|   // is referenced.
 | |
|   HandlePhysRegKill(Reg, MI);
 | |
|   // Only some of the sub-registers are used.
 | |
|   for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|        unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|     if (!Live.count(SubReg))
 | |
|       // Skip if this sub-register isn't defined.
 | |
|       continue;
 | |
|     HandlePhysRegKill(SubReg, MI);
 | |
|   }
 | |
| 
 | |
|   if (MI)
 | |
|     Defs.push_back(Reg);  // Remember this def.
 | |
| }
 | |
| 
 | |
| void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
 | |
|                                       SmallVector<unsigned, 4> &Defs) {
 | |
|   while (!Defs.empty()) {
 | |
|     unsigned Reg = Defs.back();
 | |
|     Defs.pop_back();
 | |
|     PhysRegDef[Reg]  = MI;
 | |
|     PhysRegUse[Reg]  = NULL;
 | |
|     for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
 | |
|          unsigned SubReg = *SubRegs; ++SubRegs) {
 | |
|       PhysRegDef[SubReg]  = MI;
 | |
|       PhysRegUse[SubReg]  = NULL;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
 | |
|   MF = &mf;
 | |
|   MRI = &mf.getRegInfo();
 | |
|   TRI = MF->getTarget().getRegisterInfo();
 | |
| 
 | |
|   ReservedRegisters = TRI->getReservedRegs(mf);
 | |
| 
 | |
|   unsigned NumRegs = TRI->getNumRegs();
 | |
|   PhysRegDef  = new MachineInstr*[NumRegs];
 | |
|   PhysRegUse  = new MachineInstr*[NumRegs];
 | |
|   PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
 | |
|   std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
 | |
|   std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
 | |
|   PHIJoins.clear();
 | |
| 
 | |
|   // FIXME: LiveIntervals will be updated to remove its dependence on
 | |
|   // LiveVariables to improve compilation time and eliminate bizarre pass
 | |
|   // dependencies. Until then, we can't change much in -O0.
 | |
|   if (!MRI->isSSA())
 | |
|     report_fatal_error("regalloc=... not currently supported with -O0");
 | |
| 
 | |
|   analyzePHINodes(mf);
 | |
| 
 | |
|   // Calculate live variable information in depth first order on the CFG of the
 | |
|   // function.  This guarantees that we will see the definition of a virtual
 | |
|   // register before its uses due to dominance properties of SSA (except for PHI
 | |
|   // nodes, which are treated as a special case).
 | |
|   MachineBasicBlock *Entry = MF->begin();
 | |
|   SmallPtrSet<MachineBasicBlock*,16> Visited;
 | |
| 
 | |
|   for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
 | |
|          DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
 | |
|        DFI != E; ++DFI) {
 | |
|     MachineBasicBlock *MBB = *DFI;
 | |
| 
 | |
|     // Mark live-in registers as live-in.
 | |
|     SmallVector<unsigned, 4> Defs;
 | |
|     for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(),
 | |
|            EE = MBB->livein_end(); II != EE; ++II) {
 | |
|       assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
 | |
|              "Cannot have a live-in virtual register!");
 | |
|       HandlePhysRegDef(*II, 0, Defs);
 | |
|     }
 | |
| 
 | |
|     // Loop over all of the instructions, processing them.
 | |
|     DistanceMap.clear();
 | |
|     unsigned Dist = 0;
 | |
|     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
 | |
|          I != E; ++I) {
 | |
|       MachineInstr *MI = I;
 | |
|       if (MI->isDebugValue())
 | |
|         continue;
 | |
|       DistanceMap.insert(std::make_pair(MI, Dist++));
 | |
| 
 | |
|       // Process all of the operands of the instruction...
 | |
|       unsigned NumOperandsToProcess = MI->getNumOperands();
 | |
| 
 | |
|       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
 | |
|       // of the uses.  They will be handled in other basic blocks.
 | |
|       if (MI->isPHI())
 | |
|         NumOperandsToProcess = 1;
 | |
| 
 | |
|       // Clear kill and dead markers. LV will recompute them.
 | |
|       SmallVector<unsigned, 4> UseRegs;
 | |
|       SmallVector<unsigned, 4> DefRegs;
 | |
|       SmallVector<unsigned, 1> RegMasks;
 | |
|       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
 | |
|         MachineOperand &MO = MI->getOperand(i);
 | |
|         if (MO.isRegMask()) {
 | |
|           RegMasks.push_back(i);
 | |
|           continue;
 | |
|         }
 | |
|         if (!MO.isReg() || MO.getReg() == 0)
 | |
|           continue;
 | |
|         unsigned MOReg = MO.getReg();
 | |
|         if (MO.isUse()) {
 | |
|           MO.setIsKill(false);
 | |
|           UseRegs.push_back(MOReg);
 | |
|         } else /*MO.isDef()*/ {
 | |
|           MO.setIsDead(false);
 | |
|           DefRegs.push_back(MOReg);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Process all uses.
 | |
|       for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
 | |
|         unsigned MOReg = UseRegs[i];
 | |
|         if (TargetRegisterInfo::isVirtualRegister(MOReg))
 | |
|           HandleVirtRegUse(MOReg, MBB, MI);
 | |
|         else if (!ReservedRegisters[MOReg])
 | |
|           HandlePhysRegUse(MOReg, MI);
 | |
|       }
 | |
| 
 | |
|       // Process all masked registers. (Call clobbers).
 | |
|       for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
 | |
|         HandleRegMask(MI->getOperand(RegMasks[i]));
 | |
| 
 | |
|       // Process all defs.
 | |
|       for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
 | |
|         unsigned MOReg = DefRegs[i];
 | |
|         if (TargetRegisterInfo::isVirtualRegister(MOReg))
 | |
|           HandleVirtRegDef(MOReg, MI);
 | |
|         else if (!ReservedRegisters[MOReg])
 | |
|           HandlePhysRegDef(MOReg, MI, Defs);
 | |
|       }
 | |
|       UpdatePhysRegDefs(MI, Defs);
 | |
|     }
 | |
| 
 | |
|     // Handle any virtual assignments from PHI nodes which might be at the
 | |
|     // bottom of this basic block.  We check all of our successor blocks to see
 | |
|     // if they have PHI nodes, and if so, we simulate an assignment at the end
 | |
|     // of the current block.
 | |
|     if (!PHIVarInfo[MBB->getNumber()].empty()) {
 | |
|       SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
 | |
| 
 | |
|       for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
 | |
|              E = VarInfoVec.end(); I != E; ++I)
 | |
|         // Mark it alive only in the block we are representing.
 | |
|         MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
 | |
|                                 MBB);
 | |
|     }
 | |
| 
 | |
|     // Finally, if the last instruction in the block is a return, make sure to
 | |
|     // mark it as using all of the live-out values in the function.
 | |
|     // Things marked both call and return are tail calls; do not do this for
 | |
|     // them.  The tail callee need not take the same registers as input
 | |
|     // that it produces as output, and there are dependencies for its input
 | |
|     // registers elsewhere.
 | |
|     if (!MBB->empty() && MBB->back().isReturn()
 | |
|         && !MBB->back().isCall()) {
 | |
|       MachineInstr *Ret = &MBB->back();
 | |
| 
 | |
|       for (MachineRegisterInfo::liveout_iterator
 | |
|            I = MF->getRegInfo().liveout_begin(),
 | |
|            E = MF->getRegInfo().liveout_end(); I != E; ++I) {
 | |
|         assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
 | |
|                "Cannot have a live-out virtual register!");
 | |
|         HandlePhysRegUse(*I, Ret);
 | |
| 
 | |
|         // Add live-out registers as implicit uses.
 | |
|         if (!Ret->readsRegister(*I))
 | |
|           Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // MachineCSE may CSE instructions which write to non-allocatable physical
 | |
|     // registers across MBBs. Remember if any reserved register is liveout.
 | |
|     SmallSet<unsigned, 4> LiveOuts;
 | |
|     for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
 | |
|            SE = MBB->succ_end(); SI != SE; ++SI) {
 | |
|       MachineBasicBlock *SuccMBB = *SI;
 | |
|       if (SuccMBB->isLandingPad())
 | |
|         continue;
 | |
|       for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(),
 | |
|              LE = SuccMBB->livein_end(); LI != LE; ++LI) {
 | |
|         unsigned LReg = *LI;
 | |
|         if (!TRI->isInAllocatableClass(LReg))
 | |
|           // Ignore other live-ins, e.g. those that are live into landing pads.
 | |
|           LiveOuts.insert(LReg);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Loop over PhysRegDef / PhysRegUse, killing any registers that are
 | |
|     // available at the end of the basic block.
 | |
|     for (unsigned i = 0; i != NumRegs; ++i)
 | |
|       if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
 | |
|         HandlePhysRegDef(i, 0, Defs);
 | |
| 
 | |
|     std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
 | |
|     std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
 | |
|   }
 | |
| 
 | |
|   // Convert and transfer the dead / killed information we have gathered into
 | |
|   // VirtRegInfo onto MI's.
 | |
|   for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
 | |
|     const unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
 | |
|       if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
 | |
|         VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
 | |
|       else
 | |
|         VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
 | |
|   }
 | |
| 
 | |
|   // Check to make sure there are no unreachable blocks in the MC CFG for the
 | |
|   // function.  If so, it is due to a bug in the instruction selector or some
 | |
|   // other part of the code generator if this happens.
 | |
| #ifndef NDEBUG
 | |
|   for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
 | |
|     assert(Visited.count(&*i) != 0 && "unreachable basic block found");
 | |
| #endif
 | |
| 
 | |
|   delete[] PhysRegDef;
 | |
|   delete[] PhysRegUse;
 | |
|   delete[] PHIVarInfo;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// replaceKillInstruction - Update register kill info by replacing a kill
 | |
| /// instruction with a new one.
 | |
| void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
 | |
|                                            MachineInstr *NewMI) {
 | |
|   VarInfo &VI = getVarInfo(Reg);
 | |
|   std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
 | |
| }
 | |
| 
 | |
| /// removeVirtualRegistersKilled - Remove all killed info for the specified
 | |
| /// instruction.
 | |
| void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI->getOperand(i);
 | |
|     if (MO.isReg() && MO.isKill()) {
 | |
|       MO.setIsKill(false);
 | |
|       unsigned Reg = MO.getReg();
 | |
|       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|         bool removed = getVarInfo(Reg).removeKill(MI);
 | |
|         assert(removed && "kill not in register's VarInfo?");
 | |
|         (void)removed;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In
 | |
| /// particular, we want to map the variable information of a virtual register
 | |
| /// which is used in a PHI node. We map that to the BB the vreg is coming from.
 | |
| ///
 | |
| void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
 | |
|   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
 | |
|        I != E; ++I)
 | |
|     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
 | |
|          BBI != BBE && BBI->isPHI(); ++BBI)
 | |
|       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | |
|         PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
 | |
|           .push_back(BBI->getOperand(i).getReg());
 | |
| }
 | |
| 
 | |
| bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
 | |
|                                       unsigned Reg,
 | |
|                                       MachineRegisterInfo &MRI) {
 | |
|   unsigned Num = MBB.getNumber();
 | |
| 
 | |
|   // Reg is live-through.
 | |
|   if (AliveBlocks.test(Num))
 | |
|     return true;
 | |
| 
 | |
|   // Registers defined in MBB cannot be live in.
 | |
|   const MachineInstr *Def = MRI.getVRegDef(Reg);
 | |
|   if (Def && Def->getParent() == &MBB)
 | |
|     return false;
 | |
| 
 | |
|  // Reg was not defined in MBB, was it killed here?
 | |
|   return findKill(&MBB);
 | |
| }
 | |
| 
 | |
| bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
 | |
|   LiveVariables::VarInfo &VI = getVarInfo(Reg);
 | |
| 
 | |
|   // Loop over all of the successors of the basic block, checking to see if
 | |
|   // the value is either live in the block, or if it is killed in the block.
 | |
|   SmallVector<MachineBasicBlock*, 8> OpSuccBlocks;
 | |
|   for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
 | |
|          E = MBB.succ_end(); SI != E; ++SI) {
 | |
|     MachineBasicBlock *SuccMBB = *SI;
 | |
| 
 | |
|     // Is it alive in this successor?
 | |
|     unsigned SuccIdx = SuccMBB->getNumber();
 | |
|     if (VI.AliveBlocks.test(SuccIdx))
 | |
|       return true;
 | |
|     OpSuccBlocks.push_back(SuccMBB);
 | |
|   }
 | |
| 
 | |
|   // Check to see if this value is live because there is a use in a successor
 | |
|   // that kills it.
 | |
|   switch (OpSuccBlocks.size()) {
 | |
|   case 1: {
 | |
|     MachineBasicBlock *SuccMBB = OpSuccBlocks[0];
 | |
|     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
 | |
|       if (VI.Kills[i]->getParent() == SuccMBB)
 | |
|         return true;
 | |
|     break;
 | |
|   }
 | |
|   case 2: {
 | |
|     MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1];
 | |
|     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
 | |
|       if (VI.Kills[i]->getParent() == SuccMBB1 ||
 | |
|           VI.Kills[i]->getParent() == SuccMBB2)
 | |
|         return true;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
 | |
|     for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
 | |
|       if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
 | |
|                              VI.Kills[i]->getParent()))
 | |
|         return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
 | |
| /// variables that are live out of DomBB will be marked as passing live through
 | |
| /// BB.
 | |
| void LiveVariables::addNewBlock(MachineBasicBlock *BB,
 | |
|                                 MachineBasicBlock *DomBB,
 | |
|                                 MachineBasicBlock *SuccBB) {
 | |
|   const unsigned NumNew = BB->getNumber();
 | |
| 
 | |
|   // All registers used by PHI nodes in SuccBB must be live through BB.
 | |
|   for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
 | |
|          BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI)
 | |
|     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
 | |
|       if (BBI->getOperand(i+1).getMBB() == BB)
 | |
|         getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
 | |
| 
 | |
|   // Update info for all live variables
 | |
|   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 | |
|     VarInfo &VI = getVarInfo(Reg);
 | |
|     if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI))
 | |
|       VI.AliveBlocks.set(NumNew);
 | |
|   }
 | |
| }
 |