mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	This allows BBVectorize to check the "unknown instruction" list in the alias sets. This is important to prevent instruction fusing from reordering function calls. Resolves PR11920. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150250 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1842 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1842 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements a basic-block vectorization pass. The algorithm was
 | |
| // inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
 | |
| // et al. It works by looking for chains of pairable operations and then
 | |
| // pairing them.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define BBV_NAME "bb-vectorize"
 | |
| #define DEBUG_TYPE BBV_NAME
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/Intrinsics.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/AliasSetTracker.h"
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/ValueHandle.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Transforms/Vectorize.h"
 | |
| #include <algorithm>
 | |
| #include <map>
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
 | |
|   cl::desc("The required chain depth for vectorization"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
 | |
|   cl::desc("The maximum search distance for instruction pairs"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Replicating one element to a pair breaks the chain"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
 | |
|   cl::desc("The size of the native vector registers"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
 | |
|   cl::desc("The maximum number of pairing iterations"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
 | |
|   cl::desc("The maximum number of pairable instructions per group"));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
 | |
|   cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
 | |
|                        " a full cycle check"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize integer values"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize floating-point values"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize casting (conversion) operations"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize floating-point math intrinsics"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't try to vectorize loads and stores"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Only generate aligned loads and stores"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| NoMemOpBoost("bb-vectorize-no-mem-op-boost",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("Don't boost the chain-depth contribution of loads and stores"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
 | |
|   cl::desc("Use a fast instruction dependency analysis"));
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " instruction-examination process"));
 | |
| static cl::opt<bool>
 | |
| DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " candidate-selection process"));
 | |
| static cl::opt<bool>
 | |
| DebugPairSelection("bb-vectorize-debug-pair-selection",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " pair-selection process"));
 | |
| static cl::opt<bool>
 | |
| DebugCycleCheck("bb-vectorize-debug-cycle-check",
 | |
|   cl::init(false), cl::Hidden,
 | |
|   cl::desc("When debugging is enabled, output information on the"
 | |
|            " cycle-checking process"));
 | |
| #endif
 | |
| 
 | |
| STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
 | |
| 
 | |
| namespace {
 | |
|   struct BBVectorize : public BasicBlockPass {
 | |
|     static char ID; // Pass identification, replacement for typeid
 | |
|     BBVectorize() : BasicBlockPass(ID) {
 | |
|       initializeBBVectorizePass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     typedef std::pair<Value *, Value *> ValuePair;
 | |
|     typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
 | |
|     typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
 | |
|     typedef std::pair<std::multimap<Value *, Value *>::iterator,
 | |
|               std::multimap<Value *, Value *>::iterator> VPIteratorPair;
 | |
|     typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
 | |
|               std::multimap<ValuePair, ValuePair>::iterator>
 | |
|                 VPPIteratorPair;
 | |
| 
 | |
|     AliasAnalysis *AA;
 | |
|     ScalarEvolution *SE;
 | |
|     TargetData *TD;
 | |
| 
 | |
|     // FIXME: const correct?
 | |
| 
 | |
|     bool vectorizePairs(BasicBlock &BB);
 | |
| 
 | |
|     bool getCandidatePairs(BasicBlock &BB,
 | |
|                        BasicBlock::iterator &Start,
 | |
|                        std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                        std::vector<Value *> &PairableInsts);
 | |
| 
 | |
|     void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                        std::vector<Value *> &PairableInsts,
 | |
|                        std::multimap<ValuePair, ValuePair> &ConnectedPairs);
 | |
| 
 | |
|     void buildDepMap(BasicBlock &BB,
 | |
|                        std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                        std::vector<Value *> &PairableInsts,
 | |
|                        DenseSet<ValuePair> &PairableInstUsers);
 | |
| 
 | |
|     void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                         std::vector<Value *> &PairableInsts,
 | |
|                         std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                         DenseSet<ValuePair> &PairableInstUsers,
 | |
|                         DenseMap<Value *, Value *>& ChosenPairs);
 | |
| 
 | |
|     void fuseChosenPairs(BasicBlock &BB,
 | |
|                      std::vector<Value *> &PairableInsts,
 | |
|                      DenseMap<Value *, Value *>& ChosenPairs);
 | |
| 
 | |
|     bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
 | |
| 
 | |
|     bool areInstsCompatible(Instruction *I, Instruction *J,
 | |
|                        bool IsSimpleLoadStore);
 | |
| 
 | |
|     bool trackUsesOfI(DenseSet<Value *> &Users,
 | |
|                       AliasSetTracker &WriteSet, Instruction *I,
 | |
|                       Instruction *J, bool UpdateUsers = true,
 | |
|                       std::multimap<Value *, Value *> *LoadMoveSet = 0);
 | |
| 
 | |
|     void computePairsConnectedTo(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       ValuePair P);
 | |
| 
 | |
|     bool pairsConflict(ValuePair P, ValuePair Q,
 | |
|                  DenseSet<ValuePair> &PairableInstUsers,
 | |
|                  std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
 | |
| 
 | |
|     bool pairWillFormCycle(ValuePair P,
 | |
|                        std::multimap<ValuePair, ValuePair> &PairableInstUsers,
 | |
|                        DenseSet<ValuePair> &CurrentPairs);
 | |
| 
 | |
|     void pruneTreeFor(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | |
|                       DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                       DenseMap<ValuePair, size_t> &Tree,
 | |
|                       DenseSet<ValuePair> &PrunedTree, ValuePair J,
 | |
|                       bool UseCycleCheck);
 | |
| 
 | |
|     void buildInitialTreeFor(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                       DenseMap<ValuePair, size_t> &Tree, ValuePair J);
 | |
| 
 | |
|     void findBestTreeFor(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | |
|                       DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                       DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
 | |
|                       size_t &BestEffSize, VPIteratorPair ChoiceRange,
 | |
|                       bool UseCycleCheck);
 | |
| 
 | |
|     Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, unsigned o, bool &FlipMemInputs);
 | |
| 
 | |
|     void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
 | |
|                      unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
 | |
|                      unsigned IdxOffset, std::vector<Constant*> &Mask);
 | |
| 
 | |
|     Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J);
 | |
| 
 | |
|     Value *getReplacementInput(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, unsigned o, bool FlipMemInputs);
 | |
| 
 | |
|     void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
 | |
|                      bool &FlipMemInputs);
 | |
| 
 | |
|     void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, Instruction *K,
 | |
|                      Instruction *&InsertionPt, Instruction *&K1,
 | |
|                      Instruction *&K2, bool &FlipMemInputs);
 | |
| 
 | |
|     void collectPairLoadMoveSet(BasicBlock &BB,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet,
 | |
|                      Instruction *I);
 | |
| 
 | |
|     void collectLoadMoveSet(BasicBlock &BB,
 | |
|                      std::vector<Value *> &PairableInsts,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet);
 | |
| 
 | |
|     bool canMoveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet,
 | |
|                      Instruction *I, Instruction *J);
 | |
| 
 | |
|     void moveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet,
 | |
|                      Instruction *&InsertionPt,
 | |
|                      Instruction *I, Instruction *J);
 | |
| 
 | |
|     virtual bool runOnBasicBlock(BasicBlock &BB) {
 | |
|       AA = &getAnalysis<AliasAnalysis>();
 | |
|       SE = &getAnalysis<ScalarEvolution>();
 | |
|       TD = getAnalysisIfAvailable<TargetData>();
 | |
| 
 | |
|       bool changed = false;
 | |
|       // Iterate a sufficient number of times to merge types of size 1 bit,
 | |
|       // then 2 bits, then 4, etc. up to half of the target vector width of the
 | |
|       // target vector register.
 | |
|       for (unsigned v = 2, n = 1; v <= VectorBits && (!MaxIter || n <= MaxIter);
 | |
|            v *= 2, ++n) {
 | |
|         DEBUG(dbgs() << "BBV: fusing loop #" << n << 
 | |
|               " for " << BB.getName() << " in " <<
 | |
|               BB.getParent()->getName() << "...\n");
 | |
|         if (vectorizePairs(BB))
 | |
|           changed = true;
 | |
|         else
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       DEBUG(dbgs() << "BBV: done!\n");
 | |
|       return changed;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       BasicBlockPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<AliasAnalysis>();
 | |
|       AU.addRequired<ScalarEvolution>();
 | |
|       AU.addPreserved<AliasAnalysis>();
 | |
|       AU.addPreserved<ScalarEvolution>();
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
| 
 | |
|     // This returns the vector type that holds a pair of the provided type.
 | |
|     // If the provided type is already a vector, then its length is doubled.
 | |
|     static inline VectorType *getVecTypeForPair(Type *ElemTy) {
 | |
|       if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
 | |
|         unsigned numElem = VTy->getNumElements();
 | |
|         return VectorType::get(ElemTy->getScalarType(), numElem*2);
 | |
|       }
 | |
| 
 | |
|       return VectorType::get(ElemTy, 2);
 | |
|     }
 | |
| 
 | |
|     // Returns the weight associated with the provided value. A chain of
 | |
|     // candidate pairs has a length given by the sum of the weights of its
 | |
|     // members (one weight per pair; the weight of each member of the pair
 | |
|     // is assumed to be the same). This length is then compared to the
 | |
|     // chain-length threshold to determine if a given chain is significant
 | |
|     // enough to be vectorized. The length is also used in comparing
 | |
|     // candidate chains where longer chains are considered to be better.
 | |
|     // Note: when this function returns 0, the resulting instructions are
 | |
|     // not actually fused.
 | |
|     static inline size_t getDepthFactor(Value *V) {
 | |
|       // InsertElement and ExtractElement have a depth factor of zero. This is
 | |
|       // for two reasons: First, they cannot be usefully fused. Second, because
 | |
|       // the pass generates a lot of these, they can confuse the simple metric
 | |
|       // used to compare the trees in the next iteration. Thus, giving them a
 | |
|       // weight of zero allows the pass to essentially ignore them in
 | |
|       // subsequent iterations when looking for vectorization opportunities
 | |
|       // while still tracking dependency chains that flow through those
 | |
|       // instructions.
 | |
|       if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
 | |
|         return 0;
 | |
| 
 | |
|       // Give a load or store half of the required depth so that load/store
 | |
|       // pairs will vectorize.
 | |
|       if (!NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
 | |
|         return ReqChainDepth/2;
 | |
| 
 | |
|       return 1;
 | |
|     }
 | |
| 
 | |
|     // This determines the relative offset of two loads or stores, returning
 | |
|     // true if the offset could be determined to be some constant value.
 | |
|     // For example, if OffsetInElmts == 1, then J accesses the memory directly
 | |
|     // after I; if OffsetInElmts == -1 then I accesses the memory
 | |
|     // directly after J. This function assumes that both instructions
 | |
|     // have the same type.
 | |
|     bool getPairPtrInfo(Instruction *I, Instruction *J,
 | |
|         Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
 | |
|         int64_t &OffsetInElmts) {
 | |
|       OffsetInElmts = 0;
 | |
|       if (isa<LoadInst>(I)) {
 | |
|         IPtr = cast<LoadInst>(I)->getPointerOperand();
 | |
|         JPtr = cast<LoadInst>(J)->getPointerOperand();
 | |
|         IAlignment = cast<LoadInst>(I)->getAlignment();
 | |
|         JAlignment = cast<LoadInst>(J)->getAlignment();
 | |
|       } else {
 | |
|         IPtr = cast<StoreInst>(I)->getPointerOperand();
 | |
|         JPtr = cast<StoreInst>(J)->getPointerOperand();
 | |
|         IAlignment = cast<StoreInst>(I)->getAlignment();
 | |
|         JAlignment = cast<StoreInst>(J)->getAlignment();
 | |
|       }
 | |
| 
 | |
|       const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
 | |
|       const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
 | |
| 
 | |
|       // If this is a trivial offset, then we'll get something like
 | |
|       // 1*sizeof(type). With target data, which we need anyway, this will get
 | |
|       // constant folded into a number.
 | |
|       const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
 | |
|       if (const SCEVConstant *ConstOffSCEV =
 | |
|             dyn_cast<SCEVConstant>(OffsetSCEV)) {
 | |
|         ConstantInt *IntOff = ConstOffSCEV->getValue();
 | |
|         int64_t Offset = IntOff->getSExtValue();
 | |
| 
 | |
|         Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
 | |
|         int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
 | |
| 
 | |
|         assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
 | |
| 
 | |
|         OffsetInElmts = Offset/VTyTSS;
 | |
|         return (abs64(Offset) % VTyTSS) == 0;
 | |
|       }
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Returns true if the provided CallInst represents an intrinsic that can
 | |
|     // be vectorized.
 | |
|     bool isVectorizableIntrinsic(CallInst* I) {
 | |
|       Function *F = I->getCalledFunction();
 | |
|       if (!F) return false;
 | |
| 
 | |
|       unsigned IID = F->getIntrinsicID();
 | |
|       if (!IID) return false;
 | |
| 
 | |
|       switch(IID) {
 | |
|       default:
 | |
|         return false;
 | |
|       case Intrinsic::sqrt:
 | |
|       case Intrinsic::powi:
 | |
|       case Intrinsic::sin:
 | |
|       case Intrinsic::cos:
 | |
|       case Intrinsic::log:
 | |
|       case Intrinsic::log2:
 | |
|       case Intrinsic::log10:
 | |
|       case Intrinsic::exp:
 | |
|       case Intrinsic::exp2:
 | |
|       case Intrinsic::pow:
 | |
|         return !NoMath;
 | |
|       case Intrinsic::fma:
 | |
|         return !NoFMA;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Returns true if J is the second element in some pair referenced by
 | |
|     // some multimap pair iterator pair.
 | |
|     template <typename V>
 | |
|     bool isSecondInIteratorPair(V J, std::pair<
 | |
|            typename std::multimap<V, V>::iterator,
 | |
|            typename std::multimap<V, V>::iterator> PairRange) {
 | |
|       for (typename std::multimap<V, V>::iterator K = PairRange.first;
 | |
|            K != PairRange.second; ++K)
 | |
|         if (K->second == J) return true;
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // This function implements one vectorization iteration on the provided
 | |
|   // basic block. It returns true if the block is changed.
 | |
|   bool BBVectorize::vectorizePairs(BasicBlock &BB) {
 | |
|     bool ShouldContinue;
 | |
|     BasicBlock::iterator Start = BB.getFirstInsertionPt();
 | |
| 
 | |
|     std::vector<Value *> AllPairableInsts;
 | |
|     DenseMap<Value *, Value *> AllChosenPairs;
 | |
| 
 | |
|     do {
 | |
|       std::vector<Value *> PairableInsts;
 | |
|       std::multimap<Value *, Value *> CandidatePairs;
 | |
|       ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
 | |
|                                          PairableInsts);
 | |
|       if (PairableInsts.empty()) continue;
 | |
|   
 | |
|       // Now we have a map of all of the pairable instructions and we need to
 | |
|       // select the best possible pairing. A good pairing is one such that the
 | |
|       // users of the pair are also paired. This defines a (directed) forest
 | |
|       // over the pairs such that two pairs are connected iff the second pair
 | |
|       // uses the first.
 | |
|   
 | |
|       // Note that it only matters that both members of the second pair use some
 | |
|       // element of the first pair (to allow for splatting).
 | |
|   
 | |
|       std::multimap<ValuePair, ValuePair> ConnectedPairs;
 | |
|       computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
 | |
|       if (ConnectedPairs.empty()) continue;
 | |
|   
 | |
|       // Build the pairable-instruction dependency map
 | |
|       DenseSet<ValuePair> PairableInstUsers;
 | |
|       buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
 | |
|   
 | |
|       // There is now a graph of the connected pairs. For each variable, pick
 | |
|       // the pairing with the largest tree meeting the depth requirement on at
 | |
|       // least one branch. Then select all pairings that are part of that tree
 | |
|       // and remove them from the list of available pairings and pairable
 | |
|       // variables.
 | |
|   
 | |
|       DenseMap<Value *, Value *> ChosenPairs;
 | |
|       choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
 | |
|         PairableInstUsers, ChosenPairs);
 | |
|   
 | |
|       if (ChosenPairs.empty()) continue;
 | |
|       AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
 | |
|                               PairableInsts.end());
 | |
|       AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
 | |
|     } while (ShouldContinue);
 | |
| 
 | |
|     if (AllChosenPairs.empty()) return false;
 | |
|     NumFusedOps += AllChosenPairs.size();
 | |
|  
 | |
|     // A set of pairs has now been selected. It is now necessary to replace the
 | |
|     // paired instructions with vector instructions. For this procedure each
 | |
|     // operand much be replaced with a vector operand. This vector is formed
 | |
|     // by using build_vector on the old operands. The replaced values are then
 | |
|     // replaced with a vector_extract on the result.  Subsequent optimization
 | |
|     // passes should coalesce the build/extract combinations.
 | |
|   
 | |
|     fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This function returns true if the provided instruction is capable of being
 | |
|   // fused into a vector instruction. This determination is based only on the
 | |
|   // type and other attributes of the instruction.
 | |
|   bool BBVectorize::isInstVectorizable(Instruction *I,
 | |
|                                          bool &IsSimpleLoadStore) {
 | |
|     IsSimpleLoadStore = false;
 | |
| 
 | |
|     if (CallInst *C = dyn_cast<CallInst>(I)) {
 | |
|       if (!isVectorizableIntrinsic(C))
 | |
|         return false;
 | |
|     } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | |
|       // Vectorize simple loads if possbile:
 | |
|       IsSimpleLoadStore = L->isSimple();
 | |
|       if (!IsSimpleLoadStore || NoMemOps)
 | |
|         return false;
 | |
|     } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
 | |
|       // Vectorize simple stores if possbile:
 | |
|       IsSimpleLoadStore = S->isSimple();
 | |
|       if (!IsSimpleLoadStore || NoMemOps)
 | |
|         return false;
 | |
|     } else if (CastInst *C = dyn_cast<CastInst>(I)) {
 | |
|       // We can vectorize casts, but not casts of pointer types, etc.
 | |
|       if (NoCasts)
 | |
|         return false;
 | |
| 
 | |
|       Type *SrcTy = C->getSrcTy();
 | |
|       if (!SrcTy->isSingleValueType() || SrcTy->isPointerTy())
 | |
|         return false;
 | |
| 
 | |
|       Type *DestTy = C->getDestTy();
 | |
|       if (!DestTy->isSingleValueType() || DestTy->isPointerTy())
 | |
|         return false;
 | |
|     } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
 | |
|         isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // We can't vectorize memory operations without target data
 | |
|     if (TD == 0 && IsSimpleLoadStore)
 | |
|       return false;
 | |
| 
 | |
|     Type *T1, *T2;
 | |
|     if (isa<StoreInst>(I)) {
 | |
|       // For stores, it is the value type, not the pointer type that matters
 | |
|       // because the value is what will come from a vector register.
 | |
| 
 | |
|       Value *IVal = cast<StoreInst>(I)->getValueOperand();
 | |
|       T1 = IVal->getType();
 | |
|     } else {
 | |
|       T1 = I->getType();
 | |
|     }
 | |
| 
 | |
|     if (I->isCast())
 | |
|       T2 = cast<CastInst>(I)->getSrcTy();
 | |
|     else
 | |
|       T2 = T1;
 | |
| 
 | |
|     // Not every type can be vectorized...
 | |
|     if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
 | |
|         !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
 | |
|       return false;
 | |
| 
 | |
|     if (NoInts && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
 | |
|       return false;
 | |
| 
 | |
|     if (NoFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
 | |
|       return false;
 | |
| 
 | |
|     if (T1->getPrimitiveSizeInBits() > VectorBits/2 ||
 | |
|         T2->getPrimitiveSizeInBits() > VectorBits/2)
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // This function returns true if the two provided instructions are compatible
 | |
|   // (meaning that they can be fused into a vector instruction). This assumes
 | |
|   // that I has already been determined to be vectorizable and that J is not
 | |
|   // in the use tree of I.
 | |
|   bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
 | |
|                        bool IsSimpleLoadStore) {
 | |
|     DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
 | |
|                      " <-> " << *J << "\n");
 | |
| 
 | |
|     // Loads and stores can be merged if they have different alignments,
 | |
|     // but are otherwise the same.
 | |
|     LoadInst *LI, *LJ;
 | |
|     StoreInst *SI, *SJ;
 | |
|     if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
 | |
|       if (I->getType() != J->getType())
 | |
|         return false;
 | |
| 
 | |
|       if (LI->getPointerOperand()->getType() !=
 | |
|             LJ->getPointerOperand()->getType() ||
 | |
|           LI->isVolatile() != LJ->isVolatile() ||
 | |
|           LI->getOrdering() != LJ->getOrdering() ||
 | |
|           LI->getSynchScope() != LJ->getSynchScope())
 | |
|         return false; 
 | |
|     } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
 | |
|       if (SI->getValueOperand()->getType() !=
 | |
|             SJ->getValueOperand()->getType() ||
 | |
|           SI->getPointerOperand()->getType() !=
 | |
|             SJ->getPointerOperand()->getType() ||
 | |
|           SI->isVolatile() != SJ->isVolatile() ||
 | |
|           SI->getOrdering() != SJ->getOrdering() ||
 | |
|           SI->getSynchScope() != SJ->getSynchScope())
 | |
|         return false;
 | |
|     } else if (!J->isSameOperationAs(I)) {
 | |
|       return false;
 | |
|     }
 | |
|     // FIXME: handle addsub-type operations!
 | |
| 
 | |
|     if (IsSimpleLoadStore) {
 | |
|       Value *IPtr, *JPtr;
 | |
|       unsigned IAlignment, JAlignment;
 | |
|       int64_t OffsetInElmts = 0;
 | |
|       if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | |
|             OffsetInElmts) && abs64(OffsetInElmts) == 1) {
 | |
|         if (AlignedOnly) {
 | |
|           Type *aType = isa<StoreInst>(I) ?
 | |
|             cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
 | |
|           // An aligned load or store is possible only if the instruction
 | |
|           // with the lower offset has an alignment suitable for the
 | |
|           // vector type.
 | |
| 
 | |
|           unsigned BottomAlignment = IAlignment;
 | |
|           if (OffsetInElmts < 0) BottomAlignment = JAlignment;
 | |
| 
 | |
|           Type *VType = getVecTypeForPair(aType);
 | |
|           unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
 | |
|           if (BottomAlignment < VecAlignment)
 | |
|             return false;
 | |
|         }
 | |
|       } else {
 | |
|         return false;
 | |
|       }
 | |
|     } else if (isa<ShuffleVectorInst>(I)) {
 | |
|       // Only merge two shuffles if they're both constant
 | |
|       return isa<Constant>(I->getOperand(2)) &&
 | |
|              isa<Constant>(J->getOperand(2));
 | |
|       // FIXME: We may want to vectorize non-constant shuffles also.
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Figure out whether or not J uses I and update the users and write-set
 | |
|   // structures associated with I. Specifically, Users represents the set of
 | |
|   // instructions that depend on I. WriteSet represents the set
 | |
|   // of memory locations that are dependent on I. If UpdateUsers is true,
 | |
|   // and J uses I, then Users is updated to contain J and WriteSet is updated
 | |
|   // to contain any memory locations to which J writes. The function returns
 | |
|   // true if J uses I. By default, alias analysis is used to determine
 | |
|   // whether J reads from memory that overlaps with a location in WriteSet.
 | |
|   // If LoadMoveSet is not null, then it is a previously-computed multimap
 | |
|   // where the key is the memory-based user instruction and the value is
 | |
|   // the instruction to be compared with I. So, if LoadMoveSet is provided,
 | |
|   // then the alias analysis is not used. This is necessary because this
 | |
|   // function is called during the process of moving instructions during
 | |
|   // vectorization and the results of the alias analysis are not stable during
 | |
|   // that process.
 | |
|   bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
 | |
|                        AliasSetTracker &WriteSet, Instruction *I,
 | |
|                        Instruction *J, bool UpdateUsers,
 | |
|                        std::multimap<Value *, Value *> *LoadMoveSet) {
 | |
|     bool UsesI = false;
 | |
| 
 | |
|     // This instruction may already be marked as a user due, for example, to
 | |
|     // being a member of a selected pair.
 | |
|     if (Users.count(J))
 | |
|       UsesI = true;
 | |
| 
 | |
|     if (!UsesI)
 | |
|       for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
 | |
|            JU != JE; ++JU) {
 | |
|         Value *V = *JU;
 | |
|         if (I == V || Users.count(V)) {
 | |
|           UsesI = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     if (!UsesI && J->mayReadFromMemory()) {
 | |
|       if (LoadMoveSet) {
 | |
|         VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
 | |
|         UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
 | |
|       } else {
 | |
|         for (AliasSetTracker::iterator W = WriteSet.begin(),
 | |
|              WE = WriteSet.end(); W != WE; ++W) {
 | |
|           if (W->aliasesUnknownInst(J, *AA)) {
 | |
|             UsesI = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (UsesI && UpdateUsers) {
 | |
|       if (J->mayWriteToMemory()) WriteSet.add(J);
 | |
|       Users.insert(J);
 | |
|     }
 | |
| 
 | |
|     return UsesI;
 | |
|   }
 | |
| 
 | |
|   // This function iterates over all instruction pairs in the provided
 | |
|   // basic block and collects all candidate pairs for vectorization.
 | |
|   bool BBVectorize::getCandidatePairs(BasicBlock &BB,
 | |
|                        BasicBlock::iterator &Start,
 | |
|                        std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                        std::vector<Value *> &PairableInsts) {
 | |
|     BasicBlock::iterator E = BB.end();
 | |
|     if (Start == E) return false;
 | |
| 
 | |
|     bool ShouldContinue = false, IAfterStart = false;
 | |
|     for (BasicBlock::iterator I = Start++; I != E; ++I) {
 | |
|       if (I == Start) IAfterStart = true;
 | |
| 
 | |
|       bool IsSimpleLoadStore;
 | |
|       if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
 | |
| 
 | |
|       // Look for an instruction with which to pair instruction *I...
 | |
|       DenseSet<Value *> Users;
 | |
|       AliasSetTracker WriteSet(*AA);
 | |
|       bool JAfterStart = IAfterStart;
 | |
|       BasicBlock::iterator J = llvm::next(I);
 | |
|       for (unsigned ss = 0; J != E && ss <= SearchLimit; ++J, ++ss) {
 | |
|         if (J == Start) JAfterStart = true;
 | |
| 
 | |
|         // Determine if J uses I, if so, exit the loop.
 | |
|         bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !FastDep);
 | |
|         if (FastDep) {
 | |
|           // Note: For this heuristic to be effective, independent operations
 | |
|           // must tend to be intermixed. This is likely to be true from some
 | |
|           // kinds of grouped loop unrolling (but not the generic LLVM pass),
 | |
|           // but otherwise may require some kind of reordering pass.
 | |
| 
 | |
|           // When using fast dependency analysis,
 | |
|           // stop searching after first use:
 | |
|           if (UsesI) break;
 | |
|         } else {
 | |
|           if (UsesI) continue;
 | |
|         }
 | |
| 
 | |
|         // J does not use I, and comes before the first use of I, so it can be
 | |
|         // merged with I if the instructions are compatible.
 | |
|         if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
 | |
| 
 | |
|         // J is a candidate for merging with I.
 | |
|         if (!PairableInsts.size() ||
 | |
|              PairableInsts[PairableInsts.size()-1] != I) {
 | |
|           PairableInsts.push_back(I);
 | |
|         }
 | |
| 
 | |
|         CandidatePairs.insert(ValuePair(I, J));
 | |
| 
 | |
|         // The next call to this function must start after the last instruction
 | |
|         // selected during this invocation.
 | |
|         if (JAfterStart) {
 | |
|           Start = llvm::next(J);
 | |
|           IAfterStart = JAfterStart = false;
 | |
|         }
 | |
| 
 | |
|         DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
 | |
|                      << *I << " <-> " << *J << "\n");
 | |
| 
 | |
|         // If we have already found too many pairs, break here and this function
 | |
|         // will be called again starting after the last instruction selected
 | |
|         // during this invocation.
 | |
|         if (PairableInsts.size() >= MaxInsts) {
 | |
|           ShouldContinue = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ShouldContinue)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
 | |
|            << " instructions with candidate pairs\n");
 | |
| 
 | |
|     return ShouldContinue;
 | |
|   }
 | |
| 
 | |
|   // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
 | |
|   // it looks for pairs such that both members have an input which is an
 | |
|   // output of PI or PJ.
 | |
|   void BBVectorize::computePairsConnectedTo(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       ValuePair P) {
 | |
|     // For each possible pairing for this variable, look at the uses of
 | |
|     // the first value...
 | |
|     for (Value::use_iterator I = P.first->use_begin(),
 | |
|          E = P.first->use_end(); I != E; ++I) {
 | |
|       VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
 | |
| 
 | |
|       // For each use of the first variable, look for uses of the second
 | |
|       // variable...
 | |
|       for (Value::use_iterator J = P.second->use_begin(),
 | |
|            E2 = P.second->use_end(); J != E2; ++J) {
 | |
|         VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
 | |
| 
 | |
|         // Look for <I, J>:
 | |
|         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
 | |
|           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
 | |
| 
 | |
|         // Look for <J, I>:
 | |
|         if (isSecondInIteratorPair<Value*>(*I, JPairRange))
 | |
|           ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
 | |
|       }
 | |
| 
 | |
|       if (SplatBreaksChain) continue;
 | |
|       // Look for cases where just the first value in the pair is used by
 | |
|       // both members of another pair (splatting).
 | |
|       for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
 | |
|         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
 | |
|           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (SplatBreaksChain) return;
 | |
|     // Look for cases where just the second value in the pair is used by
 | |
|     // both members of another pair (splatting).
 | |
|     for (Value::use_iterator I = P.second->use_begin(),
 | |
|          E = P.second->use_end(); I != E; ++I) {
 | |
|       VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
 | |
| 
 | |
|       for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
 | |
|         if (isSecondInIteratorPair<Value*>(*J, IPairRange))
 | |
|           ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This function figures out which pairs are connected.  Two pairs are
 | |
|   // connected if some output of the first pair forms an input to both members
 | |
|   // of the second pair.
 | |
|   void BBVectorize::computeConnectedPairs(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
 | |
| 
 | |
|     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | |
|          PE = PairableInsts.end(); PI != PE; ++PI) {
 | |
|       VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
 | |
| 
 | |
|       for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
 | |
|            P != choiceRange.second; ++P)
 | |
|         computePairsConnectedTo(CandidatePairs, PairableInsts,
 | |
|                                 ConnectedPairs, *P);
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
 | |
|                  << " pair connections.\n");
 | |
|   }
 | |
| 
 | |
|   // This function builds a set of use tuples such that <A, B> is in the set
 | |
|   // if B is in the use tree of A. If B is in the use tree of A, then B
 | |
|   // depends on the output of A.
 | |
|   void BBVectorize::buildDepMap(
 | |
|                       BasicBlock &BB,
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers) {
 | |
|     DenseSet<Value *> IsInPair;
 | |
|     for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
 | |
|          E = CandidatePairs.end(); C != E; ++C) {
 | |
|       IsInPair.insert(C->first);
 | |
|       IsInPair.insert(C->second);
 | |
|     }
 | |
| 
 | |
|     // Iterate through the basic block, recording all Users of each
 | |
|     // pairable instruction.
 | |
| 
 | |
|     BasicBlock::iterator E = BB.end();
 | |
|     for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
 | |
|       if (IsInPair.find(I) == IsInPair.end()) continue;
 | |
| 
 | |
|       DenseSet<Value *> Users;
 | |
|       AliasSetTracker WriteSet(*AA);
 | |
|       for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
 | |
|         (void) trackUsesOfI(Users, WriteSet, I, J);
 | |
| 
 | |
|       for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
 | |
|            U != E; ++U)
 | |
|         PairableInstUsers.insert(ValuePair(I, *U));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns true if an input to pair P is an output of pair Q and also an
 | |
|   // input of pair Q is an output of pair P. If this is the case, then these
 | |
|   // two pairs cannot be simultaneously fused.
 | |
|   bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
 | |
|                      DenseSet<ValuePair> &PairableInstUsers,
 | |
|                      std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
 | |
|     // Two pairs are in conflict if they are mutual Users of eachother.
 | |
|     bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
 | |
|                   PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(P.second, Q.second));
 | |
|     bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
 | |
|                   PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
 | |
|                   PairableInstUsers.count(ValuePair(Q.second, P.second));
 | |
|     if (PairableInstUserMap) {
 | |
|       // FIXME: The expensive part of the cycle check is not so much the cycle
 | |
|       // check itself but this edge insertion procedure. This needs some
 | |
|       // profiling and probably a different data structure (same is true of
 | |
|       // most uses of std::multimap).
 | |
|       if (PUsesQ) {
 | |
|         VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
 | |
|         if (!isSecondInIteratorPair(P, QPairRange))
 | |
|           PairableInstUserMap->insert(VPPair(Q, P));
 | |
|       }
 | |
|       if (QUsesP) {
 | |
|         VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
 | |
|         if (!isSecondInIteratorPair(Q, PPairRange))
 | |
|           PairableInstUserMap->insert(VPPair(P, Q));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return (QUsesP && PUsesQ);
 | |
|   }
 | |
| 
 | |
|   // This function walks the use graph of current pairs to see if, starting
 | |
|   // from P, the walk returns to P.
 | |
|   bool BBVectorize::pairWillFormCycle(ValuePair P,
 | |
|                        std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | |
|                        DenseSet<ValuePair> &CurrentPairs) {
 | |
|     DEBUG(if (DebugCycleCheck)
 | |
|             dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
 | |
|                    << *P.second << "\n");
 | |
|     // A lookup table of visisted pairs is kept because the PairableInstUserMap
 | |
|     // contains non-direct associations.
 | |
|     DenseSet<ValuePair> Visited;
 | |
|     SmallVector<ValuePair, 32> Q;
 | |
|     // General depth-first post-order traversal:
 | |
|     Q.push_back(P);
 | |
|     do {
 | |
|       ValuePair QTop = Q.pop_back_val();
 | |
|       Visited.insert(QTop);
 | |
| 
 | |
|       DEBUG(if (DebugCycleCheck)
 | |
|               dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
 | |
|                      << *QTop.second << "\n");
 | |
|       VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
 | |
|       for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
 | |
|            C != QPairRange.second; ++C) {
 | |
|         if (C->second == P) {
 | |
|           DEBUG(dbgs()
 | |
|                  << "BBV: rejected to prevent non-trivial cycle formation: "
 | |
|                  << *C->first.first << " <-> " << *C->first.second << "\n");
 | |
|           return true;
 | |
|         }
 | |
| 
 | |
|         if (CurrentPairs.count(C->second) && !Visited.count(C->second))
 | |
|           Q.push_back(C->second);
 | |
|       }
 | |
|     } while (!Q.empty());
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // This function builds the initial tree of connected pairs with the
 | |
|   // pair J at the root.
 | |
|   void BBVectorize::buildInitialTreeFor(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                       DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
 | |
|     // Each of these pairs is viewed as the root node of a Tree. The Tree
 | |
|     // is then walked (depth-first). As this happens, we keep track of
 | |
|     // the pairs that compose the Tree and the maximum depth of the Tree.
 | |
|     SmallVector<ValuePairWithDepth, 32> Q;
 | |
|     // General depth-first post-order traversal:
 | |
|     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
 | |
|     do {
 | |
|       ValuePairWithDepth QTop = Q.back();
 | |
| 
 | |
|       // Push each child onto the queue:
 | |
|       bool MoreChildren = false;
 | |
|       size_t MaxChildDepth = QTop.second;
 | |
|       VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
 | |
|       for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
 | |
|            k != qtRange.second; ++k) {
 | |
|         // Make sure that this child pair is still a candidate:
 | |
|         bool IsStillCand = false;
 | |
|         VPIteratorPair checkRange =
 | |
|           CandidatePairs.equal_range(k->second.first);
 | |
|         for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
 | |
|              m != checkRange.second; ++m) {
 | |
|           if (m->second == k->second.second) {
 | |
|             IsStillCand = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (IsStillCand) {
 | |
|           DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
 | |
|           if (C == Tree.end()) {
 | |
|             size_t d = getDepthFactor(k->second.first);
 | |
|             Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
 | |
|             MoreChildren = true;
 | |
|           } else {
 | |
|             MaxChildDepth = std::max(MaxChildDepth, C->second);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!MoreChildren) {
 | |
|         // Record the current pair as part of the Tree:
 | |
|         Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
 | |
|         Q.pop_back();
 | |
|       }
 | |
|     } while (!Q.empty());
 | |
|   }
 | |
| 
 | |
|   // Given some initial tree, prune it by removing conflicting pairs (pairs
 | |
|   // that cannot be simultaneously chosen for vectorization).
 | |
|   void BBVectorize::pruneTreeFor(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | |
|                       DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                       DenseMap<ValuePair, size_t> &Tree,
 | |
|                       DenseSet<ValuePair> &PrunedTree, ValuePair J,
 | |
|                       bool UseCycleCheck) {
 | |
|     SmallVector<ValuePairWithDepth, 32> Q;
 | |
|     // General depth-first post-order traversal:
 | |
|     Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
 | |
|     do {
 | |
|       ValuePairWithDepth QTop = Q.pop_back_val();
 | |
|       PrunedTree.insert(QTop.first);
 | |
| 
 | |
|       // Visit each child, pruning as necessary...
 | |
|       DenseMap<ValuePair, size_t> BestChilden;
 | |
|       VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
 | |
|       for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
 | |
|            K != QTopRange.second; ++K) {
 | |
|         DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
 | |
|         if (C == Tree.end()) continue;
 | |
| 
 | |
|         // This child is in the Tree, now we need to make sure it is the
 | |
|         // best of any conflicting children. There could be multiple
 | |
|         // conflicting children, so first, determine if we're keeping
 | |
|         // this child, then delete conflicting children as necessary.
 | |
| 
 | |
|         // It is also necessary to guard against pairing-induced
 | |
|         // dependencies. Consider instructions a .. x .. y .. b
 | |
|         // such that (a,b) are to be fused and (x,y) are to be fused
 | |
|         // but a is an input to x and b is an output from y. This
 | |
|         // means that y cannot be moved after b but x must be moved
 | |
|         // after b for (a,b) to be fused. In other words, after
 | |
|         // fusing (a,b) we have y .. a/b .. x where y is an input
 | |
|         // to a/b and x is an output to a/b: x and y can no longer
 | |
|         // be legally fused. To prevent this condition, we must
 | |
|         // make sure that a child pair added to the Tree is not
 | |
|         // both an input and output of an already-selected pair.
 | |
| 
 | |
|         // Pairing-induced dependencies can also form from more complicated
 | |
|         // cycles. The pair vs. pair conflicts are easy to check, and so
 | |
|         // that is done explicitly for "fast rejection", and because for
 | |
|         // child vs. child conflicts, we may prefer to keep the current
 | |
|         // pair in preference to the already-selected child.
 | |
|         DenseSet<ValuePair> CurrentPairs;
 | |
| 
 | |
|         bool CanAdd = true;
 | |
|         for (DenseMap<ValuePair, size_t>::iterator C2
 | |
|               = BestChilden.begin(), E2 = BestChilden.end();
 | |
|              C2 != E2; ++C2) {
 | |
|           if (C2->first.first == C->first.first ||
 | |
|               C2->first.first == C->first.second ||
 | |
|               C2->first.second == C->first.first ||
 | |
|               C2->first.second == C->first.second ||
 | |
|               pairsConflict(C2->first, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : 0)) {
 | |
|             if (C2->second >= C->second) {
 | |
|               CanAdd = false;
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|             CurrentPairs.insert(C2->first);
 | |
|           }
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // Even worse, this child could conflict with another node already
 | |
|         // selected for the Tree. If that is the case, ignore this child.
 | |
|         for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
 | |
|              E2 = PrunedTree.end(); T != E2; ++T) {
 | |
|           if (T->first == C->first.first ||
 | |
|               T->first == C->first.second ||
 | |
|               T->second == C->first.first ||
 | |
|               T->second == C->first.second ||
 | |
|               pairsConflict(*T, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : 0)) {
 | |
|             CanAdd = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           CurrentPairs.insert(*T);
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // And check the queue too...
 | |
|         for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
 | |
|              E2 = Q.end(); C2 != E2; ++C2) {
 | |
|           if (C2->first.first == C->first.first ||
 | |
|               C2->first.first == C->first.second ||
 | |
|               C2->first.second == C->first.first ||
 | |
|               C2->first.second == C->first.second ||
 | |
|               pairsConflict(C2->first, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : 0)) {
 | |
|             CanAdd = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           CurrentPairs.insert(C2->first);
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // Last but not least, check for a conflict with any of the
 | |
|         // already-chosen pairs.
 | |
|         for (DenseMap<Value *, Value *>::iterator C2 =
 | |
|               ChosenPairs.begin(), E2 = ChosenPairs.end();
 | |
|              C2 != E2; ++C2) {
 | |
|           if (pairsConflict(*C2, C->first, PairableInstUsers,
 | |
|                             UseCycleCheck ? &PairableInstUserMap : 0)) {
 | |
|             CanAdd = false;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           CurrentPairs.insert(*C2);
 | |
|         }
 | |
|         if (!CanAdd) continue;
 | |
| 
 | |
|         // To check for non-trivial cycles formed by the addition of the
 | |
|         // current pair we've formed a list of all relevant pairs, now use a
 | |
|         // graph walk to check for a cycle. We start from the current pair and
 | |
|         // walk the use tree to see if we again reach the current pair. If we
 | |
|         // do, then the current pair is rejected.
 | |
| 
 | |
|         // FIXME: It may be more efficient to use a topological-ordering
 | |
|         // algorithm to improve the cycle check. This should be investigated.
 | |
|         if (UseCycleCheck &&
 | |
|             pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
 | |
|           continue;
 | |
| 
 | |
|         // This child can be added, but we may have chosen it in preference
 | |
|         // to an already-selected child. Check for this here, and if a
 | |
|         // conflict is found, then remove the previously-selected child
 | |
|         // before adding this one in its place.
 | |
|         for (DenseMap<ValuePair, size_t>::iterator C2
 | |
|               = BestChilden.begin(); C2 != BestChilden.end();) {
 | |
|           if (C2->first.first == C->first.first ||
 | |
|               C2->first.first == C->first.second ||
 | |
|               C2->first.second == C->first.first ||
 | |
|               C2->first.second == C->first.second ||
 | |
|               pairsConflict(C2->first, C->first, PairableInstUsers))
 | |
|             BestChilden.erase(C2++);
 | |
|           else
 | |
|             ++C2;
 | |
|         }
 | |
| 
 | |
|         BestChilden.insert(ValuePairWithDepth(C->first, C->second));
 | |
|       }
 | |
| 
 | |
|       for (DenseMap<ValuePair, size_t>::iterator C
 | |
|             = BestChilden.begin(), E2 = BestChilden.end();
 | |
|            C != E2; ++C) {
 | |
|         size_t DepthF = getDepthFactor(C->first.first);
 | |
|         Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
 | |
|       }
 | |
|     } while (!Q.empty());
 | |
|   }
 | |
| 
 | |
|   // This function finds the best tree of mututally-compatible connected
 | |
|   // pairs, given the choice of root pairs as an iterator range.
 | |
|   void BBVectorize::findBestTreeFor(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
 | |
|                       DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                       DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
 | |
|                       size_t &BestEffSize, VPIteratorPair ChoiceRange,
 | |
|                       bool UseCycleCheck) {
 | |
|     for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
 | |
|          J != ChoiceRange.second; ++J) {
 | |
| 
 | |
|       // Before going any further, make sure that this pair does not
 | |
|       // conflict with any already-selected pairs (see comment below
 | |
|       // near the Tree pruning for more details).
 | |
|       DenseSet<ValuePair> ChosenPairSet;
 | |
|       bool DoesConflict = false;
 | |
|       for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
 | |
|            E = ChosenPairs.end(); C != E; ++C) {
 | |
|         if (pairsConflict(*C, *J, PairableInstUsers,
 | |
|                           UseCycleCheck ? &PairableInstUserMap : 0)) {
 | |
|           DoesConflict = true;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         ChosenPairSet.insert(*C);
 | |
|       }
 | |
|       if (DoesConflict) continue;
 | |
| 
 | |
|       if (UseCycleCheck &&
 | |
|           pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
 | |
|         continue;
 | |
| 
 | |
|       DenseMap<ValuePair, size_t> Tree;
 | |
|       buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | |
|                           PairableInstUsers, ChosenPairs, Tree, *J);
 | |
| 
 | |
|       // Because we'll keep the child with the largest depth, the largest
 | |
|       // depth is still the same in the unpruned Tree.
 | |
|       size_t MaxDepth = Tree.lookup(*J);
 | |
| 
 | |
|       DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
 | |
|                    << *J->first << " <-> " << *J->second << "} of depth " <<
 | |
|                    MaxDepth << " and size " << Tree.size() << "\n");
 | |
| 
 | |
|       // At this point the Tree has been constructed, but, may contain
 | |
|       // contradictory children (meaning that different children of
 | |
|       // some tree node may be attempting to fuse the same instruction).
 | |
|       // So now we walk the tree again, in the case of a conflict,
 | |
|       // keep only the child with the largest depth. To break a tie,
 | |
|       // favor the first child.
 | |
| 
 | |
|       DenseSet<ValuePair> PrunedTree;
 | |
|       pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | |
|                    PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
 | |
|                    PrunedTree, *J, UseCycleCheck);
 | |
| 
 | |
|       size_t EffSize = 0;
 | |
|       for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
 | |
|            E = PrunedTree.end(); S != E; ++S)
 | |
|         EffSize += getDepthFactor(S->first);
 | |
| 
 | |
|       DEBUG(if (DebugPairSelection)
 | |
|              dbgs() << "BBV: found pruned Tree for pair {"
 | |
|              << *J->first << " <-> " << *J->second << "} of depth " <<
 | |
|              MaxDepth << " and size " << PrunedTree.size() <<
 | |
|             " (effective size: " << EffSize << ")\n");
 | |
|       if (MaxDepth >= ReqChainDepth && EffSize > BestEffSize) {
 | |
|         BestMaxDepth = MaxDepth;
 | |
|         BestEffSize = EffSize;
 | |
|         BestTree = PrunedTree;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Given the list of candidate pairs, this function selects those
 | |
|   // that will be fused into vector instructions.
 | |
|   void BBVectorize::choosePairs(
 | |
|                       std::multimap<Value *, Value *> &CandidatePairs,
 | |
|                       std::vector<Value *> &PairableInsts,
 | |
|                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
 | |
|                       DenseSet<ValuePair> &PairableInstUsers,
 | |
|                       DenseMap<Value *, Value *>& ChosenPairs) {
 | |
|     bool UseCycleCheck = CandidatePairs.size() <= MaxCandPairsForCycleCheck;
 | |
|     std::multimap<ValuePair, ValuePair> PairableInstUserMap;
 | |
|     for (std::vector<Value *>::iterator I = PairableInsts.begin(),
 | |
|          E = PairableInsts.end(); I != E; ++I) {
 | |
|       // The number of possible pairings for this variable:
 | |
|       size_t NumChoices = CandidatePairs.count(*I);
 | |
|       if (!NumChoices) continue;
 | |
| 
 | |
|       VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
 | |
| 
 | |
|       // The best pair to choose and its tree:
 | |
|       size_t BestMaxDepth = 0, BestEffSize = 0;
 | |
|       DenseSet<ValuePair> BestTree;
 | |
|       findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
 | |
|                       PairableInstUsers, PairableInstUserMap, ChosenPairs,
 | |
|                       BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
 | |
|                       UseCycleCheck);
 | |
| 
 | |
|       // A tree has been chosen (or not) at this point. If no tree was
 | |
|       // chosen, then this instruction, I, cannot be paired (and is no longer
 | |
|       // considered).
 | |
| 
 | |
|       DEBUG(if (BestTree.size() > 0)
 | |
|               dbgs() << "BBV: selected pairs in the best tree for: "
 | |
|                      << *cast<Instruction>(*I) << "\n");
 | |
| 
 | |
|       for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
 | |
|            SE2 = BestTree.end(); S != SE2; ++S) {
 | |
|         // Insert the members of this tree into the list of chosen pairs.
 | |
|         ChosenPairs.insert(ValuePair(S->first, S->second));
 | |
|         DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
 | |
|                *S->second << "\n");
 | |
| 
 | |
|         // Remove all candidate pairs that have values in the chosen tree.
 | |
|         for (std::multimap<Value *, Value *>::iterator K =
 | |
|                CandidatePairs.begin(); K != CandidatePairs.end();) {
 | |
|           if (K->first == S->first || K->second == S->first ||
 | |
|               K->second == S->second || K->first == S->second) {
 | |
|             // Don't remove the actual pair chosen so that it can be used
 | |
|             // in subsequent tree selections.
 | |
|             if (!(K->first == S->first && K->second == S->second))
 | |
|               CandidatePairs.erase(K++);
 | |
|             else
 | |
|               ++K;
 | |
|           } else {
 | |
|             ++K;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
 | |
|   }
 | |
| 
 | |
|   std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
 | |
|                      unsigned n = 0) {
 | |
|     if (!I->hasName())
 | |
|       return "";
 | |
| 
 | |
|     return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
 | |
|              (n > 0 ? "." + utostr(n) : "")).str();
 | |
|   }
 | |
| 
 | |
|   // Returns the value that is to be used as the pointer input to the vector
 | |
|   // instruction that fuses I with J.
 | |
|   Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
 | |
|                      Instruction *I, Instruction *J, unsigned o,
 | |
|                      bool &FlipMemInputs) {
 | |
|     Value *IPtr, *JPtr;
 | |
|     unsigned IAlignment, JAlignment;
 | |
|     int64_t OffsetInElmts;
 | |
|     (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
 | |
|                           OffsetInElmts);
 | |
| 
 | |
|     // The pointer value is taken to be the one with the lowest offset.
 | |
|     Value *VPtr;
 | |
|     if (OffsetInElmts > 0) {
 | |
|       VPtr = IPtr;
 | |
|     } else {
 | |
|       FlipMemInputs = true;
 | |
|       VPtr = JPtr;
 | |
|     }
 | |
| 
 | |
|     Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
 | |
|     Type *VArgType = getVecTypeForPair(ArgType);
 | |
|     Type *VArgPtrType = PointerType::get(VArgType,
 | |
|       cast<PointerType>(IPtr->getType())->getAddressSpace());
 | |
|     return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
 | |
|                         /* insert before */ FlipMemInputs ? J : I);
 | |
|   }
 | |
| 
 | |
|   void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
 | |
|                      unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
 | |
|                      unsigned IdxOffset, std::vector<Constant*> &Mask) {
 | |
|     for (unsigned v = 0; v < NumElem/2; ++v) {
 | |
|       int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
 | |
|       if (m < 0) {
 | |
|         Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
 | |
|       } else {
 | |
|         unsigned mm = m + (int) IdxOffset;
 | |
|         if (m >= (int) NumInElem)
 | |
|           mm += (int) NumInElem;
 | |
| 
 | |
|         Mask[v+MaskOffset] =
 | |
|           ConstantInt::get(Type::getInt32Ty(Context), mm);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Returns the value that is to be used as the vector-shuffle mask to the
 | |
|   // vector instruction that fuses I with J.
 | |
|   Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
 | |
|                      Instruction *I, Instruction *J) {
 | |
|     // This is the shuffle mask. We need to append the second
 | |
|     // mask to the first, and the numbers need to be adjusted.
 | |
| 
 | |
|     Type *ArgType = I->getType();
 | |
|     Type *VArgType = getVecTypeForPair(ArgType);
 | |
| 
 | |
|     // Get the total number of elements in the fused vector type.
 | |
|     // By definition, this must equal the number of elements in
 | |
|     // the final mask.
 | |
|     unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
 | |
|     std::vector<Constant*> Mask(NumElem);
 | |
| 
 | |
|     Type *OpType = I->getOperand(0)->getType();
 | |
|     unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
 | |
| 
 | |
|     // For the mask from the first pair...
 | |
|     fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
 | |
| 
 | |
|     // For the mask from the second pair...
 | |
|     fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
 | |
|                        Mask);
 | |
| 
 | |
|     return ConstantVector::get(Mask);
 | |
|   }
 | |
| 
 | |
|   // Returns the value to be used as the specified operand of the vector
 | |
|   // instruction that fuses I with J.
 | |
|   Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, unsigned o, bool FlipMemInputs) {
 | |
|     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | |
|     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
 | |
| 
 | |
|       // Compute the fused vector type for this operand
 | |
|     Type *ArgType = I->getOperand(o)->getType();
 | |
|     VectorType *VArgType = getVecTypeForPair(ArgType);
 | |
| 
 | |
|     Instruction *L = I, *H = J;
 | |
|     if (FlipMemInputs) {
 | |
|       L = J;
 | |
|       H = I;
 | |
|     }
 | |
| 
 | |
|     if (ArgType->isVectorTy()) {
 | |
|       unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
 | |
|       std::vector<Constant*> Mask(numElem);
 | |
|       for (unsigned v = 0; v < numElem; ++v)
 | |
|         Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
| 
 | |
|       Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
 | |
|                                               H->getOperand(o),
 | |
|                                               ConstantVector::get(Mask),
 | |
|                                               getReplacementName(I, true, o));
 | |
|       BV->insertBefore(J);
 | |
|       return BV;
 | |
|     }
 | |
| 
 | |
|     // If these two inputs are the output of another vector instruction,
 | |
|     // then we should use that output directly. It might be necessary to
 | |
|     // permute it first. [When pairings are fused recursively, you can
 | |
|     // end up with cases where a large vector is decomposed into scalars
 | |
|     // using extractelement instructions, then built into size-2
 | |
|     // vectors using insertelement and the into larger vectors using
 | |
|     // shuffles. InstCombine does not simplify all of these cases well,
 | |
|     // and so we make sure that shuffles are generated here when possible.
 | |
|     ExtractElementInst *LEE
 | |
|       = dyn_cast<ExtractElementInst>(L->getOperand(o));
 | |
|     ExtractElementInst *HEE
 | |
|       = dyn_cast<ExtractElementInst>(H->getOperand(o));
 | |
| 
 | |
|     if (LEE && HEE &&
 | |
|         LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
 | |
|       VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
 | |
|       unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
 | |
|       unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
 | |
|       if (LEE->getOperand(0) == HEE->getOperand(0)) {
 | |
|         if (LowIndx == 0 && HighIndx == 1)
 | |
|           return LEE->getOperand(0);
 | |
| 
 | |
|         std::vector<Constant*> Mask(2);
 | |
|         Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
 | |
|         Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
 | |
| 
 | |
|         Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
 | |
|                                           UndefValue::get(EEType),
 | |
|                                           ConstantVector::get(Mask),
 | |
|                                           getReplacementName(I, true, o));
 | |
|         BV->insertBefore(J);
 | |
|         return BV;
 | |
|       }
 | |
| 
 | |
|       std::vector<Constant*> Mask(2);
 | |
|       HighIndx += EEType->getNumElements();
 | |
|       Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
 | |
|       Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
 | |
| 
 | |
|       Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
 | |
|                                           HEE->getOperand(0),
 | |
|                                           ConstantVector::get(Mask),
 | |
|                                           getReplacementName(I, true, o));
 | |
|       BV->insertBefore(J);
 | |
|       return BV;
 | |
|     }
 | |
| 
 | |
|     Instruction *BV1 = InsertElementInst::Create(
 | |
|                                           UndefValue::get(VArgType),
 | |
|                                           L->getOperand(o), CV0,
 | |
|                                           getReplacementName(I, true, o, 1));
 | |
|     BV1->insertBefore(I);
 | |
|     Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
 | |
|                                           CV1,
 | |
|                                           getReplacementName(I, true, o, 2));
 | |
|     BV2->insertBefore(J);
 | |
|     return BV2;
 | |
|   }
 | |
| 
 | |
|   // This function creates an array of values that will be used as the inputs
 | |
|   // to the vector instruction that fuses I with J.
 | |
|   void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
 | |
|                      Instruction *I, Instruction *J,
 | |
|                      SmallVector<Value *, 3> &ReplacedOperands,
 | |
|                      bool &FlipMemInputs) {
 | |
|     FlipMemInputs = false;
 | |
|     unsigned NumOperands = I->getNumOperands();
 | |
| 
 | |
|     for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
 | |
|       // Iterate backward so that we look at the store pointer
 | |
|       // first and know whether or not we need to flip the inputs.
 | |
| 
 | |
|       if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
 | |
|         // This is the pointer for a load/store instruction.
 | |
|         ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
 | |
|                                 FlipMemInputs);
 | |
|         continue;
 | |
|       } else if (isa<CallInst>(I) && o == NumOperands-1) {
 | |
|         Function *F = cast<CallInst>(I)->getCalledFunction();
 | |
|         unsigned IID = F->getIntrinsicID();
 | |
|         BasicBlock &BB = *I->getParent();
 | |
| 
 | |
|         Module *M = BB.getParent()->getParent();
 | |
|         Type *ArgType = I->getType();
 | |
|         Type *VArgType = getVecTypeForPair(ArgType);
 | |
| 
 | |
|         // FIXME: is it safe to do this here?
 | |
|         ReplacedOperands[o] = Intrinsic::getDeclaration(M,
 | |
|           (Intrinsic::ID) IID, VArgType);
 | |
|         continue;
 | |
|       } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
 | |
|         ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       ReplacedOperands[o] =
 | |
|         getReplacementInput(Context, I, J, o, FlipMemInputs);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This function creates two values that represent the outputs of the
 | |
|   // original I and J instructions. These are generally vector shuffles
 | |
|   // or extracts. In many cases, these will end up being unused and, thus,
 | |
|   // eliminated by later passes.
 | |
|   void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
 | |
|                      Instruction *J, Instruction *K,
 | |
|                      Instruction *&InsertionPt,
 | |
|                      Instruction *&K1, Instruction *&K2,
 | |
|                      bool &FlipMemInputs) {
 | |
|     Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
 | |
|     Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
 | |
| 
 | |
|     if (isa<StoreInst>(I)) {
 | |
|       AA->replaceWithNewValue(I, K);
 | |
|       AA->replaceWithNewValue(J, K);
 | |
|     } else {
 | |
|       Type *IType = I->getType();
 | |
|       Type *VType = getVecTypeForPair(IType);
 | |
| 
 | |
|       if (IType->isVectorTy()) {
 | |
|           unsigned numElem = cast<VectorType>(IType)->getNumElements();
 | |
|           std::vector<Constant*> Mask1(numElem), Mask2(numElem);
 | |
|           for (unsigned v = 0; v < numElem; ++v) {
 | |
|             Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
 | |
|             Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
 | |
|           }
 | |
| 
 | |
|           K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
 | |
|                                        ConstantVector::get(
 | |
|                                          FlipMemInputs ? Mask2 : Mask1),
 | |
|                                        getReplacementName(K, false, 1));
 | |
|           K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
 | |
|                                        ConstantVector::get(
 | |
|                                          FlipMemInputs ? Mask1 : Mask2),
 | |
|                                        getReplacementName(K, false, 2));
 | |
|       } else {
 | |
|         K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
 | |
|                                           getReplacementName(K, false, 1));
 | |
|         K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
 | |
|                                           getReplacementName(K, false, 2));
 | |
|       }
 | |
| 
 | |
|       K1->insertAfter(K);
 | |
|       K2->insertAfter(K1);
 | |
|       InsertionPt = K2;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Move all uses of the function I (including pairing-induced uses) after J.
 | |
|   bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet,
 | |
|                      Instruction *I, Instruction *J) {
 | |
|     // Skip to the first instruction past I.
 | |
|     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
 | |
| 
 | |
|     DenseSet<Value *> Users;
 | |
|     AliasSetTracker WriteSet(*AA);
 | |
|     for (; cast<Instruction>(L) != J; ++L)
 | |
|       (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
 | |
| 
 | |
|     assert(cast<Instruction>(L) == J &&
 | |
|       "Tracking has not proceeded far enough to check for dependencies");
 | |
|     // If J is now in the use set of I, then trackUsesOfI will return true
 | |
|     // and we have a dependency cycle (and the fusing operation must abort).
 | |
|     return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
 | |
|   }
 | |
| 
 | |
|   // Move all uses of the function I (including pairing-induced uses) after J.
 | |
|   void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet,
 | |
|                      Instruction *&InsertionPt,
 | |
|                      Instruction *I, Instruction *J) {
 | |
|     // Skip to the first instruction past I.
 | |
|     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
 | |
| 
 | |
|     DenseSet<Value *> Users;
 | |
|     AliasSetTracker WriteSet(*AA);
 | |
|     for (; cast<Instruction>(L) != J;) {
 | |
|       if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
 | |
|         // Move this instruction
 | |
|         Instruction *InstToMove = L; ++L;
 | |
| 
 | |
|         DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
 | |
|                         " to after " << *InsertionPt << "\n");
 | |
|         InstToMove->removeFromParent();
 | |
|         InstToMove->insertAfter(InsertionPt);
 | |
|         InsertionPt = InstToMove;
 | |
|       } else {
 | |
|         ++L;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect all load instruction that are in the move set of a given first
 | |
|   // pair member.  These loads depend on the first instruction, I, and so need
 | |
|   // to be moved after J (the second instruction) when the pair is fused.
 | |
|   void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet,
 | |
|                      Instruction *I) {
 | |
|     // Skip to the first instruction past I.
 | |
|     BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
 | |
| 
 | |
|     DenseSet<Value *> Users;
 | |
|     AliasSetTracker WriteSet(*AA);
 | |
| 
 | |
|     // Note: We cannot end the loop when we reach J because J could be moved
 | |
|     // farther down the use chain by another instruction pairing. Also, J
 | |
|     // could be before I if this is an inverted input.
 | |
|     for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
 | |
|       if (trackUsesOfI(Users, WriteSet, I, L)) {
 | |
|         if (L->mayReadFromMemory())
 | |
|           LoadMoveSet.insert(ValuePair(L, I));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In cases where both load/stores and the computation of their pointers
 | |
|   // are chosen for vectorization, we can end up in a situation where the
 | |
|   // aliasing analysis starts returning different query results as the
 | |
|   // process of fusing instruction pairs continues. Because the algorithm
 | |
|   // relies on finding the same use trees here as were found earlier, we'll
 | |
|   // need to precompute the necessary aliasing information here and then
 | |
|   // manually update it during the fusion process.
 | |
|   void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
 | |
|                      std::vector<Value *> &PairableInsts,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs,
 | |
|                      std::multimap<Value *, Value *> &LoadMoveSet) {
 | |
|     for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
 | |
|          PIE = PairableInsts.end(); PI != PIE; ++PI) {
 | |
|       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
 | |
|       if (P == ChosenPairs.end()) continue;
 | |
| 
 | |
|       Instruction *I = cast<Instruction>(P->first);
 | |
|       collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // This function fuses the chosen instruction pairs into vector instructions,
 | |
|   // taking care preserve any needed scalar outputs and, then, it reorders the
 | |
|   // remaining instructions as needed (users of the first member of the pair
 | |
|   // need to be moved to after the location of the second member of the pair
 | |
|   // because the vector instruction is inserted in the location of the pair's
 | |
|   // second member).
 | |
|   void BBVectorize::fuseChosenPairs(BasicBlock &BB,
 | |
|                      std::vector<Value *> &PairableInsts,
 | |
|                      DenseMap<Value *, Value *> &ChosenPairs) {
 | |
|     LLVMContext& Context = BB.getContext();
 | |
| 
 | |
|     // During the vectorization process, the order of the pairs to be fused
 | |
|     // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
 | |
|     // list. After a pair is fused, the flipped pair is removed from the list.
 | |
|     std::vector<ValuePair> FlippedPairs;
 | |
|     FlippedPairs.reserve(ChosenPairs.size());
 | |
|     for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
 | |
|          E = ChosenPairs.end(); P != E; ++P)
 | |
|       FlippedPairs.push_back(ValuePair(P->second, P->first));
 | |
|     for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
 | |
|          E = FlippedPairs.end(); P != E; ++P)
 | |
|       ChosenPairs.insert(*P);
 | |
| 
 | |
|     std::multimap<Value *, Value *> LoadMoveSet;
 | |
|     collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
 | |
| 
 | |
|     for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
 | |
|       DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
 | |
|       if (P == ChosenPairs.end()) {
 | |
|         ++PI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (getDepthFactor(P->first) == 0) {
 | |
|         // These instructions are not really fused, but are tracked as though
 | |
|         // they are. Any case in which it would be interesting to fuse them
 | |
|         // will be taken care of by InstCombine.
 | |
|         --NumFusedOps;
 | |
|         ++PI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       Instruction *I = cast<Instruction>(P->first),
 | |
|         *J = cast<Instruction>(P->second);
 | |
| 
 | |
|       DEBUG(dbgs() << "BBV: fusing: " << *I <<
 | |
|              " <-> " << *J << "\n");
 | |
| 
 | |
|       // Remove the pair and flipped pair from the list.
 | |
|       DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
 | |
|       assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
 | |
|       ChosenPairs.erase(FP);
 | |
|       ChosenPairs.erase(P);
 | |
| 
 | |
|       if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
 | |
|         DEBUG(dbgs() << "BBV: fusion of: " << *I <<
 | |
|                " <-> " << *J <<
 | |
|                " aborted because of non-trivial dependency cycle\n");
 | |
|         --NumFusedOps;
 | |
|         ++PI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       bool FlipMemInputs;
 | |
|       unsigned NumOperands = I->getNumOperands();
 | |
|       SmallVector<Value *, 3> ReplacedOperands(NumOperands);
 | |
|       getReplacementInputsForPair(Context, I, J, ReplacedOperands,
 | |
|         FlipMemInputs);
 | |
| 
 | |
|       // Make a copy of the original operation, change its type to the vector
 | |
|       // type and replace its operands with the vector operands.
 | |
|       Instruction *K = I->clone();
 | |
|       if (I->hasName()) K->takeName(I);
 | |
| 
 | |
|       if (!isa<StoreInst>(K))
 | |
|         K->mutateType(getVecTypeForPair(I->getType()));
 | |
| 
 | |
|       for (unsigned o = 0; o < NumOperands; ++o)
 | |
|         K->setOperand(o, ReplacedOperands[o]);
 | |
| 
 | |
|       // If we've flipped the memory inputs, make sure that we take the correct
 | |
|       // alignment.
 | |
|       if (FlipMemInputs) {
 | |
|         if (isa<StoreInst>(K))
 | |
|           cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
 | |
|         else
 | |
|           cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
 | |
|       }
 | |
| 
 | |
|       K->insertAfter(J);
 | |
| 
 | |
|       // Instruction insertion point:
 | |
|       Instruction *InsertionPt = K;
 | |
|       Instruction *K1 = 0, *K2 = 0;
 | |
|       replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
 | |
|         FlipMemInputs);
 | |
| 
 | |
|       // The use tree of the first original instruction must be moved to after
 | |
|       // the location of the second instruction. The entire use tree of the
 | |
|       // first instruction is disjoint from the input tree of the second
 | |
|       // (by definition), and so commutes with it.
 | |
| 
 | |
|       moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
 | |
| 
 | |
|       if (!isa<StoreInst>(I)) {
 | |
|         I->replaceAllUsesWith(K1);
 | |
|         J->replaceAllUsesWith(K2);
 | |
|         AA->replaceWithNewValue(I, K1);
 | |
|         AA->replaceWithNewValue(J, K2);
 | |
|       }
 | |
| 
 | |
|       // Instructions that may read from memory may be in the load move set.
 | |
|       // Once an instruction is fused, we no longer need its move set, and so
 | |
|       // the values of the map never need to be updated. However, when a load
 | |
|       // is fused, we need to merge the entries from both instructions in the
 | |
|       // pair in case those instructions were in the move set of some other
 | |
|       // yet-to-be-fused pair. The loads in question are the keys of the map.
 | |
|       if (I->mayReadFromMemory()) {
 | |
|         std::vector<ValuePair> NewSetMembers;
 | |
|         VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
 | |
|         VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
 | |
|         for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
 | |
|              N != IPairRange.second; ++N)
 | |
|           NewSetMembers.push_back(ValuePair(K, N->second));
 | |
|         for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
 | |
|              N != JPairRange.second; ++N)
 | |
|           NewSetMembers.push_back(ValuePair(K, N->second));
 | |
|         for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
 | |
|              AE = NewSetMembers.end(); A != AE; ++A)
 | |
|           LoadMoveSet.insert(*A);
 | |
|       }
 | |
| 
 | |
|       // Before removing I, set the iterator to the next instruction.
 | |
|       PI = llvm::next(BasicBlock::iterator(I));
 | |
|       if (cast<Instruction>(PI) == J)
 | |
|         ++PI;
 | |
| 
 | |
|       SE->forgetValue(I);
 | |
|       SE->forgetValue(J);
 | |
|       I->eraseFromParent();
 | |
|       J->eraseFromParent();
 | |
|     }
 | |
| 
 | |
|     DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
 | |
|   }
 | |
| }
 | |
| 
 | |
| char BBVectorize::ID = 0;
 | |
| static const char bb_vectorize_name[] = "Basic-Block Vectorization";
 | |
| INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
 | |
| INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
 | |
| INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
 | |
| 
 | |
| BasicBlockPass *llvm::createBBVectorizePass() {
 | |
|   return new BBVectorize();
 | |
| }
 | |
| 
 |