mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150918 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1999 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1999 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation analyzes and transforms the induction variables (and
 | |
| // computations derived from them) into simpler forms suitable for subsequent
 | |
| // analysis and transformation.
 | |
| //
 | |
| // If the trip count of a loop is computable, this pass also makes the following
 | |
| // changes:
 | |
| //   1. The exit condition for the loop is canonicalized to compare the
 | |
| //      induction value against the exit value.  This turns loops like:
 | |
| //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
 | |
| //   2. Any use outside of the loop of an expression derived from the indvar
 | |
| //      is changed to compute the derived value outside of the loop, eliminating
 | |
| //      the dependence on the exit value of the induction variable.  If the only
 | |
| //      purpose of the loop is to compute the exit value of some derived
 | |
| //      expression, this transformation will make the loop dead.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "indvars"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/IVUsers.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpander.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumRemoved     , "Number of aux indvars removed");
 | |
| STATISTIC(NumWidened     , "Number of indvars widened");
 | |
| STATISTIC(NumInserted    , "Number of canonical indvars added");
 | |
| STATISTIC(NumReplaced    , "Number of exit values replaced");
 | |
| STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
 | |
| STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
 | |
| STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
 | |
| 
 | |
| static cl::opt<bool> EnableIVRewrite(
 | |
|   "enable-iv-rewrite", cl::Hidden,
 | |
|   cl::desc("Enable canonical induction variable rewriting"));
 | |
| 
 | |
| // Trip count verification can be enabled by default under NDEBUG if we
 | |
| // implement a strong expression equivalence checker in SCEV. Until then, we
 | |
| // use the verify-indvars flag, which may assert in some cases.
 | |
| static cl::opt<bool> VerifyIndvars(
 | |
|   "verify-indvars", cl::Hidden,
 | |
|   cl::desc("Verify the ScalarEvolution result after running indvars"));
 | |
| 
 | |
| namespace {
 | |
|   class IndVarSimplify : public LoopPass {
 | |
|     IVUsers         *IU;
 | |
|     LoopInfo        *LI;
 | |
|     ScalarEvolution *SE;
 | |
|     DominatorTree   *DT;
 | |
|     TargetData      *TD;
 | |
| 
 | |
|     SmallVector<WeakVH, 16> DeadInsts;
 | |
|     bool Changed;
 | |
|   public:
 | |
| 
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
 | |
|                        Changed(false) {
 | |
|       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<LoopInfo>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addRequiredID(LoopSimplifyID);
 | |
|       AU.addRequiredID(LCSSAID);
 | |
|       if (EnableIVRewrite)
 | |
|         AU.addRequired<IVUsers>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.addPreservedID(LoopSimplifyID);
 | |
|       AU.addPreservedID(LCSSAID);
 | |
|       if (EnableIVRewrite)
 | |
|         AU.addPreserved<IVUsers>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|   private:
 | |
|     virtual void releaseMemory() {
 | |
|       DeadInsts.clear();
 | |
|     }
 | |
| 
 | |
|     bool isValidRewrite(Value *FromVal, Value *ToVal);
 | |
| 
 | |
|     void HandleFloatingPointIV(Loop *L, PHINode *PH);
 | |
|     void RewriteNonIntegerIVs(Loop *L);
 | |
| 
 | |
|     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
 | |
| 
 | |
|     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
|     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
 | |
| 
 | |
|     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
 | |
|                                      PHINode *IndVar, SCEVExpander &Rewriter);
 | |
| 
 | |
|     void SinkUnusedInvariants(Loop *L);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char IndVarSimplify::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
 | |
|                 "Induction Variable Simplification", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
 | |
| INITIALIZE_PASS_DEPENDENCY(LCSSA)
 | |
| INITIALIZE_PASS_DEPENDENCY(IVUsers)
 | |
| INITIALIZE_PASS_END(IndVarSimplify, "indvars",
 | |
|                 "Induction Variable Simplification", false, false)
 | |
| 
 | |
| Pass *llvm::createIndVarSimplifyPass() {
 | |
|   return new IndVarSimplify();
 | |
| }
 | |
| 
 | |
| /// isValidRewrite - Return true if the SCEV expansion generated by the
 | |
| /// rewriter can replace the original value. SCEV guarantees that it
 | |
| /// produces the same value, but the way it is produced may be illegal IR.
 | |
| /// Ideally, this function will only be called for verification.
 | |
| bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
 | |
|   // If an SCEV expression subsumed multiple pointers, its expansion could
 | |
|   // reassociate the GEP changing the base pointer. This is illegal because the
 | |
|   // final address produced by a GEP chain must be inbounds relative to its
 | |
|   // underlying object. Otherwise basic alias analysis, among other things,
 | |
|   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
 | |
|   // producing an expression involving multiple pointers. Until then, we must
 | |
|   // bail out here.
 | |
|   //
 | |
|   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
 | |
|   // because it understands lcssa phis while SCEV does not.
 | |
|   Value *FromPtr = FromVal;
 | |
|   Value *ToPtr = ToVal;
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
 | |
|     FromPtr = GEP->getPointerOperand();
 | |
|   }
 | |
|   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
 | |
|     ToPtr = GEP->getPointerOperand();
 | |
|   }
 | |
|   if (FromPtr != FromVal || ToPtr != ToVal) {
 | |
|     // Quickly check the common case
 | |
|     if (FromPtr == ToPtr)
 | |
|       return true;
 | |
| 
 | |
|     // SCEV may have rewritten an expression that produces the GEP's pointer
 | |
|     // operand. That's ok as long as the pointer operand has the same base
 | |
|     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
 | |
|     // base of a recurrence. This handles the case in which SCEV expansion
 | |
|     // converts a pointer type recurrence into a nonrecurrent pointer base
 | |
|     // indexed by an integer recurrence.
 | |
| 
 | |
|     // If the GEP base pointer is a vector of pointers, abort.
 | |
|     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
 | |
|       return false;
 | |
| 
 | |
|     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
 | |
|     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
 | |
|     if (FromBase == ToBase)
 | |
|       return true;
 | |
| 
 | |
|     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
 | |
|           << *FromBase << " != " << *ToBase << "\n");
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Determine the insertion point for this user. By default, insert immediately
 | |
| /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
 | |
| /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
 | |
| /// common dominator for the incoming blocks.
 | |
| static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
 | |
|                                           DominatorTree *DT) {
 | |
|   PHINode *PHI = dyn_cast<PHINode>(User);
 | |
|   if (!PHI)
 | |
|     return User;
 | |
| 
 | |
|   Instruction *InsertPt = 0;
 | |
|   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
 | |
|     if (PHI->getIncomingValue(i) != Def)
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
 | |
|     if (!InsertPt) {
 | |
|       InsertPt = InsertBB->getTerminator();
 | |
|       continue;
 | |
|     }
 | |
|     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
 | |
|     InsertPt = InsertBB->getTerminator();
 | |
|   }
 | |
|   assert(InsertPt && "Missing phi operand");
 | |
|   assert((!isa<Instruction>(Def) ||
 | |
|           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
 | |
|          "def does not dominate all uses");
 | |
|   return InsertPt;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ConvertToSInt - Convert APF to an integer, if possible.
 | |
| static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
 | |
|   bool isExact = false;
 | |
|   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
 | |
|     return false;
 | |
|   // See if we can convert this to an int64_t
 | |
|   uint64_t UIntVal;
 | |
|   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
 | |
|                            &isExact) != APFloat::opOK || !isExact)
 | |
|     return false;
 | |
|   IntVal = UIntVal;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// HandleFloatingPointIV - If the loop has floating induction variable
 | |
| /// then insert corresponding integer induction variable if possible.
 | |
| /// For example,
 | |
| /// for(double i = 0; i < 10000; ++i)
 | |
| ///   bar(i)
 | |
| /// is converted into
 | |
| /// for(int i = 0; i < 10000; ++i)
 | |
| ///   bar((double)i);
 | |
| ///
 | |
| void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
 | |
|   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
 | |
|   unsigned BackEdge     = IncomingEdge^1;
 | |
| 
 | |
|   // Check incoming value.
 | |
|   ConstantFP *InitValueVal =
 | |
|     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
 | |
| 
 | |
|   int64_t InitValue;
 | |
|   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
 | |
|     return;
 | |
| 
 | |
|   // Check IV increment. Reject this PN if increment operation is not
 | |
|   // an add or increment value can not be represented by an integer.
 | |
|   BinaryOperator *Incr =
 | |
|     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
 | |
|   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
 | |
| 
 | |
|   // If this is not an add of the PHI with a constantfp, or if the constant fp
 | |
|   // is not an integer, bail out.
 | |
|   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
 | |
|   int64_t IncValue;
 | |
|   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
 | |
|       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
 | |
|     return;
 | |
| 
 | |
|   // Check Incr uses. One user is PN and the other user is an exit condition
 | |
|   // used by the conditional terminator.
 | |
|   Value::use_iterator IncrUse = Incr->use_begin();
 | |
|   Instruction *U1 = cast<Instruction>(*IncrUse++);
 | |
|   if (IncrUse == Incr->use_end()) return;
 | |
|   Instruction *U2 = cast<Instruction>(*IncrUse++);
 | |
|   if (IncrUse != Incr->use_end()) return;
 | |
| 
 | |
|   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
 | |
|   // only used by a branch, we can't transform it.
 | |
|   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
 | |
|   if (!Compare)
 | |
|     Compare = dyn_cast<FCmpInst>(U2);
 | |
|   if (Compare == 0 || !Compare->hasOneUse() ||
 | |
|       !isa<BranchInst>(Compare->use_back()))
 | |
|     return;
 | |
| 
 | |
|   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
 | |
| 
 | |
|   // We need to verify that the branch actually controls the iteration count
 | |
|   // of the loop.  If not, the new IV can overflow and no one will notice.
 | |
|   // The branch block must be in the loop and one of the successors must be out
 | |
|   // of the loop.
 | |
|   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
 | |
|   if (!L->contains(TheBr->getParent()) ||
 | |
|       (L->contains(TheBr->getSuccessor(0)) &&
 | |
|        L->contains(TheBr->getSuccessor(1))))
 | |
|     return;
 | |
| 
 | |
| 
 | |
|   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
 | |
|   // transform it.
 | |
|   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
 | |
|   int64_t ExitValue;
 | |
|   if (ExitValueVal == 0 ||
 | |
|       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
 | |
|     return;
 | |
| 
 | |
|   // Find new predicate for integer comparison.
 | |
|   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
 | |
|   switch (Compare->getPredicate()) {
 | |
|   default: return;  // Unknown comparison.
 | |
|   case CmpInst::FCMP_OEQ:
 | |
|   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
 | |
|   case CmpInst::FCMP_ONE:
 | |
|   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
 | |
|   case CmpInst::FCMP_OGT:
 | |
|   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
 | |
|   case CmpInst::FCMP_OGE:
 | |
|   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
 | |
|   case CmpInst::FCMP_OLT:
 | |
|   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
 | |
|   case CmpInst::FCMP_OLE:
 | |
|   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
 | |
|   }
 | |
| 
 | |
|   // We convert the floating point induction variable to a signed i32 value if
 | |
|   // we can.  This is only safe if the comparison will not overflow in a way
 | |
|   // that won't be trapped by the integer equivalent operations.  Check for this
 | |
|   // now.
 | |
|   // TODO: We could use i64 if it is native and the range requires it.
 | |
| 
 | |
|   // The start/stride/exit values must all fit in signed i32.
 | |
|   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
 | |
|     return;
 | |
| 
 | |
|   // If not actually striding (add x, 0.0), avoid touching the code.
 | |
|   if (IncValue == 0)
 | |
|     return;
 | |
| 
 | |
|   // Positive and negative strides have different safety conditions.
 | |
|   if (IncValue > 0) {
 | |
|     // If we have a positive stride, we require the init to be less than the
 | |
|     // exit value.
 | |
|     if (InitValue >= ExitValue)
 | |
|       return;
 | |
| 
 | |
|     uint32_t Range = uint32_t(ExitValue-InitValue);
 | |
|     // Check for infinite loop, either:
 | |
|     // while (i <= Exit) or until (i > Exit)
 | |
|     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
 | |
|       if (++Range == 0) return;  // Range overflows.
 | |
|     }
 | |
| 
 | |
|     unsigned Leftover = Range % uint32_t(IncValue);
 | |
| 
 | |
|     // If this is an equality comparison, we require that the strided value
 | |
|     // exactly land on the exit value, otherwise the IV condition will wrap
 | |
|     // around and do things the fp IV wouldn't.
 | |
|     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
 | |
|         Leftover != 0)
 | |
|       return;
 | |
| 
 | |
|     // If the stride would wrap around the i32 before exiting, we can't
 | |
|     // transform the IV.
 | |
|     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
 | |
|       return;
 | |
| 
 | |
|   } else {
 | |
|     // If we have a negative stride, we require the init to be greater than the
 | |
|     // exit value.
 | |
|     if (InitValue <= ExitValue)
 | |
|       return;
 | |
| 
 | |
|     uint32_t Range = uint32_t(InitValue-ExitValue);
 | |
|     // Check for infinite loop, either:
 | |
|     // while (i >= Exit) or until (i < Exit)
 | |
|     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
 | |
|       if (++Range == 0) return;  // Range overflows.
 | |
|     }
 | |
| 
 | |
|     unsigned Leftover = Range % uint32_t(-IncValue);
 | |
| 
 | |
|     // If this is an equality comparison, we require that the strided value
 | |
|     // exactly land on the exit value, otherwise the IV condition will wrap
 | |
|     // around and do things the fp IV wouldn't.
 | |
|     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
 | |
|         Leftover != 0)
 | |
|       return;
 | |
| 
 | |
|     // If the stride would wrap around the i32 before exiting, we can't
 | |
|     // transform the IV.
 | |
|     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
 | |
| 
 | |
|   // Insert new integer induction variable.
 | |
|   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
 | |
|   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
 | |
|                       PN->getIncomingBlock(IncomingEdge));
 | |
| 
 | |
|   Value *NewAdd =
 | |
|     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
 | |
|                               Incr->getName()+".int", Incr);
 | |
|   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
 | |
| 
 | |
|   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
 | |
|                                       ConstantInt::get(Int32Ty, ExitValue),
 | |
|                                       Compare->getName());
 | |
| 
 | |
|   // In the following deletions, PN may become dead and may be deleted.
 | |
|   // Use a WeakVH to observe whether this happens.
 | |
|   WeakVH WeakPH = PN;
 | |
| 
 | |
|   // Delete the old floating point exit comparison.  The branch starts using the
 | |
|   // new comparison.
 | |
|   NewCompare->takeName(Compare);
 | |
|   Compare->replaceAllUsesWith(NewCompare);
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(Compare);
 | |
| 
 | |
|   // Delete the old floating point increment.
 | |
|   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
 | |
|   RecursivelyDeleteTriviallyDeadInstructions(Incr);
 | |
| 
 | |
|   // If the FP induction variable still has uses, this is because something else
 | |
|   // in the loop uses its value.  In order to canonicalize the induction
 | |
|   // variable, we chose to eliminate the IV and rewrite it in terms of an
 | |
|   // int->fp cast.
 | |
|   //
 | |
|   // We give preference to sitofp over uitofp because it is faster on most
 | |
|   // platforms.
 | |
|   if (WeakPH) {
 | |
|     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
 | |
|                                  PN->getParent()->getFirstInsertionPt());
 | |
|     PN->replaceAllUsesWith(Conv);
 | |
|     RecursivelyDeleteTriviallyDeadInstructions(PN);
 | |
|   }
 | |
| 
 | |
|   // Add a new IVUsers entry for the newly-created integer PHI.
 | |
|   if (IU)
 | |
|     IU->AddUsersIfInteresting(NewPHI);
 | |
| 
 | |
|   Changed = true;
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
 | |
|   // First step.  Check to see if there are any floating-point recurrences.
 | |
|   // If there are, change them into integer recurrences, permitting analysis by
 | |
|   // the SCEV routines.
 | |
|   //
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   SmallVector<WeakVH, 8> PHIs;
 | |
|   for (BasicBlock::iterator I = Header->begin();
 | |
|        PHINode *PN = dyn_cast<PHINode>(I); ++I)
 | |
|     PHIs.push_back(PN);
 | |
| 
 | |
|   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
 | |
|     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
 | |
|       HandleFloatingPointIV(L, PN);
 | |
| 
 | |
|   // If the loop previously had floating-point IV, ScalarEvolution
 | |
|   // may not have been able to compute a trip count. Now that we've done some
 | |
|   // re-writing, the trip count may be computable.
 | |
|   if (Changed)
 | |
|     SE->forgetLoop(L);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // RewriteLoopExitValues - Optimize IV users outside the loop.
 | |
| // As a side effect, reduces the amount of IV processing within the loop.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// RewriteLoopExitValues - Check to see if this loop has a computable
 | |
| /// loop-invariant execution count.  If so, this means that we can compute the
 | |
| /// final value of any expressions that are recurrent in the loop, and
 | |
| /// substitute the exit values from the loop into any instructions outside of
 | |
| /// the loop that use the final values of the current expressions.
 | |
| ///
 | |
| /// This is mostly redundant with the regular IndVarSimplify activities that
 | |
| /// happen later, except that it's more powerful in some cases, because it's
 | |
| /// able to brute-force evaluate arbitrary instructions as long as they have
 | |
| /// constant operands at the beginning of the loop.
 | |
| void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
 | |
|   // Verify the input to the pass in already in LCSSA form.
 | |
|   assert(L->isLCSSAForm(*DT));
 | |
| 
 | |
|   SmallVector<BasicBlock*, 8> ExitBlocks;
 | |
|   L->getUniqueExitBlocks(ExitBlocks);
 | |
| 
 | |
|   // Find all values that are computed inside the loop, but used outside of it.
 | |
|   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
 | |
|   // the exit blocks of the loop to find them.
 | |
|   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBB = ExitBlocks[i];
 | |
| 
 | |
|     // If there are no PHI nodes in this exit block, then no values defined
 | |
|     // inside the loop are used on this path, skip it.
 | |
|     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
 | |
|     if (!PN) continue;
 | |
| 
 | |
|     unsigned NumPreds = PN->getNumIncomingValues();
 | |
| 
 | |
|     // Iterate over all of the PHI nodes.
 | |
|     BasicBlock::iterator BBI = ExitBB->begin();
 | |
|     while ((PN = dyn_cast<PHINode>(BBI++))) {
 | |
|       if (PN->use_empty())
 | |
|         continue; // dead use, don't replace it
 | |
| 
 | |
|       // SCEV only supports integer expressions for now.
 | |
|       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
 | |
|         continue;
 | |
| 
 | |
|       // It's necessary to tell ScalarEvolution about this explicitly so that
 | |
|       // it can walk the def-use list and forget all SCEVs, as it may not be
 | |
|       // watching the PHI itself. Once the new exit value is in place, there
 | |
|       // may not be a def-use connection between the loop and every instruction
 | |
|       // which got a SCEVAddRecExpr for that loop.
 | |
|       SE->forgetValue(PN);
 | |
| 
 | |
|       // Iterate over all of the values in all the PHI nodes.
 | |
|       for (unsigned i = 0; i != NumPreds; ++i) {
 | |
|         // If the value being merged in is not integer or is not defined
 | |
|         // in the loop, skip it.
 | |
|         Value *InVal = PN->getIncomingValue(i);
 | |
|         if (!isa<Instruction>(InVal))
 | |
|           continue;
 | |
| 
 | |
|         // If this pred is for a subloop, not L itself, skip it.
 | |
|         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
 | |
|           continue; // The Block is in a subloop, skip it.
 | |
| 
 | |
|         // Check that InVal is defined in the loop.
 | |
|         Instruction *Inst = cast<Instruction>(InVal);
 | |
|         if (!L->contains(Inst))
 | |
|           continue;
 | |
| 
 | |
|         // Okay, this instruction has a user outside of the current loop
 | |
|         // and varies predictably *inside* the loop.  Evaluate the value it
 | |
|         // contains when the loop exits, if possible.
 | |
|         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
 | |
|         if (!SE->isLoopInvariant(ExitValue, L))
 | |
|           continue;
 | |
| 
 | |
|         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
 | |
| 
 | |
|         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
 | |
|                      << "  LoopVal = " << *Inst << "\n");
 | |
| 
 | |
|         if (!isValidRewrite(Inst, ExitVal)) {
 | |
|           DeadInsts.push_back(ExitVal);
 | |
|           continue;
 | |
|         }
 | |
|         Changed = true;
 | |
|         ++NumReplaced;
 | |
| 
 | |
|         PN->setIncomingValue(i, ExitVal);
 | |
| 
 | |
|         // If this instruction is dead now, delete it.
 | |
|         RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| 
 | |
|         if (NumPreds == 1) {
 | |
|           // Completely replace a single-pred PHI. This is safe, because the
 | |
|           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
 | |
|           // node anymore.
 | |
|           PN->replaceAllUsesWith(ExitVal);
 | |
|           RecursivelyDeleteTriviallyDeadInstructions(PN);
 | |
|         }
 | |
|       }
 | |
|       if (NumPreds != 1) {
 | |
|         // Clone the PHI and delete the original one. This lets IVUsers and
 | |
|         // any other maps purge the original user from their records.
 | |
|         PHINode *NewPN = cast<PHINode>(PN->clone());
 | |
|         NewPN->takeName(PN);
 | |
|         NewPN->insertBefore(PN);
 | |
|         PN->replaceAllUsesWith(NewPN);
 | |
|         PN->eraseFromParent();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The insertion point instruction may have been deleted; clear it out
 | |
|   // so that the rewriter doesn't trip over it later.
 | |
|   Rewriter.clearInsertPoint();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Rewrite IV users based on a canonical IV.
 | |
| //  Only for use with -enable-iv-rewrite.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
| /// complex than affine induction variables.  Doing so will put expensive
 | |
| /// polynomial evaluations inside of the loop, and the str reduction pass
 | |
| /// currently can only reduce affine polynomials.  For now just disable
 | |
| /// indvar subst on anything more complex than an affine addrec, unless
 | |
| /// it can be expanded to a trivial value.
 | |
| static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
 | |
|   // Loop-invariant values are safe.
 | |
|   if (SE->isLoopInvariant(S, L)) return true;
 | |
| 
 | |
|   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
 | |
|   // to transform them into efficient code.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | |
|     return AR->isAffine();
 | |
| 
 | |
|   // An add is safe it all its operands are safe.
 | |
|   if (const SCEVCommutativeExpr *Commutative
 | |
|       = dyn_cast<SCEVCommutativeExpr>(S)) {
 | |
|     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
 | |
|          E = Commutative->op_end(); I != E; ++I)
 | |
|       if (!isSafe(*I, L, SE)) return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // A cast is safe if its operand is.
 | |
|   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
 | |
|     return isSafe(C->getOperand(), L, SE);
 | |
| 
 | |
|   // A udiv is safe if its operands are.
 | |
|   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
 | |
|     return isSafe(UD->getLHS(), L, SE) &&
 | |
|            isSafe(UD->getRHS(), L, SE);
 | |
| 
 | |
|   // SCEVUnknown is always safe.
 | |
|   if (isa<SCEVUnknown>(S))
 | |
|     return true;
 | |
| 
 | |
|   // Nothing else is safe.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
 | |
|   // Rewrite all induction variable expressions in terms of the canonical
 | |
|   // induction variable.
 | |
|   //
 | |
|   // If there were induction variables of other sizes or offsets, manually
 | |
|   // add the offsets to the primary induction variable and cast, avoiding
 | |
|   // the need for the code evaluation methods to insert induction variables
 | |
|   // of different sizes.
 | |
|   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
 | |
|     Value *Op = UI->getOperandValToReplace();
 | |
|     Type *UseTy = Op->getType();
 | |
|     Instruction *User = UI->getUser();
 | |
| 
 | |
|     // Compute the final addrec to expand into code.
 | |
|     const SCEV *AR = IU->getReplacementExpr(*UI);
 | |
| 
 | |
|     // Evaluate the expression out of the loop, if possible.
 | |
|     if (!L->contains(UI->getUser())) {
 | |
|       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
 | |
|       if (SE->isLoopInvariant(ExitVal, L))
 | |
|         AR = ExitVal;
 | |
|     }
 | |
| 
 | |
|     // FIXME: It is an extremely bad idea to indvar substitute anything more
 | |
|     // complex than affine induction variables.  Doing so will put expensive
 | |
|     // polynomial evaluations inside of the loop, and the str reduction pass
 | |
|     // currently can only reduce affine polynomials.  For now just disable
 | |
|     // indvar subst on anything more complex than an affine addrec, unless
 | |
|     // it can be expanded to a trivial value.
 | |
|     if (!isSafe(AR, L, SE))
 | |
|       continue;
 | |
| 
 | |
|     // Determine the insertion point for this user. By default, insert
 | |
|     // immediately before the user. The SCEVExpander class will automatically
 | |
|     // hoist loop invariants out of the loop. For PHI nodes, there may be
 | |
|     // multiple uses, so compute the nearest common dominator for the
 | |
|     // incoming blocks.
 | |
|     Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
 | |
| 
 | |
|     // Now expand it into actual Instructions and patch it into place.
 | |
|     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
 | |
| 
 | |
|     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
 | |
|                  << "   into = " << *NewVal << "\n");
 | |
| 
 | |
|     if (!isValidRewrite(Op, NewVal)) {
 | |
|       DeadInsts.push_back(NewVal);
 | |
|       continue;
 | |
|     }
 | |
|     // Inform ScalarEvolution that this value is changing. The change doesn't
 | |
|     // affect its value, but it does potentially affect which use lists the
 | |
|     // value will be on after the replacement, which affects ScalarEvolution's
 | |
|     // ability to walk use lists and drop dangling pointers when a value is
 | |
|     // deleted.
 | |
|     SE->forgetValue(User);
 | |
| 
 | |
|     // Patch the new value into place.
 | |
|     if (Op->hasName())
 | |
|       NewVal->takeName(Op);
 | |
|     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
 | |
|       NewValI->setDebugLoc(User->getDebugLoc());
 | |
|     User->replaceUsesOfWith(Op, NewVal);
 | |
|     UI->setOperandValToReplace(NewVal);
 | |
| 
 | |
|     ++NumRemoved;
 | |
|     Changed = true;
 | |
| 
 | |
|     // The old value may be dead now.
 | |
|     DeadInsts.push_back(Op);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  IV Widening - Extend the width of an IV to cover its widest uses.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   // Collect information about induction variables that are used by sign/zero
 | |
|   // extend operations. This information is recorded by CollectExtend and
 | |
|   // provides the input to WidenIV.
 | |
|   struct WideIVInfo {
 | |
|     PHINode *NarrowIV;
 | |
|     Type *WidestNativeType; // Widest integer type created [sz]ext
 | |
|     bool IsSigned;          // Was an sext user seen before a zext?
 | |
| 
 | |
|     WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
 | |
|   };
 | |
| 
 | |
|   class WideIVVisitor : public IVVisitor {
 | |
|     ScalarEvolution *SE;
 | |
|     const TargetData *TD;
 | |
| 
 | |
|   public:
 | |
|     WideIVInfo WI;
 | |
| 
 | |
|     WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
 | |
|                   const TargetData *TData) :
 | |
|       SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
 | |
| 
 | |
|     // Implement the interface used by simplifyUsersOfIV.
 | |
|     virtual void visitCast(CastInst *Cast);
 | |
|   };
 | |
| }
 | |
| 
 | |
| /// visitCast - Update information about the induction variable that is
 | |
| /// extended by this sign or zero extend operation. This is used to determine
 | |
| /// the final width of the IV before actually widening it.
 | |
| void WideIVVisitor::visitCast(CastInst *Cast) {
 | |
|   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
 | |
|   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
 | |
|     return;
 | |
| 
 | |
|   Type *Ty = Cast->getType();
 | |
|   uint64_t Width = SE->getTypeSizeInBits(Ty);
 | |
|   if (TD && !TD->isLegalInteger(Width))
 | |
|     return;
 | |
| 
 | |
|   if (!WI.WidestNativeType) {
 | |
|     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
 | |
|     WI.IsSigned = IsSigned;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // We extend the IV to satisfy the sign of its first user, arbitrarily.
 | |
|   if (WI.IsSigned != IsSigned)
 | |
|     return;
 | |
| 
 | |
|   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
 | |
|     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
 | |
| /// WideIV that computes the same value as the Narrow IV def.  This avoids
 | |
| /// caching Use* pointers.
 | |
| struct NarrowIVDefUse {
 | |
|   Instruction *NarrowDef;
 | |
|   Instruction *NarrowUse;
 | |
|   Instruction *WideDef;
 | |
| 
 | |
|   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
 | |
| 
 | |
|   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
 | |
|     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
 | |
| };
 | |
| 
 | |
| /// WidenIV - The goal of this transform is to remove sign and zero extends
 | |
| /// without creating any new induction variables. To do this, it creates a new
 | |
| /// phi of the wider type and redirects all users, either removing extends or
 | |
| /// inserting truncs whenever we stop propagating the type.
 | |
| ///
 | |
| class WidenIV {
 | |
|   // Parameters
 | |
|   PHINode *OrigPhi;
 | |
|   Type *WideType;
 | |
|   bool IsSigned;
 | |
| 
 | |
|   // Context
 | |
|   LoopInfo        *LI;
 | |
|   Loop            *L;
 | |
|   ScalarEvolution *SE;
 | |
|   DominatorTree   *DT;
 | |
| 
 | |
|   // Result
 | |
|   PHINode *WidePhi;
 | |
|   Instruction *WideInc;
 | |
|   const SCEV *WideIncExpr;
 | |
|   SmallVectorImpl<WeakVH> &DeadInsts;
 | |
| 
 | |
|   SmallPtrSet<Instruction*,16> Widened;
 | |
|   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
 | |
| 
 | |
| public:
 | |
|   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
 | |
|           ScalarEvolution *SEv, DominatorTree *DTree,
 | |
|           SmallVectorImpl<WeakVH> &DI) :
 | |
|     OrigPhi(WI.NarrowIV),
 | |
|     WideType(WI.WidestNativeType),
 | |
|     IsSigned(WI.IsSigned),
 | |
|     LI(LInfo),
 | |
|     L(LI->getLoopFor(OrigPhi->getParent())),
 | |
|     SE(SEv),
 | |
|     DT(DTree),
 | |
|     WidePhi(0),
 | |
|     WideInc(0),
 | |
|     WideIncExpr(0),
 | |
|     DeadInsts(DI) {
 | |
|     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
 | |
|   }
 | |
| 
 | |
|   PHINode *CreateWideIV(SCEVExpander &Rewriter);
 | |
| 
 | |
| protected:
 | |
|   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
 | |
|                    Instruction *Use);
 | |
| 
 | |
|   Instruction *CloneIVUser(NarrowIVDefUse DU);
 | |
| 
 | |
|   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
 | |
| 
 | |
|   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
 | |
| 
 | |
|   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
 | |
| 
 | |
|   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| /// isLoopInvariant - Perform a quick domtree based check for loop invariance
 | |
| /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
 | |
| /// gratuitous for this purpose.
 | |
| static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
 | |
|   Instruction *Inst = dyn_cast<Instruction>(V);
 | |
|   if (!Inst)
 | |
|     return true;
 | |
| 
 | |
|   return DT->properlyDominates(Inst->getParent(), L->getHeader());
 | |
| }
 | |
| 
 | |
| Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
 | |
|                           Instruction *Use) {
 | |
|   // Set the debug location and conservative insertion point.
 | |
|   IRBuilder<> Builder(Use);
 | |
|   // Hoist the insertion point into loop preheaders as far as possible.
 | |
|   for (const Loop *L = LI->getLoopFor(Use->getParent());
 | |
|        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
 | |
|        L = L->getParentLoop())
 | |
|     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
 | |
| 
 | |
|   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
 | |
|                     Builder.CreateZExt(NarrowOper, WideType);
 | |
| }
 | |
| 
 | |
| /// CloneIVUser - Instantiate a wide operation to replace a narrow
 | |
| /// operation. This only needs to handle operations that can evaluation to
 | |
| /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
 | |
| Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
 | |
|   unsigned Opcode = DU.NarrowUse->getOpcode();
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return 0;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
 | |
| 
 | |
|     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
 | |
|     // anything about the narrow operand yet so must insert a [sz]ext. It is
 | |
|     // probably loop invariant and will be folded or hoisted. If it actually
 | |
|     // comes from a widened IV, it should be removed during a future call to
 | |
|     // WidenIVUse.
 | |
|     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
 | |
|       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
 | |
|     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
 | |
|       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
 | |
| 
 | |
|     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
 | |
|     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
 | |
|                                                     LHS, RHS,
 | |
|                                                     NarrowBO->getName());
 | |
|     IRBuilder<> Builder(DU.NarrowUse);
 | |
|     Builder.Insert(WideBO);
 | |
|     if (const OverflowingBinaryOperator *OBO =
 | |
|         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
 | |
|       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
 | |
|       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
 | |
|     }
 | |
|     return WideBO;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// No-wrap operations can transfer sign extension of their result to their
 | |
| /// operands. Generate the SCEV value for the widened operation without
 | |
| /// actually modifying the IR yet. If the expression after extending the
 | |
| /// operands is an AddRec for this loop, return it.
 | |
| const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
 | |
|   // Handle the common case of add<nsw/nuw>
 | |
|   if (DU.NarrowUse->getOpcode() != Instruction::Add)
 | |
|     return 0;
 | |
| 
 | |
|   // One operand (NarrowDef) has already been extended to WideDef. Now determine
 | |
|   // if extending the other will lead to a recurrence.
 | |
|   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
 | |
|   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
 | |
| 
 | |
|   const SCEV *ExtendOperExpr = 0;
 | |
|   const OverflowingBinaryOperator *OBO =
 | |
|     cast<OverflowingBinaryOperator>(DU.NarrowUse);
 | |
|   if (IsSigned && OBO->hasNoSignedWrap())
 | |
|     ExtendOperExpr = SE->getSignExtendExpr(
 | |
|       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
 | |
|   else if(!IsSigned && OBO->hasNoUnsignedWrap())
 | |
|     ExtendOperExpr = SE->getZeroExtendExpr(
 | |
|       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
 | |
|   else
 | |
|     return 0;
 | |
| 
 | |
|   // When creating this AddExpr, don't apply the current operations NSW or NUW
 | |
|   // flags. This instruction may be guarded by control flow that the no-wrap
 | |
|   // behavior depends on. Non-control-equivalent instructions can be mapped to
 | |
|   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
 | |
|   // semantics to those operations.
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
 | |
|     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
 | |
| 
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return 0;
 | |
|   return AddRec;
 | |
| }
 | |
| 
 | |
| /// GetWideRecurrence - Is this instruction potentially interesting from
 | |
| /// IVUsers' perspective after widening it's type? In other words, can the
 | |
| /// extend be safely hoisted out of the loop with SCEV reducing the value to a
 | |
| /// recurrence on the same loop. If so, return the sign or zero extended
 | |
| /// recurrence. Otherwise return NULL.
 | |
| const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
 | |
|   if (!SE->isSCEVable(NarrowUse->getType()))
 | |
|     return 0;
 | |
| 
 | |
|   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
 | |
|   if (SE->getTypeSizeInBits(NarrowExpr->getType())
 | |
|       >= SE->getTypeSizeInBits(WideType)) {
 | |
|     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
 | |
|     // index. So don't follow this use.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   const SCEV *WideExpr = IsSigned ?
 | |
|     SE->getSignExtendExpr(NarrowExpr, WideType) :
 | |
|     SE->getZeroExtendExpr(NarrowExpr, WideType);
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return 0;
 | |
|   return AddRec;
 | |
| }
 | |
| 
 | |
| /// WidenIVUse - Determine whether an individual user of the narrow IV can be
 | |
| /// widened. If so, return the wide clone of the user.
 | |
| Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
 | |
| 
 | |
|   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
 | |
|   if (isa<PHINode>(DU.NarrowUse) &&
 | |
|       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
 | |
|     return 0;
 | |
| 
 | |
|   // Our raison d'etre! Eliminate sign and zero extension.
 | |
|   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
 | |
|     Value *NewDef = DU.WideDef;
 | |
|     if (DU.NarrowUse->getType() != WideType) {
 | |
|       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
 | |
|       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
 | |
|       if (CastWidth < IVWidth) {
 | |
|         // The cast isn't as wide as the IV, so insert a Trunc.
 | |
|         IRBuilder<> Builder(DU.NarrowUse);
 | |
|         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
 | |
|       }
 | |
|       else {
 | |
|         // A wider extend was hidden behind a narrower one. This may induce
 | |
|         // another round of IV widening in which the intermediate IV becomes
 | |
|         // dead. It should be very rare.
 | |
|         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
 | |
|               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
 | |
|         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
 | |
|         NewDef = DU.NarrowUse;
 | |
|       }
 | |
|     }
 | |
|     if (NewDef != DU.NarrowUse) {
 | |
|       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
 | |
|             << " replaced by " << *DU.WideDef << "\n");
 | |
|       ++NumElimExt;
 | |
|       DU.NarrowUse->replaceAllUsesWith(NewDef);
 | |
|       DeadInsts.push_back(DU.NarrowUse);
 | |
|     }
 | |
|     // Now that the extend is gone, we want to expose it's uses for potential
 | |
|     // further simplification. We don't need to directly inform SimplifyIVUsers
 | |
|     // of the new users, because their parent IV will be processed later as a
 | |
|     // new loop phi. If we preserved IVUsers analysis, we would also want to
 | |
|     // push the uses of WideDef here.
 | |
| 
 | |
|     // No further widening is needed. The deceased [sz]ext had done it for us.
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Does this user itself evaluate to a recurrence after widening?
 | |
|   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
 | |
|   if (!WideAddRec) {
 | |
|       WideAddRec = GetExtendedOperandRecurrence(DU);
 | |
|   }
 | |
|   if (!WideAddRec) {
 | |
|     // This user does not evaluate to a recurence after widening, so don't
 | |
|     // follow it. Instead insert a Trunc to kill off the original use,
 | |
|     // eventually isolating the original narrow IV so it can be removed.
 | |
|     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
 | |
|     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
 | |
|     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
 | |
|     return 0;
 | |
|   }
 | |
|   // Assume block terminators cannot evaluate to a recurrence. We can't to
 | |
|   // insert a Trunc after a terminator if there happens to be a critical edge.
 | |
|   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
 | |
|          "SCEV is not expected to evaluate a block terminator");
 | |
| 
 | |
|   // Reuse the IV increment that SCEVExpander created as long as it dominates
 | |
|   // NarrowUse.
 | |
|   Instruction *WideUse = 0;
 | |
|   if (WideAddRec == WideIncExpr
 | |
|       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
 | |
|     WideUse = WideInc;
 | |
|   else {
 | |
|     WideUse = CloneIVUser(DU);
 | |
|     if (!WideUse)
 | |
|       return 0;
 | |
|   }
 | |
|   // Evaluation of WideAddRec ensured that the narrow expression could be
 | |
|   // extended outside the loop without overflow. This suggests that the wide use
 | |
|   // evaluates to the same expression as the extended narrow use, but doesn't
 | |
|   // absolutely guarantee it. Hence the following failsafe check. In rare cases
 | |
|   // where it fails, we simply throw away the newly created wide use.
 | |
|   if (WideAddRec != SE->getSCEV(WideUse)) {
 | |
|     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
 | |
|           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
 | |
|     DeadInsts.push_back(WideUse);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Returning WideUse pushes it on the worklist.
 | |
|   return WideUse;
 | |
| }
 | |
| 
 | |
| /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
 | |
| ///
 | |
| void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
 | |
|   for (Value::use_iterator UI = NarrowDef->use_begin(),
 | |
|          UE = NarrowDef->use_end(); UI != UE; ++UI) {
 | |
|     Instruction *NarrowUse = cast<Instruction>(*UI);
 | |
| 
 | |
|     // Handle data flow merges and bizarre phi cycles.
 | |
|     if (!Widened.insert(NarrowUse))
 | |
|       continue;
 | |
| 
 | |
|     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// CreateWideIV - Process a single induction variable. First use the
 | |
| /// SCEVExpander to create a wide induction variable that evaluates to the same
 | |
| /// recurrence as the original narrow IV. Then use a worklist to forward
 | |
| /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
 | |
| /// interesting IV users, the narrow IV will be isolated for removal by
 | |
| /// DeleteDeadPHIs.
 | |
| ///
 | |
| /// It would be simpler to delete uses as they are processed, but we must avoid
 | |
| /// invalidating SCEV expressions.
 | |
| ///
 | |
| PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
 | |
|   // Is this phi an induction variable?
 | |
|   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
 | |
|   if (!AddRec)
 | |
|     return NULL;
 | |
| 
 | |
|   // Widen the induction variable expression.
 | |
|   const SCEV *WideIVExpr = IsSigned ?
 | |
|     SE->getSignExtendExpr(AddRec, WideType) :
 | |
|     SE->getZeroExtendExpr(AddRec, WideType);
 | |
| 
 | |
|   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
 | |
|          "Expect the new IV expression to preserve its type");
 | |
| 
 | |
|   // Can the IV be extended outside the loop without overflow?
 | |
|   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return NULL;
 | |
| 
 | |
|   // An AddRec must have loop-invariant operands. Since this AddRec is
 | |
|   // materialized by a loop header phi, the expression cannot have any post-loop
 | |
|   // operands, so they must dominate the loop header.
 | |
|   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
 | |
|          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
 | |
|          && "Loop header phi recurrence inputs do not dominate the loop");
 | |
| 
 | |
|   // The rewriter provides a value for the desired IV expression. This may
 | |
|   // either find an existing phi or materialize a new one. Either way, we
 | |
|   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
 | |
|   // of the phi-SCC dominates the loop entry.
 | |
|   Instruction *InsertPt = L->getHeader()->begin();
 | |
|   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
 | |
| 
 | |
|   // Remembering the WideIV increment generated by SCEVExpander allows
 | |
|   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
 | |
|   // employ a general reuse mechanism because the call above is the only call to
 | |
|   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
 | |
|   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
 | |
|     WideInc =
 | |
|       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
 | |
|     WideIncExpr = SE->getSCEV(WideInc);
 | |
|   }
 | |
| 
 | |
|   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
 | |
|   ++NumWidened;
 | |
| 
 | |
|   // Traverse the def-use chain using a worklist starting at the original IV.
 | |
|   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
 | |
| 
 | |
|   Widened.insert(OrigPhi);
 | |
|   pushNarrowIVUsers(OrigPhi, WidePhi);
 | |
| 
 | |
|   while (!NarrowIVUsers.empty()) {
 | |
|     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
 | |
| 
 | |
|     // Process a def-use edge. This may replace the use, so don't hold a
 | |
|     // use_iterator across it.
 | |
|     Instruction *WideUse = WidenIVUse(DU, Rewriter);
 | |
| 
 | |
|     // Follow all def-use edges from the previous narrow use.
 | |
|     if (WideUse)
 | |
|       pushNarrowIVUsers(DU.NarrowUse, WideUse);
 | |
| 
 | |
|     // WidenIVUse may have removed the def-use edge.
 | |
|     if (DU.NarrowDef->use_empty())
 | |
|       DeadInsts.push_back(DU.NarrowDef);
 | |
|   }
 | |
|   return WidePhi;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Simplification of IV users based on SCEV evaluation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
 | |
| /// users. Each successive simplification may push more users which may
 | |
| /// themselves be candidates for simplification.
 | |
| ///
 | |
| /// Sign/Zero extend elimination is interleaved with IV simplification.
 | |
| ///
 | |
| void IndVarSimplify::SimplifyAndExtend(Loop *L,
 | |
|                                        SCEVExpander &Rewriter,
 | |
|                                        LPPassManager &LPM) {
 | |
|   SmallVector<WideIVInfo, 8> WideIVs;
 | |
| 
 | |
|   SmallVector<PHINode*, 8> LoopPhis;
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | |
|     LoopPhis.push_back(cast<PHINode>(I));
 | |
|   }
 | |
|   // Each round of simplification iterates through the SimplifyIVUsers worklist
 | |
|   // for all current phis, then determines whether any IVs can be
 | |
|   // widened. Widening adds new phis to LoopPhis, inducing another round of
 | |
|   // simplification on the wide IVs.
 | |
|   while (!LoopPhis.empty()) {
 | |
|     // Evaluate as many IV expressions as possible before widening any IVs. This
 | |
|     // forces SCEV to set no-wrap flags before evaluating sign/zero
 | |
|     // extension. The first time SCEV attempts to normalize sign/zero extension,
 | |
|     // the result becomes final. So for the most predictable results, we delay
 | |
|     // evaluation of sign/zero extend evaluation until needed, and avoid running
 | |
|     // other SCEV based analysis prior to SimplifyAndExtend.
 | |
|     do {
 | |
|       PHINode *CurrIV = LoopPhis.pop_back_val();
 | |
| 
 | |
|       // Information about sign/zero extensions of CurrIV.
 | |
|       WideIVVisitor WIV(CurrIV, SE, TD);
 | |
| 
 | |
|       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
 | |
| 
 | |
|       if (WIV.WI.WidestNativeType) {
 | |
|         WideIVs.push_back(WIV.WI);
 | |
|       }
 | |
|     } while(!LoopPhis.empty());
 | |
| 
 | |
|     for (; !WideIVs.empty(); WideIVs.pop_back()) {
 | |
|       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
 | |
|       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
 | |
|         Changed = true;
 | |
|         LoopPhis.push_back(WidePhi);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Check for expressions that ScalarEvolution generates to compute
 | |
| /// BackedgeTakenInfo. If these expressions have not been reduced, then
 | |
| /// expanding them may incur additional cost (albeit in the loop preheader).
 | |
| static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
 | |
|                                 SmallPtrSet<const SCEV*, 8> &Processed,
 | |
|                                 ScalarEvolution *SE) {
 | |
|   if (!Processed.insert(S))
 | |
|     return false;
 | |
| 
 | |
|   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
 | |
|   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
 | |
|   // precise expression, rather than a UDiv from the user's code. If we can't
 | |
|   // find a UDiv in the code with some simple searching, assume the former and
 | |
|   // forego rewriting the loop.
 | |
|   if (isa<SCEVUDivExpr>(S)) {
 | |
|     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|     if (!OrigCond) return true;
 | |
|     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
 | |
|     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
 | |
|     if (R != S) {
 | |
|       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
 | |
|       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
 | |
|       if (L != S)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (EnableIVRewrite)
 | |
|     return false;
 | |
| 
 | |
|   // Recurse past add expressions, which commonly occur in the
 | |
|   // BackedgeTakenCount. They may already exist in program code, and if not,
 | |
|   // they are not too expensive rematerialize.
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
 | |
|          I != E; ++I) {
 | |
|       if (isHighCostExpansion(*I, BI, Processed, SE))
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
 | |
|   // the exit condition.
 | |
|   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
 | |
|     return true;
 | |
| 
 | |
|   // If we haven't recognized an expensive SCEV pattern, assume it's an
 | |
|   // expression produced by program code.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
 | |
| /// count expression can be safely and cheaply expanded into an instruction
 | |
| /// sequence that can be used by LinearFunctionTestReplace.
 | |
| ///
 | |
| /// TODO: This fails for pointer-type loop counters with greater than one byte
 | |
| /// strides, consequently preventing LFTR from running. For the purpose of LFTR
 | |
| /// we could skip this check in the case that the LFTR loop counter (chosen by
 | |
| /// FindLoopCounter) is also pointer type. Instead, we could directly convert
 | |
| /// the loop test to an inequality test by checking the target data's alignment
 | |
| /// of element types (given that the initial pointer value originates from or is
 | |
| /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
 | |
| /// However, we don't yet have a strong motivation for converting loop tests
 | |
| /// into inequality tests.
 | |
| static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
 | |
|   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
|   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
 | |
|       BackedgeTakenCount->isZero())
 | |
|     return false;
 | |
| 
 | |
|   if (!L->getExitingBlock())
 | |
|     return false;
 | |
| 
 | |
|   // Can't rewrite non-branch yet.
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | |
|   if (!BI)
 | |
|     return false;
 | |
| 
 | |
|   SmallPtrSet<const SCEV*, 8> Processed;
 | |
|   if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// getBackedgeIVType - Get the widest type used by the loop test after peeking
 | |
| /// through Truncs.
 | |
| ///
 | |
| /// TODO: Unnecessary when ForceLFTR is removed.
 | |
| static Type *getBackedgeIVType(Loop *L) {
 | |
|   if (!L->getExitingBlock())
 | |
|     return 0;
 | |
| 
 | |
|   // Can't rewrite non-branch yet.
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | |
|   if (!BI)
 | |
|     return 0;
 | |
| 
 | |
|   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|   if (!Cond)
 | |
|     return 0;
 | |
| 
 | |
|   Type *Ty = 0;
 | |
|   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
 | |
|       OI != OE; ++OI) {
 | |
|     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
 | |
|     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
 | |
|     if (!Trunc)
 | |
|       continue;
 | |
| 
 | |
|     return Trunc->getSrcTy();
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
 | |
| /// invariant value to the phi.
 | |
| static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
 | |
|   Instruction *IncI = dyn_cast<Instruction>(IncV);
 | |
|   if (!IncI)
 | |
|     return 0;
 | |
| 
 | |
|   switch (IncI->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|     break;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // An IV counter must preserve its type.
 | |
|     if (IncI->getNumOperands() == 2)
 | |
|       break;
 | |
|   default:
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
 | |
|   if (Phi && Phi->getParent() == L->getHeader()) {
 | |
|     if (isLoopInvariant(IncI->getOperand(1), L, DT))
 | |
|       return Phi;
 | |
|     return 0;
 | |
|   }
 | |
|   if (IncI->getOpcode() == Instruction::GetElementPtr)
 | |
|     return 0;
 | |
| 
 | |
|   // Allow add/sub to be commuted.
 | |
|   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
 | |
|   if (Phi && Phi->getParent() == L->getHeader()) {
 | |
|     if (isLoopInvariant(IncI->getOperand(0), L, DT))
 | |
|       return Phi;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
 | |
| /// that the current exit test is already sufficiently canonical.
 | |
| static bool needsLFTR(Loop *L, DominatorTree *DT) {
 | |
|   assert(L->getExitingBlock() && "expected loop exit");
 | |
| 
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   // Don't bother with LFTR if the loop is not properly simplified.
 | |
|   if (!LatchBlock)
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | |
|   assert(BI && "expected exit branch");
 | |
| 
 | |
|   // Do LFTR to simplify the exit condition to an ICMP.
 | |
|   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
 | |
|   if (!Cond)
 | |
|     return true;
 | |
| 
 | |
|   // Do LFTR to simplify the exit ICMP to EQ/NE
 | |
|   ICmpInst::Predicate Pred = Cond->getPredicate();
 | |
|   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
 | |
|     return true;
 | |
| 
 | |
|   // Look for a loop invariant RHS
 | |
|   Value *LHS = Cond->getOperand(0);
 | |
|   Value *RHS = Cond->getOperand(1);
 | |
|   if (!isLoopInvariant(RHS, L, DT)) {
 | |
|     if (!isLoopInvariant(LHS, L, DT))
 | |
|       return true;
 | |
|     std::swap(LHS, RHS);
 | |
|   }
 | |
|   // Look for a simple IV counter LHS
 | |
|   PHINode *Phi = dyn_cast<PHINode>(LHS);
 | |
|   if (!Phi)
 | |
|     Phi = getLoopPhiForCounter(LHS, L, DT);
 | |
| 
 | |
|   if (!Phi)
 | |
|     return true;
 | |
| 
 | |
|   // Do LFTR if the exit condition's IV is *not* a simple counter.
 | |
|   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
 | |
|   return Phi != getLoopPhiForCounter(IncV, L, DT);
 | |
| }
 | |
| 
 | |
| /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
 | |
| /// be rewritten) loop exit test.
 | |
| static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
 | |
|   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
 | |
|   Value *IncV = Phi->getIncomingValue(LatchIdx);
 | |
| 
 | |
|   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     if (*UI != Cond && *UI != IncV) return false;
 | |
|   }
 | |
| 
 | |
|   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     if (*UI != Cond && *UI != Phi) return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// FindLoopCounter - Find an affine IV in canonical form.
 | |
| ///
 | |
| /// BECount may be an i8* pointer type. The pointer difference is already
 | |
| /// valid count without scaling the address stride, so it remains a pointer
 | |
| /// expression as far as SCEV is concerned.
 | |
| ///
 | |
| /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
 | |
| ///
 | |
| /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
 | |
| /// This is difficult in general for SCEV because of potential overflow. But we
 | |
| /// could at least handle constant BECounts.
 | |
| static PHINode *
 | |
| FindLoopCounter(Loop *L, const SCEV *BECount,
 | |
|                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
 | |
|   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
 | |
| 
 | |
|   Value *Cond =
 | |
|     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
 | |
| 
 | |
|   // Loop over all of the PHI nodes, looking for a simple counter.
 | |
|   PHINode *BestPhi = 0;
 | |
|   const SCEV *BestInit = 0;
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
 | |
| 
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | |
|     PHINode *Phi = cast<PHINode>(I);
 | |
|     if (!SE->isSCEVable(Phi->getType()))
 | |
|       continue;
 | |
| 
 | |
|     // Avoid comparing an integer IV against a pointer Limit.
 | |
|     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
 | |
|       continue;
 | |
| 
 | |
|     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
 | |
|     if (!AR || AR->getLoop() != L || !AR->isAffine())
 | |
|       continue;
 | |
| 
 | |
|     // AR may be a pointer type, while BECount is an integer type.
 | |
|     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
 | |
|     // AR may not be a narrower type, or we may never exit.
 | |
|     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
 | |
|     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
 | |
|       continue;
 | |
| 
 | |
|     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
 | |
|     if (!Step || !Step->isOne())
 | |
|       continue;
 | |
| 
 | |
|     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
 | |
|     Value *IncV = Phi->getIncomingValue(LatchIdx);
 | |
|     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
 | |
|       continue;
 | |
| 
 | |
|     const SCEV *Init = AR->getStart();
 | |
| 
 | |
|     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
 | |
|       // Don't force a live loop counter if another IV can be used.
 | |
|       if (AlmostDeadIV(Phi, LatchBlock, Cond))
 | |
|         continue;
 | |
| 
 | |
|       // Prefer to count-from-zero. This is a more "canonical" counter form. It
 | |
|       // also prefers integer to pointer IVs.
 | |
|       if (BestInit->isZero() != Init->isZero()) {
 | |
|         if (BestInit->isZero())
 | |
|           continue;
 | |
|       }
 | |
|       // If two IVs both count from zero or both count from nonzero then the
 | |
|       // narrower is likely a dead phi that has been widened. Use the wider phi
 | |
|       // to allow the other to be eliminated.
 | |
|       if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
 | |
|         continue;
 | |
|     }
 | |
|     BestPhi = Phi;
 | |
|     BestInit = Init;
 | |
|   }
 | |
|   return BestPhi;
 | |
| }
 | |
| 
 | |
| /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
 | |
| /// holds the RHS of the new loop test.
 | |
| static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
 | |
|                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
 | |
|   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
 | |
|   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
 | |
|   const SCEV *IVInit = AR->getStart();
 | |
| 
 | |
|   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
 | |
|   // finds a valid pointer IV. Sign extend BECount in order to materialize a
 | |
|   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
 | |
|   // the existing GEPs whenever possible.
 | |
|   if (IndVar->getType()->isPointerTy()
 | |
|       && !IVCount->getType()->isPointerTy()) {
 | |
| 
 | |
|     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
 | |
|     const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
 | |
| 
 | |
|     // Expand the code for the iteration count.
 | |
|     assert(SE->isLoopInvariant(IVOffset, L) &&
 | |
|            "Computed iteration count is not loop invariant!");
 | |
|     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | |
|     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
 | |
| 
 | |
|     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
 | |
|     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
 | |
|     // We could handle pointer IVs other than i8*, but we need to compensate for
 | |
|     // gep index scaling. See canExpandBackedgeTakenCount comments.
 | |
|     assert(SE->getSizeOfExpr(
 | |
|              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
 | |
|            && "unit stride pointer IV must be i8*");
 | |
| 
 | |
|     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
 | |
|     return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
 | |
|   }
 | |
|   else {
 | |
|     // In any other case, convert both IVInit and IVCount to integers before
 | |
|     // comparing. This may result in SCEV expension of pointers, but in practice
 | |
|     // SCEV will fold the pointer arithmetic away as such:
 | |
|     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
 | |
|     //
 | |
|     // Valid Cases: (1) both integers is most common; (2) both may be pointers
 | |
|     // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
 | |
|     // pointer may occur when enable-iv-rewrite generates a canonical IV on top
 | |
|     // of case #2.
 | |
| 
 | |
|     const SCEV *IVLimit = 0;
 | |
|     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
 | |
|     // For non-zero Start, compute IVCount here.
 | |
|     if (AR->getStart()->isZero())
 | |
|       IVLimit = IVCount;
 | |
|     else {
 | |
|       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
 | |
|       const SCEV *IVInit = AR->getStart();
 | |
| 
 | |
|       // For integer IVs, truncate the IV before computing IVInit + BECount.
 | |
|       if (SE->getTypeSizeInBits(IVInit->getType())
 | |
|           > SE->getTypeSizeInBits(IVCount->getType()))
 | |
|         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
 | |
| 
 | |
|       IVLimit = SE->getAddExpr(IVInit, IVCount);
 | |
|     }
 | |
|     // Expand the code for the iteration count.
 | |
|     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | |
|     IRBuilder<> Builder(BI);
 | |
|     assert(SE->isLoopInvariant(IVLimit, L) &&
 | |
|            "Computed iteration count is not loop invariant!");
 | |
|     // Ensure that we generate the same type as IndVar, or a smaller integer
 | |
|     // type. In the presence of null pointer values, we have an integer type
 | |
|     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
 | |
|     Type *LimitTy = IVCount->getType()->isPointerTy() ?
 | |
|       IndVar->getType() : IVCount->getType();
 | |
|     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// LinearFunctionTestReplace - This method rewrites the exit condition of the
 | |
| /// loop to be a canonical != comparison against the incremented loop induction
 | |
| /// variable.  This pass is able to rewrite the exit tests of any loop where the
 | |
| /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 | |
| /// is actually a much broader range than just linear tests.
 | |
| Value *IndVarSimplify::
 | |
| LinearFunctionTestReplace(Loop *L,
 | |
|                           const SCEV *BackedgeTakenCount,
 | |
|                           PHINode *IndVar,
 | |
|                           SCEVExpander &Rewriter) {
 | |
|   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
 | |
| 
 | |
|   // LFTR can ignore IV overflow and truncate to the width of
 | |
|   // BECount. This avoids materializing the add(zext(add)) expression.
 | |
|   Type *CntTy = !EnableIVRewrite ?
 | |
|     BackedgeTakenCount->getType() : IndVar->getType();
 | |
| 
 | |
|   const SCEV *IVCount = BackedgeTakenCount;
 | |
| 
 | |
|   // If the exiting block is the same as the backedge block, we prefer to
 | |
|   // compare against the post-incremented value, otherwise we must compare
 | |
|   // against the preincremented value.
 | |
|   Value *CmpIndVar;
 | |
|   if (L->getExitingBlock() == L->getLoopLatch()) {
 | |
|     // Add one to the "backedge-taken" count to get the trip count.
 | |
|     // If this addition may overflow, we have to be more pessimistic and
 | |
|     // cast the induction variable before doing the add.
 | |
|     const SCEV *N =
 | |
|       SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
 | |
|     if (CntTy == IVCount->getType())
 | |
|       IVCount = N;
 | |
|     else {
 | |
|       const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
 | |
|       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
 | |
|           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
 | |
|         // No overflow. Cast the sum.
 | |
|         IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
 | |
|       } else {
 | |
|         // Potential overflow. Cast before doing the add.
 | |
|         IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
 | |
|         IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
 | |
|       }
 | |
|     }
 | |
|     // The BackedgeTaken expression contains the number of times that the
 | |
|     // backedge branches to the loop header.  This is one less than the
 | |
|     // number of times the loop executes, so use the incremented indvar.
 | |
|     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
 | |
|   } else {
 | |
|     // We must use the preincremented value...
 | |
|     IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
 | |
|     CmpIndVar = IndVar;
 | |
|   }
 | |
| 
 | |
|   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
 | |
|   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
 | |
|          && "genLoopLimit missed a cast");
 | |
| 
 | |
|   // Insert a new icmp_ne or icmp_eq instruction before the branch.
 | |
|   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
 | |
|   ICmpInst::Predicate P;
 | |
|   if (L->contains(BI->getSuccessor(0)))
 | |
|     P = ICmpInst::ICMP_NE;
 | |
|   else
 | |
|     P = ICmpInst::ICMP_EQ;
 | |
| 
 | |
|   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
 | |
|                << "      LHS:" << *CmpIndVar << '\n'
 | |
|                << "       op:\t"
 | |
|                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
 | |
|                << "      RHS:\t" << *ExitCnt << "\n"
 | |
|                << "  IVCount:\t" << *IVCount << "\n");
 | |
| 
 | |
|   IRBuilder<> Builder(BI);
 | |
|   if (SE->getTypeSizeInBits(CmpIndVar->getType())
 | |
|       > SE->getTypeSizeInBits(ExitCnt->getType())) {
 | |
|     CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
 | |
|                                     "lftr.wideiv");
 | |
|   }
 | |
| 
 | |
|   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
 | |
|   Value *OrigCond = BI->getCondition();
 | |
|   // It's tempting to use replaceAllUsesWith here to fully replace the old
 | |
|   // comparison, but that's not immediately safe, since users of the old
 | |
|   // comparison may not be dominated by the new comparison. Instead, just
 | |
|   // update the branch to use the new comparison; in the common case this
 | |
|   // will make old comparison dead.
 | |
|   BI->setCondition(Cond);
 | |
|   DeadInsts.push_back(OrigCond);
 | |
| 
 | |
|   ++NumLFTR;
 | |
|   Changed = true;
 | |
|   return Cond;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// If there's a single exit block, sink any loop-invariant values that
 | |
| /// were defined in the preheader but not used inside the loop into the
 | |
| /// exit block to reduce register pressure in the loop.
 | |
| void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
 | |
|   BasicBlock *ExitBlock = L->getExitBlock();
 | |
|   if (!ExitBlock) return;
 | |
| 
 | |
|   BasicBlock *Preheader = L->getLoopPreheader();
 | |
|   if (!Preheader) return;
 | |
| 
 | |
|   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
 | |
|   BasicBlock::iterator I = Preheader->getTerminator();
 | |
|   while (I != Preheader->begin()) {
 | |
|     --I;
 | |
|     // New instructions were inserted at the end of the preheader.
 | |
|     if (isa<PHINode>(I))
 | |
|       break;
 | |
| 
 | |
|     // Don't move instructions which might have side effects, since the side
 | |
|     // effects need to complete before instructions inside the loop.  Also don't
 | |
|     // move instructions which might read memory, since the loop may modify
 | |
|     // memory. Note that it's okay if the instruction might have undefined
 | |
|     // behavior: LoopSimplify guarantees that the preheader dominates the exit
 | |
|     // block.
 | |
|     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
 | |
|       continue;
 | |
| 
 | |
|     // Skip debug info intrinsics.
 | |
|     if (isa<DbgInfoIntrinsic>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Skip landingpad instructions.
 | |
|     if (isa<LandingPadInst>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Don't sink alloca: we never want to sink static alloca's out of the
 | |
|     // entry block, and correctly sinking dynamic alloca's requires
 | |
|     // checks for stacksave/stackrestore intrinsics.
 | |
|     // FIXME: Refactor this check somehow?
 | |
|     if (isa<AllocaInst>(I))
 | |
|       continue;
 | |
| 
 | |
|     // Determine if there is a use in or before the loop (direct or
 | |
|     // otherwise).
 | |
|     bool UsedInLoop = false;
 | |
|     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
 | |
|          UI != UE; ++UI) {
 | |
|       User *U = *UI;
 | |
|       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
 | |
|       if (PHINode *P = dyn_cast<PHINode>(U)) {
 | |
|         unsigned i =
 | |
|           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
 | |
|         UseBB = P->getIncomingBlock(i);
 | |
|       }
 | |
|       if (UseBB == Preheader || L->contains(UseBB)) {
 | |
|         UsedInLoop = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If there is, the def must remain in the preheader.
 | |
|     if (UsedInLoop)
 | |
|       continue;
 | |
| 
 | |
|     // Otherwise, sink it to the exit block.
 | |
|     Instruction *ToMove = I;
 | |
|     bool Done = false;
 | |
| 
 | |
|     if (I != Preheader->begin()) {
 | |
|       // Skip debug info intrinsics.
 | |
|       do {
 | |
|         --I;
 | |
|       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
 | |
| 
 | |
|       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
 | |
|         Done = true;
 | |
|     } else {
 | |
|       Done = true;
 | |
|     }
 | |
| 
 | |
|     ToMove->moveBefore(InsertPt);
 | |
|     if (Done) break;
 | |
|     InsertPt = ToMove;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  IndVarSimplify driver. Manage several subpasses of IV simplification.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   // If LoopSimplify form is not available, stay out of trouble. Some notes:
 | |
|   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
 | |
|   //    canonicalization can be a pessimization without LSR to "clean up"
 | |
|   //    afterwards.
 | |
|   //  - We depend on having a preheader; in particular,
 | |
|   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
 | |
|   //    and we're in trouble if we can't find the induction variable even when
 | |
|   //    we've manually inserted one.
 | |
|   if (!L->isLoopSimplifyForm())
 | |
|     return false;
 | |
| 
 | |
|   if (EnableIVRewrite)
 | |
|     IU = &getAnalysis<IVUsers>();
 | |
|   LI = &getAnalysis<LoopInfo>();
 | |
|   SE = &getAnalysis<ScalarEvolution>();
 | |
|   DT = &getAnalysis<DominatorTree>();
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
| 
 | |
|   DeadInsts.clear();
 | |
|   Changed = false;
 | |
| 
 | |
|   // If there are any floating-point recurrences, attempt to
 | |
|   // transform them to use integer recurrences.
 | |
|   RewriteNonIntegerIVs(L);
 | |
| 
 | |
|   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
 | |
| 
 | |
|   // Create a rewriter object which we'll use to transform the code with.
 | |
|   SCEVExpander Rewriter(*SE, "indvars");
 | |
| #ifndef NDEBUG
 | |
|   Rewriter.setDebugType(DEBUG_TYPE);
 | |
| #endif
 | |
| 
 | |
|   // Eliminate redundant IV users.
 | |
|   //
 | |
|   // Simplification works best when run before other consumers of SCEV. We
 | |
|   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
 | |
|   // other expressions involving loop IVs have been evaluated. This helps SCEV
 | |
|   // set no-wrap flags before normalizing sign/zero extension.
 | |
|   if (!EnableIVRewrite) {
 | |
|     Rewriter.disableCanonicalMode();
 | |
|     SimplifyAndExtend(L, Rewriter, LPM);
 | |
|   }
 | |
| 
 | |
|   // Check to see if this loop has a computable loop-invariant execution count.
 | |
|   // If so, this means that we can compute the final value of any expressions
 | |
|   // that are recurrent in the loop, and substitute the exit values from the
 | |
|   // loop into any instructions outside of the loop that use the final values of
 | |
|   // the current expressions.
 | |
|   //
 | |
|   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
 | |
|     RewriteLoopExitValues(L, Rewriter);
 | |
| 
 | |
|   // Eliminate redundant IV users.
 | |
|   if (EnableIVRewrite)
 | |
|     Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
 | |
| 
 | |
|   // Eliminate redundant IV cycles.
 | |
|   if (!EnableIVRewrite)
 | |
|     NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
 | |
| 
 | |
|   // Compute the type of the largest recurrence expression, and decide whether
 | |
|   // a canonical induction variable should be inserted.
 | |
|   Type *LargestType = 0;
 | |
|   bool NeedCannIV = false;
 | |
|   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
 | |
|   if (EnableIVRewrite && ExpandBECount) {
 | |
|     // If we have a known trip count and a single exit block, we'll be
 | |
|     // rewriting the loop exit test condition below, which requires a
 | |
|     // canonical induction variable.
 | |
|     NeedCannIV = true;
 | |
|     Type *Ty = BackedgeTakenCount->getType();
 | |
|     if (!EnableIVRewrite) {
 | |
|       // In this mode, SimplifyIVUsers may have already widened the IV used by
 | |
|       // the backedge test and inserted a Trunc on the compare's operand. Get
 | |
|       // the wider type to avoid creating a redundant narrow IV only used by the
 | |
|       // loop test.
 | |
|       LargestType = getBackedgeIVType(L);
 | |
|     }
 | |
|     if (!LargestType ||
 | |
|         SE->getTypeSizeInBits(Ty) >
 | |
|         SE->getTypeSizeInBits(LargestType))
 | |
|       LargestType = SE->getEffectiveSCEVType(Ty);
 | |
|   }
 | |
|   if (EnableIVRewrite) {
 | |
|     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
 | |
|       NeedCannIV = true;
 | |
|       Type *Ty =
 | |
|         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
 | |
|       if (!LargestType ||
 | |
|           SE->getTypeSizeInBits(Ty) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|         LargestType = Ty;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we know the largest of the induction variable expressions
 | |
|   // in this loop, insert a canonical induction variable of the largest size.
 | |
|   PHINode *IndVar = 0;
 | |
|   if (NeedCannIV) {
 | |
|     // Check to see if the loop already has any canonical-looking induction
 | |
|     // variables. If any are present and wider than the planned canonical
 | |
|     // induction variable, temporarily remove them, so that the Rewriter
 | |
|     // doesn't attempt to reuse them.
 | |
|     SmallVector<PHINode *, 2> OldCannIVs;
 | |
|     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
 | |
|       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
 | |
|           SE->getTypeSizeInBits(LargestType))
 | |
|         OldCannIV->removeFromParent();
 | |
|       else
 | |
|         break;
 | |
|       OldCannIVs.push_back(OldCannIV);
 | |
|     }
 | |
| 
 | |
|     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
 | |
| 
 | |
|     ++NumInserted;
 | |
|     Changed = true;
 | |
|     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
 | |
| 
 | |
|     // Now that the official induction variable is established, reinsert
 | |
|     // any old canonical-looking variables after it so that the IR remains
 | |
|     // consistent. They will be deleted as part of the dead-PHI deletion at
 | |
|     // the end of the pass.
 | |
|     while (!OldCannIVs.empty()) {
 | |
|       PHINode *OldCannIV = OldCannIVs.pop_back_val();
 | |
|       OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
 | |
|     }
 | |
|   }
 | |
|   else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) {
 | |
|     IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
 | |
|   }
 | |
|   // If we have a trip count expression, rewrite the loop's exit condition
 | |
|   // using it.  We can currently only handle loops with a single exit.
 | |
|   Value *NewICmp = 0;
 | |
|   if (ExpandBECount && IndVar) {
 | |
|     // Check preconditions for proper SCEVExpander operation. SCEV does not
 | |
|     // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
 | |
|     // pass that uses the SCEVExpander must do it. This does not work well for
 | |
|     // loop passes because SCEVExpander makes assumptions about all loops, while
 | |
|     // LoopPassManager only forces the current loop to be simplified.
 | |
|     //
 | |
|     // FIXME: SCEV expansion has no way to bail out, so the caller must
 | |
|     // explicitly check any assumptions made by SCEV. Brittle.
 | |
|     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
 | |
|     if (!AR || AR->getLoop()->getLoopPreheader())
 | |
|       NewICmp =
 | |
|         LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
 | |
|   }
 | |
|   // Rewrite IV-derived expressions.
 | |
|   if (EnableIVRewrite)
 | |
|     RewriteIVExpressions(L, Rewriter);
 | |
| 
 | |
|   // Clear the rewriter cache, because values that are in the rewriter's cache
 | |
|   // can be deleted in the loop below, causing the AssertingVH in the cache to
 | |
|   // trigger.
 | |
|   Rewriter.clear();
 | |
| 
 | |
|   // Now that we're done iterating through lists, clean up any instructions
 | |
|   // which are now dead.
 | |
|   while (!DeadInsts.empty())
 | |
|     if (Instruction *Inst =
 | |
|           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
 | |
|       RecursivelyDeleteTriviallyDeadInstructions(Inst);
 | |
| 
 | |
|   // The Rewriter may not be used from this point on.
 | |
| 
 | |
|   // Loop-invariant instructions in the preheader that aren't used in the
 | |
|   // loop may be sunk below the loop to reduce register pressure.
 | |
|   SinkUnusedInvariants(L);
 | |
| 
 | |
|   // For completeness, inform IVUsers of the IV use in the newly-created
 | |
|   // loop exit test instruction.
 | |
|   if (IU && NewICmp) {
 | |
|     ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
 | |
|     if (NewICmpInst)
 | |
|       IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
 | |
|   }
 | |
|   // Clean up dead instructions.
 | |
|   Changed |= DeleteDeadPHIs(L->getHeader());
 | |
|   // Check a post-condition.
 | |
|   assert(L->isLCSSAForm(*DT) &&
 | |
|          "Indvars did not leave the loop in lcssa form!");
 | |
| 
 | |
|   // Verify that LFTR, and any other change have not interfered with SCEV's
 | |
|   // ability to compute trip count.
 | |
| #ifndef NDEBUG
 | |
|   if (!EnableIVRewrite && VerifyIndvars &&
 | |
|       !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
 | |
|     SE->forgetLoop(L);
 | |
|     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
 | |
|     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
 | |
|         SE->getTypeSizeInBits(NewBECount->getType()))
 | |
|       NewBECount = SE->getTruncateOrNoop(NewBECount,
 | |
|                                          BackedgeTakenCount->getType());
 | |
|     else
 | |
|       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
 | |
|                                                  NewBECount->getType());
 | |
|     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return Changed;
 | |
| }
 |