mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	- Use unsigned literals when the desired result is unsigned. This mostly allows unsigned/signed mismatch warnings to be less noisy even if they aren't on by default. - Remove misplaced llvm_unreachable. - Add static to a declaration of a function on MSVC x86 only. - Change some instances of calling a static function through a variable to simply calling that function while removing the unused variable. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150364 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			991 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			991 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass performs various transformations related to eliminating memcpy
 | |
| // calls, or transforming sets of stores into memset's.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "memcpyopt"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| #include <list>
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
 | |
| STATISTIC(NumMemSetInfer, "Number of memsets inferred");
 | |
| STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
 | |
| STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
 | |
| 
 | |
| static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
 | |
|                                   bool &VariableIdxFound, const TargetData &TD){
 | |
|   // Skip over the first indices.
 | |
|   gep_type_iterator GTI = gep_type_begin(GEP);
 | |
|   for (unsigned i = 1; i != Idx; ++i, ++GTI)
 | |
|     /*skip along*/;
 | |
|   
 | |
|   // Compute the offset implied by the rest of the indices.
 | |
|   int64_t Offset = 0;
 | |
|   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
 | |
|     if (OpC == 0)
 | |
|       return VariableIdxFound = true;
 | |
|     if (OpC->isZero()) continue;  // No offset.
 | |
| 
 | |
|     // Handle struct indices, which add their field offset to the pointer.
 | |
|     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we have a sequential type like an array or vector.  Multiply
 | |
|     // the index by the ElementSize.
 | |
|     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
 | |
|     Offset += Size*OpC->getSExtValue();
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
 | |
| /// constant offset, and return that constant offset.  For example, Ptr1 might
 | |
| /// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
 | |
| static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
 | |
|                             const TargetData &TD) {
 | |
|   Ptr1 = Ptr1->stripPointerCasts();
 | |
|   Ptr2 = Ptr2->stripPointerCasts();
 | |
|   GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
 | |
|   GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
 | |
|   
 | |
|   bool VariableIdxFound = false;
 | |
| 
 | |
|   // If one pointer is a GEP and the other isn't, then see if the GEP is a
 | |
|   // constant offset from the base, as in "P" and "gep P, 1".
 | |
|   if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
 | |
|     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
 | |
|     return !VariableIdxFound;
 | |
|   }
 | |
| 
 | |
|   if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
 | |
|     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
 | |
|     return !VariableIdxFound;
 | |
|   }
 | |
|   
 | |
|   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
 | |
|   // base.  After that base, they may have some number of common (and
 | |
|   // potentially variable) indices.  After that they handle some constant
 | |
|   // offset, which determines their offset from each other.  At this point, we
 | |
|   // handle no other case.
 | |
|   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
 | |
|     return false;
 | |
|   
 | |
|   // Skip any common indices and track the GEP types.
 | |
|   unsigned Idx = 1;
 | |
|   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
 | |
|     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
 | |
|       break;
 | |
| 
 | |
|   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
 | |
|   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
 | |
|   if (VariableIdxFound) return false;
 | |
|   
 | |
|   Offset = Offset2-Offset1;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
 | |
| /// This allows us to analyze stores like:
 | |
| ///   store 0 -> P+1
 | |
| ///   store 0 -> P+0
 | |
| ///   store 0 -> P+3
 | |
| ///   store 0 -> P+2
 | |
| /// which sometimes happens with stores to arrays of structs etc.  When we see
 | |
| /// the first store, we make a range [1, 2).  The second store extends the range
 | |
| /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
 | |
| /// two ranges into [0, 3) which is memset'able.
 | |
| namespace {
 | |
| struct MemsetRange {
 | |
|   // Start/End - A semi range that describes the span that this range covers.
 | |
|   // The range is closed at the start and open at the end: [Start, End).  
 | |
|   int64_t Start, End;
 | |
| 
 | |
|   /// StartPtr - The getelementptr instruction that points to the start of the
 | |
|   /// range.
 | |
|   Value *StartPtr;
 | |
|   
 | |
|   /// Alignment - The known alignment of the first store.
 | |
|   unsigned Alignment;
 | |
|   
 | |
|   /// TheStores - The actual stores that make up this range.
 | |
|   SmallVector<Instruction*, 16> TheStores;
 | |
|   
 | |
|   bool isProfitableToUseMemset(const TargetData &TD) const;
 | |
| 
 | |
| };
 | |
| } // end anon namespace
 | |
| 
 | |
| bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
 | |
|   // If we found more than 4 stores to merge or 16 bytes, use memset.
 | |
|   if (TheStores.size() >= 4 || End-Start >= 16) return true;
 | |
| 
 | |
|   // If there is nothing to merge, don't do anything.
 | |
|   if (TheStores.size() < 2) return false;
 | |
|   
 | |
|   // If any of the stores are a memset, then it is always good to extend the
 | |
|   // memset.
 | |
|   for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
 | |
|     if (!isa<StoreInst>(TheStores[i]))
 | |
|       return true;
 | |
|   
 | |
|   // Assume that the code generator is capable of merging pairs of stores
 | |
|   // together if it wants to.
 | |
|   if (TheStores.size() == 2) return false;
 | |
|   
 | |
|   // If we have fewer than 8 stores, it can still be worthwhile to do this.
 | |
|   // For example, merging 4 i8 stores into an i32 store is useful almost always.
 | |
|   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
 | |
|   // memset will be split into 2 32-bit stores anyway) and doing so can
 | |
|   // pessimize the llvm optimizer.
 | |
|   //
 | |
|   // Since we don't have perfect knowledge here, make some assumptions: assume
 | |
|   // the maximum GPR width is the same size as the pointer size and assume that
 | |
|   // this width can be stored.  If so, check to see whether we will end up
 | |
|   // actually reducing the number of stores used.
 | |
|   unsigned Bytes = unsigned(End-Start);
 | |
|   unsigned NumPointerStores = Bytes/TD.getPointerSize();
 | |
|   
 | |
|   // Assume the remaining bytes if any are done a byte at a time.
 | |
|   unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
 | |
|   
 | |
|   // If we will reduce the # stores (according to this heuristic), do the
 | |
|   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
 | |
|   // etc.
 | |
|   return TheStores.size() > NumPointerStores+NumByteStores;
 | |
| }    
 | |
| 
 | |
| 
 | |
| namespace {
 | |
| class MemsetRanges {
 | |
|   /// Ranges - A sorted list of the memset ranges.  We use std::list here
 | |
|   /// because each element is relatively large and expensive to copy.
 | |
|   std::list<MemsetRange> Ranges;
 | |
|   typedef std::list<MemsetRange>::iterator range_iterator;
 | |
|   const TargetData &TD;
 | |
| public:
 | |
|   MemsetRanges(const TargetData &td) : TD(td) {}
 | |
|   
 | |
|   typedef std::list<MemsetRange>::const_iterator const_iterator;
 | |
|   const_iterator begin() const { return Ranges.begin(); }
 | |
|   const_iterator end() const { return Ranges.end(); }
 | |
|   bool empty() const { return Ranges.empty(); }
 | |
|   
 | |
|   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|       addStore(OffsetFromFirst, SI);
 | |
|     else
 | |
|       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
 | |
|   }
 | |
| 
 | |
|   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
 | |
|     int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
 | |
|     
 | |
|     addRange(OffsetFromFirst, StoreSize,
 | |
|              SI->getPointerOperand(), SI->getAlignment(), SI);
 | |
|   }
 | |
|   
 | |
|   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
 | |
|     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | |
|     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
 | |
|   }
 | |
|   
 | |
|   void addRange(int64_t Start, int64_t Size, Value *Ptr,
 | |
|                 unsigned Alignment, Instruction *Inst);
 | |
| 
 | |
| };
 | |
|   
 | |
| } // end anon namespace
 | |
| 
 | |
| 
 | |
| /// addRange - Add a new store to the MemsetRanges data structure.  This adds a
 | |
| /// new range for the specified store at the specified offset, merging into
 | |
| /// existing ranges as appropriate.
 | |
| ///
 | |
| /// Do a linear search of the ranges to see if this can be joined and/or to
 | |
| /// find the insertion point in the list.  We keep the ranges sorted for
 | |
| /// simplicity here.  This is a linear search of a linked list, which is ugly,
 | |
| /// however the number of ranges is limited, so this won't get crazy slow.
 | |
| void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
 | |
|                             unsigned Alignment, Instruction *Inst) {
 | |
|   int64_t End = Start+Size;
 | |
|   range_iterator I = Ranges.begin(), E = Ranges.end();
 | |
|   
 | |
|   while (I != E && Start > I->End)
 | |
|     ++I;
 | |
|   
 | |
|   // We now know that I == E, in which case we didn't find anything to merge
 | |
|   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
 | |
|   // to insert a new range.  Handle this now.
 | |
|   if (I == E || End < I->Start) {
 | |
|     MemsetRange &R = *Ranges.insert(I, MemsetRange());
 | |
|     R.Start        = Start;
 | |
|     R.End          = End;
 | |
|     R.StartPtr     = Ptr;
 | |
|     R.Alignment    = Alignment;
 | |
|     R.TheStores.push_back(Inst);
 | |
|     return;
 | |
|   }
 | |
|   
 | |
|   // This store overlaps with I, add it.
 | |
|   I->TheStores.push_back(Inst);
 | |
|   
 | |
|   // At this point, we may have an interval that completely contains our store.
 | |
|   // If so, just add it to the interval and return.
 | |
|   if (I->Start <= Start && I->End >= End)
 | |
|     return;
 | |
|   
 | |
|   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
 | |
|   // but is not entirely contained within the range.
 | |
|   
 | |
|   // See if the range extends the start of the range.  In this case, it couldn't
 | |
|   // possibly cause it to join the prior range, because otherwise we would have
 | |
|   // stopped on *it*.
 | |
|   if (Start < I->Start) {
 | |
|     I->Start = Start;
 | |
|     I->StartPtr = Ptr;
 | |
|     I->Alignment = Alignment;
 | |
|   }
 | |
|     
 | |
|   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
 | |
|   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
 | |
|   // End.
 | |
|   if (End > I->End) {
 | |
|     I->End = End;
 | |
|     range_iterator NextI = I;
 | |
|     while (++NextI != E && End >= NextI->Start) {
 | |
|       // Merge the range in.
 | |
|       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
 | |
|       if (NextI->End > I->End)
 | |
|         I->End = NextI->End;
 | |
|       Ranges.erase(NextI);
 | |
|       NextI = I;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         MemCpyOpt Pass
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
|   class MemCpyOpt : public FunctionPass {
 | |
|     MemoryDependenceAnalysis *MD;
 | |
|     TargetLibraryInfo *TLI;
 | |
|     const TargetData *TD;
 | |
|   public:
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     MemCpyOpt() : FunctionPass(ID) {
 | |
|       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
 | |
|       MD = 0;
 | |
|       TLI = 0;
 | |
|       TD = 0;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|   private:
 | |
|     // This transformation requires dominator postdominator info
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.addRequired<MemoryDependenceAnalysis>();
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<TargetLibraryInfo>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<MemoryDependenceAnalysis>();
 | |
|     }
 | |
|   
 | |
|     // Helper fuctions
 | |
|     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
 | |
|     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
 | |
|     bool processMemCpy(MemCpyInst *M);
 | |
|     bool processMemMove(MemMoveInst *M);
 | |
|     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
 | |
|                               uint64_t cpyLen, CallInst *C);
 | |
|     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
 | |
|                                        uint64_t MSize);
 | |
|     bool processByValArgument(CallSite CS, unsigned ArgNo);
 | |
|     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
 | |
|                                       Value *ByteVal);
 | |
| 
 | |
|     bool iterateOnFunction(Function &F);
 | |
|   };
 | |
|   
 | |
|   char MemCpyOpt::ID = 0;
 | |
| }
 | |
| 
 | |
| // createMemCpyOptPass - The public interface to this file...
 | |
| FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
 | |
|                       false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
 | |
|                     false, false)
 | |
| 
 | |
| /// tryMergingIntoMemset - When scanning forward over instructions, we look for
 | |
| /// some other patterns to fold away.  In particular, this looks for stores to
 | |
| /// neighboring locations of memory.  If it sees enough consecutive ones, it
 | |
| /// attempts to merge them together into a memcpy/memset.
 | |
| Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, 
 | |
|                                              Value *StartPtr, Value *ByteVal) {
 | |
|   if (TD == 0) return 0;
 | |
|   
 | |
|   // Okay, so we now have a single store that can be splatable.  Scan to find
 | |
|   // all subsequent stores of the same value to offset from the same pointer.
 | |
|   // Join these together into ranges, so we can decide whether contiguous blocks
 | |
|   // are stored.
 | |
|   MemsetRanges Ranges(*TD);
 | |
|   
 | |
|   BasicBlock::iterator BI = StartInst;
 | |
|   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
 | |
|     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
 | |
|       // If the instruction is readnone, ignore it, otherwise bail out.  We
 | |
|       // don't even allow readonly here because we don't want something like:
 | |
|       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
 | |
|       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
 | |
|         break;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
 | |
|       // If this is a store, see if we can merge it in.
 | |
|       if (!NextStore->isSimple()) break;
 | |
|     
 | |
|       // Check to see if this stored value is of the same byte-splattable value.
 | |
|       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
 | |
|         break;
 | |
|       
 | |
|       // Check to see if this store is to a constant offset from the start ptr.
 | |
|       int64_t Offset;
 | |
|       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
 | |
|                            Offset, *TD))
 | |
|         break;
 | |
|       
 | |
|       Ranges.addStore(Offset, NextStore);
 | |
|     } else {
 | |
|       MemSetInst *MSI = cast<MemSetInst>(BI);
 | |
|       
 | |
|       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
 | |
|           !isa<ConstantInt>(MSI->getLength()))
 | |
|         break;
 | |
|       
 | |
|       // Check to see if this store is to a constant offset from the start ptr.
 | |
|       int64_t Offset;
 | |
|       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
 | |
|         break;
 | |
|       
 | |
|       Ranges.addMemSet(Offset, MSI);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // If we have no ranges, then we just had a single store with nothing that
 | |
|   // could be merged in.  This is a very common case of course.
 | |
|   if (Ranges.empty())
 | |
|     return 0;
 | |
|   
 | |
|   // If we had at least one store that could be merged in, add the starting
 | |
|   // store as well.  We try to avoid this unless there is at least something
 | |
|   // interesting as a small compile-time optimization.
 | |
|   Ranges.addInst(0, StartInst);
 | |
| 
 | |
|   // If we create any memsets, we put it right before the first instruction that
 | |
|   // isn't part of the memset block.  This ensure that the memset is dominated
 | |
|   // by any addressing instruction needed by the start of the block.
 | |
|   IRBuilder<> Builder(BI);
 | |
| 
 | |
|   // Now that we have full information about ranges, loop over the ranges and
 | |
|   // emit memset's for anything big enough to be worthwhile.
 | |
|   Instruction *AMemSet = 0;
 | |
|   for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
 | |
|        I != E; ++I) {
 | |
|     const MemsetRange &Range = *I;
 | |
|     
 | |
|     if (Range.TheStores.size() == 1) continue;
 | |
|     
 | |
|     // If it is profitable to lower this range to memset, do so now.
 | |
|     if (!Range.isProfitableToUseMemset(*TD))
 | |
|       continue;
 | |
|     
 | |
|     // Otherwise, we do want to transform this!  Create a new memset.
 | |
|     // Get the starting pointer of the block.
 | |
|     StartPtr = Range.StartPtr;
 | |
|     
 | |
|     // Determine alignment
 | |
|     unsigned Alignment = Range.Alignment;
 | |
|     if (Alignment == 0) {
 | |
|       Type *EltType = 
 | |
|         cast<PointerType>(StartPtr->getType())->getElementType();
 | |
|       Alignment = TD->getABITypeAlignment(EltType);
 | |
|     }
 | |
|     
 | |
|     AMemSet = 
 | |
|       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
 | |
|     
 | |
|     DEBUG(dbgs() << "Replace stores:\n";
 | |
|           for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
 | |
|             dbgs() << *Range.TheStores[i] << '\n';
 | |
|           dbgs() << "With: " << *AMemSet << '\n');
 | |
| 
 | |
|     if (!Range.TheStores.empty())
 | |
|       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
 | |
| 
 | |
|     // Zap all the stores.
 | |
|     for (SmallVector<Instruction*, 16>::const_iterator
 | |
|          SI = Range.TheStores.begin(),
 | |
|          SE = Range.TheStores.end(); SI != SE; ++SI) {
 | |
|       MD->removeInstruction(*SI);
 | |
|       (*SI)->eraseFromParent();
 | |
|     }
 | |
|     ++NumMemSetInfer;
 | |
|   }
 | |
|   
 | |
|   return AMemSet;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
 | |
|   if (!SI->isSimple()) return false;
 | |
|   
 | |
|   if (TD == 0) return false;
 | |
| 
 | |
|   // Detect cases where we're performing call slot forwarding, but
 | |
|   // happen to be using a load-store pair to implement it, rather than
 | |
|   // a memcpy.
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
 | |
|     if (LI->isSimple() && LI->hasOneUse() &&
 | |
|         LI->getParent() == SI->getParent()) {
 | |
|       MemDepResult ldep = MD->getDependency(LI);
 | |
|       CallInst *C = 0;
 | |
|       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
 | |
|         C = dyn_cast<CallInst>(ldep.getInst());
 | |
| 
 | |
|       if (C) {
 | |
|         // Check that nothing touches the dest of the "copy" between
 | |
|         // the call and the store.
 | |
|         AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
|         AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
 | |
|         for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
 | |
|                                   E = C; I != E; --I) {
 | |
|           if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
 | |
|             C = 0;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (C) {
 | |
|         bool changed = performCallSlotOptzn(LI,
 | |
|                         SI->getPointerOperand()->stripPointerCasts(), 
 | |
|                         LI->getPointerOperand()->stripPointerCasts(),
 | |
|                         TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
 | |
|         if (changed) {
 | |
|           MD->removeInstruction(SI);
 | |
|           SI->eraseFromParent();
 | |
|           MD->removeInstruction(LI);
 | |
|           LI->eraseFromParent();
 | |
|           ++NumMemCpyInstr;
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // There are two cases that are interesting for this code to handle: memcpy
 | |
|   // and memset.  Right now we only handle memset.
 | |
|   
 | |
|   // Ensure that the value being stored is something that can be memset'able a
 | |
|   // byte at a time like "0" or "-1" or any width, as well as things like
 | |
|   // 0xA0A0A0A0 and 0.0.
 | |
|   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
 | |
|     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
 | |
|                                               ByteVal)) {
 | |
|       BBI = I;  // Don't invalidate iterator.
 | |
|       return true;
 | |
|     }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
 | |
|   // See if there is another memset or store neighboring this memset which
 | |
|   // allows us to widen out the memset to do a single larger store.
 | |
|   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
 | |
|     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
 | |
|                                               MSI->getValue())) {
 | |
|       BBI = I;  // Don't invalidate iterator.
 | |
|       return true;
 | |
|     }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
 | |
| /// and checks for the possibility of a call slot optimization by having
 | |
| /// the call write its result directly into the destination of the memcpy.
 | |
| bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
 | |
|                                      Value *cpyDest, Value *cpySrc,
 | |
|                                      uint64_t cpyLen, CallInst *C) {
 | |
|   // The general transformation to keep in mind is
 | |
|   //
 | |
|   //   call @func(..., src, ...)
 | |
|   //   memcpy(dest, src, ...)
 | |
|   //
 | |
|   // ->
 | |
|   //
 | |
|   //   memcpy(dest, src, ...)
 | |
|   //   call @func(..., dest, ...)
 | |
|   //
 | |
|   // Since moving the memcpy is technically awkward, we additionally check that
 | |
|   // src only holds uninitialized values at the moment of the call, meaning that
 | |
|   // the memcpy can be discarded rather than moved.
 | |
| 
 | |
|   // Deliberately get the source and destination with bitcasts stripped away,
 | |
|   // because we'll need to do type comparisons based on the underlying type.
 | |
|   CallSite CS(C);
 | |
| 
 | |
|   // Require that src be an alloca.  This simplifies the reasoning considerably.
 | |
|   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
 | |
|   if (!srcAlloca)
 | |
|     return false;
 | |
| 
 | |
|   // Check that all of src is copied to dest.
 | |
|   if (TD == 0) return false;
 | |
| 
 | |
|   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
 | |
|   if (!srcArraySize)
 | |
|     return false;
 | |
| 
 | |
|   uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
 | |
|     srcArraySize->getZExtValue();
 | |
| 
 | |
|   if (cpyLen < srcSize)
 | |
|     return false;
 | |
| 
 | |
|   // Check that accessing the first srcSize bytes of dest will not cause a
 | |
|   // trap.  Otherwise the transform is invalid since it might cause a trap
 | |
|   // to occur earlier than it otherwise would.
 | |
|   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
 | |
|     // The destination is an alloca.  Check it is larger than srcSize.
 | |
|     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
 | |
|     if (!destArraySize)
 | |
|       return false;
 | |
| 
 | |
|     uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
 | |
|       destArraySize->getZExtValue();
 | |
| 
 | |
|     if (destSize < srcSize)
 | |
|       return false;
 | |
|   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
 | |
|     // If the destination is an sret parameter then only accesses that are
 | |
|     // outside of the returned struct type can trap.
 | |
|     if (!A->hasStructRetAttr())
 | |
|       return false;
 | |
| 
 | |
|     Type *StructTy = cast<PointerType>(A->getType())->getElementType();
 | |
|     uint64_t destSize = TD->getTypeAllocSize(StructTy);
 | |
| 
 | |
|     if (destSize < srcSize)
 | |
|       return false;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Check that src is not accessed except via the call and the memcpy.  This
 | |
|   // guarantees that it holds only undefined values when passed in (so the final
 | |
|   // memcpy can be dropped), that it is not read or written between the call and
 | |
|   // the memcpy, and that writing beyond the end of it is undefined.
 | |
|   SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
 | |
|                                    srcAlloca->use_end());
 | |
|   while (!srcUseList.empty()) {
 | |
|     User *UI = srcUseList.pop_back_val();
 | |
| 
 | |
|     if (isa<BitCastInst>(UI)) {
 | |
|       for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
 | |
|            I != E; ++I)
 | |
|         srcUseList.push_back(*I);
 | |
|     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
 | |
|       if (G->hasAllZeroIndices())
 | |
|         for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
 | |
|              I != E; ++I)
 | |
|           srcUseList.push_back(*I);
 | |
|       else
 | |
|         return false;
 | |
|     } else if (UI != C && UI != cpy) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Since we're changing the parameter to the callsite, we need to make sure
 | |
|   // that what would be the new parameter dominates the callsite.
 | |
|   DominatorTree &DT = getAnalysis<DominatorTree>();
 | |
|   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
 | |
|     if (!DT.dominates(cpyDestInst, C))
 | |
|       return false;
 | |
| 
 | |
|   // In addition to knowing that the call does not access src in some
 | |
|   // unexpected manner, for example via a global, which we deduce from
 | |
|   // the use analysis, we also need to know that it does not sneakily
 | |
|   // access dest.  We rely on AA to figure this out for us.
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
|   if (AA.getModRefInfo(C, cpyDest, srcSize) != AliasAnalysis::NoModRef)
 | |
|     return false;
 | |
| 
 | |
|   // All the checks have passed, so do the transformation.
 | |
|   bool changedArgument = false;
 | |
|   for (unsigned i = 0; i < CS.arg_size(); ++i)
 | |
|     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
 | |
|       if (cpySrc->getType() != cpyDest->getType())
 | |
|         cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
 | |
|                                               cpyDest->getName(), C);
 | |
|       changedArgument = true;
 | |
|       if (CS.getArgument(i)->getType() == cpyDest->getType())
 | |
|         CS.setArgument(i, cpyDest);
 | |
|       else
 | |
|         CS.setArgument(i, CastInst::CreatePointerCast(cpyDest, 
 | |
|                           CS.getArgument(i)->getType(), cpyDest->getName(), C));
 | |
|     }
 | |
| 
 | |
|   if (!changedArgument)
 | |
|     return false;
 | |
| 
 | |
|   // Drop any cached information about the call, because we may have changed
 | |
|   // its dependence information by changing its parameter.
 | |
|   MD->removeInstruction(C);
 | |
| 
 | |
|   // Remove the memcpy.
 | |
|   MD->removeInstruction(cpy);
 | |
|   ++NumMemCpyInstr;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
 | |
| /// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
 | |
| /// copy from MDep's input if we can.  MSize is the size of M's copy.
 | |
| /// 
 | |
| bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
 | |
|                                               uint64_t MSize) {
 | |
|   // We can only transforms memcpy's where the dest of one is the source of the
 | |
|   // other.
 | |
|   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
 | |
|     return false;
 | |
|   
 | |
|   // If dep instruction is reading from our current input, then it is a noop
 | |
|   // transfer and substituting the input won't change this instruction.  Just
 | |
|   // ignore the input and let someone else zap MDep.  This handles cases like:
 | |
|   //    memcpy(a <- a)
 | |
|   //    memcpy(b <- a)
 | |
|   if (M->getSource() == MDep->getSource())
 | |
|     return false;
 | |
|   
 | |
|   // Second, the length of the memcpy's must be the same, or the preceding one
 | |
|   // must be larger than the following one.
 | |
|   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
 | |
|   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
 | |
|   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
 | |
|     return false;
 | |
|   
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   // Verify that the copied-from memory doesn't change in between the two
 | |
|   // transfers.  For example, in:
 | |
|   //    memcpy(a <- b)
 | |
|   //    *b = 42;
 | |
|   //    memcpy(c <- a)
 | |
|   // It would be invalid to transform the second memcpy into memcpy(c <- b).
 | |
|   //
 | |
|   // TODO: If the code between M and MDep is transparent to the destination "c",
 | |
|   // then we could still perform the xform by moving M up to the first memcpy.
 | |
|   //
 | |
|   // NOTE: This is conservative, it will stop on any read from the source loc,
 | |
|   // not just the defining memcpy.
 | |
|   MemDepResult SourceDep =
 | |
|     MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
 | |
|                                  false, M, M->getParent());
 | |
|   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | |
|     return false;
 | |
|   
 | |
|   // If the dest of the second might alias the source of the first, then the
 | |
|   // source and dest might overlap.  We still want to eliminate the intermediate
 | |
|   // value, but we have to generate a memmove instead of memcpy.
 | |
|   bool UseMemMove = false;
 | |
|   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
 | |
|     UseMemMove = true;
 | |
|   
 | |
|   // If all checks passed, then we can transform M.
 | |
|   
 | |
|   // Make sure to use the lesser of the alignment of the source and the dest
 | |
|   // since we're changing where we're reading from, but don't want to increase
 | |
|   // the alignment past what can be read from or written to.
 | |
|   // TODO: Is this worth it if we're creating a less aligned memcpy? For
 | |
|   // example we could be moving from movaps -> movq on x86.
 | |
|   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
 | |
|   
 | |
|   IRBuilder<> Builder(M);
 | |
|   if (UseMemMove)
 | |
|     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | |
|                           Align, M->isVolatile());
 | |
|   else
 | |
|     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
 | |
|                          Align, M->isVolatile());
 | |
| 
 | |
|   // Remove the instruction we're replacing.
 | |
|   MD->removeInstruction(M);
 | |
|   M->eraseFromParent();
 | |
|   ++NumMemCpyInstr;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
 | |
| /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
 | |
| /// B to be a memcpy from X to Z (or potentially a memmove, depending on
 | |
| /// circumstances). This allows later passes to remove the first memcpy
 | |
| /// altogether.
 | |
| bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
 | |
|   // We can only optimize statically-sized memcpy's that are non-volatile.
 | |
|   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
 | |
|   if (CopySize == 0 || M->isVolatile()) return false;
 | |
| 
 | |
|   // If the source and destination of the memcpy are the same, then zap it.
 | |
|   if (M->getSource() == M->getDest()) {
 | |
|     MD->removeInstruction(M);
 | |
|     M->eraseFromParent();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If copying from a constant, try to turn the memcpy into a memset.
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
 | |
|     if (GV->isConstant() && GV->hasDefinitiveInitializer())
 | |
|       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
 | |
|         IRBuilder<> Builder(M);
 | |
|         Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
 | |
|                              M->getAlignment(), false);
 | |
|         MD->removeInstruction(M);
 | |
|         M->eraseFromParent();
 | |
|         ++NumCpyToSet;
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|   // The are two possible optimizations we can do for memcpy:
 | |
|   //   a) memcpy-memcpy xform which exposes redundance for DSE.
 | |
|   //   b) call-memcpy xform for return slot optimization.
 | |
|   MemDepResult DepInfo = MD->getDependency(M);
 | |
|   if (DepInfo.isClobber()) {
 | |
|     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
 | |
|       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
 | |
|                                CopySize->getZExtValue(), C)) {
 | |
|         MD->removeInstruction(M);
 | |
|         M->eraseFromParent();
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
 | |
|   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
 | |
|                                                          M, M->getParent());
 | |
|   if (SrcDepInfo.isClobber()) {
 | |
|     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
 | |
|       return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
 | |
| /// are guaranteed not to alias.
 | |
| bool MemCpyOpt::processMemMove(MemMoveInst *M) {
 | |
|   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
 | |
| 
 | |
|   if (!TLI->has(LibFunc::memmove))
 | |
|     return false;
 | |
|   
 | |
|   // See if the pointers alias.
 | |
|   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
 | |
|     return false;
 | |
|   
 | |
|   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
 | |
|   
 | |
|   // If not, then we know we can transform this.
 | |
|   Module *Mod = M->getParent()->getParent()->getParent();
 | |
|   Type *ArgTys[3] = { M->getRawDest()->getType(),
 | |
|                       M->getRawSource()->getType(),
 | |
|                       M->getLength()->getType() };
 | |
|   M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
 | |
|                                                  ArgTys));
 | |
| 
 | |
|   // MemDep may have over conservative information about this instruction, just
 | |
|   // conservatively flush it from the cache.
 | |
|   MD->removeInstruction(M);
 | |
| 
 | |
|   ++NumMoveToCpy;
 | |
|   return true;
 | |
| }
 | |
|   
 | |
| /// processByValArgument - This is called on every byval argument in call sites.
 | |
| bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
 | |
|   if (TD == 0) return false;
 | |
| 
 | |
|   // Find out what feeds this byval argument.
 | |
|   Value *ByValArg = CS.getArgument(ArgNo);
 | |
|   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
 | |
|   uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
 | |
|   MemDepResult DepInfo =
 | |
|     MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
 | |
|                                  true, CS.getInstruction(),
 | |
|                                  CS.getInstruction()->getParent());
 | |
|   if (!DepInfo.isClobber())
 | |
|     return false;
 | |
| 
 | |
|   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
 | |
|   // a memcpy, see if we can byval from the source of the memcpy instead of the
 | |
|   // result.
 | |
|   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
 | |
|   if (MDep == 0 || MDep->isVolatile() ||
 | |
|       ByValArg->stripPointerCasts() != MDep->getDest())
 | |
|     return false;
 | |
|   
 | |
|   // The length of the memcpy must be larger or equal to the size of the byval.
 | |
|   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
 | |
|   if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
 | |
|     return false;
 | |
| 
 | |
|   // Get the alignment of the byval.  If the call doesn't specify the alignment,
 | |
|   // then it is some target specific value that we can't know.
 | |
|   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
 | |
|   if (ByValAlign == 0) return false;
 | |
|   
 | |
|   // If it is greater than the memcpy, then we check to see if we can force the
 | |
|   // source of the memcpy to the alignment we need.  If we fail, we bail out.
 | |
|   if (MDep->getAlignment() < ByValAlign &&
 | |
|       getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
 | |
|     return false;
 | |
|   
 | |
|   // Verify that the copied-from memory doesn't change in between the memcpy and
 | |
|   // the byval call.
 | |
|   //    memcpy(a <- b)
 | |
|   //    *b = 42;
 | |
|   //    foo(*a)
 | |
|   // It would be invalid to transform the second memcpy into foo(*b).
 | |
|   //
 | |
|   // NOTE: This is conservative, it will stop on any read from the source loc,
 | |
|   // not just the defining memcpy.
 | |
|   MemDepResult SourceDep =
 | |
|     MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
 | |
|                                  false, CS.getInstruction(), MDep->getParent());
 | |
|   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
 | |
|     return false;
 | |
|   
 | |
|   Value *TmpCast = MDep->getSource();
 | |
|   if (MDep->getSource()->getType() != ByValArg->getType())
 | |
|     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
 | |
|                               "tmpcast", CS.getInstruction());
 | |
|   
 | |
|   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
 | |
|                << "  " << *MDep << "\n"
 | |
|                << "  " << *CS.getInstruction() << "\n");
 | |
|   
 | |
|   // Otherwise we're good!  Update the byval argument.
 | |
|   CS.setArgument(ArgNo, TmpCast);
 | |
|   ++NumMemCpyInstr;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// iterateOnFunction - Executes one iteration of MemCpyOpt.
 | |
| bool MemCpyOpt::iterateOnFunction(Function &F) {
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   // Walk all instruction in the function.
 | |
|   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
 | |
|     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
 | |
|       // Avoid invalidating the iterator.
 | |
|       Instruction *I = BI++;
 | |
|       
 | |
|       bool RepeatInstruction = false;
 | |
|       
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(I))
 | |
|         MadeChange |= processStore(SI, BI);
 | |
|       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
 | |
|         RepeatInstruction = processMemSet(M, BI);
 | |
|       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
 | |
|         RepeatInstruction = processMemCpy(M);
 | |
|       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
 | |
|         RepeatInstruction = processMemMove(M);
 | |
|       else if (CallSite CS = (Value*)I) {
 | |
|         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
 | |
|           if (CS.isByValArgument(i))
 | |
|             MadeChange |= processByValArgument(CS, i);
 | |
|       }
 | |
| 
 | |
|       // Reprocess the instruction if desired.
 | |
|       if (RepeatInstruction) {
 | |
|         if (BI != BB->begin()) --BI;
 | |
|         MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
 | |
| // function.
 | |
| //
 | |
| bool MemCpyOpt::runOnFunction(Function &F) {
 | |
|   bool MadeChange = false;
 | |
|   MD = &getAnalysis<MemoryDependenceAnalysis>();
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
|   TLI = &getAnalysis<TargetLibraryInfo>();
 | |
|   
 | |
|   // If we don't have at least memset and memcpy, there is little point of doing
 | |
|   // anything here.  These are required by a freestanding implementation, so if
 | |
|   // even they are disabled, there is no point in trying hard.
 | |
|   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
 | |
|     return false;
 | |
|   
 | |
|   while (1) {
 | |
|     if (!iterateOnFunction(F))
 | |
|       break;
 | |
|     MadeChange = true;
 | |
|   }
 | |
|   
 | |
|   MD = 0;
 | |
|   return MadeChange;
 | |
| }
 |