mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151262 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2597 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2597 lines
		
	
	
		
			101 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This transformation implements the well known scalar replacement of
 | |
| // aggregates transformation.  This xform breaks up alloca instructions of
 | |
| // aggregate type (structure or array) into individual alloca instructions for
 | |
| // each member (if possible).  Then, if possible, it transforms the individual
 | |
| // alloca instructions into nice clean scalar SSA form.
 | |
| //
 | |
| // This combines a simple SRoA algorithm with the Mem2Reg algorithm because
 | |
| // often interact, especially for C++ programs.  As such, iterating between
 | |
| // SRoA, then Mem2Reg until we run out of things to promote works well.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "scalarrepl"
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Analysis/DebugInfo.h"
 | |
| #include "llvm/Analysis/DIBuilder.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h"
 | |
| #include "llvm/Transforms/Utils/Local.h"
 | |
| #include "llvm/Transforms/Utils/SSAUpdater.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/IRBuilder.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumReplaced,  "Number of allocas broken up");
 | |
| STATISTIC(NumPromoted,  "Number of allocas promoted");
 | |
| STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
 | |
| STATISTIC(NumConverted, "Number of aggregates converted to scalar");
 | |
| STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
 | |
| 
 | |
| namespace {
 | |
|   struct SROA : public FunctionPass {
 | |
|     SROA(int T, bool hasDT, char &ID)
 | |
|       : FunctionPass(ID), HasDomTree(hasDT) {
 | |
|       if (T == -1)
 | |
|         SRThreshold = 128;
 | |
|       else
 | |
|         SRThreshold = T;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     bool performScalarRepl(Function &F);
 | |
|     bool performPromotion(Function &F);
 | |
| 
 | |
|   private:
 | |
|     bool HasDomTree;
 | |
|     TargetData *TD;
 | |
| 
 | |
|     /// DeadInsts - Keep track of instructions we have made dead, so that
 | |
|     /// we can remove them after we are done working.
 | |
|     SmallVector<Value*, 32> DeadInsts;
 | |
| 
 | |
|     /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
 | |
|     /// information about the uses.  All these fields are initialized to false
 | |
|     /// and set to true when something is learned.
 | |
|     struct AllocaInfo {
 | |
|       /// The alloca to promote.
 | |
|       AllocaInst *AI;
 | |
|       
 | |
|       /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
 | |
|       /// looping and avoid redundant work.
 | |
|       SmallPtrSet<PHINode*, 8> CheckedPHIs;
 | |
|       
 | |
|       /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
 | |
|       bool isUnsafe : 1;
 | |
| 
 | |
|       /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
 | |
|       bool isMemCpySrc : 1;
 | |
| 
 | |
|       /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
 | |
|       bool isMemCpyDst : 1;
 | |
| 
 | |
|       /// hasSubelementAccess - This is true if a subelement of the alloca is
 | |
|       /// ever accessed, or false if the alloca is only accessed with mem
 | |
|       /// intrinsics or load/store that only access the entire alloca at once.
 | |
|       bool hasSubelementAccess : 1;
 | |
|       
 | |
|       /// hasALoadOrStore - This is true if there are any loads or stores to it.
 | |
|       /// The alloca may just be accessed with memcpy, for example, which would
 | |
|       /// not set this.
 | |
|       bool hasALoadOrStore : 1;
 | |
|       
 | |
|       explicit AllocaInfo(AllocaInst *ai)
 | |
|         : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
 | |
|           hasSubelementAccess(false), hasALoadOrStore(false) {}
 | |
|     };
 | |
| 
 | |
|     unsigned SRThreshold;
 | |
| 
 | |
|     void MarkUnsafe(AllocaInfo &I, Instruction *User) {
 | |
|       I.isUnsafe = true;
 | |
|       DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
 | |
|     }
 | |
| 
 | |
|     bool isSafeAllocaToScalarRepl(AllocaInst *AI);
 | |
| 
 | |
|     void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
 | |
|     void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
 | |
|                                          AllocaInfo &Info);
 | |
|     void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
 | |
|     void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
 | |
|                          Type *MemOpType, bool isStore, AllocaInfo &Info,
 | |
|                          Instruction *TheAccess, bool AllowWholeAccess);
 | |
|     bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
 | |
|     uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
 | |
|                                   Type *&IdxTy);
 | |
| 
 | |
|     void DoScalarReplacement(AllocaInst *AI,
 | |
|                              std::vector<AllocaInst*> &WorkList);
 | |
|     void DeleteDeadInstructions();
 | |
| 
 | |
|     void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | |
|                               SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
 | |
|                         SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
 | |
|                     SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
 | |
|                                   uint64_t Offset,
 | |
|                                   SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
 | |
|                                       AllocaInst *AI,
 | |
|                                       SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
 | |
|                                        SmallVector<AllocaInst*, 32> &NewElts);
 | |
|     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
 | |
|                                       SmallVector<AllocaInst*, 32> &NewElts);
 | |
| 
 | |
|     static MemTransferInst *isOnlyCopiedFromConstantGlobal(
 | |
|         AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
 | |
|   };
 | |
|   
 | |
|   // SROA_DT - SROA that uses DominatorTree.
 | |
|   struct SROA_DT : public SROA {
 | |
|     static char ID;
 | |
|   public:
 | |
|     SROA_DT(int T = -1) : SROA(T, true, ID) {
 | |
|       initializeSROA_DTPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|     
 | |
|     // getAnalysisUsage - This pass does not require any passes, but we know it
 | |
|     // will not alter the CFG, so say so.
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<DominatorTree>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   };
 | |
|   
 | |
|   // SROA_SSAUp - SROA that uses SSAUpdater.
 | |
|   struct SROA_SSAUp : public SROA {
 | |
|     static char ID;
 | |
|   public:
 | |
|     SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
 | |
|       initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
|     
 | |
|     // getAnalysisUsage - This pass does not require any passes, but we know it
 | |
|     // will not alter the CFG, so say so.
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   };
 | |
|   
 | |
| }
 | |
| 
 | |
| char SROA_DT::ID = 0;
 | |
| char SROA_SSAUp::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
 | |
|                 "Scalar Replacement of Aggregates (DT)", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree)
 | |
| INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
 | |
|                 "Scalar Replacement of Aggregates (DT)", false, false)
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
 | |
|                       "Scalar Replacement of Aggregates (SSAUp)", false, false)
 | |
| INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
 | |
|                     "Scalar Replacement of Aggregates (SSAUp)", false, false)
 | |
| 
 | |
| // Public interface to the ScalarReplAggregates pass
 | |
| FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
 | |
|                                                    bool UseDomTree) {
 | |
|   if (UseDomTree)
 | |
|     return new SROA_DT(Threshold);
 | |
|   return new SROA_SSAUp(Threshold);
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Convert To Scalar Optimization.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| /// ConvertToScalarInfo - This class implements the "Convert To Scalar"
 | |
| /// optimization, which scans the uses of an alloca and determines if it can
 | |
| /// rewrite it in terms of a single new alloca that can be mem2reg'd.
 | |
| class ConvertToScalarInfo {
 | |
|   /// AllocaSize - The size of the alloca being considered in bytes.
 | |
|   unsigned AllocaSize;
 | |
|   const TargetData &TD;
 | |
| 
 | |
|   /// IsNotTrivial - This is set to true if there is some access to the object
 | |
|   /// which means that mem2reg can't promote it.
 | |
|   bool IsNotTrivial;
 | |
| 
 | |
|   /// ScalarKind - Tracks the kind of alloca being considered for promotion,
 | |
|   /// computed based on the uses of the alloca rather than the LLVM type system.
 | |
|   enum {
 | |
|     Unknown,
 | |
| 
 | |
|     // Accesses via GEPs that are consistent with element access of a vector
 | |
|     // type. This will not be converted into a vector unless there is a later
 | |
|     // access using an actual vector type.
 | |
|     ImplicitVector,
 | |
| 
 | |
|     // Accesses via vector operations and GEPs that are consistent with the
 | |
|     // layout of a vector type.
 | |
|     Vector,
 | |
| 
 | |
|     // An integer bag-of-bits with bitwise operations for insertion and
 | |
|     // extraction. Any combination of types can be converted into this kind
 | |
|     // of scalar.
 | |
|     Integer
 | |
|   } ScalarKind;
 | |
| 
 | |
|   /// VectorTy - This tracks the type that we should promote the vector to if
 | |
|   /// it is possible to turn it into a vector.  This starts out null, and if it
 | |
|   /// isn't possible to turn into a vector type, it gets set to VoidTy.
 | |
|   VectorType *VectorTy;
 | |
| 
 | |
|   /// HadNonMemTransferAccess - True if there is at least one access to the 
 | |
|   /// alloca that is not a MemTransferInst.  We don't want to turn structs into
 | |
|   /// large integers unless there is some potential for optimization.
 | |
|   bool HadNonMemTransferAccess;
 | |
| 
 | |
| public:
 | |
|   explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
 | |
|     : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
 | |
|       VectorTy(0), HadNonMemTransferAccess(false) { }
 | |
| 
 | |
|   AllocaInst *TryConvert(AllocaInst *AI);
 | |
| 
 | |
| private:
 | |
|   bool CanConvertToScalar(Value *V, uint64_t Offset);
 | |
|   void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
 | |
|   bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
 | |
|   void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
 | |
| 
 | |
|   Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
 | |
|                                     uint64_t Offset, IRBuilder<> &Builder);
 | |
|   Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
 | |
|                                    uint64_t Offset, IRBuilder<> &Builder);
 | |
| };
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| 
 | |
| /// TryConvert - Analyze the specified alloca, and if it is safe to do so,
 | |
| /// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
 | |
| /// alloca if possible or null if not.
 | |
| AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
 | |
|   // If we can't convert this scalar, or if mem2reg can trivially do it, bail
 | |
|   // out.
 | |
|   if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
 | |
|     return 0;
 | |
| 
 | |
|   // If an alloca has only memset / memcpy uses, it may still have an Unknown
 | |
|   // ScalarKind. Treat it as an Integer below.
 | |
|   if (ScalarKind == Unknown)
 | |
|     ScalarKind = Integer;
 | |
| 
 | |
|   if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
 | |
|     ScalarKind = Integer;
 | |
| 
 | |
|   // If we were able to find a vector type that can handle this with
 | |
|   // insert/extract elements, and if there was at least one use that had
 | |
|   // a vector type, promote this to a vector.  We don't want to promote
 | |
|   // random stuff that doesn't use vectors (e.g. <9 x double>) because then
 | |
|   // we just get a lot of insert/extracts.  If at least one vector is
 | |
|   // involved, then we probably really do have a union of vector/array.
 | |
|   Type *NewTy;
 | |
|   if (ScalarKind == Vector) {
 | |
|     assert(VectorTy && "Missing type for vector scalar.");
 | |
|     DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
 | |
|           << *VectorTy << '\n');
 | |
|     NewTy = VectorTy;  // Use the vector type.
 | |
|   } else {
 | |
|     unsigned BitWidth = AllocaSize * 8;
 | |
|     if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
 | |
|         !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
 | |
|       return 0;
 | |
| 
 | |
|     DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
 | |
|     // Create and insert the integer alloca.
 | |
|     NewTy = IntegerType::get(AI->getContext(), BitWidth);
 | |
|   }
 | |
|   AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
 | |
|   ConvertUsesToScalar(AI, NewAI, 0);
 | |
|   return NewAI;
 | |
| }
 | |
| 
 | |
| /// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
 | |
| /// (VectorTy) so far at the offset specified by Offset (which is specified in
 | |
| /// bytes).
 | |
| ///
 | |
| /// There are two cases we handle here:
 | |
| ///   1) A union of vector types of the same size and potentially its elements.
 | |
| ///      Here we turn element accesses into insert/extract element operations.
 | |
| ///      This promotes a <4 x float> with a store of float to the third element
 | |
| ///      into a <4 x float> that uses insert element.
 | |
| ///   2) A fully general blob of memory, which we turn into some (potentially
 | |
| ///      large) integer type with extract and insert operations where the loads
 | |
| ///      and stores would mutate the memory.  We mark this by setting VectorTy
 | |
| ///      to VoidTy.
 | |
| void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
 | |
|                                                     uint64_t Offset) {
 | |
|   // If we already decided to turn this into a blob of integer memory, there is
 | |
|   // nothing to be done.
 | |
|   if (ScalarKind == Integer)
 | |
|     return;
 | |
| 
 | |
|   // If this could be contributing to a vector, analyze it.
 | |
| 
 | |
|   // If the In type is a vector that is the same size as the alloca, see if it
 | |
|   // matches the existing VecTy.
 | |
|   if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
 | |
|     if (MergeInVectorType(VInTy, Offset))
 | |
|       return;
 | |
|   } else if (In->isFloatTy() || In->isDoubleTy() ||
 | |
|              (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
 | |
|               isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
 | |
|     // Full width accesses can be ignored, because they can always be turned
 | |
|     // into bitcasts.
 | |
|     unsigned EltSize = In->getPrimitiveSizeInBits()/8;
 | |
|     if (EltSize == AllocaSize)
 | |
|       return;
 | |
| 
 | |
|     // If we're accessing something that could be an element of a vector, see
 | |
|     // if the implied vector agrees with what we already have and if Offset is
 | |
|     // compatible with it.
 | |
|     if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
 | |
|         (!VectorTy || EltSize == VectorTy->getElementType()
 | |
|                                          ->getPrimitiveSizeInBits()/8)) {
 | |
|       if (!VectorTy) {
 | |
|         ScalarKind = ImplicitVector;
 | |
|         VectorTy = VectorType::get(In, AllocaSize/EltSize);
 | |
|       }
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we have a case that we can't handle with an optimized vector
 | |
|   // form.  We can still turn this into a large integer.
 | |
|   ScalarKind = Integer;
 | |
| }
 | |
| 
 | |
| /// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
 | |
| /// returning true if the type was successfully merged and false otherwise.
 | |
| bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
 | |
|                                             uint64_t Offset) {
 | |
|   if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
 | |
|     // If we're storing/loading a vector of the right size, allow it as a
 | |
|     // vector.  If this the first vector we see, remember the type so that
 | |
|     // we know the element size. If this is a subsequent access, ignore it
 | |
|     // even if it is a differing type but the same size. Worst case we can
 | |
|     // bitcast the resultant vectors.
 | |
|     if (!VectorTy)
 | |
|       VectorTy = VInTy;
 | |
|     ScalarKind = Vector;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
 | |
| /// its accesses to a single vector type, return true and set VecTy to
 | |
| /// the new type.  If we could convert the alloca into a single promotable
 | |
| /// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
 | |
| /// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
 | |
| /// is the current offset from the base of the alloca being analyzed.
 | |
| ///
 | |
| /// If we see at least one access to the value that is as a vector type, set the
 | |
| /// SawVec flag.
 | |
| bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // Don't break volatile loads.
 | |
|       if (!LI->isSimple())
 | |
|         return false;
 | |
|       // Don't touch MMX operations.
 | |
|       if (LI->getType()->isX86_MMXTy())
 | |
|         return false;
 | |
|       HadNonMemTransferAccess = true;
 | |
|       MergeInTypeForLoadOrStore(LI->getType(), Offset);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // Storing the pointer, not into the value?
 | |
|       if (SI->getOperand(0) == V || !SI->isSimple()) return false;
 | |
|       // Don't touch MMX operations.
 | |
|       if (SI->getOperand(0)->getType()->isX86_MMXTy())
 | |
|         return false;
 | |
|       HadNonMemTransferAccess = true;
 | |
|       MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
 | |
|       if (!onlyUsedByLifetimeMarkers(BCI))
 | |
|         IsNotTrivial = true;  // Can't be mem2reg'd.
 | |
|       if (!CanConvertToScalar(BCI, Offset))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // If this is a GEP with a variable indices, we can't handle it.
 | |
|       if (!GEP->hasAllConstantIndices())
 | |
|         return false;
 | |
| 
 | |
|       // Compute the offset that this GEP adds to the pointer.
 | |
|       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | |
|       if (!GEP->getPointerOperandType()->isPointerTy())
 | |
|         return false;
 | |
|       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
 | |
|                                                Indices);
 | |
|       // See if all uses can be converted.
 | |
|       if (!CanConvertToScalar(GEP, Offset+GEPOffset))
 | |
|         return false;
 | |
|       IsNotTrivial = true;  // Can't be mem2reg'd.
 | |
|       HadNonMemTransferAccess = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a constant sized memset of a constant value (e.g. 0) we can
 | |
|     // handle it.
 | |
|     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | |
|       // Store of constant value.
 | |
|       if (!isa<ConstantInt>(MSI->getValue()))
 | |
|         return false;
 | |
| 
 | |
|       // Store of constant size.
 | |
|       ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
 | |
|       if (!Len)
 | |
|         return false;
 | |
| 
 | |
|       // If the size differs from the alloca, we can only convert the alloca to
 | |
|       // an integer bag-of-bits.
 | |
|       // FIXME: This should handle all of the cases that are currently accepted
 | |
|       // as vector element insertions.
 | |
|       if (Len->getZExtValue() != AllocaSize || Offset != 0)
 | |
|         ScalarKind = Integer;
 | |
| 
 | |
|       IsNotTrivial = true;  // Can't be mem2reg'd.
 | |
|       HadNonMemTransferAccess = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a memcpy or memmove into or out of the whole allocation, we
 | |
|     // can handle it like a load or store of the scalar type.
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | |
|       ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
 | |
|       if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
 | |
|         return false;
 | |
| 
 | |
|       IsNotTrivial = true;  // Can't be mem2reg'd.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a lifetime intrinsic, we can handle it.
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise, we cannot handle this!
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
 | |
| /// directly.  This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.  By the end of this, there should be no uses of Ptr.
 | |
| void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
 | |
|                                               uint64_t Offset) {
 | |
|   while (!Ptr->use_empty()) {
 | |
|     Instruction *User = cast<Instruction>(Ptr->use_back());
 | |
| 
 | |
|     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
 | |
|       ConvertUsesToScalar(CI, NewAI, Offset);
 | |
|       CI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Compute the offset that this GEP adds to the pointer.
 | |
|       SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
 | |
|       uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
 | |
|                                                Indices);
 | |
|       ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
 | |
|       GEP->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     IRBuilder<> Builder(User);
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       // The load is a bit extract from NewAI shifted right by Offset bits.
 | |
|       Value *LoadedVal = Builder.CreateLoad(NewAI);
 | |
|       Value *NewLoadVal
 | |
|         = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
 | |
|       LI->replaceAllUsesWith(NewLoadVal);
 | |
|       LI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       assert(SI->getOperand(0) != Ptr && "Consistency error!");
 | |
|       Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
 | |
|       Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
 | |
|                                              Builder);
 | |
|       Builder.CreateStore(New, NewAI);
 | |
|       SI->eraseFromParent();
 | |
| 
 | |
|       // If the load we just inserted is now dead, then the inserted store
 | |
|       // overwrote the entire thing.
 | |
|       if (Old->use_empty())
 | |
|         Old->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a constant sized memset of a constant value (e.g. 0) we can
 | |
|     // transform it into a store of the expanded constant value.
 | |
|     if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
 | |
|       assert(MSI->getRawDest() == Ptr && "Consistency error!");
 | |
|       unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
 | |
|       if (NumBytes != 0) {
 | |
|         unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
 | |
| 
 | |
|         // Compute the value replicated the right number of times.
 | |
|         APInt APVal(NumBytes*8, Val);
 | |
| 
 | |
|         // Splat the value if non-zero.
 | |
|         if (Val)
 | |
|           for (unsigned i = 1; i != NumBytes; ++i)
 | |
|             APVal |= APVal << 8;
 | |
| 
 | |
|         Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
 | |
|         Value *New = ConvertScalar_InsertValue(
 | |
|                                     ConstantInt::get(User->getContext(), APVal),
 | |
|                                                Old, Offset, Builder);
 | |
|         Builder.CreateStore(New, NewAI);
 | |
| 
 | |
|         // If the load we just inserted is now dead, then the memset overwrote
 | |
|         // the entire thing.
 | |
|         if (Old->use_empty())
 | |
|           Old->eraseFromParent();
 | |
|       }
 | |
|       MSI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this is a memcpy or memmove into or out of the whole allocation, we
 | |
|     // can handle it like a load or store of the scalar type.
 | |
|     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
 | |
|       assert(Offset == 0 && "must be store to start of alloca");
 | |
| 
 | |
|       // If the source and destination are both to the same alloca, then this is
 | |
|       // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
 | |
|       // as appropriate.
 | |
|       AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
 | |
| 
 | |
|       if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
 | |
|         // Dest must be OrigAI, change this to be a load from the original
 | |
|         // pointer (bitcasted), then a store to our new alloca.
 | |
|         assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
 | |
|         Value *SrcPtr = MTI->getSource();
 | |
|         PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
 | |
|         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
 | |
|         if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
 | |
|           AIPTy = PointerType::get(AIPTy->getElementType(),
 | |
|                                    SPTy->getAddressSpace());
 | |
|         }
 | |
|         SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
 | |
| 
 | |
|         LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
 | |
|         SrcVal->setAlignment(MTI->getAlignment());
 | |
|         Builder.CreateStore(SrcVal, NewAI);
 | |
|       } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
 | |
|         // Src must be OrigAI, change this to be a load from NewAI then a store
 | |
|         // through the original dest pointer (bitcasted).
 | |
|         assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
 | |
|         LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
 | |
| 
 | |
|         PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
 | |
|         PointerType* AIPTy = cast<PointerType>(NewAI->getType());
 | |
|         if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
 | |
|           AIPTy = PointerType::get(AIPTy->getElementType(),
 | |
|                                    DPTy->getAddressSpace());
 | |
|         }
 | |
|         Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
 | |
| 
 | |
|         StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
 | |
|         NewStore->setAlignment(MTI->getAlignment());
 | |
|       } else {
 | |
|         // Noop transfer. Src == Dst
 | |
|       }
 | |
| 
 | |
|       MTI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|         // There's no need to preserve these, as the resulting alloca will be
 | |
|         // converted to a register anyways.
 | |
|         II->eraseFromParent();
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     llvm_unreachable("Unsupported operation!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
 | |
| /// or vector value FromVal, extracting the bits from the offset specified by
 | |
| /// Offset.  This returns the value, which is of type ToType.
 | |
| ///
 | |
| /// This happens when we are converting an "integer union" to a single
 | |
| /// integer scalar, or when we are converting a "vector union" to a vector with
 | |
| /// insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.
 | |
| Value *ConvertToScalarInfo::
 | |
| ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
 | |
|                            uint64_t Offset, IRBuilder<> &Builder) {
 | |
|   // If the load is of the whole new alloca, no conversion is needed.
 | |
|   Type *FromType = FromVal->getType();
 | |
|   if (FromType == ToType && Offset == 0)
 | |
|     return FromVal;
 | |
| 
 | |
|   // If the result alloca is a vector type, this is either an element
 | |
|   // access or a bitcast to another vector type of the same size.
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
 | |
|     unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
 | |
|     unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
 | |
|     if (FromTypeSize == ToTypeSize)
 | |
|         return Builder.CreateBitCast(FromVal, ToType);
 | |
| 
 | |
|     // Otherwise it must be an element access.
 | |
|     unsigned Elt = 0;
 | |
|     if (Offset) {
 | |
|       unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
 | |
|       Elt = Offset/EltSize;
 | |
|       assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
 | |
|     }
 | |
|     // Return the element extracted out of it.
 | |
|     Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
 | |
|     if (V->getType() != ToType)
 | |
|       V = Builder.CreateBitCast(V, ToType);
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   // If ToType is a first class aggregate, extract out each of the pieces and
 | |
|   // use insertvalue's to form the FCA.
 | |
|   if (StructType *ST = dyn_cast<StructType>(ToType)) {
 | |
|     const StructLayout &Layout = *TD.getStructLayout(ST);
 | |
|     Value *Res = UndefValue::get(ST);
 | |
|     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
 | |
|                                         Offset+Layout.getElementOffsetInBits(i),
 | |
|                                               Builder);
 | |
|       Res = Builder.CreateInsertValue(Res, Elt, i);
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
 | |
|     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
 | |
|     Value *Res = UndefValue::get(AT);
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
 | |
|                                               Offset+i*EltSize, Builder);
 | |
|       Res = Builder.CreateInsertValue(Res, Elt, i);
 | |
|     }
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, this must be a union that was converted to an integer value.
 | |
|   IntegerType *NTy = cast<IntegerType>(FromVal->getType());
 | |
| 
 | |
|   // If this is a big-endian system and the load is narrower than the
 | |
|   // full alloca type, we need to do a shift to get the right bits.
 | |
|   int ShAmt = 0;
 | |
|   if (TD.isBigEndian()) {
 | |
|     // On big-endian machines, the lowest bit is stored at the bit offset
 | |
|     // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | |
|     // integers with a bitwidth that is not a multiple of 8.
 | |
|     ShAmt = TD.getTypeStoreSizeInBits(NTy) -
 | |
|             TD.getTypeStoreSizeInBits(ToType) - Offset;
 | |
|   } else {
 | |
|     ShAmt = Offset;
 | |
|   }
 | |
| 
 | |
|   // Note: we support negative bitwidths (with shl) which are not defined.
 | |
|   // We do this to support (f.e.) loads off the end of a structure where
 | |
|   // only some bits are used.
 | |
|   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
 | |
|     FromVal = Builder.CreateLShr(FromVal,
 | |
|                                  ConstantInt::get(FromVal->getType(), ShAmt));
 | |
|   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
 | |
|     FromVal = Builder.CreateShl(FromVal,
 | |
|                                 ConstantInt::get(FromVal->getType(), -ShAmt));
 | |
| 
 | |
|   // Finally, unconditionally truncate the integer to the right width.
 | |
|   unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
 | |
|   if (LIBitWidth < NTy->getBitWidth())
 | |
|     FromVal =
 | |
|       Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
 | |
|                                                     LIBitWidth));
 | |
|   else if (LIBitWidth > NTy->getBitWidth())
 | |
|     FromVal =
 | |
|        Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
 | |
|                                                     LIBitWidth));
 | |
| 
 | |
|   // If the result is an integer, this is a trunc or bitcast.
 | |
|   if (ToType->isIntegerTy()) {
 | |
|     // Should be done.
 | |
|   } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
 | |
|     // Just do a bitcast, we know the sizes match up.
 | |
|     FromVal = Builder.CreateBitCast(FromVal, ToType);
 | |
|   } else {
 | |
|     // Otherwise must be a pointer.
 | |
|     FromVal = Builder.CreateIntToPtr(FromVal, ToType);
 | |
|   }
 | |
|   assert(FromVal->getType() == ToType && "Didn't convert right?");
 | |
|   return FromVal;
 | |
| }
 | |
| 
 | |
| /// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
 | |
| /// or vector value "Old" at the offset specified by Offset.
 | |
| ///
 | |
| /// This happens when we are converting an "integer union" to a
 | |
| /// single integer scalar, or when we are converting a "vector union" to a
 | |
| /// vector with insert/extractelement instructions.
 | |
| ///
 | |
| /// Offset is an offset from the original alloca, in bits that need to be
 | |
| /// shifted to the right.
 | |
| Value *ConvertToScalarInfo::
 | |
| ConvertScalar_InsertValue(Value *SV, Value *Old,
 | |
|                           uint64_t Offset, IRBuilder<> &Builder) {
 | |
|   // Convert the stored type to the actual type, shift it left to insert
 | |
|   // then 'or' into place.
 | |
|   Type *AllocaType = Old->getType();
 | |
|   LLVMContext &Context = Old->getContext();
 | |
| 
 | |
|   if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
 | |
|     uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
 | |
|     uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
 | |
| 
 | |
|     // Changing the whole vector with memset or with an access of a different
 | |
|     // vector type?
 | |
|     if (ValSize == VecSize)
 | |
|         return Builder.CreateBitCast(SV, AllocaType);
 | |
| 
 | |
|     // Must be an element insertion.
 | |
|     Type *EltTy = VTy->getElementType();
 | |
|     if (SV->getType() != EltTy)
 | |
|       SV = Builder.CreateBitCast(SV, EltTy);
 | |
|     uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
 | |
|     unsigned Elt = Offset/EltSize;
 | |
|     return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
 | |
|   }
 | |
| 
 | |
|   // If SV is a first-class aggregate value, insert each value recursively.
 | |
|   if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
 | |
|     const StructLayout &Layout = *TD.getStructLayout(ST);
 | |
|     for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = Builder.CreateExtractValue(SV, i);
 | |
|       Old = ConvertScalar_InsertValue(Elt, Old,
 | |
|                                       Offset+Layout.getElementOffsetInBits(i),
 | |
|                                       Builder);
 | |
|     }
 | |
|     return Old;
 | |
|   }
 | |
| 
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
 | |
|     uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       Value *Elt = Builder.CreateExtractValue(SV, i);
 | |
|       Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
 | |
|     }
 | |
|     return Old;
 | |
|   }
 | |
| 
 | |
|   // If SV is a float, convert it to the appropriate integer type.
 | |
|   // If it is a pointer, do the same.
 | |
|   unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
 | |
|   unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
 | |
|   unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
 | |
|   unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
 | |
|   if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
 | |
|     SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
 | |
|   else if (SV->getType()->isPointerTy())
 | |
|     SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
 | |
| 
 | |
|   // Zero extend or truncate the value if needed.
 | |
|   if (SV->getType() != AllocaType) {
 | |
|     if (SV->getType()->getPrimitiveSizeInBits() <
 | |
|              AllocaType->getPrimitiveSizeInBits())
 | |
|       SV = Builder.CreateZExt(SV, AllocaType);
 | |
|     else {
 | |
|       // Truncation may be needed if storing more than the alloca can hold
 | |
|       // (undefined behavior).
 | |
|       SV = Builder.CreateTrunc(SV, AllocaType);
 | |
|       SrcWidth = DestWidth;
 | |
|       SrcStoreWidth = DestStoreWidth;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is a big-endian system and the store is narrower than the
 | |
|   // full alloca type, we need to do a shift to get the right bits.
 | |
|   int ShAmt = 0;
 | |
|   if (TD.isBigEndian()) {
 | |
|     // On big-endian machines, the lowest bit is stored at the bit offset
 | |
|     // from the pointer given by getTypeStoreSizeInBits.  This matters for
 | |
|     // integers with a bitwidth that is not a multiple of 8.
 | |
|     ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
 | |
|   } else {
 | |
|     ShAmt = Offset;
 | |
|   }
 | |
| 
 | |
|   // Note: we support negative bitwidths (with shr) which are not defined.
 | |
|   // We do this to support (f.e.) stores off the end of a structure where
 | |
|   // only some bits in the structure are set.
 | |
|   APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
 | |
|   if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
 | |
|     SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
 | |
|     Mask <<= ShAmt;
 | |
|   } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
 | |
|     SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
 | |
|     Mask = Mask.lshr(-ShAmt);
 | |
|   }
 | |
| 
 | |
|   // Mask out the bits we are about to insert from the old value, and or
 | |
|   // in the new bits.
 | |
|   if (SrcWidth != DestWidth) {
 | |
|     assert(DestWidth > SrcWidth);
 | |
|     Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
 | |
|     SV = Builder.CreateOr(Old, SV, "ins");
 | |
|   }
 | |
|   return SV;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // SRoA Driver
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| 
 | |
| bool SROA::runOnFunction(Function &F) {
 | |
|   TD = getAnalysisIfAvailable<TargetData>();
 | |
| 
 | |
|   bool Changed = performPromotion(F);
 | |
| 
 | |
|   // FIXME: ScalarRepl currently depends on TargetData more than it
 | |
|   // theoretically needs to. It should be refactored in order to support
 | |
|   // target-independent IR. Until this is done, just skip the actual
 | |
|   // scalar-replacement portion of this pass.
 | |
|   if (!TD) return Changed;
 | |
| 
 | |
|   while (1) {
 | |
|     bool LocalChange = performScalarRepl(F);
 | |
|     if (!LocalChange) break;   // No need to repromote if no scalarrepl
 | |
|     Changed = true;
 | |
|     LocalChange = performPromotion(F);
 | |
|     if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| class AllocaPromoter : public LoadAndStorePromoter {
 | |
|   AllocaInst *AI;
 | |
|   DIBuilder *DIB;
 | |
|   SmallVector<DbgDeclareInst *, 4> DDIs;
 | |
|   SmallVector<DbgValueInst *, 4> DVIs;
 | |
| public:
 | |
|   AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
 | |
|                  DIBuilder *DB)
 | |
|     : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
 | |
|   
 | |
|   void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
 | |
|     // Remember which alloca we're promoting (for isInstInList).
 | |
|     this->AI = AI;
 | |
|     if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
 | |
|       for (Value::use_iterator UI = DebugNode->use_begin(),
 | |
|              E = DebugNode->use_end(); UI != E; ++UI)
 | |
|         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
 | |
|           DDIs.push_back(DDI);
 | |
|         else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
 | |
|           DVIs.push_back(DVI);
 | |
|     }
 | |
| 
 | |
|     LoadAndStorePromoter::run(Insts);
 | |
|     AI->eraseFromParent();
 | |
|     for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(), 
 | |
|            E = DDIs.end(); I != E; ++I) {
 | |
|       DbgDeclareInst *DDI = *I;
 | |
|       DDI->eraseFromParent();
 | |
|     }
 | |
|     for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(), 
 | |
|            E = DVIs.end(); I != E; ++I) {
 | |
|       DbgValueInst *DVI = *I;
 | |
|       DVI->eraseFromParent();
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   virtual bool isInstInList(Instruction *I,
 | |
|                             const SmallVectorImpl<Instruction*> &Insts) const {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | |
|       return LI->getOperand(0) == AI;
 | |
|     return cast<StoreInst>(I)->getPointerOperand() == AI;
 | |
|   }
 | |
| 
 | |
|   virtual void updateDebugInfo(Instruction *Inst) const {
 | |
|     for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), 
 | |
|            E = DDIs.end(); I != E; ++I) {
 | |
|       DbgDeclareInst *DDI = *I;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
 | |
|         ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
 | |
|       else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|         ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
 | |
|     }
 | |
|     for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), 
 | |
|            E = DVIs.end(); I != E; ++I) {
 | |
|       DbgValueInst *DVI = *I;
 | |
|       Value *Arg = NULL;
 | |
|       if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|         // If an argument is zero extended then use argument directly. The ZExt
 | |
|         // may be zapped by an optimization pass in future.
 | |
|         if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
 | |
|           Arg = dyn_cast<Argument>(ZExt->getOperand(0));
 | |
|         if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
 | |
|           Arg = dyn_cast<Argument>(SExt->getOperand(0));
 | |
|         if (!Arg)
 | |
|           Arg = SI->getOperand(0);
 | |
|       } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
 | |
|         Arg = LI->getOperand(0);
 | |
|       } else {
 | |
|         continue;
 | |
|       }
 | |
|       Instruction *DbgVal =
 | |
|         DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
 | |
|                                      Inst);
 | |
|       DbgVal->setDebugLoc(DVI->getDebugLoc());
 | |
|     }
 | |
|   }
 | |
| };
 | |
| } // end anon namespace
 | |
| 
 | |
| /// isSafeSelectToSpeculate - Select instructions that use an alloca and are
 | |
| /// subsequently loaded can be rewritten to load both input pointers and then
 | |
| /// select between the result, allowing the load of the alloca to be promoted.
 | |
| /// From this:
 | |
| ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
 | |
| ///   %V = load i32* %P2
 | |
| /// to:
 | |
| ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | |
| ///   %V2 = load i32* %Other
 | |
| ///   %V = select i1 %cond, i32 %V1, i32 %V2
 | |
| ///
 | |
| /// We can do this to a select if its only uses are loads and if the operand to
 | |
| /// the select can be loaded unconditionally.
 | |
| static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
 | |
|   bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
 | |
|   bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
 | |
|   
 | |
|   for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | |
|     if (LI == 0 || !LI->isSimple()) return false;
 | |
|     
 | |
|     // Both operands to the select need to be dereferencable, either absolutely
 | |
|     // (e.g. allocas) or at this point because we can see other accesses to it.
 | |
|     if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
 | |
|                                                     LI->getAlignment(), TD))
 | |
|       return false;
 | |
|     if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
 | |
|                                                     LI->getAlignment(), TD))
 | |
|       return false;
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isSafePHIToSpeculate - PHI instructions that use an alloca and are
 | |
| /// subsequently loaded can be rewritten to load both input pointers in the pred
 | |
| /// blocks and then PHI the results, allowing the load of the alloca to be
 | |
| /// promoted.
 | |
| /// From this:
 | |
| ///   %P2 = phi [i32* %Alloca, i32* %Other]
 | |
| ///   %V = load i32* %P2
 | |
| /// to:
 | |
| ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
 | |
| ///   ...
 | |
| ///   %V2 = load i32* %Other
 | |
| ///   ...
 | |
| ///   %V = phi [i32 %V1, i32 %V2]
 | |
| ///
 | |
| /// We can do this to a select if its only uses are loads and if the operand to
 | |
| /// the select can be loaded unconditionally.
 | |
| static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
 | |
|   // For now, we can only do this promotion if the load is in the same block as
 | |
|   // the PHI, and if there are no stores between the phi and load.
 | |
|   // TODO: Allow recursive phi users.
 | |
|   // TODO: Allow stores.
 | |
|   BasicBlock *BB = PN->getParent();
 | |
|   unsigned MaxAlign = 0;
 | |
|   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(*UI);
 | |
|     if (LI == 0 || !LI->isSimple()) return false;
 | |
|     
 | |
|     // For now we only allow loads in the same block as the PHI.  This is a
 | |
|     // common case that happens when instcombine merges two loads through a PHI.
 | |
|     if (LI->getParent() != BB) return false;
 | |
|     
 | |
|     // Ensure that there are no instructions between the PHI and the load that
 | |
|     // could store.
 | |
|     for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
 | |
|       if (BBI->mayWriteToMemory())
 | |
|         return false;
 | |
|     
 | |
|     MaxAlign = std::max(MaxAlign, LI->getAlignment());
 | |
|   }
 | |
|   
 | |
|   // Okay, we know that we have one or more loads in the same block as the PHI.
 | |
|   // We can transform this if it is safe to push the loads into the predecessor
 | |
|   // blocks.  The only thing to watch out for is that we can't put a possibly
 | |
|   // trapping load in the predecessor if it is a critical edge.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     BasicBlock *Pred = PN->getIncomingBlock(i);
 | |
|     Value *InVal = PN->getIncomingValue(i);
 | |
| 
 | |
|     // If the terminator of the predecessor has side-effects (an invoke),
 | |
|     // there is no safe place to put a load in the predecessor.
 | |
|     if (Pred->getTerminator()->mayHaveSideEffects())
 | |
|       return false;
 | |
| 
 | |
|     // If the value is produced by the terminator of the predecessor
 | |
|     // (an invoke), there is no valid place to put a load in the predecessor.
 | |
|     if (Pred->getTerminator() == InVal)
 | |
|       return false;
 | |
| 
 | |
|     // If the predecessor has a single successor, then the edge isn't critical.
 | |
|     if (Pred->getTerminator()->getNumSuccessors() == 1)
 | |
|       continue;
 | |
| 
 | |
|     // If this pointer is always safe to load, or if we can prove that there is
 | |
|     // already a load in the block, then we can move the load to the pred block.
 | |
|     if (InVal->isDereferenceablePointer() ||
 | |
|         isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
 | |
|       continue;
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
|     
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// tryToMakeAllocaBePromotable - This returns true if the alloca only has
 | |
| /// direct (non-volatile) loads and stores to it.  If the alloca is close but
 | |
| /// not quite there, this will transform the code to allow promotion.  As such,
 | |
| /// it is a non-pure predicate.
 | |
| static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
 | |
|   SetVector<Instruction*, SmallVector<Instruction*, 4>,
 | |
|             SmallPtrSet<Instruction*, 4> > InstsToRewrite;
 | |
|   
 | |
|   for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     User *U = *UI;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       if (!LI->isSimple())
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
 | |
|       if (SI->getOperand(0) == AI || !SI->isSimple())
 | |
|         return false;   // Don't allow a store OF the AI, only INTO the AI.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
 | |
|       // If the condition being selected on is a constant, fold the select, yes
 | |
|       // this does (rarely) happen early on.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
 | |
|         Value *Result = SI->getOperand(1+CI->isZero());
 | |
|         SI->replaceAllUsesWith(Result);
 | |
|         SI->eraseFromParent();
 | |
|         
 | |
|         // This is very rare and we just scrambled the use list of AI, start
 | |
|         // over completely.
 | |
|         return tryToMakeAllocaBePromotable(AI, TD);
 | |
|       }
 | |
| 
 | |
|       // If it is safe to turn "load (select c, AI, ptr)" into a select of two
 | |
|       // loads, then we can transform this by rewriting the select.
 | |
|       if (!isSafeSelectToSpeculate(SI, TD))
 | |
|         return false;
 | |
|       
 | |
|       InstsToRewrite.insert(SI);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(U)) {
 | |
|       if (PN->use_empty()) {  // Dead PHIs can be stripped.
 | |
|         InstsToRewrite.insert(PN);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
 | |
|       // in the pred blocks, then we can transform this by rewriting the PHI.
 | |
|       if (!isSafePHIToSpeculate(PN, TD))
 | |
|         return false;
 | |
|       
 | |
|       InstsToRewrite.insert(PN);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | |
|       if (onlyUsedByLifetimeMarkers(BCI)) {
 | |
|         InstsToRewrite.insert(BCI);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // If there are no instructions to rewrite, then all uses are load/stores and
 | |
|   // we're done!
 | |
|   if (InstsToRewrite.empty())
 | |
|     return true;
 | |
|   
 | |
|   // If we have instructions that need to be rewritten for this to be promotable
 | |
|   // take care of it now.
 | |
|   for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
 | |
|       // This could only be a bitcast used by nothing but lifetime intrinsics.
 | |
|       for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
 | |
|            I != E;) {
 | |
|         Use &U = I.getUse();
 | |
|         ++I;
 | |
|         cast<Instruction>(U.getUser())->eraseFromParent();
 | |
|       }
 | |
|       BCI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
 | |
|       // Selects in InstsToRewrite only have load uses.  Rewrite each as two
 | |
|       // loads with a new select.
 | |
|       while (!SI->use_empty()) {
 | |
|         LoadInst *LI = cast<LoadInst>(SI->use_back());
 | |
|       
 | |
|         IRBuilder<> Builder(LI);
 | |
|         LoadInst *TrueLoad = 
 | |
|           Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
 | |
|         LoadInst *FalseLoad = 
 | |
|           Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
 | |
|         
 | |
|         // Transfer alignment and TBAA info if present.
 | |
|         TrueLoad->setAlignment(LI->getAlignment());
 | |
|         FalseLoad->setAlignment(LI->getAlignment());
 | |
|         if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
 | |
|           TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
|           FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
 | |
|         }
 | |
|         
 | |
|         Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
 | |
|         V->takeName(LI);
 | |
|         LI->replaceAllUsesWith(V);
 | |
|         LI->eraseFromParent();
 | |
|       }
 | |
|     
 | |
|       // Now that all the loads are gone, the select is gone too.
 | |
|       SI->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Otherwise, we have a PHI node which allows us to push the loads into the
 | |
|     // predecessors.
 | |
|     PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
 | |
|     if (PN->use_empty()) {
 | |
|       PN->eraseFromParent();
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
 | |
|     PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
 | |
|                                      PN->getName()+".ld", PN);
 | |
| 
 | |
|     // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
 | |
|     // matter which one we get and if any differ, it doesn't matter.
 | |
|     LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
 | |
|     MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
 | |
|     unsigned Align = SomeLoad->getAlignment();
 | |
|     
 | |
|     // Rewrite all loads of the PN to use the new PHI.
 | |
|     while (!PN->use_empty()) {
 | |
|       LoadInst *LI = cast<LoadInst>(PN->use_back());
 | |
|       LI->replaceAllUsesWith(NewPN);
 | |
|       LI->eraseFromParent();
 | |
|     }
 | |
|     
 | |
|     // Inject loads into all of the pred blocks.  Keep track of which blocks we
 | |
|     // insert them into in case we have multiple edges from the same block.
 | |
|     DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
 | |
|     
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       BasicBlock *Pred = PN->getIncomingBlock(i);
 | |
|       LoadInst *&Load = InsertedLoads[Pred];
 | |
|       if (Load == 0) {
 | |
|         Load = new LoadInst(PN->getIncomingValue(i),
 | |
|                             PN->getName() + "." + Pred->getName(),
 | |
|                             Pred->getTerminator());
 | |
|         Load->setAlignment(Align);
 | |
|         if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
 | |
|       }
 | |
|       
 | |
|       NewPN->addIncoming(Load, Pred);
 | |
|     }
 | |
|     
 | |
|     PN->eraseFromParent();
 | |
|   }
 | |
|     
 | |
|   ++NumAdjusted;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SROA::performPromotion(Function &F) {
 | |
|   std::vector<AllocaInst*> Allocas;
 | |
|   DominatorTree *DT = 0;
 | |
|   if (HasDomTree)
 | |
|     DT = &getAnalysis<DominatorTree>();
 | |
| 
 | |
|   BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
 | |
|   DIBuilder DIB(*F.getParent());
 | |
|   bool Changed = false;
 | |
|   SmallVector<Instruction*, 64> Insts;
 | |
|   while (1) {
 | |
|     Allocas.clear();
 | |
| 
 | |
|     // Find allocas that are safe to promote, by looking at all instructions in
 | |
|     // the entry node
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
 | |
|       if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
 | |
|         if (tryToMakeAllocaBePromotable(AI, TD))
 | |
|           Allocas.push_back(AI);
 | |
| 
 | |
|     if (Allocas.empty()) break;
 | |
| 
 | |
|     if (HasDomTree)
 | |
|       PromoteMemToReg(Allocas, *DT);
 | |
|     else {
 | |
|       SSAUpdater SSA;
 | |
|       for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
 | |
|         AllocaInst *AI = Allocas[i];
 | |
|         
 | |
|         // Build list of instructions to promote.
 | |
|         for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
 | |
|              UI != E; ++UI)
 | |
|           Insts.push_back(cast<Instruction>(*UI));
 | |
|         AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
 | |
|         Insts.clear();
 | |
|       }
 | |
|     }
 | |
|     NumPromoted += Allocas.size();
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
 | |
| /// SROA.  It must be a struct or array type with a small number of elements.
 | |
| static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
 | |
|   Type *T = AI->getAllocatedType();
 | |
|   // Do not promote any struct into more than 32 separate vars.
 | |
|   if (StructType *ST = dyn_cast<StructType>(T))
 | |
|     return ST->getNumElements() <= 32;
 | |
|   // Arrays are much less likely to be safe for SROA; only consider
 | |
|   // them if they are very small.
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(T))
 | |
|     return AT->getNumElements() <= 8;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| // performScalarRepl - This algorithm is a simple worklist driven algorithm,
 | |
| // which runs on all of the alloca instructions in the function, removing them
 | |
| // if they are only used by getelementptr instructions.
 | |
| //
 | |
| bool SROA::performScalarRepl(Function &F) {
 | |
|   std::vector<AllocaInst*> WorkList;
 | |
| 
 | |
|   // Scan the entry basic block, adding allocas to the worklist.
 | |
|   BasicBlock &BB = F.getEntryBlock();
 | |
|   for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
 | |
|     if (AllocaInst *A = dyn_cast<AllocaInst>(I))
 | |
|       WorkList.push_back(A);
 | |
| 
 | |
|   // Process the worklist
 | |
|   bool Changed = false;
 | |
|   while (!WorkList.empty()) {
 | |
|     AllocaInst *AI = WorkList.back();
 | |
|     WorkList.pop_back();
 | |
| 
 | |
|     // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
 | |
|     // with unused elements.
 | |
|     if (AI->use_empty()) {
 | |
|       AI->eraseFromParent();
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If this alloca is impossible for us to promote, reject it early.
 | |
|     if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
 | |
|       continue;
 | |
| 
 | |
|     // Check to see if this allocation is only modified by a memcpy/memmove from
 | |
|     // a constant global.  If this is the case, we can change all users to use
 | |
|     // the constant global instead.  This is commonly produced by the CFE by
 | |
|     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
 | |
|     // is only subsequently read.
 | |
|     SmallVector<Instruction *, 4> ToDelete;
 | |
|     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
 | |
|       DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
 | |
|       DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
 | |
|       for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
 | |
|         ToDelete[i]->eraseFromParent();
 | |
|       Constant *TheSrc = cast<Constant>(Copy->getSource());
 | |
|       AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
 | |
|       Copy->eraseFromParent();  // Don't mutate the global.
 | |
|       AI->eraseFromParent();
 | |
|       ++NumGlobals;
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Check to see if we can perform the core SROA transformation.  We cannot
 | |
|     // transform the allocation instruction if it is an array allocation
 | |
|     // (allocations OF arrays are ok though), and an allocation of a scalar
 | |
|     // value cannot be decomposed at all.
 | |
|     uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
 | |
| 
 | |
|     // Do not promote [0 x %struct].
 | |
|     if (AllocaSize == 0) continue;
 | |
| 
 | |
|     // Do not promote any struct whose size is too big.
 | |
|     if (AllocaSize > SRThreshold) continue;
 | |
| 
 | |
|     // If the alloca looks like a good candidate for scalar replacement, and if
 | |
|     // all its users can be transformed, then split up the aggregate into its
 | |
|     // separate elements.
 | |
|     if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
 | |
|       DoScalarReplacement(AI, WorkList);
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we can turn this aggregate value (potentially with casts) into a
 | |
|     // simple scalar value that can be mem2reg'd into a register value.
 | |
|     // IsNotTrivial tracks whether this is something that mem2reg could have
 | |
|     // promoted itself.  If so, we don't want to transform it needlessly.  Note
 | |
|     // that we can't just check based on the type: the alloca may be of an i32
 | |
|     // but that has pointer arithmetic to set byte 3 of it or something.
 | |
|     if (AllocaInst *NewAI =
 | |
|           ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
 | |
|       NewAI->takeName(AI);
 | |
|       AI->eraseFromParent();
 | |
|       ++NumConverted;
 | |
|       Changed = true;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, couldn't process this alloca.
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
 | |
| /// predicate, do SROA now.
 | |
| void SROA::DoScalarReplacement(AllocaInst *AI,
 | |
|                                std::vector<AllocaInst*> &WorkList) {
 | |
|   DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
 | |
|   SmallVector<AllocaInst*, 32> ElementAllocas;
 | |
|   if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | |
|     ElementAllocas.reserve(ST->getNumContainedTypes());
 | |
|     for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
 | |
|       AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
 | |
|                                       AI->getAlignment(),
 | |
|                                       AI->getName() + "." + Twine(i), AI);
 | |
|       ElementAllocas.push_back(NA);
 | |
|       WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|     }
 | |
|   } else {
 | |
|     ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
 | |
|     ElementAllocas.reserve(AT->getNumElements());
 | |
|     Type *ElTy = AT->getElementType();
 | |
|     for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
 | |
|       AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
 | |
|                                       AI->getName() + "." + Twine(i), AI);
 | |
|       ElementAllocas.push_back(NA);
 | |
|       WorkList.push_back(NA);  // Add to worklist for recursive processing
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that we have created the new alloca instructions, rewrite all the
 | |
|   // uses of the old alloca.
 | |
|   RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
 | |
| 
 | |
|   // Now erase any instructions that were made dead while rewriting the alloca.
 | |
|   DeleteDeadInstructions();
 | |
|   AI->eraseFromParent();
 | |
| 
 | |
|   ++NumReplaced;
 | |
| }
 | |
| 
 | |
| /// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
 | |
| /// recursively including all their operands that become trivially dead.
 | |
| void SROA::DeleteDeadInstructions() {
 | |
|   while (!DeadInsts.empty()) {
 | |
|     Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
 | |
| 
 | |
|     for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
 | |
|       if (Instruction *U = dyn_cast<Instruction>(*OI)) {
 | |
|         // Zero out the operand and see if it becomes trivially dead.
 | |
|         // (But, don't add allocas to the dead instruction list -- they are
 | |
|         // already on the worklist and will be deleted separately.)
 | |
|         *OI = 0;
 | |
|         if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
 | |
|           DeadInsts.push_back(U);
 | |
|       }
 | |
| 
 | |
|     I->eraseFromParent();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
 | |
| /// performing scalar replacement of alloca AI.  The results are flagged in
 | |
| /// the Info parameter.  Offset indicates the position within AI that is
 | |
| /// referenced by this instruction.
 | |
| void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
 | |
|                                AllocaInfo &Info) {
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
| 
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | |
|       isSafeForScalarRepl(BC, Offset, Info);
 | |
|     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       uint64_t GEPOffset = Offset;
 | |
|       isSafeGEP(GEPI, GEPOffset, Info);
 | |
|       if (!Info.isUnsafe)
 | |
|         isSafeForScalarRepl(GEPI, GEPOffset, Info);
 | |
|     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | |
|       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | |
|       if (Length == 0)
 | |
|         return MarkUnsafe(Info, User);
 | |
|       isSafeMemAccess(Offset, Length->getZExtValue(), 0,
 | |
|                       UI.getOperandNo() == 0, Info, MI,
 | |
|                       true /*AllowWholeAccess*/);
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       if (!LI->isSimple())
 | |
|         return MarkUnsafe(Info, User);
 | |
|       Type *LIType = LI->getType();
 | |
|       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
 | |
|                       LIType, false, Info, LI, true /*AllowWholeAccess*/);
 | |
|       Info.hasALoadOrStore = true;
 | |
|         
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|       if (!SI->isSimple() || SI->getOperand(0) == I)
 | |
|         return MarkUnsafe(Info, User);
 | |
|         
 | |
|       Type *SIType = SI->getOperand(0)->getType();
 | |
|       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
 | |
|                       SIType, true, Info, SI, true /*AllowWholeAccess*/);
 | |
|       Info.hasALoadOrStore = true;
 | |
|     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | |
|       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
 | |
|           II->getIntrinsicID() != Intrinsic::lifetime_end)
 | |
|         return MarkUnsafe(Info, User);
 | |
|     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
 | |
|       isSafePHISelectUseForScalarRepl(User, Offset, Info);
 | |
|     } else {
 | |
|       return MarkUnsafe(Info, User);
 | |
|     }
 | |
|     if (Info.isUnsafe) return;
 | |
|   }
 | |
| }
 | |
|  
 | |
| 
 | |
| /// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
 | |
| /// derived from the alloca, we can often still split the alloca into elements.
 | |
| /// This is useful if we have a large alloca where one element is phi'd
 | |
| /// together somewhere: we can SRoA and promote all the other elements even if
 | |
| /// we end up not being able to promote this one.
 | |
| ///
 | |
| /// All we require is that the uses of the PHI do not index into other parts of
 | |
| /// the alloca.  The most important use case for this is single load and stores
 | |
| /// that are PHI'd together, which can happen due to code sinking.
 | |
| void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
 | |
|                                            AllocaInfo &Info) {
 | |
|   // If we've already checked this PHI, don't do it again.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|     if (!Info.CheckedPHIs.insert(PN))
 | |
|       return;
 | |
|   
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
 | |
|     Instruction *User = cast<Instruction>(*UI);
 | |
|     
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | |
|       isSafePHISelectUseForScalarRepl(BC, Offset, Info);
 | |
|     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
 | |
|       // but would have to prove that we're staying inside of an element being
 | |
|       // promoted.
 | |
|       if (!GEPI->hasAllZeroIndices())
 | |
|         return MarkUnsafe(Info, User);
 | |
|       isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
 | |
|     } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       if (!LI->isSimple())
 | |
|         return MarkUnsafe(Info, User);
 | |
|       Type *LIType = LI->getType();
 | |
|       isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
 | |
|                       LIType, false, Info, LI, false /*AllowWholeAccess*/);
 | |
|       Info.hasALoadOrStore = true;
 | |
|       
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       // Store is ok if storing INTO the pointer, not storing the pointer
 | |
|       if (!SI->isSimple() || SI->getOperand(0) == I)
 | |
|         return MarkUnsafe(Info, User);
 | |
|       
 | |
|       Type *SIType = SI->getOperand(0)->getType();
 | |
|       isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
 | |
|                       SIType, true, Info, SI, false /*AllowWholeAccess*/);
 | |
|       Info.hasALoadOrStore = true;
 | |
|     } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
 | |
|       isSafePHISelectUseForScalarRepl(User, Offset, Info);
 | |
|     } else {
 | |
|       return MarkUnsafe(Info, User);
 | |
|     }
 | |
|     if (Info.isUnsafe) return;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// isSafeGEP - Check if a GEP instruction can be handled for scalar
 | |
| /// replacement.  It is safe when all the indices are constant, in-bounds
 | |
| /// references, and when the resulting offset corresponds to an element within
 | |
| /// the alloca type.  The results are flagged in the Info parameter.  Upon
 | |
| /// return, Offset is adjusted as specified by the GEP indices.
 | |
| void SROA::isSafeGEP(GetElementPtrInst *GEPI,
 | |
|                      uint64_t &Offset, AllocaInfo &Info) {
 | |
|   gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
 | |
|   if (GEPIt == E)
 | |
|     return;
 | |
| 
 | |
|   // Walk through the GEP type indices, checking the types that this indexes
 | |
|   // into.
 | |
|   for (; GEPIt != E; ++GEPIt) {
 | |
|     // Ignore struct elements, no extra checking needed for these.
 | |
|     if ((*GEPIt)->isStructTy())
 | |
|       continue;
 | |
| 
 | |
|     ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
 | |
|     if (!IdxVal)
 | |
|       return MarkUnsafe(Info, GEPI);
 | |
|   }
 | |
| 
 | |
|   // Compute the offset due to this GEP and check if the alloca has a
 | |
|   // component element at that offset.
 | |
|   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
 | |
|   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
 | |
|   if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
 | |
|     MarkUnsafe(Info, GEPI);
 | |
| }
 | |
| 
 | |
| /// isHomogeneousAggregate - Check if type T is a struct or array containing
 | |
| /// elements of the same type (which is always true for arrays).  If so,
 | |
| /// return true with NumElts and EltTy set to the number of elements and the
 | |
| /// element type, respectively.
 | |
| static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
 | |
|                                    Type *&EltTy) {
 | |
|   if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
 | |
|     NumElts = AT->getNumElements();
 | |
|     EltTy = (NumElts == 0 ? 0 : AT->getElementType());
 | |
|     return true;
 | |
|   }
 | |
|   if (StructType *ST = dyn_cast<StructType>(T)) {
 | |
|     NumElts = ST->getNumContainedTypes();
 | |
|     EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
 | |
|     for (unsigned n = 1; n < NumElts; ++n) {
 | |
|       if (ST->getContainedType(n) != EltTy)
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
 | |
| /// "homogeneous" aggregates with the same element type and number of elements.
 | |
| static bool isCompatibleAggregate(Type *T1, Type *T2) {
 | |
|   if (T1 == T2)
 | |
|     return true;
 | |
| 
 | |
|   unsigned NumElts1, NumElts2;
 | |
|   Type *EltTy1, *EltTy2;
 | |
|   if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
 | |
|       isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
 | |
|       NumElts1 == NumElts2 &&
 | |
|       EltTy1 == EltTy2)
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
 | |
| /// alloca or has an offset and size that corresponds to a component element
 | |
| /// within it.  The offset checked here may have been formed from a GEP with a
 | |
| /// pointer bitcasted to a different type.
 | |
| ///
 | |
| /// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
 | |
| /// unit.  If false, it only allows accesses known to be in a single element.
 | |
| void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
 | |
|                            Type *MemOpType, bool isStore,
 | |
|                            AllocaInfo &Info, Instruction *TheAccess,
 | |
|                            bool AllowWholeAccess) {
 | |
|   // Check if this is a load/store of the entire alloca.
 | |
|   if (Offset == 0 && AllowWholeAccess &&
 | |
|       MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
 | |
|     // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
 | |
|     // loads/stores (which are essentially the same as the MemIntrinsics with
 | |
|     // regard to copying padding between elements).  But, if an alloca is
 | |
|     // flagged as both a source and destination of such operations, we'll need
 | |
|     // to check later for padding between elements.
 | |
|     if (!MemOpType || MemOpType->isIntegerTy()) {
 | |
|       if (isStore)
 | |
|         Info.isMemCpyDst = true;
 | |
|       else
 | |
|         Info.isMemCpySrc = true;
 | |
|       return;
 | |
|     }
 | |
|     // This is also safe for references using a type that is compatible with
 | |
|     // the type of the alloca, so that loads/stores can be rewritten using
 | |
|     // insertvalue/extractvalue.
 | |
|     if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
 | |
|       Info.hasSubelementAccess = true;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   // Check if the offset/size correspond to a component within the alloca type.
 | |
|   Type *T = Info.AI->getAllocatedType();
 | |
|   if (TypeHasComponent(T, Offset, MemSize)) {
 | |
|     Info.hasSubelementAccess = true;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   return MarkUnsafe(Info, TheAccess);
 | |
| }
 | |
| 
 | |
| /// TypeHasComponent - Return true if T has a component type with the
 | |
| /// specified offset and size.  If Size is zero, do not check the size.
 | |
| bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
 | |
|   Type *EltTy;
 | |
|   uint64_t EltSize;
 | |
|   if (StructType *ST = dyn_cast<StructType>(T)) {
 | |
|     const StructLayout *Layout = TD->getStructLayout(ST);
 | |
|     unsigned EltIdx = Layout->getElementContainingOffset(Offset);
 | |
|     EltTy = ST->getContainedType(EltIdx);
 | |
|     EltSize = TD->getTypeAllocSize(EltTy);
 | |
|     Offset -= Layout->getElementOffset(EltIdx);
 | |
|   } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
 | |
|     EltTy = AT->getElementType();
 | |
|     EltSize = TD->getTypeAllocSize(EltTy);
 | |
|     if (Offset >= AT->getNumElements() * EltSize)
 | |
|       return false;
 | |
|     Offset %= EltSize;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   if (Offset == 0 && (Size == 0 || EltSize == Size))
 | |
|     return true;
 | |
|   // Check if the component spans multiple elements.
 | |
|   if (Offset + Size > EltSize)
 | |
|     return false;
 | |
|   return TypeHasComponent(EltTy, Offset, Size);
 | |
| }
 | |
| 
 | |
| /// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
 | |
| /// the instruction I, which references it, to use the separate elements.
 | |
| /// Offset indicates the position within AI that is referenced by this
 | |
| /// instruction.
 | |
| void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
 | |
|                                 SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
 | |
|     Use &TheUse = UI.getUse();
 | |
|     Instruction *User = cast<Instruction>(*UI++);
 | |
| 
 | |
|     if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
 | |
|       RewriteBitCast(BC, AI, Offset, NewElts);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
 | |
|       RewriteGEP(GEPI, AI, Offset, NewElts);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
 | |
|       ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
 | |
|       uint64_t MemSize = Length->getZExtValue();
 | |
|       if (Offset == 0 &&
 | |
|           MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
 | |
|         RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
 | |
|       // Otherwise the intrinsic can only touch a single element and the
 | |
|       // address operand will be updated, so nothing else needs to be done.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|         RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
 | |
|       Type *LIType = LI->getType();
 | |
|       
 | |
|       if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
 | |
|         // Replace:
 | |
|         //   %res = load { i32, i32 }* %alloc
 | |
|         // with:
 | |
|         //   %load.0 = load i32* %alloc.0
 | |
|         //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
 | |
|         //   %load.1 = load i32* %alloc.1
 | |
|         //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
 | |
|         // (Also works for arrays instead of structs)
 | |
|         Value *Insert = UndefValue::get(LIType);
 | |
|         IRBuilder<> Builder(LI);
 | |
|         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|           Value *Load = Builder.CreateLoad(NewElts[i], "load");
 | |
|           Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
 | |
|         }
 | |
|         LI->replaceAllUsesWith(Insert);
 | |
|         DeadInsts.push_back(LI);
 | |
|       } else if (LIType->isIntegerTy() &&
 | |
|                  TD->getTypeAllocSize(LIType) ==
 | |
|                  TD->getTypeAllocSize(AI->getAllocatedType())) {
 | |
|         // If this is a load of the entire alloca to an integer, rewrite it.
 | |
|         RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
 | |
|       Value *Val = SI->getOperand(0);
 | |
|       Type *SIType = Val->getType();
 | |
|       if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
 | |
|         // Replace:
 | |
|         //   store { i32, i32 } %val, { i32, i32 }* %alloc
 | |
|         // with:
 | |
|         //   %val.0 = extractvalue { i32, i32 } %val, 0
 | |
|         //   store i32 %val.0, i32* %alloc.0
 | |
|         //   %val.1 = extractvalue { i32, i32 } %val, 1
 | |
|         //   store i32 %val.1, i32* %alloc.1
 | |
|         // (Also works for arrays instead of structs)
 | |
|         IRBuilder<> Builder(SI);
 | |
|         for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|           Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
 | |
|           Builder.CreateStore(Extract, NewElts[i]);
 | |
|         }
 | |
|         DeadInsts.push_back(SI);
 | |
|       } else if (SIType->isIntegerTy() &&
 | |
|                  TD->getTypeAllocSize(SIType) ==
 | |
|                  TD->getTypeAllocSize(AI->getAllocatedType())) {
 | |
|         // If this is a store of the entire alloca from an integer, rewrite it.
 | |
|         RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     if (isa<SelectInst>(User) || isa<PHINode>(User)) {
 | |
|       // If we have a PHI user of the alloca itself (as opposed to a GEP or 
 | |
|       // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
 | |
|       // the new pointer.
 | |
|       if (!isa<AllocaInst>(I)) continue;
 | |
|       
 | |
|       assert(Offset == 0 && NewElts[0] &&
 | |
|              "Direct alloca use should have a zero offset");
 | |
|       
 | |
|       // If we have a use of the alloca, we know the derived uses will be
 | |
|       // utilizing just the first element of the scalarized result.  Insert a
 | |
|       // bitcast of the first alloca before the user as required.
 | |
|       AllocaInst *NewAI = NewElts[0];
 | |
|       BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
 | |
|       NewAI->moveBefore(BCI);
 | |
|       TheUse = BCI;
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// RewriteBitCast - Update a bitcast reference to the alloca being replaced
 | |
| /// and recursively continue updating all of its uses.
 | |
| void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
 | |
|                           SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   RewriteForScalarRepl(BC, AI, Offset, NewElts);
 | |
|   if (BC->getOperand(0) != AI)
 | |
|     return;
 | |
| 
 | |
|   // The bitcast references the original alloca.  Replace its uses with
 | |
|   // references to the alloca containing offset zero (which is normally at
 | |
|   // index zero, but might not be in cases involving structs with elements
 | |
|   // of size zero).
 | |
|   Type *T = AI->getAllocatedType();
 | |
|   uint64_t EltOffset = 0;
 | |
|   Type *IdxTy;
 | |
|   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
 | |
|   Instruction *Val = NewElts[Idx];
 | |
|   if (Val->getType() != BC->getDestTy()) {
 | |
|     Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
 | |
|     Val->takeName(BC);
 | |
|   }
 | |
|   BC->replaceAllUsesWith(Val);
 | |
|   DeadInsts.push_back(BC);
 | |
| }
 | |
| 
 | |
| /// FindElementAndOffset - Return the index of the element containing Offset
 | |
| /// within the specified type, which must be either a struct or an array.
 | |
| /// Sets T to the type of the element and Offset to the offset within that
 | |
| /// element.  IdxTy is set to the type of the index result to be used in a
 | |
| /// GEP instruction.
 | |
| uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
 | |
|                                     Type *&IdxTy) {
 | |
|   uint64_t Idx = 0;
 | |
|   if (StructType *ST = dyn_cast<StructType>(T)) {
 | |
|     const StructLayout *Layout = TD->getStructLayout(ST);
 | |
|     Idx = Layout->getElementContainingOffset(Offset);
 | |
|     T = ST->getContainedType(Idx);
 | |
|     Offset -= Layout->getElementOffset(Idx);
 | |
|     IdxTy = Type::getInt32Ty(T->getContext());
 | |
|     return Idx;
 | |
|   }
 | |
|   ArrayType *AT = cast<ArrayType>(T);
 | |
|   T = AT->getElementType();
 | |
|   uint64_t EltSize = TD->getTypeAllocSize(T);
 | |
|   Idx = Offset / EltSize;
 | |
|   Offset -= Idx * EltSize;
 | |
|   IdxTy = Type::getInt64Ty(T->getContext());
 | |
|   return Idx;
 | |
| }
 | |
| 
 | |
| /// RewriteGEP - Check if this GEP instruction moves the pointer across
 | |
| /// elements of the alloca that are being split apart, and if so, rewrite
 | |
| /// the GEP to be relative to the new element.
 | |
| void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
 | |
|                       SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   uint64_t OldOffset = Offset;
 | |
|   SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
 | |
|   Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
 | |
| 
 | |
|   RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
 | |
| 
 | |
|   Type *T = AI->getAllocatedType();
 | |
|   Type *IdxTy;
 | |
|   uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
 | |
|   if (GEPI->getOperand(0) == AI)
 | |
|     OldIdx = ~0ULL; // Force the GEP to be rewritten.
 | |
| 
 | |
|   T = AI->getAllocatedType();
 | |
|   uint64_t EltOffset = Offset;
 | |
|   uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
 | |
| 
 | |
|   // If this GEP does not move the pointer across elements of the alloca
 | |
|   // being split, then it does not needs to be rewritten.
 | |
|   if (Idx == OldIdx)
 | |
|     return;
 | |
| 
 | |
|   Type *i32Ty = Type::getInt32Ty(AI->getContext());
 | |
|   SmallVector<Value*, 8> NewArgs;
 | |
|   NewArgs.push_back(Constant::getNullValue(i32Ty));
 | |
|   while (EltOffset != 0) {
 | |
|     uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
 | |
|     NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
 | |
|   }
 | |
|   Instruction *Val = NewElts[Idx];
 | |
|   if (NewArgs.size() > 1) {
 | |
|     Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
 | |
|     Val->takeName(GEPI);
 | |
|   }
 | |
|   if (Val->getType() != GEPI->getType())
 | |
|     Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
 | |
|   GEPI->replaceAllUsesWith(Val);
 | |
|   DeadInsts.push_back(GEPI);
 | |
| }
 | |
| 
 | |
| /// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
 | |
| /// to mark the lifetime of the scalarized memory.
 | |
| void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
 | |
|                                     uint64_t Offset,
 | |
|                                     SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
 | |
|   // Put matching lifetime markers on everything from Offset up to
 | |
|   // Offset+OldSize.
 | |
|   Type *AIType = AI->getAllocatedType();
 | |
|   uint64_t NewOffset = Offset;
 | |
|   Type *IdxTy;
 | |
|   uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
 | |
| 
 | |
|   IRBuilder<> Builder(II);
 | |
|   uint64_t Size = OldSize->getLimitedValue();
 | |
| 
 | |
|   if (NewOffset) {
 | |
|     // Splice the first element and index 'NewOffset' bytes in.  SROA will
 | |
|     // split the alloca again later.
 | |
|     Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
 | |
|     V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
 | |
| 
 | |
|     IdxTy = NewElts[Idx]->getAllocatedType();
 | |
|     uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
 | |
|     if (EltSize > Size) {
 | |
|       EltSize = Size;
 | |
|       Size = 0;
 | |
|     } else {
 | |
|       Size -= EltSize;
 | |
|     }
 | |
|     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | |
|       Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
 | |
|     else
 | |
|       Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
 | |
|     ++Idx;
 | |
|   }
 | |
| 
 | |
|   for (; Idx != NewElts.size() && Size; ++Idx) {
 | |
|     IdxTy = NewElts[Idx]->getAllocatedType();
 | |
|     uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
 | |
|     if (EltSize > Size) {
 | |
|       EltSize = Size;
 | |
|       Size = 0;
 | |
|     } else {
 | |
|       Size -= EltSize;
 | |
|     }
 | |
|     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
 | |
|       Builder.CreateLifetimeStart(NewElts[Idx],
 | |
|                                   Builder.getInt64(EltSize));
 | |
|     else
 | |
|       Builder.CreateLifetimeEnd(NewElts[Idx],
 | |
|                                 Builder.getInt64(EltSize));
 | |
|   }
 | |
|   DeadInsts.push_back(II);
 | |
| }
 | |
| 
 | |
| /// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
 | |
| /// Rewrite it to copy or set the elements of the scalarized memory.
 | |
| void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
 | |
|                                         AllocaInst *AI,
 | |
|                                         SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   // If this is a memcpy/memmove, construct the other pointer as the
 | |
|   // appropriate type.  The "Other" pointer is the pointer that goes to memory
 | |
|   // that doesn't have anything to do with the alloca that we are promoting. For
 | |
|   // memset, this Value* stays null.
 | |
|   Value *OtherPtr = 0;
 | |
|   unsigned MemAlignment = MI->getAlignment();
 | |
|   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
 | |
|     if (Inst == MTI->getRawDest())
 | |
|       OtherPtr = MTI->getRawSource();
 | |
|     else {
 | |
|       assert(Inst == MTI->getRawSource());
 | |
|       OtherPtr = MTI->getRawDest();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there is an other pointer, we want to convert it to the same pointer
 | |
|   // type as AI has, so we can GEP through it safely.
 | |
|   if (OtherPtr) {
 | |
|     unsigned AddrSpace =
 | |
|       cast<PointerType>(OtherPtr->getType())->getAddressSpace();
 | |
| 
 | |
|     // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
 | |
|     // optimization, but it's also required to detect the corner case where
 | |
|     // both pointer operands are referencing the same memory, and where
 | |
|     // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
 | |
|     // function is only called for mem intrinsics that access the whole
 | |
|     // aggregate, so non-zero GEPs are not an issue here.)
 | |
|     OtherPtr = OtherPtr->stripPointerCasts();
 | |
| 
 | |
|     // Copying the alloca to itself is a no-op: just delete it.
 | |
|     if (OtherPtr == AI || OtherPtr == NewElts[0]) {
 | |
|       // This code will run twice for a no-op memcpy -- once for each operand.
 | |
|       // Put only one reference to MI on the DeadInsts list.
 | |
|       for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
 | |
|              E = DeadInsts.end(); I != E; ++I)
 | |
|         if (*I == MI) return;
 | |
|       DeadInsts.push_back(MI);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // If the pointer is not the right type, insert a bitcast to the right
 | |
|     // type.
 | |
|     Type *NewTy =
 | |
|       PointerType::get(AI->getType()->getElementType(), AddrSpace);
 | |
| 
 | |
|     if (OtherPtr->getType() != NewTy)
 | |
|       OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
 | |
|   }
 | |
| 
 | |
|   // Process each element of the aggregate.
 | |
|   bool SROADest = MI->getRawDest() == Inst;
 | |
| 
 | |
|   Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
 | |
| 
 | |
|   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|     // If this is a memcpy/memmove, emit a GEP of the other element address.
 | |
|     Value *OtherElt = 0;
 | |
|     unsigned OtherEltAlign = MemAlignment;
 | |
| 
 | |
|     if (OtherPtr) {
 | |
|       Value *Idx[2] = { Zero,
 | |
|                       ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
 | |
|       OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
 | |
|                                               OtherPtr->getName()+"."+Twine(i),
 | |
|                                                    MI);
 | |
|       uint64_t EltOffset;
 | |
|       PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
 | |
|       Type *OtherTy = OtherPtrTy->getElementType();
 | |
|       if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
 | |
|         EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
 | |
|       } else {
 | |
|         Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
 | |
|         EltOffset = TD->getTypeAllocSize(EltTy)*i;
 | |
|       }
 | |
| 
 | |
|       // The alignment of the other pointer is the guaranteed alignment of the
 | |
|       // element, which is affected by both the known alignment of the whole
 | |
|       // mem intrinsic and the alignment of the element.  If the alignment of
 | |
|       // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
 | |
|       // known alignment is just 4 bytes.
 | |
|       OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
 | |
|     }
 | |
| 
 | |
|     Value *EltPtr = NewElts[i];
 | |
|     Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
 | |
| 
 | |
|     // If we got down to a scalar, insert a load or store as appropriate.
 | |
|     if (EltTy->isSingleValueType()) {
 | |
|       if (isa<MemTransferInst>(MI)) {
 | |
|         if (SROADest) {
 | |
|           // From Other to Alloca.
 | |
|           Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
 | |
|           new StoreInst(Elt, EltPtr, MI);
 | |
|         } else {
 | |
|           // From Alloca to Other.
 | |
|           Value *Elt = new LoadInst(EltPtr, "tmp", MI);
 | |
|           new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|       assert(isa<MemSetInst>(MI));
 | |
| 
 | |
|       // If the stored element is zero (common case), just store a null
 | |
|       // constant.
 | |
|       Constant *StoreVal;
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
 | |
|         if (CI->isZero()) {
 | |
|           StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
 | |
|         } else {
 | |
|           // If EltTy is a vector type, get the element type.
 | |
|           Type *ValTy = EltTy->getScalarType();
 | |
| 
 | |
|           // Construct an integer with the right value.
 | |
|           unsigned EltSize = TD->getTypeSizeInBits(ValTy);
 | |
|           APInt OneVal(EltSize, CI->getZExtValue());
 | |
|           APInt TotalVal(OneVal);
 | |
|           // Set each byte.
 | |
|           for (unsigned i = 0; 8*i < EltSize; ++i) {
 | |
|             TotalVal = TotalVal.shl(8);
 | |
|             TotalVal |= OneVal;
 | |
|           }
 | |
| 
 | |
|           // Convert the integer value to the appropriate type.
 | |
|           StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
 | |
|           if (ValTy->isPointerTy())
 | |
|             StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
 | |
|           else if (ValTy->isFloatingPointTy())
 | |
|             StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
 | |
|           assert(StoreVal->getType() == ValTy && "Type mismatch!");
 | |
| 
 | |
|           // If the requested value was a vector constant, create it.
 | |
|           if (EltTy->isVectorTy()) {
 | |
|             unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
 | |
|             StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
 | |
|           }
 | |
|         }
 | |
|         new StoreInst(StoreVal, EltPtr, MI);
 | |
|         continue;
 | |
|       }
 | |
|       // Otherwise, if we're storing a byte variable, use a memset call for
 | |
|       // this element.
 | |
|     }
 | |
| 
 | |
|     unsigned EltSize = TD->getTypeAllocSize(EltTy);
 | |
|     if (!EltSize)
 | |
|       continue;
 | |
| 
 | |
|     IRBuilder<> Builder(MI);
 | |
| 
 | |
|     // Finally, insert the meminst for this element.
 | |
|     if (isa<MemSetInst>(MI)) {
 | |
|       Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
 | |
|                            MI->isVolatile());
 | |
|     } else {
 | |
|       assert(isa<MemTransferInst>(MI));
 | |
|       Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
 | |
|       Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
 | |
| 
 | |
|       if (isa<MemCpyInst>(MI))
 | |
|         Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
 | |
|       else
 | |
|         Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
 | |
|     }
 | |
|   }
 | |
|   DeadInsts.push_back(MI);
 | |
| }
 | |
| 
 | |
| /// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
 | |
| /// overwrites the entire allocation.  Extract out the pieces of the stored
 | |
| /// integer and store them individually.
 | |
| void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
 | |
|                                          SmallVector<AllocaInst*, 32> &NewElts){
 | |
|   // Extract each element out of the integer according to its structure offset
 | |
|   // and store the element value to the individual alloca.
 | |
|   Value *SrcVal = SI->getOperand(0);
 | |
|   Type *AllocaEltTy = AI->getAllocatedType();
 | |
|   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | |
| 
 | |
|   IRBuilder<> Builder(SI);
 | |
|   
 | |
|   // Handle tail padding by extending the operand
 | |
|   if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
 | |
|     SrcVal = Builder.CreateZExt(SrcVal,
 | |
|                             IntegerType::get(SI->getContext(), AllocaSizeBits));
 | |
| 
 | |
|   DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
 | |
|                << '\n');
 | |
| 
 | |
|   // There are two forms here: AI could be an array or struct.  Both cases
 | |
|   // have different ways to compute the element offset.
 | |
|   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | |
|     const StructLayout *Layout = TD->getStructLayout(EltSTy);
 | |
| 
 | |
|     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|       // Get the number of bits to shift SrcVal to get the value.
 | |
|       Type *FieldTy = EltSTy->getElementType(i);
 | |
|       uint64_t Shift = Layout->getElementOffsetInBits(i);
 | |
| 
 | |
|       if (TD->isBigEndian())
 | |
|         Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
 | |
| 
 | |
|       Value *EltVal = SrcVal;
 | |
|       if (Shift) {
 | |
|         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | |
|         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
 | |
|       }
 | |
| 
 | |
|       // Truncate down to an integer of the right size.
 | |
|       uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | |
| 
 | |
|       // Ignore zero sized fields like {}, they obviously contain no data.
 | |
|       if (FieldSizeBits == 0) continue;
 | |
| 
 | |
|       if (FieldSizeBits != AllocaSizeBits)
 | |
|         EltVal = Builder.CreateTrunc(EltVal,
 | |
|                              IntegerType::get(SI->getContext(), FieldSizeBits));
 | |
|       Value *DestField = NewElts[i];
 | |
|       if (EltVal->getType() == FieldTy) {
 | |
|         // Storing to an integer field of this size, just do it.
 | |
|       } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
 | |
|         // Bitcast to the right element type (for fp/vector values).
 | |
|         EltVal = Builder.CreateBitCast(EltVal, FieldTy);
 | |
|       } else {
 | |
|         // Otherwise, bitcast the dest pointer (for aggregates).
 | |
|         DestField = Builder.CreateBitCast(DestField,
 | |
|                                      PointerType::getUnqual(EltVal->getType()));
 | |
|       }
 | |
|       new StoreInst(EltVal, DestField, SI);
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
 | |
|     Type *ArrayEltTy = ATy->getElementType();
 | |
|     uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | |
|     uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
 | |
| 
 | |
|     uint64_t Shift;
 | |
| 
 | |
|     if (TD->isBigEndian())
 | |
|       Shift = AllocaSizeBits-ElementOffset;
 | |
|     else
 | |
|       Shift = 0;
 | |
| 
 | |
|     for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|       // Ignore zero sized fields like {}, they obviously contain no data.
 | |
|       if (ElementSizeBits == 0) continue;
 | |
| 
 | |
|       Value *EltVal = SrcVal;
 | |
|       if (Shift) {
 | |
|         Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
 | |
|         EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
 | |
|       }
 | |
| 
 | |
|       // Truncate down to an integer of the right size.
 | |
|       if (ElementSizeBits != AllocaSizeBits)
 | |
|         EltVal = Builder.CreateTrunc(EltVal,
 | |
|                                      IntegerType::get(SI->getContext(),
 | |
|                                                       ElementSizeBits));
 | |
|       Value *DestField = NewElts[i];
 | |
|       if (EltVal->getType() == ArrayEltTy) {
 | |
|         // Storing to an integer field of this size, just do it.
 | |
|       } else if (ArrayEltTy->isFloatingPointTy() ||
 | |
|                  ArrayEltTy->isVectorTy()) {
 | |
|         // Bitcast to the right element type (for fp/vector values).
 | |
|         EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
 | |
|       } else {
 | |
|         // Otherwise, bitcast the dest pointer (for aggregates).
 | |
|         DestField = Builder.CreateBitCast(DestField,
 | |
|                                      PointerType::getUnqual(EltVal->getType()));
 | |
|       }
 | |
|       new StoreInst(EltVal, DestField, SI);
 | |
| 
 | |
|       if (TD->isBigEndian())
 | |
|         Shift -= ElementOffset;
 | |
|       else
 | |
|         Shift += ElementOffset;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   DeadInsts.push_back(SI);
 | |
| }
 | |
| 
 | |
| /// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
 | |
| /// an integer.  Load the individual pieces to form the aggregate value.
 | |
| void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
 | |
|                                         SmallVector<AllocaInst*, 32> &NewElts) {
 | |
|   // Extract each element out of the NewElts according to its structure offset
 | |
|   // and form the result value.
 | |
|   Type *AllocaEltTy = AI->getAllocatedType();
 | |
|   uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
 | |
| 
 | |
|   DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
 | |
|                << '\n');
 | |
| 
 | |
|   // There are two forms here: AI could be an array or struct.  Both cases
 | |
|   // have different ways to compute the element offset.
 | |
|   const StructLayout *Layout = 0;
 | |
|   uint64_t ArrayEltBitOffset = 0;
 | |
|   if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
 | |
|     Layout = TD->getStructLayout(EltSTy);
 | |
|   } else {
 | |
|     Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
 | |
|     ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
 | |
|   }
 | |
| 
 | |
|   Value *ResultVal =
 | |
|     Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
 | |
| 
 | |
|   for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
 | |
|     // Load the value from the alloca.  If the NewElt is an aggregate, cast
 | |
|     // the pointer to an integer of the same size before doing the load.
 | |
|     Value *SrcField = NewElts[i];
 | |
|     Type *FieldTy =
 | |
|       cast<PointerType>(SrcField->getType())->getElementType();
 | |
|     uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
 | |
| 
 | |
|     // Ignore zero sized fields like {}, they obviously contain no data.
 | |
|     if (FieldSizeBits == 0) continue;
 | |
| 
 | |
|     IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
 | |
|                                                      FieldSizeBits);
 | |
|     if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
 | |
|         !FieldTy->isVectorTy())
 | |
|       SrcField = new BitCastInst(SrcField,
 | |
|                                  PointerType::getUnqual(FieldIntTy),
 | |
|                                  "", LI);
 | |
|     SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
 | |
| 
 | |
|     // If SrcField is a fp or vector of the right size but that isn't an
 | |
|     // integer type, bitcast to an integer so we can shift it.
 | |
|     if (SrcField->getType() != FieldIntTy)
 | |
|       SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
 | |
| 
 | |
|     // Zero extend the field to be the same size as the final alloca so that
 | |
|     // we can shift and insert it.
 | |
|     if (SrcField->getType() != ResultVal->getType())
 | |
|       SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
 | |
| 
 | |
|     // Determine the number of bits to shift SrcField.
 | |
|     uint64_t Shift;
 | |
|     if (Layout) // Struct case.
 | |
|       Shift = Layout->getElementOffsetInBits(i);
 | |
|     else  // Array case.
 | |
|       Shift = i*ArrayEltBitOffset;
 | |
| 
 | |
|     if (TD->isBigEndian())
 | |
|       Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
 | |
| 
 | |
|     if (Shift) {
 | |
|       Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
 | |
|       SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
 | |
|     }
 | |
| 
 | |
|     // Don't create an 'or x, 0' on the first iteration.
 | |
|     if (!isa<Constant>(ResultVal) ||
 | |
|         !cast<Constant>(ResultVal)->isNullValue())
 | |
|       ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
 | |
|     else
 | |
|       ResultVal = SrcField;
 | |
|   }
 | |
| 
 | |
|   // Handle tail padding by truncating the result
 | |
|   if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
 | |
|     ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
 | |
| 
 | |
|   LI->replaceAllUsesWith(ResultVal);
 | |
|   DeadInsts.push_back(LI);
 | |
| }
 | |
| 
 | |
| /// HasPadding - Return true if the specified type has any structure or
 | |
| /// alignment padding in between the elements that would be split apart
 | |
| /// by SROA; return false otherwise.
 | |
| static bool HasPadding(Type *Ty, const TargetData &TD) {
 | |
|   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     Ty = ATy->getElementType();
 | |
|     return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
 | |
|   }
 | |
| 
 | |
|   // SROA currently handles only Arrays and Structs.
 | |
|   StructType *STy = cast<StructType>(Ty);
 | |
|   const StructLayout *SL = TD.getStructLayout(STy);
 | |
|   unsigned PrevFieldBitOffset = 0;
 | |
|   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|     unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
 | |
| 
 | |
|     // Check to see if there is any padding between this element and the
 | |
|     // previous one.
 | |
|     if (i) {
 | |
|       unsigned PrevFieldEnd =
 | |
|         PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
 | |
|       if (PrevFieldEnd < FieldBitOffset)
 | |
|         return true;
 | |
|     }
 | |
|     PrevFieldBitOffset = FieldBitOffset;
 | |
|   }
 | |
|   // Check for tail padding.
 | |
|   if (unsigned EltCount = STy->getNumElements()) {
 | |
|     unsigned PrevFieldEnd = PrevFieldBitOffset +
 | |
|       TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
 | |
|     if (PrevFieldEnd < SL->getSizeInBits())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
 | |
| /// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
 | |
| /// or 1 if safe after canonicalization has been performed.
 | |
| bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
 | |
|   // Loop over the use list of the alloca.  We can only transform it if all of
 | |
|   // the users are safe to transform.
 | |
|   AllocaInfo Info(AI);
 | |
| 
 | |
|   isSafeForScalarRepl(AI, 0, Info);
 | |
|   if (Info.isUnsafe) {
 | |
|     DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Okay, we know all the users are promotable.  If the aggregate is a memcpy
 | |
|   // source and destination, we have to be careful.  In particular, the memcpy
 | |
|   // could be moving around elements that live in structure padding of the LLVM
 | |
|   // types, but may actually be used.  In these cases, we refuse to promote the
 | |
|   // struct.
 | |
|   if (Info.isMemCpySrc && Info.isMemCpyDst &&
 | |
|       HasPadding(AI->getAllocatedType(), *TD))
 | |
|     return false;
 | |
| 
 | |
|   // If the alloca never has an access to just *part* of it, but is accessed
 | |
|   // via loads and stores, then we should use ConvertToScalarInfo to promote
 | |
|   // the alloca instead of promoting each piece at a time and inserting fission
 | |
|   // and fusion code.
 | |
|   if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
 | |
|     // If the struct/array just has one element, use basic SRoA.
 | |
|     if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
 | |
|       if (ST->getNumElements() > 1) return false;
 | |
|     } else {
 | |
|       if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
 | |
| /// some part of a constant global variable.  This intentionally only accepts
 | |
| /// constant expressions because we don't can't rewrite arbitrary instructions.
 | |
| static bool PointsToConstantGlobal(Value *V) {
 | |
|   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
 | |
|     return GV->isConstant();
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
 | |
|     if (CE->getOpcode() == Instruction::BitCast ||
 | |
|         CE->getOpcode() == Instruction::GetElementPtr)
 | |
|       return PointsToConstantGlobal(CE->getOperand(0));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
 | |
| /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
 | |
| /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
 | |
| /// track of whether it moves the pointer (with isOffset) but otherwise traverse
 | |
| /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
 | |
| /// the alloca, and if the source pointer is a pointer to a constant global, we
 | |
| /// can optimize this.
 | |
| static bool
 | |
| isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
 | |
|                                bool isOffset,
 | |
|                                SmallVector<Instruction *, 4> &LifetimeMarkers) {
 | |
|   // We track lifetime intrinsics as we encounter them.  If we decide to go
 | |
|   // ahead and replace the value with the global, this lets the caller quickly
 | |
|   // eliminate the markers.
 | |
| 
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
 | |
|     User *U = cast<Instruction>(*UI);
 | |
| 
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
 | |
|       // Ignore non-volatile loads, they are always ok.
 | |
|       if (!LI->isSimple()) return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
 | |
|       // If uses of the bitcast are ok, we are ok.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
 | |
|                                           LifetimeMarkers))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
|     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
 | |
|       // If the GEP has all zero indices, it doesn't offset the pointer.  If it
 | |
|       // doesn't, it does.
 | |
|       if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
 | |
|                                           isOffset || !GEP->hasAllZeroIndices(),
 | |
|                                           LifetimeMarkers))
 | |
|         return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (CallSite CS = U) {
 | |
|       // If this is the function being called then we treat it like a load and
 | |
|       // ignore it.
 | |
|       if (CS.isCallee(UI))
 | |
|         continue;
 | |
| 
 | |
|       // If this is a readonly/readnone call site, then we know it is just a
 | |
|       // load (but one that potentially returns the value itself), so we can
 | |
|       // ignore it if we know that the value isn't captured.
 | |
|       unsigned ArgNo = CS.getArgumentNo(UI);
 | |
|       if (CS.onlyReadsMemory() &&
 | |
|           (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
 | |
|         continue;
 | |
| 
 | |
|       // If this is being passed as a byval argument, the caller is making a
 | |
|       // copy, so it is only a read of the alloca.
 | |
|       if (CS.isByValArgument(ArgNo))
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     // Lifetime intrinsics can be handled by the caller.
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
 | |
|       if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
 | |
|           II->getIntrinsicID() == Intrinsic::lifetime_end) {
 | |
|         assert(II->use_empty() && "Lifetime markers have no result to use!");
 | |
|         LifetimeMarkers.push_back(II);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If this is isn't our memcpy/memmove, reject it as something we can't
 | |
|     // handle.
 | |
|     MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
 | |
|     if (MI == 0)
 | |
|       return false;
 | |
| 
 | |
|     // If the transfer is using the alloca as a source of the transfer, then
 | |
|     // ignore it since it is a load (unless the transfer is volatile).
 | |
|     if (UI.getOperandNo() == 1) {
 | |
|       if (MI->isVolatile()) return false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If we already have seen a copy, reject the second one.
 | |
|     if (TheCopy) return false;
 | |
| 
 | |
|     // If the pointer has been offset from the start of the alloca, we can't
 | |
|     // safely handle this.
 | |
|     if (isOffset) return false;
 | |
| 
 | |
|     // If the memintrinsic isn't using the alloca as the dest, reject it.
 | |
|     if (UI.getOperandNo() != 0) return false;
 | |
| 
 | |
|     // If the source of the memcpy/move is not a constant global, reject it.
 | |
|     if (!PointsToConstantGlobal(MI->getSource()))
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, the transform is safe.  Remember the copy instruction.
 | |
|     TheCopy = MI;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
 | |
| /// modified by a copy from a constant global.  If we can prove this, we can
 | |
| /// replace any uses of the alloca with uses of the global directly.
 | |
| MemTransferInst *
 | |
| SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
 | |
|                                      SmallVector<Instruction*, 4> &ToDelete) {
 | |
|   MemTransferInst *TheCopy = 0;
 | |
|   if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
 | |
|     return TheCopy;
 | |
|   return 0;
 | |
| }
 |